
DOI: 10.1007/s00145-015-9209-1
J Cryptol (2016) 29:775–805

Bug Attacks
Eli Biham · Yaniv Carmeli

Computer Science Department, Technion - Israel Institute of Technology, Haifa 3200003, Israel
biham@cs.technion.ac.il; yanivca@cs.technion.ac.il

http://www.cs.technion.ac.il/∼biham/; http://www.cs.technion.ac.il/∼yanivca/

Adi Shamir
Computer Science Department, The Weizmann Institute of Science, Rehovot 7610001, Israel

adi.shamir@weizmann.ac.il

Communicated by Hugo Krawczyk.

Received 13 April 2012
Online publication 7 August 2015

Abstract. In this paper we present a new kind of cryptanalytic attack which utilizes
bugs in the hardware implementation of computer instructions. The best-known exam-
ple of such a bug is the Intel division bug, which resulted in slightly inaccurate results
for extremely rare inputs. Whereas in most applications such bugs can be viewed as
a minor nuisance, we show that in the case of RSA (even when protected by OAEP),
Pohlig–Hellman and ElGamal encryption such bugs can be a security disaster: decrypt-
ing ciphertexts on any computer which multiplies even one pair of numbers incorrectly
can lead to full leakage of the secret key, sometimes with a single well-chosen cipher-
text. As shown by recent revelation of top secret NSA documents by Edward Snowden,
intentional hardware modifications is a method that was used by the USA to weaken
the security of commercial equipment sent to targeted organizations.

Keywords. Bug attack, Fault attack, RSA, Pohlig–Hellman, ElGamal encryption.

1. Introduction

With the increasing word size and the sophisticated optimizations of multiplication units
in modern microprocessors, it becomes increasingly likely that they contain undetected
bugs. This was demonstrated by the accidental discovery of the Pentium division bug
in the mid 1990’s, by the less famous Intel 80286 popf bug (that set and then cleared
the interrupt-enable bit during execution of the very simple popf instruction, when no
change in the bit was necessary), by the recent discovery of a bug in the Intel Core
2 memory management unit (which allows memory corruptions outside the permitted
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range of writing for a process), etc. A non-exhaustive list of known hardware bugs is
given in Appendix 2.
In this paper we show that a bug in the microprocessor that is used to carry out

cryptographic computations can be exploited by an attacker to learn secret information
about the cryptographic keys. We show that if some intelligence organization discovers
(or secretly plants) even one pair of single-word integers a and b whose product is
computed incorrectly (even in a single low-order bit) by a popular microprocessor, then
any key in any RSA-based security program running on any one of the millions of
computers that contain this microprocessor can be easily broken, unless appropriate
countermeasures are taken. In some cases, the full key can be retrieved with a single
chosen ciphertext, while in other cases (such as RSA protected by the popular OAEP
technique), a larger number of ciphertexts is required. Similar attacks are probably
applicable to other cryptographic schemes which are based on exponentiation modulo
a prime or on point multiplication in elliptic curves, and thus almost all the presently
deployed public key schemes might be vulnerable to such an attack.
The new attack, which we call a Bug Attack, is related to the notion of fault attacks

discovered by Boneh et al. [8] but seems to be much more dangerous in its implications.
The original fault attack concentrated on soft errors that yield random results when
induced at a particular point of time by the attacker (latent faults were briefly mentioned,
but were never studied). They require physical possession of the computing device by the
attacker, and the deliberate injection of a transient fault by operating this device outside
its operating envelope (temperature, voltage, clock frequency, etc.), or subjecting it to
clock and voltage glitches or light and laser pulses. Such attacks are feasible against
smart cards, but are much harder to carry out against PC’s. In the new bug attack, the
target PC’s can be located at secure locations halfway around the world, and millions
of PC’s can be attacked simultaneously over the Internet without having to manipulate
the operating environment of each one of them individually. Unlike the case of fault
attacks, in bug attacks the error is deterministic and is triggered whenever a particular
computation is carried out; the attacker cannot choose the timing or nature of the error,
except for choosing the inputs of the computation.
Since the design of modern microprocessors is usually kept as a trade secret, there

is no efficient method for the user to verify that a single multiplication bug does not
exist. For example, there are 2128 pairs of inputs in a 64 × 64 bit multiplier, and we
cannot try them all by exhaustive search. We can even expect that most of the 2128

pairs of inputs will never be multiplied on any processor. Even if we assume that Intel
had learned its lesson and meticulously verified the correctness of its multipliers, there
are many smaller manufacturers of microprocessors who may be less careful with their
design and less careful in testing the quality of the chips they produce. In addition, many
PCs are sold with overclocked processors which are more likely to err when performing
complex instructions such as 64-bit integer multiplication. The problem is not limited to
microprocessors: Many cellular phones are running RSA or elliptic curve computations
on signal processors made by TI and others. FPGA or ASIC devices embed flawed
multipliers from popular libraries of standard cell designs, and many security programs
use optimized “bignum packages” written by others without being able to fully verify
the correctness.
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In addition to such innocent bugs, there is the issue of intentionally tampered hardware,
which is a major security problem. Even commercially sold bug-free processors can be
made buggy by anyone along the supply chain who modifies them. In February 2005,
the matter was addressed in a US Department of Defense (DoD) report [30], which
warned about the risks of importing hardware from foreign countries to the USA. NSA
documents leaked by Edward Snowden provide evidence that the NSA does exactly
that. In December 2013, Der Spiegel ran a story [29] based on the leaked documents in
which they reveal the method referred by the NSA as interdiction: When an NSA target
orders new electronic equipment, the NSA diverts the shipments to pass through their
own workshops, where the packages are opened and the equipment is tampered with.
Other leaked documents [2] provide insight into some of the ways used by the NSA in
order to tamper with the equipment, including adding their own software, replacing the
existing firmware and even completely replacing the hardware.
In this paper, we show that the innocent or intentional introduction of any bug into

the multiplier of any processor (even when it affects only two specific inputs whose
product contains a single erroneous low-order bit) can lead to a major security disaster,
which can be secretly exploited in an essentially undetectable way by a sophisticated
intelligence organization. Even though we are not aware of any such attacks being
carried out in practice, hardware manufacturers and security experts should be aware of
this possibility and use appropriate countermeasures.
We present bug attacks against the widely deployed RSA [24] cipher, against the

Pohlig–Hellman cipher [22], the ElGamal [12] encryption, and against several imple-
mentations of those ciphers.1 We show that the secret exponents can be retrieved by a
chosen ciphertext attack, and in the case of Pohlig–Hellman, the secret exponent can also
be retrieved by a chosen plaintext attack. In the case of RSA, we show that if decryption
is performed using the Chinese remainder theorem (CRT) [19, Note14.70], the public
modulus n can be factored using a single chosen ciphertext. A particularly interesting ob-
servation is that even though RSA-OAEP [4] was designed to prevent chosen ciphertext
attacks, we can actually use this protective mechanism as part of our bug attack in order
to learn whether a bug was or was not encountered during the exponentiation process.
This demonstrates that in spite of the similarity between bug attacks and fault attacks,
their countermeasures can be very different. For example, just stopping an erroneous
computation or computing the result twice with a different exponentiation algorithm to
verify the result may protect the scheme against fault attacks, but will leak the full key
via a bug attack. We also discuss the possible applicability of this technique to elliptic
curve schemes and several symmetric primitives.
This paper is organized as follows: Sect. 2 gives an overview of the methods we use

in most of our attacks and describes the two most commonly used implementations of
modular exponentiations: the left-to-right (LTOR) and right-to-left (RTOL) exponenti-
ation algorithms. Section 3 presents the simplest bug attack on RSA when decryption is
performed using the CRT, using a single chosen ciphertext. Section 4 presents attacks on
several cryptosystems when exponentiations are computed using the LTOR algorithm,
and Sect. 5 presents attacks on the same schemes when the exponentiations are com-

1 We present a reduction that converts our attacks on the Pohlig–Hellman cipher to attacks on ElGamal
encryption.
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puted using the RTOL algorithm. Section 6 describes attacks which use the Legendre
symbol to identify erroneous Pohlig–Hellman decryptions. In Sect. 7, we discuss the
applicability of bug attacks to elliptic curve schemes and some symmetric primitives.
Section 8 summarizes the contributions of this paper and presents the time and data com-
plexities of all our attacks. In Appendix 1, we provide descriptions of the cryptosystems
discussed in this paper. Finally, Appendix 2 includes a non-exhaustive list of known
hardware bugs.
An extended abstract of this paper was published in the proceedings of CRYPTO

2008 [5]. In particular, we added attacks based on the Legendre symbol, referred explic-
itly to ElGamal encryption, and updated and revised the content and presentation in the
rest of the paper.

2. Overview of Our Methods and Notations

We present several attacks which use multiplication bugs. We concentrate on multipli-
cation since, on one hand, it is a common operation in cryptographic computations,
and on the other hand it is typically a complex operation and its implementations are
aggressively optimized. Therefore, bugs are much more likely to exist in multiplication
instructions than in simple operations like addition or XOR and are less likely to be dis-
covered by the manufacturers. Furthermore, these complex operations are more likely
to fail when the processor operates under unusual circumstances, such as overclocking,
even when no bugs exist under normal operating conditions.

