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Abstract. Yao’s garbled circuit (GC) technique is a powerful cryptographic tool which
allows to “encrypt” a circuit C by another circuit Ĉ in a way that hides all information
except for the final output. Yao’s original construction incurs a constant overhead in both
computation and communication per gate of the circuit C (proportional to the complex-
ity of symmetric encryption). Kolesnikov and Schneider (ICALP 2008) introduced an
optimized variant that garbles XOR gates “for free” in a way that involves no crypto-
graphic operations and no communication. This variant has become very popular and
has lead to notable performance improvements. The security of the free-XOR optimiza-
tion was originally proved in the random oracle model. Despite some partial progress
(Choi et al., TCC 2012), the question of replacing the random oracle with a standard
cryptographic assumption has remained open. We resolve this question by showing that
the free-XOR approach can be realized in the standard model under the learning parity
with noise (LPN) assumption. Our result is obtained in two steps:

1. We show that the random oracle can be replaced with a symmetric encryption,
which remains secure under a combined form of related-key (RK) and
key-dependent message (KDM) attacks.

2. We show that such a symmetric encryption can be constructed based on the
LPN assumption.

As an additional contribution, we prove that the combination of RK and KDM security
is nontrivial in the following sense: There exists an encryption scheme which achieves
RK security and KDM security separately, but breaks completely at the presence of
combined RK-KDM attacks.

1. Introduction

Yao’s garbled circuit (GC) construction is an efficient transformation which maps any
boolean circuit C : {0, 1}n → {0, 1}m together with secret randomness into a “garbled
circuit” Ĉ along with n pairs of short k-bit keys (W 0

i ,W 1
i ) such that, for any (unknown)
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input x , the garbled circuit Ĉ together with the n keys Wx = (Wx1
1 , . . . ,Wxn

n ) reveals
C(x) but gives no additional information about x . Yao’s celebrated result shows that such
a transformation can be based on the existence of any pseudorandom generator [13,44],
or equivalently a one-way function [22].

Originally motivated by the problem of secure multiparty computation [21,44], the
GC construction has found a diverse range of other applications to problems such as
computing on encrypted data, parallel cryptography, verifiable computation, software
protection, functional encryption, and key-dependent message security (see [5] for refer-
ences). Despite its theoretical importance, GCwas typically considered to be impractical
due to a large computational and communication overhead, which is proportional to the
circuit size. This belief was recently challenged by a fruitful line of works that optimizes
the concrete efficiency of GC-based protocols up to a level that suits large-scale practical
applications [23–25,30–32,35,38–40,42].
Among other improvements, most current implementations of GCs (e.g., [23,24,34,

40,42]) employ the so-called free-XOR optimization of Kolesnikov and Schneider [29].
While in Yao’s original construction, every gate of the circuitC has a computational cost
of few cryptographic operations (e.g., three or four applications of a symmetric primitive)
and a communication cost of few ciphertexts, Kolesnikov and Schneider showed how
to completely eliminate the communication and computational overhead of XOR gates.
This optimization significantly improves the practical performance, especially for large-
or medium-size circuits as demonstrated in [28,29,40].
As in many cases, this gain in efficiency requires stronger cryptographic assumptions.

Unlike Yao’s GC, which can be based on the existence of standard symmetric-key cryp-
tography, the free-XOR optimization relies on a hash function H , which is modeled as
a random oracle [9]. Due to the known limitations of the random oracle model [17], it
is natural to ask:

Is it possible to realize the free-XOR optimization in the standard model?

This question was raised in the original work of Kolesnikov and Schneider [29] and
was further studied in [3,18]. In [29], it was conjectured that the full power of the
random oracle is not really needed and that the function H can be instantiated with a
correlation-robust hash function [26], a strong (yet seemingly realizable) version of a
hash function which remains pseudorandom even when it is applied to linearly related
inputs. Choi et al. [18] showed that the picture is actually more complex: Correlation
robustness alone does not suffice for security (as demonstrated by an explicit counter-
example in the random oracle model). Instead, one has to employ a stronger form of hash
function, which, in addition to being correlation-robust, also satisfies some form of cir-
cular security [10,16]. While the existence of circular correlation-robust hash functions
(a new primitive introduced by Choi et al. [18]) seems to be a reasonable assumption
(significantly weaker than the existence of a random oracle), it is still unknown how to
realize it based on a standard cryptographic assumption. This leaves open the problem
of implementing the free-XOR optimization in the standard model.

1.1. Our Contribution

We resolve the above feasibility question by showing that the free-XOR optimization
can be realized in the standard model under the learning parity with noise (LPN) as-
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sumption [11,20]. This assumption, which can also be formulated as the intractability
of decoding a random linear code, is widely studied by the coding and learning commu-
nities and was extensively employed in cryptographic constructions during the last two
decades.
Specifically, we make the following contributions:

1. We introduce a new combined form of related-key (RK) and key-dependent message
(KDM) attacks. Roughly speaking, in such an attack the adversary is allowed to see
ciphertexts of the form Encφ(K )(ψ(K )) where K is the secret key and the functions
φ and ψ are chosen by the adversary from some predefined function families. This
notion of security, referred to as RK-KDM security, generalizes the previous defini-
tions of semantic security under related-key attacks [3] and key-dependent message
attacks [10,16]. In fact, as shown in Sect. 5, this is a strict generalization as there
exists an encryption scheme which satisfies both RK security and KDM security
separately, but fails to achieve the combined form of RK-KDM security.

2. We prove that the free-XOR construction is secure when instantiated with a semanti-
cally secure symmetric encryption scheme whose security is preserved under binary
linear RK-KDM attacks. (Essentially, φ(K ) = K ⊕ �1 and ψ(K ) = K ⊕ �2 for
any fixed shift vectors �1 and �2.)

3. We show that the LPN-based symmetric encryption of [19] and its generalization [2]
satisfies RK-KDM security with respect to binary linear functions. In fact, our proof
provides a general template for proving RK-KDM security based on pseudorandom-
ness and joint key/message homomorphism. This is similar to previous results along
these lines [2,3,6,14].

Altogether, our proofs turn to be quite simple (which we consider as a virtue), short, and
modular. This is due to the following choices:

Encryption Versus Hashing The key point in which we deviate from [18,29] is the use
of (randomized) symmetric encryption, as opposed to deterministic hash function (or
some other pseudorandom primitive). Indeed, the GC construction essentially employs
the hash function only as a “computational one-time pad”, namely as a mean to achieve
secrecy. Therefore, in terms of functionality, it seems best (i.e., more general) to abstract
the underlying primitive as an encryption scheme. While this is true in general for the
standard GC (cf. [4,32] and the recent discussion in [7]), this distinction becomes even
more important in the context of the free-XOR variant. In this case, the underlying
primitive should satisfy stronger notions of security (RKA and KDM), and this turns to
be much easier for randomized encryption than for pseudorandom objects such as hash
functions. (See also [3].) As a secondary gain, the new security definition that arises
for symmetric encryption (RK-KDM semantic security) is natural and compatible with
existing well-studied notions. In contrast, the analog definition of RK-KDM security
for hash functions (circular correlation robustness) appears less natural as there is no
obvious interpretation for the concepts of message and key.

GC as Randomized Encoding It is important to distinguish between the garbled cir-
cuit transformation (i.e., the mapping from C to Ĉ) and the secure function evaluation
protocol, which is based on it. The distinction between the two, which is sometimes
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blurred, can be formulated via the notion of randomized encoding of functions [27] as
done in [4]. Our proofs follow this abstraction and show that the free-XOR technique
yields computationally private randomized encoding. At this point, one can invoke, for
example, the general theorem of [4] to derive a secureMPC protocol. Similarly, all other
applications (cf. [1]) of randomized encoding can be obtained directly by invoking the
reduction fromRE to the desired task. This is the first modular treatment of the free-XOR
variant.

