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Abstract. We present new constructions of leakage-resilient cryptosystems, which
remain provably secure even if the attacker learns some arbitrary partial information
about their internal secret-key. For any polynomial �, we can instantiate these schemes so
as to tolerate up to � bits of leakage. While there has been much prior work constructing
such leakage-resilient cryptosystems under concrete number-theoretic and algebraic
assumptions, we present the first schemes under general and minimal assumptions. In
particular, we construct:

• Leakage-resilient public-key encryption from any standard public-key encryption.
• Leakage-resilient weak pseudorandom functions, symmetric-key encryption, and

message-authentication codes from any one-way function.

These are the first constructions of leakage-resilient symmetric-key primitives that do not
rely on public-key assumptions. We also get the first constructions of leakage-resilient
public-key encryption from “search assumptions,” such as the hardness of factoring
or CDH. Although our schemes can tolerate arbitrarily large amounts of leakage, the
tolerated rate of leakage (defined as the ratio of leakage amount to key size) is rather
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poor in comparison with prior results under specific assumptions. As a building block of
independent interest, we study a notion ofweak hash-proof systems in the public-key and
symmetric-key settings. While these inherit some of the interesting security properties
of standard hash-proof systems, we can instantiate them under general assumptions.

1. Introduction

A central goal in cryptography is to base cryptosystems on intractability assumptions
that are as weak and as general as possible; that way, if one problem turns out to be
susceptible to a new attack or if another turns out to yield better performance, we may
readily replace the underlying problem in our cryptosystem. Another goal is to design
cryptosystems in strong securitymodels that account for awide range of possible attacks.
Ourwork lies at the intersection of these two areas, by studying leakage-resilient security
under general and minimal assumptions.

Leakage Resilience. Leakage-resilient cryptosystems maintain their security even if
an attacker can learn some partial information about the internal secret-key. Aside from
being a basic question of theoretic interest, the study of leakage resilience is motivated
by several real-world scenarios where information leaks. One such scenario involves
side-channel attacks, where the physical attributes of a computing device (e.g., its power
consumption, electromagnetic radiation, timing, temperature, acoustics, etc.) can reveal
information about its internal secret state. See e.g., [1,6,26,36,37,46–48] for many
examples of such attacks that completely break otherwise secure cryptosystems. Another
source of leakageoccurs through imperfect erasures (such as in the cold-boot attack [32]),
where memory contents, including secret-key information, are not properly erased and
some partial information becomes available to an attacker. Another source of leakage
occurs if the secret-key is stored on a compromised system to which the attacker has
remote access. As suggested in prior work, we can impede an attacker from retrieving
the secret-key in its entirety by making it deliberately huge (e.g., many gigabytes in
length), but the attacker can still obtain some partial leakage [3,12,15,24]. As yet another
example, we may need to use a cryptosystem within the context of a larger protocol
that intentionally leaks some information about the secret-key as a part of its design.
Leakage resilience provides a powerful tool, allowing us to easily analyze the security of
such constructions. In summary, we believe that leakage resilience is an interesting and
fundamental property worth studying because of its relevance to many diverse problems
including (but not limited to) side-channel attacks.

Bounded-Leakage Model. There are several securitymodels of leakage resilience in the
literature, differing in their specification of what information can become available to the
attacker. In this work, we will focus on a simple yet general model, called the bounded-
leakage (or sometimes memory leakage) model, which has received much attention in
recent years [2–5,7–9,11–13,17,25,28,31,34,38,42]. In this model, the attacker can
learn arbitrary information about the secret-key, as long as the total number of bits
learned is bounded by some parameter �, called the leakage bound. We formalize this
security notion by giving the attacker access to a leakage oracle that she can repeatedly
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and adaptively query; each query to the oracle consists of a leakage function f and the
oracle responds with the “leakage” f (sk) computed on secret-key sk. The leakage oracle
is only restricted in the total number of bits that it outputs throughout its lifetime,which is
boundedby �. Thismodel is particularly interesting because of its elegance and simplicity
and itswide applicability to scenarios such as incomplete erasure, compromised systems,
and information released by high-level protocols.
We note that several other models of leakage resilience consider a more complex

scenario, where information can leak continually over time, with no overall bound on
the total amount of leakage. See [10,16,19,22,29,33,39,41,45] for some examples.
These models may offer a more realistic view of side-channel attacks, where many
measurements may be made by an attacker over time. Many of these works rely on
results from the bounded-leakage model as basic building blocks. Therefore, we believe
that a thorough understanding of the bounded-leakage model is a necessary, but perhaps
not sufficient, prerequisite to understanding other more complex models. We mention
that it remains debatable how accurately any of the above models reflects realistic side-
channel attacks (see e.g., the discussion in [49]).

Prior Constructions. It turns out that many cryptographic primitives, including all
of the ones discussed in this work, are generically resilient against small amounts of
leakage. In particular, every instantiation of such primitives can tolerate � = O(log(λ))

bits of leakage, where λ is the security parameter, and schemes with stronger exact
security can tolerate correspondingly larger amounts of leakage. Intuitively, this follows
since we can correctly “guess” small leakage values with reasonable probability, and
hence, they cannot be of too much help in an attack.1

Most prior research in leakage-resilient cryptography attempts to construct schemes
that provably tolerate larger amounts of leakage, without making any strong exact-
security assumptions on the underlying primitives. In this work, whenever we talk
about leakage-resilient schemes, we refer to schemes of this type that can tolerate larger
amounts of leakage beyond the generic bound. Ultimately, we aim to tolerate any poly-
nomial leakage-bound �(λ) just by instantiating the scheme with a sufficiently large
secret-key. Prior to this work, we had such results for public-key encryption [4,7,42],
under specific assumptions such as LWE, DDH, DCR, QR, or somewhat more generally,
the existence of “hash-proof systems.” We also had such results for signatures [3,17,38]
assuming the existence of NIZKs and public-key encryption. Essentially nothing bet-
ter was known for symmetric-key encryption or message-authentication codes, beyond
simply using the corresponding public-key constructions in the symmetric-key setting.