2.1. Multiplication of Big Numbers

In cryptography, we are often required to perform arithmetic operations on big numbers,
which must be represented using more than a single 32-bit or 64-bit word. Arithmetic
operations on suchvaluesmust be brokendown into arithmetic operations on the different
words which comprise them. For example, when multiplying two very long integers x
and y, each represented by ten words, each of the ten words of x is multiplied by each of
the ten words of y in some order, and the results are then summed up to the appropriate
words of the product. If x contains a in the sense that one of the ten words of x is a, y
contains b, and the processor produces an incorrect result when a and b are multiplied,
then the result of multiplying x · y on that processor will typically be incorrect (unless
there are multiple errors that exactly cancel each other during the computation, which
is very unlikely when the other words in x and y are randomly chosen).

2.2. Notations

We use the notation x·y to denote the result of multiplying x by y on a bug-free processor
and x�y to denote the result of the same computation when performed on a faulty
processor. Similarly, the notation xl denotes the value of x to the power l as computed
on a bug-free processor, and x〈l〉 denotes the value of x to the power l as computed
by a particular algorithm on a faulty processor (see Sect. 2.5 for details of popular
exponentiation algorithms). Since we assume that faults are extremely rare, for most
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inputs, we expect the result of the computation to be the same on both the faulty and the
bug-free processors. When no errors occur, we use the notations x · y and xl , even when
referring to computations done on the faulty processor.

2.3. Methods

Our attacks request the decryptions of ciphertexts which may or may not invoke the
execution of the faultymultiplications, as determined by the bits of the secret exponent d.
The results of those decryptions are used to retrieve the bits of d. We develop two
methods for creating the conditions under which the buggy instructions are executed.
The first method chooses a ciphertext C , such that some intermediate value x during the
decryption process contains both a and b. If x is squared, then we expect that x2 �= x 〈2〉,
and thus the result of the entire decryption process is also expected to be incorrect. But
if x is first multiplied by a different value y (as controlled by d), which contains neither a
nor b, then we expect that x · y = x � y, and the decryption result is expected to be
correct.
The second method chooses C such that during decryption one intermediate value x

contains a, while another value y contains b. If x and y are multiplied, then it is expected
that x · y �= x � y, and the result of decryption on the faulty processor is expected to
be incorrect. If x and y are not multiplied during the decryption process (due to the bits
of d), we expect the decryption result to be correct.

2.4. Complexity Analysis

Letw be the length (in bits) of thewords of the processor. In the analysis of the complexity
of our attacks throughout this paper, we assume that numbers (both exponentiated values
and exponents) are 1024 bit long and that w = 32 (in the summary of the paper we
also quote the complexities for w = 64). The standard representation of 1024-bit-long
numbers requires �210/w� words. Given a random 1024-bit value x and a w-bit value a,
the probability that x contains a (in any of its 210/w words) is about 2−w210/w. For
w = 32, this probability is about 2−27, and forw = 64 it is about 2−60. Given twow-bit
values a and b, the probability that x contains both a and b is about

(
2−w210/w

)2
. For

w = 32, this probability is about 2−54, and for w = 64 it is about 2−120.
It is important to note that obtaining the data required for some of our attacks might be

slow, as in some cases, the attack requires a vast number of decryptions on the attacked
faulty processor.

2.5. Exponentiation Algorithms

Given a value x and a secret exponent d = dlog ndlog n−1 . . . d1d0 (where di ∈ {0, 1} are
the binary digits of d, i.e., d = ∑
log n�

i=0 di2i ), the exponentiation x �→ xd mod n can
be efficiently computed by several exponentiation algorithms [19, Chapter 14.6]. In this
paper, we present attacks against implementations that use the two basic exponentiation
algorithms, LTOR and RTOL, described in Algorithm 1. Several of our techniques can
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LTOR Exponentiation RTOL Exponentiation

z ← 1 y ← x; z ← 1
For k = log n down to 0 For k = 0 to log n
If dk = 1 then z ← z2 · x mod n If dk = 1 then z ← z · y mod n
Otherwise, z ← z2 mod n y ← y2 mod n

Output z Output z

Algorithm 1: The Two Basic Exponentiation Algorithms

be easily adapted to attack implementations that use other exponentiation algorithms
such as the sliding window algorithm and the k-ary exponentiation algorithm.

2.6. Remarks

The following remarks apply to most of the attacks presented in this paper.

1. Microprocessors usually perform different sequences of microcode instructions
when computing a · b and b · a, and thus the bug is not expected to be symmetric:
for a ·b the processor may give an incorrect result, while for b ·a the result may be
correct. Therefore, the correctness of the result of multiplying two big numbers x
and y, where x contains a and y contains b, depends onwhether the implementation
of x · y multiplies a · b or b · a. We assume that such implementation details are
known to the attacker when she devises the attack.

2. Given a value n, the number of bits in the binary representation of n is 
log2 n�+1
(the indices of the bits of n are 0, . . . , 
log n�, where 0 is the index of the least
significant bit, and 
log n� is the index of the most significant bit). Throughout this
paper, we use log n (without the floor operator) as a shorthand for the index of the
most significant bit of n.

3. It may be the case that more than one pair of buggy inputs a and b exist. In such
cases, if γ > 1 multiplication bugs are known to the attacker the complexities of
some of the attacks we present can be decreased. In attacks where the attacker can
control only one of the operands of the multiplication, and the other operand is
expected to appear randomly the time complexity can be decreased by a factor of
about min(γ, 
(log n) /w�) (It is enough that one of the pairs of the buggy inputs
appears in order to cause an error in the computation, it does not matter which
of them. Still, we cannot use more input pairs than the number of words in the
representation of the big integer). For example, if two pairs of buggy inputs are
known, a −b and c −d, we can choose the operand we can control to contain both
a and c, and then we need either b or d to appear randomly in the other operand. If
some of the buggy pairs of operands share the same value for one of the operands,
this factor can even be better (but it cannot be higher than γ ). In attacks where both
operands are expected to appear randomly, the time complexity can be decreased
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by a factor of γ . Note that for this remark symmetric bugs, where both the results
of a · b and b · a are incorrect, are counted as two bugs.

4. If both operands of the buggy instruction are equal (i.e., a = b), the complexity of
some of our attacks can be greatly reduced, while other attacks become impossible.
The former case happens when attacks rely on faults in the squaring of values X ,
where X happens by chance to contain both a and b. In this case only one word
(a) needs to appear in X , which makes the probability of this event much higher.
On the other hand, attacks which use the existence of a bug in order to decide
whether x and y were squared or multiplied together become impossible. When
the attack requires that x contains a and that y contains b, our ability to distinguish
between the cases of (x2 or xy) relies on whether a �= b.

3. Breaking CRT-RSA with One Chosen Ciphertext

We now describe a simple attack on RSA implementations in which decryptions are
performed using the CRT. Let n = pq be the public modulus of RSA, where p and
q are large primes, and assume without loss of generality that p < q. Knowing the
target’s public key n (but not its secret factors p and q), the attacker can easily compute
a half size integer which is guaranteed to be between the two secret factors p and q of n.
For example, 
√n� always satisfies p ≤ 
√n� < q, and any integer close to

√
n is

also likely to satisfy this condition. The attacker now chooses a ciphertext C which is
the closest integer to

√
n, such that both a and b appear as low-order words in C , and

submits this “poisonous input” to the target PC.
The first step in the CRT-RSA computation is to reduce the input C modulo p and

moduloq. Due to its choice,C p = C mod p is randomizedmodulo the smaller factor p,
but Cq = C mod q = C remains unchanged modulo the larger factor q. The next step
in RSA-CRT is always to square the reduced inputsC p andCq , respectively. Since a and
b are unlikely to remain in C p, the computation mod p is likely to be correct. However,
mod q the squaring operation will contain a step in which the word a is multiplied
by the word b, and by our assumption, the result will be incorrect. Assuming that the
rest of the two computations mod p and q will be correct, the final result of the two
exponentiations will be combined into a single output M̂ which is likely to be correct
mod p, but incorrect mod q. The attacker can then finish off his attack in the same way
as in the original fault attack of [8], by computing the greatest common divisor (gcd)
of n and M̂e − C , where e is the public exponent of the attacked RSA key. This gcd is
the secret factor p of n.
Note that if such C (p ≤ C < q) cannot be found, then q − p < 22w. In this case,

n can be easily factored by other methods (e.g., Fermat’s factorization method, which
will factor n in 2w time without any calls to the decryption oracle).

4. Bug Attacks on LTOR Exponentiations

In this section, we present bug attacks against several cryptosystems, where exponentia-
tions are performed using the LTOR exponentiation algorithm (rather than using CRT).
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We first present chosen plaintext (or chosen ciphertext) attacks against the Pohlig–
Hellman scheme and ElGamal encryption, then present chosen ciphertext attacks against
RSA, and finally discuss how to adapt our attacks on RSA to the case of RSA-OAEP.

4.1. Bug Attacks on Pohlig–Hellman and ElGamal Encryption

The Pohlig–Hellman cipher uses two secret exponents e and d: The former is used for
encryption, and the latter for decryption. Given one of the secret exponents, the other can
be computed by d ≡ e−1 (mod p − 1). We discuss adaptive and non-adaptive chosen
ciphertext attacks which retrieve the bits of the decryption exponent d; similar chosen
plaintext attacks can retrieve the encryption exponent e.
The same attacks can also be applied to retrieve the secret exponent x of the ElGamal

encryption system by the following reduction:

– Each call to a Pohlig–Hellman decryption of a ciphertextC is replaced by a decryption
of (C, r) for a randomly chosen r .