1.2. Discussion

The main goal of this work is to provide a solid theoretical justification for the free-
XOR heuristic. This is part of an ongoing effort of the theory community to explain the
security of “real-world” protocols. Several such examples arise when trying to import
random oracle-based protocols to the standard model. In this context, [17] suggested
a two-step methodology: (1) “identify useful special-purpose properties of the random
oracle” and (2) show that these properties “can be also provided by a fully specified
function (or function ensemble).” In the context of the free-XOR technique, the first
step was essentially taken by [18] who identified the extra need of “circular security,”
while the current paper completes the second step, which involves, in addition, some
fine-tuning of step 1.
It should be emphasized that we do not suggest to replace the hash function with

an LPN-based scheme in practical implementations (though we do not rule out such a
possibility either). Still, we believe that the results of this work are useful even if one
decides, due to efficiency considerations, to use a heuristic implementation. Specifically,
viewing the primitive as an RK-KDM secure encryption scheme allows to rely on other
heuristic solutions such as block ciphers, for which RKA and KDM security are well
studied.

Other Related Works The notions of key-dependent message security (aka circular
security) and related-key attacks were introduced by [10,16] and [8]. Both notions were
extensively studied (separately) during the last decade. Most relevant to this paper is our
jointworkwithHarnik and Ishai [3]. Thiswork introduces the notion of semantic security
under related-key attacks, describes several constructions, and shows that protocols
employing correlation-robust hash functions and their relatives (e.g., [26,37]) can be
securely instantiated with RKA secure encryption schemes. In addition, [3] suggested
to apply a similar modification to the free-XOR variant, which was believed to be secure
when instantiated with correlation-robust hash functions [29]. As mentioned, the latter
claim was found to be inaccurate, and therefore, the results of [3] cannot be used in
the context of the free-XOR technique. (The other applications mentioned in [3] remain
valid.)

Subsequent Work Following our work, Böhl, Davies, and Hofheinz [15] constructed
severalRK-KDMpublic-key encryption schemes basedonvarious intractability assump-
tions such as the decisional Diffie-Hellman (DDH) assumption, the learning with errors
(LWE) assumption, quadratic residuosity and decisional Diffie-Hellman (QR+DDH) as-
sumption, and the decisional composite residuosity (DCR) assumption. The proofs of
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security follow the general template suggested here (as abstracted in Remark 3.7). Fur-
thermore, some of the resulting schemes (the one based on DDH, LWE, and QR+DDH)
support binary linear relations and can be therefore used for the free-XOR optimization.
This further demonstrates the wide applicability of our approach.

Organization Following some preliminaries (Sect. 2), in Sect. 3 we define semantic
security under RK-KDM attacks and describe an LPN-based implementation. Section 4
is devoted to the garbled circuit construction, including definitions (in terms of random-
ized encoding), a description of Yao’s original construction and the free-XOR variant,
and a proof of security that reduces the privacy of the free-XOR GC to the RK-KDM
security of the underlying encryption. In Sect. 5, we describe an encryption scheme
which is KDM secure and RKA secure but not RK-KDM secure, separating the latter
notion from the formers. Finally, we end with a short conclusion in Sect. 6.

2. Preliminaries

We let ◦ denote string concatenation. Strings are often treated as vectors or matrices
over the binary field F2, accordingly string addition is interpreted simply as bit-wise
exclusive-or. When adding together two matrices An×k and BN×k where n < N , we
assume that the last N−nmissing rowsof A are paddedwith zeroes. The sameconvention
holds with respect to vectors (i.e., when k = 1).

2.1. Randomized Functions

We extensively use the abstraction of randomized functions, which can be seen as a
special case ofMaurer’s RandomSystems [36].A randomized function is a two argument
function f : X × R → Y whose first input x is referred to as the deterministic input
and the second input is referred to as the random input. For every deterministic input x ,

we think of f (x) as the random variable induced by sampling r
R← R and computing

f (x; r) ∈ Y . When a (randomized) algorithm A gets an oracle access to a randomized
function f , we assume that A has control only on the deterministic input; namely, if A
queries f with x , it gets as a result a fresh sample from f (x). Note that A f itself defines
a randomized function.We say that { fs}s∈{0,1}∗ is a collection of randomized functions if
fs is a randomized function for every key s. By default, all the collections are efficiently
computable in the sense that fs(x) can be sampled in time poly(|s| + |x |). We note that
a sequence of randomized functions { fn}n∈N can be viewed as a (degenerate) collection
of randomized functions

{
f ′
s

}
s∈{0,1}∗ where f ′

s = f|s|. Under this convention, efficiency
means that fn(x) should be computable in time poly(n, |x |). Since the input length of
fn will always be polynomial in n, this boils down to standard poly(n)-time efficiency.

Indistinguishability A pair of randomized functions f, g is equivalent f ≡ g if for
every input x the random variables f (x) and g(x) are identically distributed. A pair
f = { fs} and g = {gs} of collections of randomized functions is computationally
indistinguishable, denoted by f

c≡ g, if for every efficient adversary A it holds that
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∣
∣
∣
∣
∣

Pr
s
R←{0,1}k

[A fs (1k) = 1] − Pr
s
R←{0,1}k

[Ags (1k) = 1]
∣
∣
∣
∣
∣
< ε(k),

for some negligible function ε. We note that the key of the function s is chosen at
random and then fixed across invocations, while the internal randomness of the function
is refreshed in each oracle call.
Let { fs} , {gs} and {hs} be collections of randomized functions. We will need the

following standard facts (cf. [36]).

Fact 2.1. If { fs} c≡ {gs} and A is an efficient function, then the collections of ran-
domized functions

{
A fs

}
s and {Ags }s , which are indexed by s, are computationally

indistinguishable.

Fact 2.2. If { fs} c≡ {gs} and {gs} c≡ {hs}, then { fs} c≡ {hs}.

3. RK-KDM Security

Apair of efficient probabilistic algorithms (Enc,Dec) is a symmetric encryption scheme
over the message-space {0, 1}∗ and key-space {0, 1}k (where k serves as the security
parameter) if for every message M ∈ {0, 1}∗

Pr
s
R←{0,1}k

[Decs(Encs(M)) = M] = 1.

We also assume (WLOG) length regularity that messages of equal length M, M ′ are
always encrypted by ciphertexts of equal length |Encs(M)| = |Encs(M ′)|.
Our security definitions are parameterized by a family of key-derivation and key-

dependent-message functions (which are also indexed by the security parameter k)

�RKA =
{
φ : {0, 1}k → {0, 1}k

}
, �KDM =

{
ψ : {0, 1}k → {0, 1}∗

}
.

By default, we assume that�RKA contains (at least) the identity function and that�KDM
contains (at least) all constant functions ψM : {0, 1}k → M for every M ∈ {0, 1}k .
The families �RKA and �KDM determine the legal relations between the related-keys
and the key-related messages. RK-KDM security is defined via the following pair of
real/fake oracles Reals and Fakes , which are indexed by a key s ∈ {0, 1}k . For a
query (φ ∈ �RKA, ψ ∈ �KDM), the oracle Reals returns a sample from the distribu-
tion Encφ(s)(ψ(s)), whereas the oracle Fakes returns a sample from the distribution
Encφ(s)(0|ψ(s)|).