– Denote the result of the ElGamal decryption by Y , and then the Pohlig–Hellman
decryption of C is replaced by M = Y −1 · r mod p.

The same reduction applies also for computations on a faulty processor, where the
decryption of ElGamal should be performed on the same faulty processor.
We start by presenting a simple adaptive attack which demonstrates the basic idea of

our technique. We later improve this attack with additional ideas.

4.1.1. Basic Adaptive Chosen Ciphertext

In this section, an attack which requires the decryption of log p +1 chosen ciphertexts is
presented. The attack retrieves the bits of the secret exponent one at a time, from dlog p to
d1 (d0 is known to be one, as d is odd). Therefore, when the search for di is performed,
we can assume that the bits di+1, . . . , dlog p are already known. Algorithm 2 describes
the attack.
The attack is based on the following observations. Since p is a known prime, the

attacker can compute arbitrary roots modulo p. The value of C is chosen such that when
it is exponentiated to power d with LTOR, the intermediate value of the variable z after
log p − i iterations is a modular square root of X . At the beginning of the next iteration z
is squared (and thus its value becomes X ). The next operation of the LTOR algorithm
is either squaring z or multiplying it by C , depending on the value of di . Since the
intermediate value z = X contains both a and b, we expect an incorrect decryption if z
is squared (i.e., when di = 0), and a correct decryption if z is first multiplied by C (i.e.,
when di = 1).

Note that the bug-free decryption in Step 3d may be computed on the buggy micro-
processor by using the multiplicative property of modular exponentiation. The attacker
may request the decryption M ′ of C ′ = C3 mod p (or any other power of C which is
not expected to cause the execution of the faulty instructions), and then check whether
M̂3 ≡ M ′ (mod p) to learn whether an error had occurred. Thus, no calls to a bug-free
decryption device that uses the same secret key (which is usually unavailable) are re-
quired. In fact, since the same value of X is used for each of the iterations, the correct
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1. Choose a value X which contains the words a and b.
2. Set dlog p = 1
3. For i = log p − 1 down to 1 do

# Trying to recover bit di , given that bits di+1 . . . dlog p are known.

(a) Denote the value of the known bits of d by d ′ = ∑log p
k=i+1 2

k−(i+1)dk .

(b) Compute C = X1/2d ′
mod p.

(c) Ask for the decryption M̂ = C〈d〉 mod p on the faulty processor.
(d) Obtain the correct decryption M = Cd mod p (we later describe how this step can be performed

even without access to a bug-free processor).
(e) If M = M̂ conclude that di = 1, otherwise conclude that di = 0.

4. Set d0 = 1.

Algorithm 2: Basic Adaptive Chosen Ciphertext Attack Against Pohlig–Hellman with
LTOR

decryption M can be computed from the value of the correct decryption in the previous
iteration as: M = M̄d ′/d̄ ′

mod n, where M̄ and d̄ ′ are the values of the corresponding
variables in the previous iteration. Therefore, no additional decryption requests (beyond
the first one) are needed in order to obtain all the correct decryption results throughout
the attack.
The attack requires buggy decryption of log p + 1 chosen ciphertexts to retrieve d, or

buggy encryption of log p + 1 chosen plaintexts to retrieve e. Each one of these values
makes it easy to compute the other value since p is a known prime.

4.1.2. Improved Adaptive Chosen Ciphertext Attack

We observe that X can be selected such that both X and X 〈2〉 contain a and b (we later
describe how to find such X ). Using this observation, we reduce the expected complexity
of retrieving d by a constant factor. A further improvement uses values of X which
contain a and b, such that when X is squared m times repeatedly on a faulty processor
(for some m > 0), all the intermediate squares X 〈2 j 〉 (for 0 ≤ j ≤ m) contain a and b.
The faulty squares of X as computed by the faulty processor are X 〈2〉, X 〈22〉, . . . , X 〈2m 〉.
Let β j = X2 j

/X 〈2 j 〉 for 0 ≤ j ≤ m. Using such values for X and assuming uniform and
independent distribution of the bits of d, we can improve the expected complexity of the
attack by a factor of α = 2 − 2−m . The trick is to identify the length of a subsequence
of several consecutive zero bits of d using one chosen ciphertext.
In this improved attack, the bits of d are retrieved starting from the most significant

bit, as in the original attack. The attack is described in Algorithm 3.
As in the basic attack, the correct decryption of C can be obtained by a blinded

decryption query to the faulty processor, which is not likely to trigger the fault.
The attack chooses ciphertexts such that after log p−i iterations of the exponentiation

(i.e., decryption), the intermediate value of z in the LTOR algorithm is a square root of X .
At the beginning of the next iteration, its values are squared (and thus it is now X ). Then,
if di = 1, X is multiplied by C and therefore no errors are expected to occur during
the algorithm (and we get j = 0 in Step 3f of the attack). Otherwise, di = 0, X is
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1. Choose X such that X, X 〈2〉, X 〈22〉, . . . , X 〈2m 〉 all contain a and b (see below how to implement this
step in the most efficient way).

2. Set dlog p = 1
3. While not all the bits dlog p−1, . . . , d2, d1 are known:

(a) Let i be the smallest index such that all the bits di+1, . . . , dlog p are already known.

(b) Denote the value of the known bits of d by d ′ = ∑log p
k=i+1 2

k−(i+1)dk .

(c) Compute C = X1/(2d ′) mod p.
(d) Ask for the decryption M̂ = C〈d〉 mod p on the faulty processor.
(e) Obtain the correct decryption M = Cd mod p.

(f) Find j such that M/M̂ = β j
2i− j

mod p ( j ∈ {0, . . . , m}).
(g) Conclude that the next j bits of d are zero (i.e., di = di−1 = . . . = di−( j−1) = 0), and if j < m,

the following bit is one (i.e., di− j = 1).

4. Set d0 = 1.

Algorithm 3: Improved Adaptive Chosen Ciphertext Attack Against Pohlig–Hellman
with LTOR

squared, and the result is X 〈2〉 (due to the bug). If di−1 = 1, then the intermediate result
is multiplied by C , and therefore no additional computation errors are expected to occur.
In such a case, the output of the exponentiation algorithm is M̂ = (X 〈2〉)2i

C∗, where C∗
is a value which depends only on C and on the unknown bits of d. For similar reasons,
the correct exponentiation of C is M = (X2)2

i
C∗, so we get M/M̂ = β1

2i
. Moreover,

if there are j ( j ≤ m) consecutive zero bits, they are successfully identified by the
condition in Step 3f, as M = (X2)2

i− j
C∗ and M̂ = (X 〈2〉)2i− j

C∗ for some appropriate
C∗, and we get M/M̂ = β1

2i− j
. Note that the length of sequences of zeros we can

identify in this way is bounded by m, and that if we identify a sequence of m zero bits,
we cannot determine whether the following bit (after the sequence) is set or not.
Each iteration of the attack retrieves at least one bit of d and may retrieve up to m bits

of d. Assuming a uniform independent distribution of the bits of d, the expected number
of bits retrieved in each iteration is α = ∑m

k=0 2
−k = 2 − 2−m , which for m ≥ 1, is in

the range α ∈ [1.5, 2). Therefore, on average log p/(2 − 2−m) + 1 chosen ciphertexts
are required for the attack, which is 1.5–2 times more efficient than the basic version.
Finding X. For a general m, finding such values of X as required for the attack may be
hard, because the probability that the square of a random value which contains a and
b also contains a and b is very low. However, for m = 2 and m = 3, when w = 32,
we successfully found such values: When p > 2256 we can use X = 2127 + 232a + b,
for which both X and X 〈2〉 contain a and b. For p > 2893, we can use X = 2223 +
296(232a + b) + 210, for which all three values X , X 〈2〉 and X 〈4〉 contain both a and b.
By investing a computation time of about 254 in each iteration of the attack, we can

reduce the data complexity by a factor of 2.We search for values X such that X , X 〈2〉, and
(X � X1/2d ′

)〈2〉 = (X � C)〈2〉, all contain a and b (we can choose values X that satisfy
the first two conditions, while the appearance of a and b in (X � C)〈2〉 has a probability
of about 2−54 to occur randomly). Using such values, we can retrieve two bits of d in
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every iteration of the attack, reducing the number of calls to the faulty decryption oracle
by a factor of 2. However, the total time complexity of the attack increases to about 263.

4.1.3. Chosen Ciphertext Attack

The (non-adaptive) chosen ciphertext attack presented later in Sect. 4.2.2 is also applica-
ble in the case of Pohlig–Hellman. The attack requires decryption of 228 ciphertexts to
retrieve the secret exponent d (the attack on RSA requires 227 ciphertexts, but in the
case of Pohlig–Hellman, an additional decryption is required for each buggy decryp-
tion in order to verify the correctness of the decryption). As in the previous attacks on
Pohlig–Hellman, a similar chosen plaintext attack can retrieve the secret exponent e.