Definition 3.1. (RK-KDM secure encryption) A symmetric encryption scheme
(Enc,Dec) is semantically secure under related-key and key-dependent message at-
tacks (in short, RK-KDM-secure) with respect to�RKA, �KDM ifReals

c≡ Fakes where

s
R← {0, 1}k .
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Remark.

• Relation to Previous DefinitionsWenote that the abovedefinitiongeneralizes seman-
tic security under related-key attacks [3] and semantic security under key-dependent
message attacks [10]. Indeed, the former notion is obtained by restricting �KDM to
contain only constant functions, and the latter is obtained by letting �RKA contain
only the identity function. If both restrictions are applied simultaneously, the defini-
tion becomes identical to standard semantic security under chosen-plaintext attacks.
On the other hand, as we show in Sect. 5, a scheme may satisfy both RKA security
and KDM security (separately) without achieving the combined form of RK-KDM
security.

• Non-adaptivity Definition 3.1 allows the adversary to choose its queries in a fully
adaptive way. One may define a seemingly weaker nonadaptive variant in which the
adversary has to specify all its queries at the beginning of the game. We note that this
weaker variant suffices for the free-XOR application.

• LIN RK-KDM Security We will be interested in linear functions over F2. Namely,
both �RKA and �KDM contain functions of the form s 
→ s+� for every � ∈ F

k
2. To

be compatible with standard semantic security, we require that �KDM also contains
all fixed functions. Using a compact notation, we can describe each function in�KDM
by a message M and a bit σ and let gM,σ : s 
→ (M + (σ · s)). If the length of M
is larger than k, we assume that (σ · s) is padded with zeroes at the end. Hence, the
adversary may ask for an encryption of the shifted key concatenated with some fixed
message. We refer to this notion as LIN RK-KDM security.1

3.1. LPN-based Construction

We recall the learning parity with noise (LPN) problem, due to [11,20]. For a noise
parameter ε ∈ (0, 1

2 ), a positive integer k and a vector s ∈ F
k
2 define a randomized

function LPNε,s , which ignores its input and in each invocation outputs a pair (a, y =
as + e) ∈ F

k
2 × F2 where a

R← F
k
2 is a fresh random vector and e

R← Berε is a fresh
“error” bit, which takes the value 1 with probability ε. We view LPNε,s as an oracle that
provides noisy evaluations of the linear function fs : x 
→ s · x with respect to random
inputs. The LPNε assumption asserts that it is hard to learn the function (i.e., recover s)
given polynomially many samples.

Assumption 3.2. (LPNε) For every efficient adversary A, the winning probability

Pr
s
R←F

k
2

[ALPNε,s (1k) = s] is negligible in k.

1 A seemingly weaker definition of LIN RK-KDM security restricts the KDM family to functions gM,σ :
s 
→ (M + (σ · s)) where M and s are of the same length k. We note that a scheme that satisfies this notion
can be trivially converted into a scheme that satisfies our definition (which supports M longer than s). This
can be done by partitioning the long message M into t blocks M1, . . . , Mt of length k each and concatenating
the encryptions of these blocks. A query of the form ( f ∈ �RKA, gM,σ ) can then be emulated by a linear
query ( f ∈ �RKA, gM1,1) and t − 1 fixed-message query ( f ∈ �RKA, gMi ,0).
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It is widely believed that LPNε is hard for any constant ε ∈ (0, 1
2 ), and the best known

algorithm runs in time 2	(n/ log n) [12]. In the following, we describe the LPN-based
symmetric encryption scheme of [2], which is a variant of the scheme of [19]. We begin
with few definitions.

Error Correcting Codes A pair of efficient algorithms (Code,Cor) is a linear δ-error
correcting codes with an expansion L : N → N if for every message length � ∈ N and
codeword length L = L(�) ∈ N the followings hold:

• (Linearity) For every pair of messages x, x ′ ∈ F
�
2,Code(x)+Code(x ′) = Code(x+

x ′) ∈ F
L
2 . Note that this means that Code(x) = Gx for some generating matrix

G ∈ F
L×�
2 . Furthermore, since Code is efficient, one can efficiently find such a

generating matrix.
• (δ-error correction) For every message x ∈ F

�
2 and every error vector e ∈ F

L
2 of

Hamming weight at most δL , we have that Cor(Code(x) + e) = x .

We note that the efficiency requirement implies that the expansion of the code L(�) is
polynomially bounded.

ChoppedNoiseDistribution For constant ε ∈ (0, 1), letBert×N
ε be the distributionover

t ×N binary matrices obtained by setting each entry to 1 independently with probability
ε. For a constant ε < δ < 1, we define the δ-“chopped” version of Bert×N

ε , denoted by

Bert×N
ε,δ , to be the distribution obtained by choosing E

R← Bert×N
ε and swapping each

column of E whose hamming weight exceeds δt with the all zero column. By Chernoff
bound, when N and t are polynomial in k and ε and δ are constants, the statistical
distance between Bert×N

ε and Bert×N
ε,δ is negligible in k.

Construction 3.3. (LPN construction) The scheme is parameterized with constants
0 < ε < δ < 1

2 , polynomially bounded functions N = N (k), � = �(k) and with an
efficient linear δ-error correcting code (Code,Cor). We let t = t (k) denote the length
of a codeword, which corresponds to a message of length �(k).

• Key generation: The private key of the scheme is a matrix S which is chosen uniformly
at random from F

k×N
2 .

• Encryption: To encrypt a message M ∈ F
�×N
2 , choose a random A

R← F
t×k
2 and a

random noise matrix E
R← Bert×N

ε,δ . Output the ciphertext

(A, A · S + E + GM),

where G ∈ F
t×�
2 is the generating matrix of the code.

• Decryption: Given a ciphertext (A, Z) apply the correction algorithm Cor to each of
the columns of the matrix Z − AS and output the result.

Observe that the correction algorithm never errs as E never contains a column whose
Hamming weight is larger than δt . The scheme is also highly efficient. Encryption
requires only cheap matrix operations, and decryption requires in addition to decode
the code. It is shown in [2] that for proper choice of parameters, both encryption and



560 B. Applebaum

decryption can be done in quasilinear time in the message length (for sufficiently long
message).2 See [19] for a practical evaluation of similar LPN-based encryption schemes.
Construction 3.3 was proven to be semantically secure based on the intractability of

the LPNε problem [2]. Security against KDM and RKA attacks with respect to linear
functions was further proven in [2] and [3]. We now generalize these results and show
that the scheme is LIN RK-KDM secure.

Theorem 3.4. Assuming that LPNε is hard, the above construction is LIN RK-KDM
secure.

3.2. Proof of Theorem 3.4

Through this section, we keep the convention that S ∈ F
k×N
2 is a key, � ∈ F

k×N
2 is

a key-shift vector, M ∈ F
�×N
2 is a message, b ∈ {0, 1} is a bit, and the pair (A, Z) ∈

F
t×k
2 ×F

t×N
2 is a potential ciphertext. In addition, we letEnc denote the LPN encryption

defined in Construction 3.3.
Recall that our goal is to prove that for a random key S

R← F
k×N
2 , the randomized

functions

RealS : (�, M, b) 
→ EncS+�(M + bS)

FakeS : (�, M, b) 
→ EncS+�(0�×N ),

are indistinguishable. This will be proven via a sequence of hybrids.
Let RS be a randomized function, which ignores the key S and the given input and

outputs a fresh uniformly chosen matrices A
R← F

t×k
2 and Z

R← F
t×N
2 . (If RS is applied

to the same input more than once, it responds with independent answers.)
The following lemma shows that the LPN encryption scheme is not only semantically

secure but also pseudorandom in the following sense:

Lemma 3.5. Assuming that LPNε is hard, {EncS} c≡ {RS}, where S R← F
k×N
2 .