4.2. Bug Attacks on RSA

In this section, we describe several chosen ciphertext attacks on RSA, where the attacked
implementation performs decryptions without using CRT. Instead, we assume that the
decryption of a ciphertext C is performed by computing Cd mod n using LTOR (where
d is the secret exponent of RSA). We assume that the public exponent e and the public
modulus n are known. The main difference between the case of RSA and the case of
Pohlig–Hellman is that there is no known efficient algorithm to compute roots modulo
a composite n when the factorization of n is unknown.

In addition, unlike the case of Pohlig–Hellman, in RSA it is easy to check whether
the decrypted message M̂ is the correct decryption of a chosen ciphertext C by checking
whether M̂e ≡ C (mod n). Therefore, there is no need to request the decryptions of
additional messages for this purpose.

4.2.1. Adaptive Chosen Ciphertext Attack

We describe an adaptive chosen ciphertext attack which requires the decryption of log n
chosen ciphertexts by the target computer. The generation of each of the ciphertexts
requires 227 time on the attacker’s (bug-free) computer, and thus the total time complexity
of the attack is about 237. The details are provided in Algorithm 4.

The attack is similar to the basic attack presented in Sect. 4.1.1, except that here only
the word a is contained in the intermediate value of the exponentiation. The word b
is contained in the ciphertext C , and therefore, the roles of the correct and incorrect
results are exchanged: Now an incorrect result corresponds to di = 1 and a correct
result corresponds to di = 0.
During the execution of the LTOR algorithm, the intermediate value of the variable z

during iteration log n − i contains a (due to the selection of C in Step 2b of the attack). If
di = 0 then z is squared, and no errors in the computation are expected to occur, leading
to Ĉ = C in Step 2e If di = 1, then z is multiplied by C , which contains the word b,
and due to the bug, the result of the exponentiation is expected to be incorrect, leading
to Ĉ �= C in Step 2e.

As explained in Sect. 2, the probability that the random number Cd ′
mod n contains

somewhere along it the word a is 2−27 (for our standard parameters). Therefore, Step 2b
takes an average time of 227 exponentiations on the attacker’s computer.
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1. Set dlog n = 1
2. For i = log n − 1 down to 1 do

(a) Denote the value of the known bits of d by d ′ = ∑log n
k=i+1 2

k−(i+1)dk .

(b) Repeatedly choose random values C which contain b, until C2d ′
mod n contains a.

(c) Ask for the decryption M̂ = C〈d〉 mod n using the faulty processor.
(d) Compute Ĉ = M̂e mod n.
(e) If Ĉ = C conclude that di = 0, otherwise conclude that di = 1.

3. Set d0 = 1.

Algorithm 4: Adaptive Chosen Ciphertext Attack Against RSA with LTOR

1. Choose 229 random ciphertexts C j (1 ≤ j ≤ 229) containing the word b, and ask for their decryptions

M̂ j using the faulty processor.
2. Set dlog n = 1
3. For i = log n − 1 down to 1 do

(a) Denote the value of the known bits of d by d ′ = ∑log n
k=i+1 2

k−(i+1)dk .

(b) For each ciphertext C j compute X j = C2d ′
j mod n.

(c) Consider all ciphertexts C j such that X j contains a:

i. If for all such ciphertexts C j it holds that M̂e
j mod n = C j then set di = 0.

ii. If for all such ciphertexts C j it holds that M̂e
j mod n �= C j then set di = 1.

iii. If there are no such ciphertexts try the rest of the attack for both di = 0 and di = 1.
iv. If for some of these ciphertexts C j , M̂e

j mod n = C j and for others M̂e
j mod n �= C j

(i.e., a previously set value of one of the bits is wrong) then backtrack.

4. Set d0 = 1.

Algorithm 5: Chosen Ciphertext Attack Against RSA with LTOR

4.2.2. Chosen Ciphertext Attack

Theprevious adaptive attackon exponentiations usingLTOR is the basis for the following
non-adaptive chosen ciphertext attack. The attack requests the decryption of 229 chosen
ciphertexts, all of which contain the word b. It is expected that for every 0 ≤ i ≤ log n,
there are about four ciphertexts (of the 229 forwhich the intermediate value of z in round i
of the exponentiation algorithm contains the word a. The value of di can be determined
by the correctness of the decryption of those ciphertexts, using considerations similar
to the ones used in the attack of Sect. 4.2.1. If for some i there are no ciphertexts C j

for which X j = Cd ′
j mod n contains a, there is no choice but to continue the attack

recursively for both di = 0 and di = 1. However, when the wrong value is chosen, a
contradiction may be encountered before retrieving the rest of the bits (i.e., more than
one ciphertext C j for which X j contains a is found, and the decryption of some, but
not all, of them is incorrect). By using standard results from the theory of branching
processes, 229 ciphertexts suffice to ensure that recursive calls which represent wrong
bit values are quickly aborted. The attack is presented in Algorithm 5.
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We remark that there is a trade-off between the number of ciphertexts and the time
complexity of the attack. With more data, there is a higher probability that there will be
some ciphertext C j for which X j contains a, for some iteration i of the attack, and the
time complexity decreases. On the other hand, with less data this probability is lower,
and when there are no such ciphertexts, we have to continue the attack both with di = 0
and di = 1 [Step 3(c)iii], thus increasing the attack time. If for every i there exists a j
such that Cd ′

j contains b, the time complexity is equal to the data complexity (i.e., 229).

4.2.3. Known Plaintext Attack

The chosen ciphertext attack from Sect. 4.2.2 can be easily transformed into a known
plaintext attack which requires 256 known plaintexts. Among the 256 plaintexts, only
256 · 2−27 = 229 are expected to contain b. We can discard all the plaintexts which do
not contain b and use the rest as inputs for the attack of Algorithm 5 (Sect. 4.2.2).
Note that the known plaintexts must be the result of decrypting the corresponding

ciphertexts on the faulty processor. The attack will not work if the given plaintext–
ciphertext pairs are obtained by encrypting plaintexts (either on the attacker’s computer
or on the target computer).

4.3. Bug Attacks on OAEP

Since RSA has many mathematical properties such as multiplicativity, it is often pro-
tected by modes of operation. The most popular mode is OAEP [4], which provides
provable security. We show here that although OAEP protects against “standard” attacks
on RSA, it provides only limited protection against bug attacks, since it was not designed
to deal with errors during the computation.
OAEP adds randomness and redundancy to messages before encrypting them with

RSA and rejects ciphertexts which do not display the expected redundancy when de-
crypted. Random ciphertexts are not expected to display such a redundancy and are likely
to be rejected by the receiver with overwhelming probability. To choose valid ciphertexts
with certain desired characteristics (e.g., contains the word a, or such that some interme-
diate value of the decryption contains a or b), we choose random plaintexts and encrypt
them using proper OAEP padding, until we get a ciphertext that has the desired structure
by chance (since OAEP is a randomized cipher, we can also try to encrypt the same
message with different random values, and thus can control the result of the decryption).
Our main observation is that the structure we need in our attack (such as the existence
of a certain word in the ciphertext) has a relatively high probability regardless of how
much redundancy is added to the plaintext by OAEP, and the knowledge that a correctly
constructed ciphertext was rejected suffices to conclude that some computational error
occurred. We are thus exploiting the OAEP countermeasure itself in order to mount the
new bug attack.
The attacks we present on RSA-OAEP are very similar to the attacks on RSA from

Sect. 4.2, with some minor modifications. The same attacks are also applicable to
OAEP+ [28].
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4.3.1. Adaptive Chosen Ciphertext Attack

Unlike the attack of Algorithm 4 (Sect. 4.2.1), OAEP stops us from directly choosing
ciphertexts C which contain b, and thus in Step 2b, we must choose random messages
(on our own computer) until b “appears” in C at random. As explained in Sect. 2.4, the
probability that this happens and also C2d ′

mod n contains a is 2−54. As mentioned
above, computation errors are identified in Step 2e of the attack on OAEP by the mere
rejection of the ciphertext, and there is no need to know the actual value which was
rejected. The attack requires the decryption of log n chosen ciphertexts, and thus its total
time complexity for 1024-bit n’s is 264.

4.3.2. Chosen Ciphertext Attack

The (non-adaptive) chosen ciphertext attack on RSA from Sect. 4.2.2 (Algorithm 5)
can also be used in the case of OAEP. For a random message, the probability that the
ciphertext contains b is 2−27. In order to find 229 messages with a ciphertext which
contains b (as required by the attack), we have to try about 256 random messages.
Therefore, the attack requires the decryption of 229 chosen ciphertexts, plus 256 pre-
computation time on the attacker’s own computer. Once the decryptions of the chosen
ciphertexts are available, the key can be retrieved in 229 additional time.

5. Bug Attacks on RTOL Exponentiations

In this section we present attacks against Pohlig–Hellman and ElGamal encryption,
RSA, and RSA-OAEP, where exponentiations are performed using the RTOL exponen-
tiation algorithm. In RTOL, the value of the variable y is squared in every iteration of
the exponentiation algorithm, regardless of the bits of the secret exponent. Any error
introduced into the value of y undergoes the squaring transformation in every subse-
quent iteration and is propagated to the value of z if and only if the corresponding bit
of the exponent is set. Consequently, every set bit in the binary representation of the
exponent introduces a different error into the value of z, while zero bits do not introduce
any errors. This allows us to mount efficient non-adaptive attacks, and to retrieve more
than one bit from each chosen ciphertext, as described in the attacks presented in this
section.

5.1. Bug Attacks on Pohlig–Hellman and ElGamal Encryption

We present a chosen ciphertext attack against Pohlig–Hellman implementation in which
exponentiations are performed using RTOL. The attack is aimed at retrieving the bits of
the secret exponent d. As in Sect. 4.1, an identical chosen plaintext attack can retrieve
the bits of the secret exponent e. Also, the attacks on Pohlig–Hellman described here
can be applied to the ElGamal encryption system by the same reduction described in
Sect. 4.1.
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1. For i = log p − (log p mod r) down to 0 step −r

(a) Compute C = X1/2i−1
mod p.

(b) Denote the value of the known bits of d by d ′ = ∑log p
k=i+r 2

k−(i+r)dk .

(c) Ask for the decryption M̂ = C〈d〉 mod p on the faulty processor.
(d) Obtain the correct decryption M = Cd mod p.

(e) Find an r -bit value u such that M/M̂ = β2r d ′+u mod p (0 ≤ u < 2r ).
(f) Denote the bits of u by ur−1ur−2 . . . u1u0.
(g) Conclude that di+k = uk , ∀ 0 ≤ k < r .

Algorithm 6: Chosen Ciphertext Attack Against Pohlig–Hellman with RTOL

5.1.1. Chosen Ciphertext Attack

We present a (non-adaptive) chosen ciphertext attack which retrieves the secret key
when the exponentiation is performed using RTOL. Let X be a value which contains the
words a and b, and let β = X2/X 〈2〉. Unlike the improved attack on Pohlig–Hellman
of Sect. 4.1.2, it does not help if X 〈2〉 also contains a and b (on the contrary, it makes
the analysis slightly more complicated). Each chosen ciphertext is used to retrieve r bits
of the secret exponent d, where r is a parameter of the attack. The reader is advised to
consider first the simplest case of r = 1. The attack is presented in Algorithm 6.

Consider the decryption of C in Step 1c, for some i . Exponentiation by the RTOL
algorithm sets y = C and squares y repeatedly. After squaring it i − 1 times, the value
of y becomes X , which contains both a and b. When y is squared again, a multiplicative
error factor of β is introduced into its computed value (compared to its bug-free value).
If di = 1 then z is multiplied by y, and thus the same multiplicative error factor of β

is also propagated into the value of z. After the next squaring of y, it contains an error
factor of β2, which is propagated into the value of z only if di+1 = 1. In each additional
iteration of the exponentiation, the previous error in y is squared, and the error affects
the result if and only if the corresponding bit of d is set. At the end of the exponentiation,
the error factor in the final result is:

M

M̂
≡

log p∏

k=i

(
β2k−i

)dk ≡ β
∑log p

k=i 2k−i dk (mod p).

Since only r bits of the exponent are unknown, they can be easily retrieved by performing
2r − 1 modular multiplications.
As in the attacks of Sect. 4.1, all the error-free decryption queries in Step 1d can

be replaced by the decryption of one additional ciphertext on the faulty processor: The
attacker can request the decryption M3 of C3 mod p (or any other power of C which
is not expected to cause a decryption error), and then in Step 1e can find an r -bit value u
such that

M3

M̂3
≡

⎡

⎣
log p∏

k=i

(
β2k−i

)dk

⎤

⎦

3

≡ β3(2r d ′+u) (mod p).
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1. Choose a random ciphertext C0, and let t = 0.
2. While t ≤ log n and Ct does not contain both a and b do:

(a) t = t + 1.
(b) Compute Ct = C2

t−1 mod n.

3. Let X = Ct and let X 〈2〉 be the result of squaring X on a faulty processor.
4. Let β = X2/X 〈2〉 mod n.
5. For i = log n − (log n mod r) down to 0 step −r

(a) Ask for the decryption M̂ of C = Ct−i using the faulty processor, M = C〈d〉
t−i mod p.

(b) Denote the value of the known bits of d by d ′ = ∑log n
k=i+r 2

k−(i+1)dk .

(c) Compute Ĉ = M̂e mod n.

(d) Find an r -bit value u such that C/Ĉ ≡
(
β2r d ′+u

)e
(mod n).

(e) Denote the bits of u by ur−1ur−2 . . . u1u0.
(f) Conclude that di+k = uk , ∀ 0 ≤ k < r .

Algorithm 7: Chosen Ciphertext attack against RSA with RTOL

The attack requires 2�(log p + 1)/r� decryptions of chosen ciphertexts, and all of
them can be pre-computed by log p modular square roots (Step 1a of the attack). Once
the decryptions are available, each execution of Step 1e finds r bits of d using 2r − 1
multiplications, which is equivalent to about 2r/ log p modular exponentiations. Since
Step 1e is executed �(log p + 1)/r� times, the total time complexity is about 2r/r .
For small values of r , this time complexity is negligible compared to the time of the
pre-computation. For r ≥ 12, however, this computation takes longer, and there is a
trade-off between the time complexity and the data complexity.

5.2. Bug Attacks on RSA

Unlike the case of Pohlig–Hellman, there is no known efficient algorithm for extracting
roots modulo a composite n with unknown factors. The chosen ciphertext attack pre-
sented in this section circumvents this problem by choosing random ciphertexts until a
suitable ciphertext is found.

5.2.1. Chosen Ciphertext Attack

The attack in this case is similar to the attack on RTOL modulo a prime p (Sect. 5.1.1,
Algorithm 6), except for some necessary adaptations to the case of RSA. The attack
requires a pre-computation to find a value X which contains both a and b, and such
that all the values X1/2i−1

for 1 ≤ i ≤ log n are known (Step 2 in Algorithm 7).
The parameter r represents the number of bits retrieved in each iteration. Algorithm 7
describes the attack.
A random ciphertext contains a and b with probability 2−54, and therefore the pre-

computation of Step 2 is expected to take time corresponding to 254 modular multiplica-
tions (which is equivalent to 244 modular exponentiations when log n = 1024). In each
iteration of the attack, r bits are retrieved by performing 2r −1 modular multiplications,
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1. Set d0 = 1.
2. For i = 1 to log n

(a) Denote the value of the known bits of d by d ′ = ∑i−1
k=0 2

kdk mod n.

(b) Repeatedly encrypt random messages M until C = E(M) = (OAEP(M))e satisfies that C2i

mod n contains a and Cd ′
mod n contains b.

(c) Ask for the decryption of C using the faulty processor.
(d) If the decryption succeeds conclude that di = 0, otherwise conclude that di = 1.

Algorithm 8: Adaptive Chosen Ciphertext Attack Against RSA-OAEP with RTOL

which are equivalent to about (2r − 1)/ log n modular exponentiations. Thus, once the
decrypted ciphertexts are available, the attack requires a time equivalent to about

⌈
log n

r

⌉
2r − 1

log n
≈ 2r − 1

r

modular multiplications. As in the attack of Sect. 5.1, this attack requires �log n/r�
decryptions of pre-computed chosen ciphertexts. Step 5d finds r bits of the secret expo-
nent d using 2r − 1 multiplications, and thus (as in the attack from Sect. 5.1.1) for large
values of r , there is a trade-off between the time complexity and the data complexity.

5.3. Bug Attacks on OAEP Implementations that Use RTOL

5.3.1. Adaptive Chosen Ciphertext Attack

We present an adaptive chosen ciphertext attack for the case of RSA-OAEP when ex-
ponentiations are performed using RTOL. The presented attack resembles the attack on
RSA-OAEP fromSect. 4.3, but it identifies the bits of d starting from the least significant
bit. The details are provided in Algorithm 8.
After i iterations of the decryption exponentiation algorithm, the value of the variable

z is Cd ′
mod n, and the value of the variable y is C2i

mod n. The ciphertext C is
chosen such that one of these values contains a and the other contains b. Therefore, if
these values are multiplied (di = 1), then the result of the decryption is expected to be
wrong, and the ciphertext is rejected. Otherwise, no errors are expected to occur, and
the decryption is expected to succeed (di = 0).

The complexity of finding the ciphertext in Step 2b is 254, and the complexity of
the entire attack for 1024-bit n’s is 264 exponentiations on the attacker’s computer. The
attack requires log n chosen ciphertexts, which are decrypted on the target machine.

6. Bug Attacks Using the Legendre Symbol and Square Roots

In this section, we describe techniques which use the Legendre symbol to identify incor-
rect decryptions (in the case of exponentiations with RTOL), and help identify the bits of
the secret exponent (in the case of exponentiations with LTOR). Using these techniques,
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we are able to mount known plaintext bug attacks on the Pohlig–Hellman scheme, which
were not possible with the techniques of Sects. 4 and 5.

As in Sects. 4.1 and 5.1, the attacks on Pohlig–Hellman presented here can be con-
verted to attacks on ElGamal encryption. Because ElGamal is a public-key encryption
scheme, we have to address explicitly the case of known plaintext attacks: these attacks
are converted into attacks on ElGamal encryption in which the ciphertexts are randomly
selected without control of the attacker, and both the ciphertexts and the decrypted
plaintexts become known to the attacker.