The proof is implicit in [2], and we include it here for completeness.

Proof. Fix some ε ∈ (0, 1
2 ). For polynomials N , t = poly(k) and S

R← F
k×N
2 ,wedefine

the randomized functionsLPNt×N
S andRt×N

S whichhaveno input (or equivalently ignore

their input) as follows. In each call, LPNt×N
S samples a random matrix A

R← F
t×k
2 , a

random noise matrix E
R← Bert×N

ε , and outputs the pair (A, A · S + E). The function
Rt×N

S is defined similarly to RS , namely in each call it simply outputs a fresh random

pair A
R← F

t×k
2 and Z

R← F
t×N
2 . The well-known search-to-decision reduction of [11]

2 This asymptotically fast implementation is based on efficient noise sampling algorithm, fast error cor-
recting code (e.g., Spielman’s codes [43]), and fast rectangular matrix multiplication. The latter requires
N , � > k6.
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shows that, under the LPNε assumption,

{
LPNt×N

S

}
c≡

{
Rt×N

S

}
, (1)

for N = 1 and any polynomial t . A standard hybrid argument allows to extend Eq. 1
to the case of an arbitrary polynomial N (and arbitrary polynomial t), as done in [2]. It
remains to show that Eq. 1 implies the lemma.
Fix t, N to be the parameters fromConstruction 3.3, and letG ∈ F

t×�
2 be the generator

matrix in use. Define an oracle-aided function A(·), which given M ∈ F
�×N
2 calls its

oracle O to obtain a pair (A, R) and outputs (A, R + GM).
For every S, we have that

RS ≡ ARt×N
S and ALPNt×N

S
c≡ EncS .

The first part follows immediately from the definition of A. To see the second part,
note that the only difference between the two distributions is due to the fact that EncS
uses the chopped noise distribution Bert×N

ε,δ , whereas ALPNt×N
S uses the non-chopped

distributionBert×N
ε . The statistical distance between the twodistributions is negligible in

k, and therefore, a computationally bounded adversary (which makes only a polynomial

number of calls to these distributions) cannot distinguish between EncS and ALPNt×N
S

with more than negligible advantage.
By combining this with Eq. 1 and Fact 2.1, we have that for a random S

RS ≡ ARt×N
S

c≡ ALPNt×N
S

c≡ EncS,

and the lemma follows by transitivity (Fact 2.2). �

We will need the following key observation:

Lemma 3.6. There exists an efficient oracle machine F (·) : (�, M, b) 
→ (A, Z) such
that

RealS ≡ FEncS and FRS ≡ RS,

for every S ∈ F
k×N
2 .

Proof. Wedefine F as follows: Given a query (�, M, b), themachine F calls the oracle
with input M , gets back the answer (A′, Z ′), and outputs the pair A = A′ + GH and
Z = Z ′ + A� where G is the generating matrix used in construction 3.3 and H ∈ F

�×k
2

is the matrix
( b·Ik×k

0�−k×k

)
.

Fix a key S and a query (�, M, b), we will show that FEncS (�, M, b) is distributed
identically to RealS(�, M, b). Let (A′, Z ′) be a fresh sample from EncS(M). Clearly,
A = A′ + GH is uniform in F

t×k
2 since A′ is uniform. In addition, since Z ′ = A′ · S +
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E + G · M where E
R← Bert×N

ε,δ , and since A′ = A + GH , we can write Z as

(A + GH) · S + E + G · M + A� = A · (S + �) + E + G · (M + HS)

= A · (S + �) + E + G · (M + bS),

where the first equality is due to linearity, and the second equality follows from the
definition of H . It follows that (A, Z) is a fresh sample from EncS+�(M + bS).
To prove that FRS ≡ RS , it suffices to show that for any fixed query (�, M, b),

the transformation from (A′, Z ′) to (A, Z) is an affine invertible mapping. This follows
immediately from the definition of F . �

We conclude that for S
R← F

k×N
2 ,

RealS ≡ FEncS c≡ FRS ≡ RS . (2)

Indeed, the first and third transitions are due to Lemma 3.6, and the second transition is
due to Lemma 3.5 and Fact 2.1.
To complete the argument, we need two additional definitions. First, we define an

oracle machine, which given an oracle O and an input (�, M, b) outputs a sample from
FO(�, 0�×N , 0); namely, it replaces M, b with zeroes and proceeds as FO. By abuse
of notation, we refer to this oracle as F(·, 0�×N , 0). Similarly, we let RealS(·, 0�×N , 0)
denote the randomized function, which maps (�, M, b) to RealS(�, 0�×N , 0). Note
that the latter is just an equivalent formulation of FakeS . Moreover, we can write:

RS ≡ F(·, 0�×N , 0)RS
c≡ F(·, 0�×N , 0)EncS(0

�×N )

≡ RealS(·, 0�×N , 0) ≡ FakeS, (3)

where the first and third transitions are due to Lemma 3.6, and the second transition is
due to Lemma 3.5 and Fact 2.1. By combining Eq. 2 and Eq. 3 with Fact 2.2, we get that
RealS

c≡ FakeS , and Theorem 3.4 follows. �

Remark 3.7. (Abstraction) The proof of Theorem 3.4 provides a general template for
provingRK-KDMsecurity. Specifically, the properties needed are pseudorandomness (in
the sense of Lemma 3.5) and key/message homomorphism (in the sense of Lemma 3.6).
Indeed, observe that, apart from the proofs of Lemmas 3.5 and 3.6, the overall proof can
be written in a fully generic form with no specific references to the LPN construction.

4. Yao’s Garbled Circuit

4.1. Definition

Let f = { fn}n∈N be a polynomial-time computable function. In an abstract level, Yao’s
garbled circuit technique [45] constructs a randomized function f̂ = { f̂n}n∈N, which
“encodes” f in the sense that for every x , the distribution f̂ (x) reveals the value of f (x)
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but no other additional information. We formalize this via the notion of computationally
private randomized encoding from [4], while adopting the original definition from a
nonuniform adversarial setting to the uniform setting (i.e., adversaries are modeled by
probabilistic polynomial-time Turing machines).

Definition 4.1. (Computational randomized encoding) Let f = { fn : {0, 1}n →
{0, 1}�(n)}n∈N be an efficiently computable function and let f̂ = { f̂n : {0, 1}n ×
{0, 1}m(n) → {0, 1}s(n)}n∈N be an efficiently computable randomized function. We say
that f̂ is a computational randomized encoding of f (or encoding for short), if there exist
an efficient recovery algorithm Rec and an efficient probabilistic simulator algorithm
Sim that satisfy the following:

• Perfect correctness. For any n and any input x ∈ {0, 1}n ,

Pr[Rec(1n, f̂n(x)) �= fn(x)] = 0,

where the probability is taken over the internal randomness of f̂n .
• Computational privacy. The randomized function f̂n(·) is computationally indistin-
guishable from the randomized function Sim(1n, fn(·)).

Remark 4.2. The above definition uses n both as an input length parameter and as a
cryptographic “security parameter” quantifying computational privacy.When describing
the construction, it will be convenient to use a separate parameter k for the latter, where
computational privacywill be guaranteed as long as k = nε for some constant ε > 0. (An
alternative definition which is parameterized by both the input length and the security
parameter is discussed in “Appendix”.) Furthermore, while it is convenient to define
randomized encoding for a single function f , Yao’s construction (aswell as the free-XOR
variant) actually provides an efficient compiler thatmaps the function f (represented as a
Boolean circuit) into (circuit representations of) the encoding f̂ , the recovery algorithm
Rec, and the simulator Sim. (See [5] for formal definition.) In this sense, the encoding
is fully constructive.