6.1. Bug Attacks on Pohlig–Hellman Implementations that Use RTOL

Exponentiation by an odd exponent modulo a prime p preserves the Legendre symbol
of the input. In the case of Pohlig–Hellman, since the decryption exponent d is odd, for
every ciphertext C :

(
C

p

)
=

(
Cd

p

)
.

Weobserve that if a bug occurswhen exponentiatingwithRTOL, the Legendre symbol
of the (faulty) decrypted message may be different than the Legendre symbol of the
ciphertext, and thus theLegendre symbol can be used to ascertain that a bug had occurred.
Consider the exponentiation of a ciphertext C with RTOL: the least significant bit of d
is one, thus after the first iteration of the exponentiation z = C , and y = C2 mod p.
From now on the Legendre symbol of y modulo p is always one (y is the result of a
square operation, and thus is a quadratic residue), and since z can only be multiplied
by y, the Legendre symbol of z modulo p does not change in the remaining iterations.
However, if as a result of the execution of the buggy instruction the result of squaring y
has a Legendre symbol −1, then the Legendre symbol of the decrypted message will be
flipped.
We first present a chosen ciphertext (or chosen plaintext) attack against Pohlig–

Hellmanwhere exponentiations are performedwith RTOL, and then extend it to a known
plaintext attack.

6.1.1. Chosen Ciphertext Attack

The chosen ciphertext attack presented in this section uses the technique described above
to find the bits of the secret exponent d. As in the attacks on Pohlig–Hellman from
Sects. 4.1 and 5.1, a similar chosen plaintext attack can retrieve the bits of the secret
exponent e. In the following attack, the bits of d are retrieved from the least significant
bit to the most significant (note that in principle the bits of d may be retrieved in any
order by this attack, but this order may be implemented more efficiently than others with
fewer square root calls).
The attack uses a value X which contains both a and b, such that the Legendre symbol

of X 〈2〉 mod p is −1. Such a value can be easily obtained by selecting random numbers
which contain a and b and checking the Legendre symbol of X 〈2〉 mod p. Since half the
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1. Choose X such that X contains a and b, and
(

X 〈2〉
p

)
= −1.

2. Set d0 = 1.
3. For i = 1 to log p

(a) Compute C = X1/2i
mod p (any 2i ’th root is accepted).

(b) Ask for the decryption M̂ = C〈d〉 mod p on the faulty processor.

(c) If
(

C
p

)
=

(
M̂
p

)
set di = 0, otherwise set di = 1.

Algorithm 9: Chosen Ciphertext Attack Against Pohlig–Hellman with RTOL

numbers in Z∗
p have a Legendre symbol of −1, a suitable value is expected to be found

after two attempts on average. The attack is presented in Algorithm 9.
The attack is as follows: The attack requires decryption of log p ciphertexts, log p
extractions of modular roots and log p computations of Legendre symbol.

6.1.2. Known Plaintext Attack

Using the Legendre symbol to identify incorrect decryptions an attacker can retrieve the
bits of the secret exponent d (if the plaintexts were obtained by decrypting the ciphertexts
on a faulty processor) or the secret exponent e (in case the ciphertexts are the result of
encrypting the plaintexts on the faulty processor). Without loss of generality we describe
our attack against the former case.
The attack requires 257 plaintexts and ciphertexts. For every 0 ≤ i ≤ log p we expect

that for about eight ciphertexts, the valueC2i
contains both a and b, and that about half of

them also have a Legendre symbol −1 when squared modulo p on the buggy processor.
These ciphertexts can be used in an attack similar to the one described in Algorithm 9
(Sect. 6.1.1).
The bits of d can be retrieved in any order, thus if there are no suitable ciphertexts

to retrieve a specific bit, an attacker can continue to retrieve the rest of the bits, and
guess the value of the missing bit at the end. More than 98% (1 − e−4) of the bits are
expected to be successfully retrieved by this method with this number of ciphertexts
(e.g., for 512-bit moduli only about 10 remain to be tried at the end). The detailed attack
is described in Algorithm 10.
In addition to the previous method, another method can be used to retrieve the bits

of d, using the same data. Unlike the first method, this secondmethod requires retrieving
the bits of d in a specific order, from the least significant to the most significant. We
expect that among the 257 ciphertexts, for every 0 ≤ i ≤ log p there are about eight
ciphertexts such that after i iterations of exponentiation the value of the variable z (of
RTOL algorithm) contains a, and the value of the variable y contains b (as in the attack

from Sect. 5.3.1). We expect that about half of them satisfy
(

z�y
p

)
�=

(
C
p

)
, and thus

also
(

M̂
p

)
�=

(
C
p

)
. When d0, d1, . . . , di−1 are known, these ciphertexts can be easily

identified. If at least one such ciphertext exists, the bit di can also be identified by this
observation. Both described methods can be applied together using the same data in
order to reduce the probability of an error (or slightly reduce the data complexity).
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1. Set d0 = 1.
2. For each M̂, C of the 257 message-ciphertext pairs

(a) For i = 1 to log p

i. If C2i
contains a and b, and

(
C2i+1

p

)
= −1

A. If
(

C
p

)
=

(
M̂
p

)
set di = 0.

B. Otherwise set di = 1.

3. Exhaustively search for the values of all the bits of d that were not found in Step 2.

Algorithm 10: Known Plaintext Attack Against Pohlig–Hellman with RTOL

6.2. Bug Attacks on Pohlig–Hellman Implementations that Use LTOR

In this section, we describe techniques that use extraction of modular square roots in
order to identify the bits of the secret exponent of Pohlig–Hellman. We open this section
with a general discussion of long multiplications in the presence of a multiplication bug.
Let p be a large prime, and let C ∈ Z∗

p be some number which contains b. Consider

the functions f, f̂ : Z∗
p → Z∗

p defined by f (X) = X · C mod p and f̂ (X) = X � C

mod p. While f is an automorphism, f̂ is not. Due to the buggy multiplication there
are some values X, X∗ such that f̂ (X) = f̂ (X∗) (for example, since X∗ contains a and
X does not). As a result, there are some values in Z∗

p which cannot be the result of a
buggy multiplication by C . We show that given a number V , it is possible to estimate
how many pre-images f̂ has for V by inverting the buggy multiplication (assuming at
most one occurrence of the bug).
Let V = f (X) = X ·C and V̂ = f̂ (X) = X �C , for some number X which contains

a, and recall that a multiplication of two big numbers is performed by multiplying every
word of X by every word of C , and summing up the results with the appropriate left
shifts.
Given some V̂ ∈ Z∗

p, it is easy to check whether V̂ can be the result of a bug-free

multiplication by C , simply by computing X = (V̂ · C−1) mod p. If X does not
contain a, then no bugs are expected to occur when multiplying X · C mod p, and
f̂ (X) = V̂ (and also with f (X) = V̂ ). An important conclusion of this discussion is
that all but about 2−27 of the numbers in Z∗

p can be images of f̂ which are obtained with
no executions of the bug (this value was computed using our standard parameters).
It is also possible to check whether V̂ can be an image of f̂ which is obtained by a

multiplication with exactly one occurrence of the bug. The additive error δ = V̂ − V
mod p introduced into the product is a function of s, t ∈ {0, 1, . . . , 
(log p)/w�}, the
word locations of the words a and b in X and C , respectively, where w is the size of the
word and where the least significant word is considered as location 0. The additive error
as a function of s, t is

δ = δs,t = (a � b − a · b)2w(s+t) mod p. (1)
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Furthermore, s + t is limited to the range ∈ {0, 1, . . . , 2
(log p)/w�} (there are fewer
possibilities if s and/or t are known).We conclude that there are atmost 2
(log p)/w�+1
possible values for δ. Given V̂ and C, and assuming only one occurrence of the bug,
there are 
(log p)/w� + 1 possible values of s (t is known because C is known). For
each of the possible values of s the corresponding values of δs,t , V and X = Z · C−1

mod p can be easily computed. The correct values of s, δs,t , V and X can now be easily
identified, since only the correct value of X is expected to contain the word a in location
s. It follows from this discussion that a fraction of 2−27 of the numbers in Z∗

p can be
results of multiplication by C with one execution of the buggy instruction. We denote
the set of those numbers by W .
Let β = V̂ /V mod p be the multiplicative error in the computation of V due to the

bug. The relation between β and δ is given by:

δ ≡ V

(
V̂

V
− 1

)

≡ V (β − 1) (mod p). (2)

We now use these observations to mount chosen plaintext (or chosen ciphertext)
and known plaintext attacks on Pohlig–Hellman implementations, that use the LTOR
algorithm for decryption.