4.2. Yao’s Construction and the Free-XOR Variant

Let f = { fn : {0, 1}n → {0, 1}�(n)}n∈N be a polynomial-time computable function
computed by the uniform circuit family {Cn}n∈N. In the following, we describe Yao’s
construction and its free-XOR variant. Our notation and terminology borrow from pre-
vious presentations of Yao’s construction in [4,33,38,41].

Double-Keyed Encryption Let k = k(n) be a security parameter (by default, k = nε

for some constant ε > 0). We will employ a symmetric encryption scheme (E2, D2),
which is keyed by a pair of k-bit keys K1, K2. Intuitively, this corresponds to a double-
locked chest in the sense that decryption is possible only if one knows both keys. There
are several ways to implement such an encryption scheme based on standard single-key
symmetric encryption (Enc,Dec), and for simplicity, we choose to use
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E2
K1,K2

(M) := (EncK1(R),EncK2(R + M)),

D2
K1,K2(C1,C2) := DecK1(C1) + DecK2(C2) (4)

where R is a random string of length |M |. Other choices are also applicable under the
LPN assumption.

The Original Construction For each wire i of the circuitCn , we assign a pair of keys: a
0-keyW 0

i ∈ {0, 1}k that represents the value 0, and a 1-keyW 1
i ∈ {0, 1}k that represents

the value 1. For each of these pairs, we randomly “color” one key black and the other

key white. This is done by choosing ri
R← {0, 1} and by letting ci = ri + b be the color

of Wb
i . Fix some input x for fn , and let bi = bi (x) be the value of the i th wire induced

by x . We refer to the key Wbi
i as the active key of the i th wire.

The encoding f̂n(x) consists of three parts: (1) The active keysW
bi
i of the input wires

together with their colors ci ; (2) For each gate, a propagation mechanism allows to
translate the colored active keys of the incoming wires into the colored active keys of the
outgoing wires. This mechanism is implemented via an encryption table (or “gate label”)
in which the keys of the outgoing wire are encrypted under the keys of the incoming
wires. (3) For each output wire i , we also append the semantics of the coloring, i.e.,
the bit ri . Altogether, one can propagate the values of the colored active keys (Wbi

i , ci )
from the inputs to the outputs, and at the end reveal, the values of the output wires by
unmasking the colors ci with ri . Intuitively, privacy holds as for non-output wires the
values of the colored active keys reveal nothing on their semantics bi .

Free-XOR Gates Consider a XOR gate with incoming wires i and j and outgoing wire
�. The “free-XOR” optimization modifies the above construction by making sure that
the colored active key of the outgoing wire is simply the sum of the colored active keys
of the incoming wires; namely,

(
Wb�(x)

� , c�(x)
)

=
(
Wbi (x)

i , ci (x)
)

+
(
W

bj (x)
j , c j (x)

)
, for every input x . (5)

As a result, gate labels are not needed and XOR gates have no effect on the com-
munication complexity of the encoding, and only a minor effect on the computational
complexity.
To satisfy Eq. 5, we apply the following modifications. First, we set the zero-key W 0

�

and coloring r� of a wire which outgoes a XOR gate to be the sum of the zero-keys and
coloring of the incoming wires i and j , namely

W 0
� = W 0

i + W 0
j , r� = ri + r j .

Second, instead of choosing the one-key at random, we will choose them based on the
zero-key. That is, for every wire t , we letW 1

t = W 0
t + s where s is a global (secret) shift

vector. As a result, for every pair of values (α, β) ∈ {0, 1}2 for the input wires of a XOR
gate, we have that
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The Encoding f̂n

Input: x ∈ {0, 1}n.
Randomness: Choose a random global shift vector s

R← {0, 1}k .
For a wire that is not an output of a XOR gate let

r
R← {0, 1}, W 0 R← {0, 1}k , W 1 := W 0 + s.

For a wire that is an output of a XOR gate with inputs i, j let

r := ri + rj , W 0 := W 0
i + W 0

j , W 1 := W 0 + s.

Outputs: The encoding consists of the following outputs:

1. For an input wire i, labeled by a literal χ (either some variable xu or its negation)
output W

χ(x)
i ◦ (χ(x) + ri). If i is an output wire, output the mask of this wire ri.

2. For a non-XOR gate t that computes some binary function g : {0, 1}2 → {0, 1} with
input wires i, j and output wirea y. We associate with this gate 4 ordered outputs
(“gate labels”). For every (ai, aj) ∈ {0, 1}2 we output:

Q
ai,aj

t := E2
W

ai+ri
i ,W

aj+rj
j

W
g(ai+ri,aj+rj)
y ◦ (g(ai + ri, aj + rj) + ry) , (6)

where ◦ denotes concatenation, and E2 is a double-encryption algorithm whose ran-
domness is omitted for simplicity.

aIf the fan-out is larger than 1, all outgoing wires are treated as a single wire, i.e., with the same key and
the same color.

Fig. 1. The encoding f̂n(x; (W, r, s)) of the function fn(x). We assume that wires and gates of the circuit that
computes fn are numbered according to some topological order. The double-encryption algorithm E2

K1,K2
(M)

is defined based on a standard encryption (Enc,Dec) as in Eq. 4 .

Wα+β
� = Wα

i + Wβ
j .

Hence, one can derive the colored active key (Wb�(x)
� , r� + b�(x)) of the output wire by

XOR-ing the colored active keys (Wbi (x)
i , ri + bi (x)), (W

bj (x)
j , r j + b j (x)) of the input

wires, as required. A formal description of the encoding is given in Fig. 1.
Our main result shows that, assuming LIN RK-KDM security, the free-XOR variant

gives rise to a valid computational encoding:

Theorem 4.3. (Main) If the underlying symmetric encryption scheme (Enc,Dec) is
LIN RK-KDM secure, then the randomized function f̂ , as defined in Fig. 1, is a random-
ized encoding of the function f .

The proof of the theorem is deferred to Sect. 4.3 (correctness) and 4.4 (privacy).

4.3. Correctness

The following lemma shows that the encoding is correct.
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Lemma 4.4. (Correctness) There exists an efficient recovery algorithm Rec such that
for every x ∈ {0, 1}n, it holds that

Pr[Rec(1n, f̂n(x)) �= fn(x)] = 0,

where the probability is taken over the internal randomness of f̂n .

Proof. Let α = f̂n(x; (r,W, s)) for some input x ∈ {0, 1}n and coins (r,W, s) ∈
{0, 1}m(n). The recovery algorithm traverses the circuit in topological order from inputs

to outputs, and for each wire y, it recovers the active key W
by
y together with its color

cy = (by(x) + ry) as follows.

If y is an input wire, then the value W
by
y ◦ cy is given as part of α. Otherwise, assume

that the wire y outgoes a gate t whose incoming wires are i and j (for which we already
computed the desired values). If t is a XOR gate, then we let

W
by
y = W

bi+b j
y = Wbi

i + W
bj
i , and cy = (bi + b j ) + ry

= (bi + b j ) + (ri + r j ) = ci + c j .