6.2.1. Chosen Ciphertext Attack

The following chosen ciphertext attack has two parts. The first part uses the techniques
described above to identify some of the 1’s of the secret exponent d, while the second
part searches for the values of the rest of the bits. A similar chosen plaintext attack
can retrieve the bits of the secret exponent e. The attack requests the decryption of 224

ciphertexts which contain b.
In the first part of the attack, each incorrect decryption reveals a bit d j of d with

value d j = 1. In the (log n − j)-th iteration of the LTOR algorithm (the iteration that
computes z ← z2Cd j ), if d j = 1 and z2 contains a, then we expect that z2 ·C �= z2�C .
Let V = z2 ·C and V̂ = z2 �C , and let β = V̂ /V and δ = V̂ − V (all the computations
are performed modulo p). The values of V , V̂ , β and δ are related by (2). The LTOR
algorithm ends after j additional iterations. On a faulty processor its result is expected
to be M̂ = V̂ 2 j

C∗ mod p, for some C∗ which depends on the value of C and on
d j−1, . . . , d1, d0, while the correct result is M = V 2 j

C∗ mod p (for the same value

of C∗). Let Q ≡ M̂/M ≡ β2 j
(mod p). Given any incorrect decryption M̂ = C 〈d〉

mod p and the corresponding correct decryption M = Cd mod p of a ciphertext C
containing b in location t , this attack uses Q ≡ M̂/M ≡ β2 j

(mod p) to search for the
combination of j and δ which corresponds to the computation error. For each possible
combination of j and s, we first extract the 2 j -th roots of Q (there are gcd(2 j , p − 1)
such roots) to determine possible values for β. For each candidate for β, we use δs,t to
compute the value of V according to (2):

V ≡ δs,t (β − 1)−1 (mod p).
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Once we try the correct combination of β and s, we find that z2 = V C−1 mod p indeed
contains a in location s. We can thus conclude that d j = 1, and save the tuple (C, z2, j)
for a later stage. The probability that V C−1 will contain a in location s for an incorrect
combination of β and s is 2−w. However, the probability that this will occur during the
entire course of the attack is bounded from above by gcd(2�log p�, p−1)·log2 p/(w ·2w),
which is usually small. For example, for p ≡ 3 (mod 4) and our standard parameters,
the probability of an error in the course of the attack is bounded from above by 2−16.
In the second part of the attack, after identifying some of the 1’s in d, we search for

the values of the other bits, using the information gathered in the first part. For every
d j = 1 that was found in the first part of the attack, we also learnt the intermediate
value of z2 after j iterations of decrypting C j with the LTOR algorithm. We sort the
tuples (C, ?, j) in descending order of j , and get intervals which start and end with bits
of d with value 1 (with unknown bit values in between them). We then analyze those
intervals of unknown bits in order from left to right. We recover the values of the bits
in each interval by exhaustively searching for their value until the correct intermediate
value of the exponentiation is received. For example, if n = 10 and in the first phase of
the attack we identified that the value of bits d6 and d3 is 1, then in the second phase we
first try all values of d9, d8, d7 and find the correct ones, then search for the values of
d5, d4 and finally the values of d2, d1, d0.

The complexity of the search depends on the length of the intervals. Assuming that
the indices of the k bits found in the first part of the attack are uniformly distributed,
the average distance between them is r = log p/(k + 1) bits, so the search of each
interval is expected to take about 2log p/(k+1) modular multiplications. There is a trade-
off between the data complexity of the attack and the time complexity of the second
part. By increasing the data complexity, we expect to find more bits in the first part of
the attack (larger k), which allows us to search for the values of fewer bits at a time in
the second part, and vice versa.
The attack is presented in Algorithm 11, where Step 1–3 describe the first part of the

attack and Step 4 describes the second part.

Using our standard parameters, if we request the decryption of 224 ciphertexts which
contain b, then about 224 · 210 · 2−27 = 27 of the intermediate values of j are expected
to contain a. About half of them are expected to appear in an iteration for which the
corresponding bit of d is 1, and therefore k = 26, and the average length r of the intervals
is approximately 24 bits. The time complexity of the second part of the attack is thus
about 216 · 26 = 222. Additional 224 ciphertexts are required for Step 2 of the attack,
and thus the total data complexity is 225.

6.2.2. Known Plaintext Attack

The following known plaintext bug attack is based on extracting square roots to reverse
the LTOR algorithm, and find the bits of the secret exponent from the LSB to the MSB
(this is the reverse order of the order in which they are used in the exponentiation
algorithm).
The first step of the attack discards all ciphertexts which do not contain the word b,

as they are less likely to cause the execution of the buggy instruction. Unlike the chosen
ciphertextmodel,we cannot use themultiplicative properties of the cryptosystem in order
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1. Choose 224 random ciphertexts which contain b, and ask for their decryption on the buggy machine.
2. Obtain the correct decryptions of the chosen ciphertexts.
3. For every incorrectly decrypted ciphertext C do

(a) Let t be the location of b in C .
(b) Denote the correct decryption of C by M and the incorrect decryption by M̂ .
(c) Set Q = M̂/M .
(d) For j = 0 to log p do

i. For every 2 j -th modular root β of Q modulo p and every 0 ≤ s ≤ 
log p/w� do
A. Compute X = δs,t (β − 1)−1C−1 mod p.
B. If X contains the word a in location s then set d j = 1, save the tuple (C,X,j) and

proceed to the next ciphertext.

4. For every saved tuple (C,X,j) in descending order of j do:

(a) Complete the unknown values among dlog p, . . . , d j+2, d j+1, such that the intermediate value of

z2 after j iterations of exponentiating C is X .

Algorithm 11: Chosen Ciphertext Attack Against Pohlig–Hellman with LTOR

to identify the incorrect decryptions, and thus we analyze all the remaining ciphertexts
and use statistical methods to identify the bits of the secret exponent.
When i (i ∈ {0, 1, . . . , log p}) least significant bits of the secret exponent d are

already known, we can reverse the last i iterations of the LTOR algorithm and compute
the value of the variable z after log p − i iterations of the exponentiation (since this
process involves extracting square roots, we get up to r = gcd(2i , p − 1) candidates for
the value of z). We expect that if di = 1, then for a fraction of 2−27 of the ciphertexts
the value of z is a result of a buggy multiplication (they form a fraction of 2−27/r of
all candidates). Also, both in the case of di = 0 and in the case of di = 1, a fraction
of 2−27 of the candidates are values which may be the results of buggy multiplications,
with one execution of the buggy instruction. Therefore, if di = 0 then only a fraction
of 2−27 of the candidates is expected to be in the set W , while if di = 1, a fraction of(
1 + 1

r

)
2−27 of the candidates is expected to be in W . In order to distinguish between

these two distributions with high probability, 4r2227 ciphertexts C that contain a are
sufficient. Since only a fraction of 2−27 of all the ciphertexts in the available data are
expected to contain a, we require a total of 4r2254 known ciphertexts for the attack. The
attack is presented in Algorithm 12.

7. Discussion on Vulnerabilities of Other Kinds of Schemes

In this section, we consider other schemes that are likely to be vulnerable in the presence
of a multiplication bug.

7.1. Elliptic Curve Schemes

In cryptosystems based on elliptic curves, exponentiations are replaced by multiplying
a point by a constant. For example, an attack on EC-ElGamal would be similar to an
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1. Let r = gcd(2i , p − 1).
2. Discard all the ciphertexts that do not contain the word b (out of the 4r2227 known messages). They

are not used in the attack.
3. Set d0 = 1.
4. For i = 1 to log p

(a) Reverse the last i iterations of the LTOR exponentiation algorithm for all the ciphertexts, and obtain
r = gcd(2i , p − 1) possible values from each ciphertext. Denote the set of all values retrieved by
Y .

(b) Compute |Y ∩ W | (using the method described in Sect. 6.2.1).
(c) If |Y ∩ W | � 2−27 |Y | set di = 0.

(d) If |Y ∩ W | �
(
1 + 1

r

)
2−27 |Y | set di = 1.

Algorithm 12: Known Plaintext Attack Against Pohlig–Hellman with LTOR

attack on ElGamal with simple adjustments. It should be noted that the implementations
of point addition (corresponding to multiplication in modular groups) and of point dou-
bling (corresponding to squaring in modular groups) are different, but both of them use
multiplications of large integers. Our bug attacks can be easily adapted in such a way
that the bug is invoked only if two points are added (or alternatively, only if a point is
doubled). The correctness or incorrectness of the result reveals the bits of the exponent.

7.2. Bug Attacks on Symmetric Primitives

Multiplication bugs can also be used to get information on the keys of symmetric ci-
phers which include multiplications, such as the block ciphers IDEA [18], MARS [9],
DFC [13], MultiSwap [25], Nimbus [32] and RC6 [23], the stream cipher Rabbit [7],
the message authentication code UMAC [6], etc.
In IDEA, MARS, DFC, MultiSwap and Nimbus, subkeys are multiplied by interme-

diate values. If an encryption (or decryption) result is known to be incorrect, an attacker
may assume that one of the subkeys used for these multiplications is a, and the corre-
sponding intermediate value is b. For example, by selecting a plaintext which contains b
in a word that is multiplied by a subkey, the attacker can easily check if the value of that
subkey is a.

In Rabbit, a 32-bit value is squared to compute a 64-bit result, which is then used
to update the internal state of the cipher. In faulty implementations with word size 8
or 16 (likely word sizes for smart card implementations), faults in the stream can give
the attacker information about the internal state. Similarly, the block cipher RC6 uses
multiplications of the form A ·(2A+1) for 32-bit values A, and thus multiplication bugs
may cause errors in faulty implementations with word size 8 or 16. This is, however,
an unlikely scenario, since bugs in processors with small words are expected to cause
frequent errors, and therefore can be easily discovered.
The MAC function UMAC uses multiplications of two words, both of which depend

on the authenticated message. If an incorrect MAC is computed on a faulty processor,
an attacker can gain information on the intermediate values of the computation.
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8. Summary and Countermeasures

We presented several attacks against exponentiation based public-key and secret-key
cryptosystems, including Pohlig–Hellman, RSA, andElGamal encryption.We described
such attacks for the two most common implementations of exponentiation. We also
discussed the possible applicability of these techniques to elliptic curve cryptosystems
and symmetric ciphers. The attacks and their complexities are summarized in Table 1.