If t is not a XOR gate, then we use the colors ci , c j of the active keys of the input
wires to select the active label Q

ci ,c j
t of the gate t (and ignore the other 3 inactive

labels of this gate). Consider this label as in Eq. (6); recall that this cipher was “double-

encrypted” under the key Wci−ri
i = Wbi

i and the key W
cj−r j
j = W

bj
j . Since we have

already computed the values ci , c j ,W
bi
i and W

bj
j , we can decrypt the label Q

ci ,c j
t (by

applying the decryption algorithm D2) and recover the value

W
g(bi ,b j )
y ◦ (g(bi , b j ) + ry) = W

by
y ◦ (cy),

where g is the function that the gate t computes, and therefore, by = g(bi , b j ).
Finally, once we have the colors of an output wire y, we can recover its value by by

XOR-ing cy with the mask ry , which is given explicitly as part of α. �

4.4. Privacy

Computational privacy is slightly more subtle. The free-XOR optimization correlates
the key pairs via the global shift s. This introduces two form of dependencies: (1) The
four ciphertexts of every gate are encrypted under related-keys, and (2) the keys (of the
incoming wires) which are used to encrypt the gate labels are correlated with the content
of the labels (i.e., the keys of the outgoing wires). We show that if the underlying
encryption (Enc,Dec) is RK-KDM secure with respect to linear functions, then the
encoding is indeed private.

Lemma 4.5. (Privacy) There exists an efficient simulator Sim such that

f̂n(·) c≡ Sim(1n, fn(·)).
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To prove the lemma, we define an oracle-aided algorithm HO(x) such that (1) when
the oracle O is the real RK-KDM oracle (with respect to linear queries), the distribution
of HO(x) is identical to the distribution f̂n(x), and (2) when the oracle O is the fake
RK-KDM oracle, the distribution HO(x) can be efficiently sampled based on the output
fn(x) and therefore can be used as a simulator Sim(1n, fn(x)). The indistinguishability
of the twooracles implies that the simulator’s output is computationally indistinguishable
from the encoding’s distribution f̂n(x).

The Algorithm H (·)(x). Let k = k(n), x ∈ {0, 1}n be the input. We assume that H is

given an oracle access to a randomized functionOs where s
R← {0, 1}k will play the role

of the secret global shifts. We will assume that Os has the same interface as Reals and
Fakes , namely given a pair of linear functions (φ,ψ), the oracle outputs a ciphertext of
Enc. For every wire �, we define the following values:

1. If � is not an output of a XOR gate, choose a random active key Wb�

�

R← {0, 1}k and
a random color bit c�

R← {0, 1}.
2. If the wire � is an output of a XOR gate, set the active key to be Wb�

� := Wbi
i + W

bj
j

and set its color to c� = ci + c j where i and j are the incoming wires.

3. If � is an input wire, output the colored active key Wb�

� ◦ c�; if it is an output wire,
output r� = c� − b�(x).

4. The inactive key Wb�+1
� is unknown, but it can be written as a linear function of the

master-key s, i.e., φ� : s 
→ s + Wb�

� .

For every (non-XOR) gate t with input wires i, j and output wire y, we do the following:

5. Output the active label

Q
ci ,c j
t := E2

W
bi
i ,W

b j
j

(W
by
y ◦ cy) (7)

6. Compute the inactive labels as follows. For every (α, β) �= (0, 0), choose Rα,β
R←

{0, 1}k+1 and define the linear function ψα,β which maps s to the value

(
(W

by
y +s · g(bi +α, b j +β)+by)◦(g(ci + α + ri , c j + β + r j ) + ry)

)
+Rα,β,

where g is the function that the gate computes, and bi = bi (x), ri = bi + ci ,
b j = b j (x), r j = b j + c j and by = by(x), ry = by + cy . Now, output

Q
ci+1,c j
t :=

(
O(φi , ψ1,0),Enc

W
b j
j

(R1,0)
)

Q
ci+1,c j+1
t :=

(
O(φi , ψ1,1),O(φ j , R1,1)

)

Q
ci ,c j+1
t :=

(
Enc

W
bi
i

(R0,1),O(φ j , ψ0,1)
)
, (8)

where in the second equation, we let the string R1,1 represent the constant function
s 
→ R1,1.



568 B. Applebaum

Claim 4.6. The randomized functions f̂n and HReals for s
R← {0, 1}k are identically

distributed.

Proof. We prove a stronger claim: for every x ∈ {0, 1}n even if the encoding and
the hybrid HReals (x) output their internal coins (including the ones used by the oracle
Reals), the two experiments are identically distributed. First, it is not hard to verify that
the values s,W 0

� , r� and W 1
� = W 0

� + s are identically distributed in both experiments.
When these values are fixed, the active labels are also identically distributed. Finally,
by substituting φi , ψα,β in Eq. 8, it follows that the inactive labels are also distributed
exactly as in f̂ (x). �

Let us move to the case where the oracle O is instantiated with the oracle Fakes for

s
R← {0, 1}k . By the RK-KDM security of the scheme (Enc,Dec) and Fact 2.1, we get

that

Claim 4.7. The randomized functions
{
HReals

}
s and

{
HFakes

}
s are computationally

indistinguishable.

Finally, we define the simulator, which is just an equivalent description of HFakes (x):

The Simulator Sim. Given z = fn(x), for some x ∈ {0, 1}n , the simulator mimics the
first three steps of H which can be computed based on the value of the output wires
fn(x) (without knowing x itself). However, instead of virtually setting inactive keys

in the forth step, the simulator chooses a random shift vector s
R← {0, 1}k and sets

W 1+b�

� = Wb�

� + s for every wire �. Then, the simulator computes the active labels
exactly as in Eq. 7. Note that all these computations can be done without knowing
x (or bi (x)). To compute the inactive labels, the simulator mimics the distribution of

HFakes (x): It chooses R1,0, R1,1, R0,1
R← {0, 1}k+1 and computes

Q
ci+1,c j
t :=

(
Enc

W
bi+1
i

(0k+1),Enc
W

b j
j

(R1,0)
)

Q
ci+1,c j+1
t :=

(
Enc

W
bi+1
i

(0k+1),Enc
W

b j+1

j

(0k+1)
)

Q
ci ,c j+1
t :=

(
Enc

W
bi
i

(R0,1),Enc
W

b j+1

j

(0k+1)
)
. (9)

Indeed, all these ciphertexts can be computed directly since the inactive keys (and the
global shift s) are known.

Claim 4.8. The randomized functions Sim( fn(·)) and HFakes (·) for s R← {0, 1}k are
identically distributed.

Proof. Again, a stronger claim holds: For every x ∈ {0, 1}n even if the simulator and
the algorithm HFakes (·)(x) output their internal coins, the two experiments are identically
distributed. First, it is not hard to verify that the values s,W 0

� , r� and W 1
� = W 0

� + s are
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identically distributed in both experiments.When these values are fixed, the active labels
are also identically distributed. Finally, the inactive labels as defined by the simulator
(Eq. 9) are computed exactly as they are computed by HFakes (·)(x) (i.e., as defined in
Eq. 8 when the oracle Fakes(·) is being used). �

The proof of Lemma 4.5 follows from Claims 4.6–4.8 and Fact 2.2.

5. Separating RK-KDM from RKA & KDM

Recall that LIN RKA security corresponds to (�RKA, �KDM) RK-KDM security where
�RKA contains all linear functions (over the binary field) and�KDM contains the identity
function. Similarly, LIN KDM security corresponds to the complementary case where
�KDM contains all linear (and fixed) functions, and�RKA contains the identity function.
We describe a symmetric encryption scheme (Enc,Dec), which is semantically se-

cure under linear related-key attacks and semantically secure under linear key-dependent
message attacks but does not achieve linear RK-KDM security. In fact, one can fully
recover the secret key via a combined LIN RK-KDM attack. Our counter-example is
based on a pair of symmetric encryption schemes. The first scheme (RE,RD) is LIN
RKA secure but can be completely broken via LINKDMattacks, and the second scheme
(KE,KD) is LIN KDM secure but can be broken via LIN RK attacks. Both schemes
are based on the LPN-based encryption of Construction 3.3 instantiated with N = 1.
Through this section, we denote the LPN encryption scheme by (PE,PD) (“P” stands
for parity).