There are various countermeasures against bug attacks. Many protection techniques
against fault attacks are also applicable to bug attacks, but we stress that due to the differ-
ences between the techniques, most of them have to be adapted to the new environment.
As shown in Sects. 4.3 and 5.3, and unlike the case of fault attacks, the mere knowledge
that an error occurred suffices to mount an attack, even if the output of decryption is not
available. Therefore, if a decryption is found to be incorrect, it can be dangerous to send
out an error message, and the correct result must be computed by other means.
Possible ways to compute the correct result include using a different exponentiation

algorithm, or relying on the multiplicative property of the discussed schemes to blind
the computations (the techniques for blinding RSA are based on [10]). When blinding
is used, an attacker has no control over the exponentiated values, and they are not made
available to her. Thus, even if faults occur during the exponentiation, no information
is leaked. However, this method renders the system vulnerable to timing attacks, as
the decryption of ciphertexts which trigger the bug take longer than decryptions which
succeed in the first attempt. In order to protect the implementation from timing attacks,
the original exponentiations must be blinded, so that no unblinded exponentiations are
performed at all. Another alternative is to exponentiate modulo n · r , where r is a small
(e.g., 32 bit) prime unknown to the attacker, and reduce the result mod n only at the last
step [26].
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Appendix: Brief Descriptions of Several Cryptosystems

The Pohlig–Hellman Cryptosystem and Pohlig–Hellman-Shamir Protocol

The Pohlig–Hellman cryptosystem [22] is a symmetric cipher. Let p be a large prime
number. Alice and Bob share a secret key e, 1 ≤ e ≤ p − 2, gcd(e, p − 1) = 1. When
Alicewants to encrypt amessagem, she computes c = me mod p. Bob can decrypt c by
computing its e-th root modulo p. In practice, the decryption is performed by computing
cd mod p, where d is a decryption exponent such that d · e ≡ 1 (mod p − 1). Note
that given the encryption exponent e, the decryption exponent d can be easily computed,
and thus e must be kept secret.
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The Pohlig–Hellman–Shamir [27] keyless protocol allows encrypted communication
between two parties that do not have shared secret keys. The protocol is based on the
commutative properties of the Pohlig–Hellman cipher. Let p be a large prime number.
Alice and Bob each has a secret encryption exponent (eA and eB , respectively) and a
secret decryption exponent (dA and dB , respectively) such that eA · dA ≡ eB · dB ≡ 1
(mod p − 1). When Alice wishes to send Bob an encrypted message m, she sends
c1 = meA mod p. Bob then computes c2 = ceB

1 mod p and sends it back to Alice.

Alice decrypts c2 and sends the decryption c3 = cdA
2 mod p to Bob. Finally, Bob

decrypts c3 to get the message m = cdB
3 mod p. The protocol is secure under standard

computational assumptions (the Diffie–Hellman assumption), but not against man in the
middle attacks.

The RSA Cryptosystem

RSA [24] is a public-key cryptosystem. Let n = pq be a product of two large prime
integers. Bob has a public key (n, e) such that gcd(e, (p − 1)(q − 1)) = 1, and a private
key (n, d) such that d · e ≡ 1 (mod (p − 1)(q − 1)). When Alice wants to send Bob an
encrypted message m she computes c = me mod n. When Bob wants to decrypt the
ciphertext he computes cd ≡ mde ≡ m (mod n).
The security of RSA relies on the hardness of factoring n. If the factors of n are known,
RSA can be easily broken.

RSA Decryption Using CRT

The modular exponentiations required by RSA are computationally expensive. Some
implementations of RSA perform the decryption modulo p and q separately, and then
use the CRT to compute the decryption cd mod n. Such an implementation speeds up
the decryption by a factor of four compared to naive implementations.
Given a ciphertext c, it is first reduced modulo p and modulo q. The two values are
exponentiated modulo p and q separately: m p = cdp mod p, and mq = cdq mod q,
where dp = d mod p − 1 and dq = d mod q − 1. Now m is computed using CRT,
such that m ≡ m p (mod p) and m ≡ mq (mod q). This is done by computing m =
(xm p + ymq) mod n, where x and y are pre-computed integers that satisfy:

{
x ≡ 1 (mod p)

x ≡ 0 (mod q)
and

{
y ≡ 0 (mod p)

y ≡ 1 (mod q)
.

OAEP

Optimal Asymmetric Encryption Padding (OAEP) [4] and OAEP+ [28] are methods of
encoding a plaintext before its encryption, with three major goals: adding randomization
to deterministic encryption schemes (e.g., RSA), preventing the ciphertext from leaking
information about the plaintexts, and preventing chosen ciphertext attacks. OAEP is
based on two one-way functions G and H , which are used to create a two-round Feistel
network, while OAEP+ uses three one-way functions. Only OAEP is described here.
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Let G : {0, 1}k0 → {0, 1}l+k1 , H : {0, 1}l+k1 → {0, 1}k0 be two one-way functions,
where l is the length of the plaintext, and k0, k1 are security parameters.WhenAlicewants
to compute the encryption C of a plaintext M , she chooses a random value r ∈ {0, 1}k0

and computes

s = G(r) ⊕
(

M ||0k1
)

,

t = (H(s) ⊕ r) ,

w = s||t,
C = E(w),

where || denotes concatenation of binary vectors, and E denotes encryption with the
underlying cipher. Decryption of c is performed by:

w = D(C),

s = w[0 . . . l + k1 − 1],
t = w[l + k1 . . . n − 1],
r = H(s) ⊕ t,

y = G(r) ⊕ s,

M = y[0 . . . l − 1],
z = y[l . . . l + k1 − 1],

where D denotes decryption under the same cipher used in the encryption phase. If
z �= 0k0 , then the ciphertext is rejected and no plaintext is provided. Otherwise, the
decrypted plaintext is M .

Known Hardware Bugs

In this appendix, we give a partial list of known hardware bugs. A quick Internet search
yields many more bugs, some of which were never officially acknowledged by the
manufacturers. It is safe to assume that hardware manufacturers are aware of many more
bugs which were never made publicly known or which were later corrected by firmware
updates, and that there are many more hardware bugs waiting to be discovered.

– Pentium FDIV bug [14,15]:
This well-known bug in the FDIV instruction of the Pentium processor was caused
by missing entries in a lookup table. These entries were omitted due to a program-
ming error. The bug caused inaccurate results in floating point division for some
of the inputs. Byte magazine [14] assessed that the bug influenced about one in a
billion floating point divisions (for random inputs).

– Intel Core 2 TLB bug [16]:
Intel Core 2 memory management unit has a reported error in the translation looka-
side buffer (TLB—a unit responsible for translating virtual memory addresses to
physical addresses). Global entries in the TLBmay not be invalidatedwhen the table
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is initialized, which may cause the processor to read data from incorrect memory
addresses. This bug may cause the system to stop responding or crash.

– AMD Phenom 9700/TLB system lockup bug [31]:
Before its release, AMD found that the Phenom 9700 quad-core processor had a
TLB bug which may cause the CPU to hang when all four cores are running at full
load. The discovery of this bug caused AMD to delay the release of this model.

– Intel 80286 popf bug [21]:
Abug in the popf instruction (whichpops theflags off the stack) allowed interrupts to
be executed, even when they were supposed to be disabled. This bug is an example
of a very simple instruction which changes the state of the CPU even when no
change is needed.

– Intel Pentium f00f bug [17]:
Under certain conditions, when a program tried to execute a specific invalid opcode,
the entire system would hang instead of generating an “invalid opcode exception”
(which would terminate the errant program).

– AMD Athlon/Duron with AGP bug [1]:
This memory management bug caused Linux systems to hang when the system
displayed AGP graphics. The bug was caused because of improper handling of
extended paging (which supported large page sizes).

– MOS Technology 6502 bugs[33]:
The 6502 model of the MOS processor introduced binary coded decimal (BCD)
instructions for manipulating decimal numbers without first converting them to
binary. If a hardware interrupt occurred when the processor was in BCD mode, it
would not revert back to binary mode for the execution of the interrupt handler.
Another bug in this processor caused the JMP instruction to read its destination
address from the wrong memory address under certain conditions.

– Cyrix coma bug [3]:
The bug in the Cyrix 6x86 series could cause the processor to stop responding to
interrupts while executing an infinite loop. Because interrupts were ignored, there
was no way to abort the loop, and the system would stop responding.

– Intel 80386 multiplication bug [20]:
The first x86 with 32-bit architecture exhibited a bug in its 32-bit multiplication
instruction. The bug may have caused the processor to stop responding. Even after
the discovery of the bug, the buggy processors continued to be sold as “16 BIT S/W
ONLY”.

– Intel Pentium Pro and Pentium II FPU bug [11]:
This bug (regarded by Intel as the “flag erratum”) caused unexpected behavior when
trying to convert from floating point to integer, if the result was too large to fit in
an integer variable.
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