5.1. Achieving RKA Security & KDM Insecurity

We define the scheme (RE,RD) identically to the LPN construction (Construction 3.3)
except that if the prefix of a plaintext M is equal to the key S, then the corresponding
ciphertext will be M itself (unencrypted). Formally3,

RES(M) :=
{
M if M[1:k] = S

PES(M) otherwise.
, RDS(C) :=

{
C if C[1:k] = S

PDS(M) otherwise.

It is not hard to prove that (RE,RD) is secure under linear related-key attacks, but is
completely insecure at the presence of linear key-dependent message attacks.

Lemma 5.1. Under the LPN assumption, the scheme (RE,RD) is secure against lin-
ear related-key attacks.

3 The decryption RD may err with negligible probability due to the possibility that some message M ,
whose prefix does not equal to the key S, will be mapped to a ciphertext PES(M) whose prefix equals to the
key. This can be handled in several ways, e.g., by modifying the encryption algorithm so that such event never
happens. We prefer the current version (with negligible error probability) for simplicity.
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Proof. Recall that in a LIN RK attack on an encryption algorithm E , the adver-
sary makes queries of the form (�, M) and attempts to distinguish between the real
oracle ERealS which returns ES+�(M) and the fake oracle EFakeS which returns
ES+�(0|M|). The view of an adversaryA that breaks the LINRKA security of (RE,RD)

is identical to the view of an adversary who breaks the LIN RKA security of the LPN-
based scheme (PE,PD), as long as the adversary does not make a revealing query of
the form (�, M) where S+� equals to the k-bit prefix of M . Hence, it suffices to show
that the probability of asking a revealing query is negligible. Indeed, this must be the
case as a revealing query (�, M) can be used to recover the key by XOR-ing � with
the k-bit prefix of the message M[1:k].

We proceed with a formal argument. Our goal is to prove thatRERealS
c≡ REFakeS .

First, we show that RERealS and PERealS are indistinguishable. Assume, toward a
contradiction, that there exists some adversary A, which distinguishes RERealS from
PERealS with noticeable advantage ε. We construct an adversary BPERealS , which
outputs S with noticeable probability ε/t where t is the number of queries thatAmakes.
Clearly, such an adversary contradicts the LIN RKA security of the LPN scheme. The
adversary B simply chooses a random i ∈ [t] and halts before making the i-th query
(�, M) with the output � + M[1:k]. To analyze the success probability of B, we note
that: (a) conditioned on not asking a revealing query, the oraclesRERealS andPERealS
are identically distributed; (b) hence, under our assumption, A makes a revealing query
with probability at least ε; (c) therefore, with probability ε/t , the adversary B halts just
before the first revealing query, and in this case, it outputs the key S.
A similar argument shows that REFakeS is indistinguishable from PEFakeS , and,

since PERealS
c≡ PEFakeS , we conclude, by Fact 2.2, that RERealS

c≡ REFakeS
and the scheme is LIN RKA secure. �

5.2. Achieving KDM Security & RKA Insecurity

The second scheme (KE,KD) is obtained by modifying the LPN construction (PE,PD)

as follows. The key S ∈ {0, 1}k is augmented with an index i ∈ {1, . . . , k}. A plaintext
M will be encrypted by the triple (PES(M), i, Si ), i.e., in addition to the ciphertext
PES(M), we leak a single bit of the key Si whose location i is determined by another
(public) part of the key. Formally,

KES,i (M) := (PES(M), i, Si ), KDS(C1,C2,C3) := PDS(C1)

Below we show that the scheme is LIN KDM secure. In fact, it will be useful to prove
KDM security with respect to a slightly richer family of “extended linear functions”
which contains functions of the form ψM,T : S → M + T S for every M ∈ F

�
2 and

matrix T ∈ F
�×k
2 .

Lemma 5.2. Under the LPN assumption, the scheme (KE,KD) is secure against ex-
tended linear key-dependent message attacks.

Proof. Recall that in an extended LIN KDM attack on an encryption algorithm E , the
adversary makes queries of the form (M, T ) and attempts to distinguish between the real
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oracle ERealS which returns ES(M + T S) and the fake oracle EFakeS which returns
ES(0|M|). Our goal is to show that the scheme KES,i is LIN KDM secure. Formally, we
should support functions which map the combined key (S ◦ i) ∈ {0, 1}k+�log(k) (viewed
as a single long vector) into messages of the form M + T · (S ◦ i), where M ∈ F

�
2 and

T ∈ F
�×k+�log(k)
2 , and (by abuse of notation) we identify the index i ∈ [k] with its

canonical representation as a string of length �log(k). Observe that since i is public,
any linear function in (S ◦ i) can be efficiently translated into a linear function in S of
the form M ′ + T ′S where M ′ ∈ F

�
2 and T ′ ∈ F

�×k
2 , and so it suffices to focus on such

functions.
We will essentially reduce the extended LIN KDM security of KES,i with S

R←
{0, 1}k, i R← [k] to the security of PES′ with 1-bit shorter key S′ R← {0, 1}k−1. The
extended LIN KDM security of the latter is proven in [2, Thm. 8]. The reduction uses a
sequence of hybrids.
For an index i ∈ [k] and a bit σ ∈ {0, 1}, we define an oracle-aided randomized

function A(·)
i,σ as follows. Given a KDM query (M, T ) ∈ F

�
2 × F

�×k
2 , the algorithm

Ai,σ does the following: (1) defines the matrix T−i ∈ F
�×k−1
2 by removing the i-th

column Ti of T ; (2) queries its oracle with (M, T−i ) and obtains a ciphertext (A′ ∈
F
t×k−1
2 , Z ′ ∈ F

t
2); (3) samples a random column ai ∈ F

t
2 and outputs the matrix A =

(A′[1:i−1]|ai |A′[i :k−1]), the vector Z = Z ′ + ai · σ +G · Ti · σ and the pair (i, σ ). (Recall
thatG is the generatingmatrix of the error correcting code used in the LPN construction.)
We claim that

KERealS,i ≡ APERealS′
i,σ whenever S = (S′[1:i−1], σ, S′[i :k−1]). (10)

Indeed, assume that Ai,σ has an oracle access to PERealS′ . Then, on a query (M, T−i ),
the oracle responds with a fresh ciphertext

(A′ R← F
t×k−1
2 , Z ′ = AS′ + E + G(M + Ti−1S

′)),

where E
R← Bertε,δ is a fresh noise vector. By linearity, it follows that the modified

ciphertext (A, Z , (i, σ )) computed by Ai,σ satisfies

Z = A′S′ + E + G(M + T−i S
′) + ai · σ + G · Ti · σ = AS + E + G(M + T S).

Since ai is chosen at random, (A, Z , (i, σ )) is a fresh sample from PES(M + T S) as
required.

We now claim that, for randomly chosen S′ R← {0, 1}k−1 and every i ∈ [k], σ ∈ {0, 1},

APERealS′
i,σ

c≡ APEFakeS′
i,σ

c≡ ARS′
i,σ ≡ (RS, i, σ ), (11)

where RS is a randomized function which ignores the key S and the given input, and

outputs a fresh uniformly chosen matrices A
R← F

t×|S|
2 and Z

R← F
t
2 and the notation

(RS, i, σ ) refers to the oracle which ignores its query and returns (A, Z , i, σ ) where
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(A, Z)
R← RS . The first transition of Eq. 11 follows from the security of the parity-based

encryption PE against (extended) LIN KDM attacks ([2, Thm. 8]), the second transition
follows from the pseudorandomness of PE (Lemma 3.5), and the last transition follows
by noting that if the oracle answers (A′, Z ′) are uniform, then so are the converter outputs
(A, Z).

Next, we define another converter Bi,σ which acts similarly to A, except that it com-

putes the vector Z by Z ′ + ai · σ . We claim that, for randomly chosen S′ R← {0, 1}k−1

and every i ∈ [k], σ ∈ {0, 1},

(RS, i, σ ) ≡ BRS′
i,σ

c≡ BPEFakeS′
i,σ ≡ KEFakeS,i , (12)

where S = (S′[1:i−1], σ, S′[i :k−1]). Indeed, thefirst transition followsbynoting thatBmaps
the uniform samples to uniform samples, the second transition is due to the pseudoran-
domness of PE, and the last transition follows by noting that B maps an encryption

of zero (A′ R← F
t×k−1
2 , Z ′ = AS′ + E) under PE′

S into a fresh encryption of zero
(A, Z = AS + E) under KES . The lemma now follows by combining Eq. 10, 11, and
12 with Fact 2.2. �

On the other hand, one can fully recover the key S via an RKA by shifting the index
i through all possible indices in {1, . . . , k}. Note that this attack is oblivious to the
messages encrypted; in particular, all the attacker needs is the ability to obtain, for any
choice of �, a ciphertext KE(S,i)+�(M) where the message M may be arbitrary and
possibly unknown (e.g., chosen by the oracle).

5.3. Counter-Example: RKA+KDM � RK-KDM

Our counter-example is defined via the following double-encryption:

EncS1,S2(M) := KES2(RES1(M)), DecS1,S2(C) := RDS1(KDS2(C)),

where S1 ∈ {0, 1}k and S2 is the concatenation of a vector S′
2 ∈ {0, 1}k and an index

i ∈ {1, . . . , k}.
Lemma 5.3. Under the LPN assumption, the scheme (Enc,Dec) satisfies the follow-
ings:

1. Security under linear related-key attacks.
2. Security under linear key-dependent message attacks.
3. The secret key can be fully recovered via a LIN RK-KDM attack.

Proof. (1)We show that any double-encryptionEnc, whose inner encryptionRE is LIN
RKA secure, is also LIN RKA secure. For an encryption E , let ERealS and EFakeS be
the real/fake RKA oracles as defined in Lemma 5.1. We define an oracle-aided random-
ized function AO

S2
as follows: Given a LIN RKA query with shift vector � = (�1,�2)

and message M , the function AO
S2

outputs a sample from KES2+�2(O(�1, M)). It fol-
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lows that, for random S1 and every S2,

EncRealS1,S2 ≡ ARERealS1
S2

c≡ AREFakeS1
S2

≡ EncFakeS1,S2 ,

where the first and third transitions follow from the definition of A and the second
transition is due to the LIN RKA security of RE.
(2) We will need the following observation, which follows from the linear structure

of the LPN-based encryption PE. For every key S1 and internal randomness r , the inner
encryption RES1(X; r) can be written as an (extended) linear mapping ψM,T : X →
M + T X where M and T can be computed based on S1 and r via some efficiently
computable mapping ρ. Using this observation, we show that the double-encryption
Enc inherits (extended) LIN KDM security from the outer encryption KE.
Formally, let ERealS and EFakeS be the real/fake KDM oracles for an encryption E

defined in Lemma 5.2. Let AO
S1

be an oracle-aided randomized function, which, given
an extended LIN KDM query ψM,T , samples randomness r for the inner encryption
RE, computes (M ′, T ′) = ρ(S1, r), and queries the oracle O with the composed linear
function ψ : S2 → ψM ′,T ′(ψM,T (S1, S2)). It is not hard to see that ψ is indeed an
extended linear function, and for random (S1, S2)

EncRealS1,S2 ≡ AKERealS2
S1

c≡ AKEFakeS2
S1

,

where the first transition is due to the definition of A (and holds for every (S1, S2)) and
the second transition follows from the security of KE.

To complete the proof, define an oracle-aided randomized function BO
S2
, which given

a LIN KDM query ψM,T outputs O(EncS2(0
|M|)). For random (S1, S2), we have that

AKEFakeS2
S1

≡ BKEFakeS2
S1

c≡ BKERealS2
S1

≡ EncFakeS1,S2 ,

and item (2) follows.
(3) We show that, given an access to the real LIN RK-KDM oracle EncRealS1,S2 , it

is possible to fully recover the key (S1, S2). First, use RKA queries to fully recover the
key S2 via the attack described in Sect. 5.2. Second, in order to recover S1, apply a KDM
query to obtain an encryption C of (S1, S2) and use the decryption algorithm KDS2 to
decrypt the ciphertext C . We claim that the resulting value is simply (S1, S2). Indeed,
by the definition of RE, we have that

C = EncS1,S2(S1, S2) = KES2(RES1(S1, S2)) = KES2(S1, S2)

and therefore KDS2(C) = (S1, S2) and the lemma follows. �

6. Conclusion

We defined a new combined form of RK-KDM security, proved that such an encryption
scheme can be realized based on the LPN assumption and showed that the free-XOR
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technique can be securely instantiated with it. Altogether, our results enable a realization
of the free-XOR optimization in the standard model under a well-studied cryptographic
assumption.
The new definition of RK-KDM security further motivates the study of security under

related-key and key-dependent attacks. Specifically, in light of our counter-example, it
is natural to ask whether LIN RK-KDM security can be constructed based on some
combination of an RKA secure scheme and a KDM secure scheme, or better yet, based
on more general assumptions (e.g., CPA-secure encryption scheme). It will also be
interesting to find additional applications of RKA/KDM secure primitives.
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Appendix: Alternative Definition to Computationally Private Randomized
Encodings

It might be natural to define the computational encoding of a function family f = { fn :
{0, 1}n → {0, 1}�(n)}n∈N to be a function family indexed with two parameters n and k
where k is a security parameter. In this definition, every function fn is represented by a
function family f̂n,k . Computational privacy requires that for every n, the randomized
functions Sim(1n, 1k, fn(·)) and f̂n,k(·) (indexed by k) are computationally indistin-
guishable. In this case, the parametersm, s, as well as the running time of the simulator,
the recovery algorithm, and the time it takes to compute f̂n,k are all functions of the
input length n and the security parameter k. This definition looks more appealing than
Definition 4.1, since it allows to tune the privacy of a specific function with fixed input
length and enables a closer security analysis. However, this definition is meaningless,
since we can set a null encoding for small k’s and use a perfectly private, perfectly
correct encoding for k = exp(n). Such an encoding satisfies computational privacy (the
distribution ensembles are computationally indistinguishable for large enough k’s) and
is also uniform since it can be computed in time poly(n, k). This paradox can be pre-
vented by demanding that n, k are polynomially related. Since in this paper we focus
on high-level security and do not care about security in concrete terms (i.e., the specific
running time vs. success probability rate), we avoid such complications and use the
simple single-parameter definition given above. However, Definition 4.1 also enables to
tune the privacy of a specific function fn by arbitrarily augmenting fn into an infinite
family of functions (this can be done by simply padding the input). We also stress that
our construction uses a security parameter (which we set to nO(1) to satisfy the single-
parameter definition) and thus allows a closer analysis and a more natural way to tune
the privacy of a specific function (see Sect. 4).

Bibliographic Note The above remarkwaswritten originally for [4] andwas eventually
omitted. We thank Yuval Ishai and Eyal Kushilevitz for allowing us to include it here.
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