Our Main Results. We present new constructions of several leakage-resilient cryp-
tosystems under the minimal assumption that such cryptosystems exist in the standard
setting, without any leakage. For any polynomial leakage-bound �(λ) in the security
parameter λ, we can instantiate these schemes so as to resit �(λ) bits of leakage. In
particular, we construct the following primitives:

1 This simple argument works for “unpredictability” applications such as signatures. A more subtle argu-
ment also works for many “indistinguishability” applications, including public-key encryption, weak PRFs
and symmetric-key CPA encryption (but not, e.g., one-time encryption). See [23] for a general treatment of
this question.
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• Leakage-resilient public-key encryption from any public-key encryption.
• Leakage-resilient weak pseudorandom functions, symmetric-key encryption, and

message-authentication codes from any one-way function.

We only assume the underlying primitives satisfy the usual asymptotic notion of security,
and do not require any stronger levels of exact security. These results give us the first
constructions of leakage-resilient symmetric-key primitives that do not rely on public-
key assumptions. They also give us the first constructions of leakage-resilient public-key
encryption from several specific “search assumptions” such as the hardness of RSA,
factoring, or computational Diffie-Hellman (CDH).

Leakage Amount Versus Rate. Although our schemes can tolerate an arbitrarily large
polynomial amount of leakage �, the tolerated rate of leakage (defined as the ratio of � to
the secret-key size) in these constructions is rather poor. In particular, the leakage rate in
our schemes is O(log(λ)/s(λ)) where s(λ) is the secret-key size of the underlying non-
leakage-resilient primitives. In contrast, the state-of-the-art constructions of leakage-
resilient schemes from concrete number-theoretic assumptions such as DDH can usually
achieve a (1 − o(1)) leakage rate, meaning that almost the entire secret-key can leak.
Allowing higher leakage rates under general assumptions remains as an open problem.

Extensions of Our Results. We explore several extensions of our main results. Firstly,
we show that all of the results also apply to an alternate notion of entropy-bounded
leakage [16,42], where we restrict the amount of entropy loss caused by the leakage
rather than restricting its length. We also show that our public/symmetric-key encryp-
tion schemes provide resilience to “after-the-fact” leakage as defined by Halevi and Lin
[31]. In particular, if the attacker can choose to learn some arbitrary �post bits of leakage
on the secret-key adaptively after seeing a challenge ciphertext, she learns no more than
�post bits of information about the encrypted message (in contrast, if the leakage is in-
dependent of the challenge ciphertext, she learns nothing about the message). Lastly, we
extend our results to the bounded-retrieval model [3,12,15,24], where we want to have
efficient schemes tolerating huge amounts (many gigabytes) of leakage, meaning that
the efficiency of the scheme should not degrade even as the leakage-bound � increases.
Since the secret-key size of such schemesmust exceed � and therefore also be huge, these
schemes cannot even read their entire secret-key during each cryptographic operation.
This model is motivated by the problem of system compromise, where an attacker can
download large amounts of data from a compromised system.

1.1. Overview of Our Techniques

Our starting point is a result of Naor and Segev [42] (journal version [43]), which con-
structs leakage-resilient public-key encryption from any hash-proof system (HPS) [14].
As observed in [2,42], this construction does not require the full security notion of HPS
and it turns out that a weaker variant, which we will call a weak HPS (wHPS), actu-
ally suffices.2 As our first result, we show that, surprisingly, wHPS can be constructed

2This weaker variant of HPS was discussed implicitly but not defined formally in [42]. The work of [2]
explicitly defined a notion of “identity-based HPS” which corresponds to an extension of our notion of wHPS
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generically from any public-key encryption scheme. This is in contrast to the full notion
of HPS, which we only know how to construct from concrete number-theoretic assump-
tions such as DDH, DCR, or QR. This gives us our results for public-key encryption.
Next, we also define a new and meaningful notion of a symmetric-key wHPS, which
allows us to construct leakage-resilient weak pseudorandom functions and symmetric-
key encryption. We show how to construct symmetric-key wHPS generically from any
pseudorandom function (PRF), and hence only under the assumption that one-way func-
tions exist. Lastly, we employ several additional ideas to construct leakage-resilient
message-authentication codes.
We now briefly describe what wHPS is, how it relates to leakage resilience, and

how to construct it. We focus on the public-key setting since it is conceptually simpler.

Weak Hash-Proof Systems (wHPS). Aweak hash-proof system (wHPS) can be thought
of as a special type of key encapsulation mechanism. It consists of:

• Apublic-key encapsulation algorithm (c, k) ← Encap(pk) that creates a ciphertext
c encapsulating a random secret value k.

• A secret-key decapsulation algorithm k = Decap(sk, c) that recovers k from the
ciphertext c.

Within the security definition of wHPS, we also require an additional invalid encapsu-
lation algorithm c∗ ← Encap∗(pk), which is not used by honest parties. The scheme
must satisfy the following:

• ciphertext indistinguishability: Valid ciphertexts (c, ·) ← Encap(pk) are
computationally indistinguishable from invalid ciphertexts c∗ ← Encap∗(pk),
even given the secret-key sk.

• smoothness: Let (pk, sk) be a random wHPS key pair and c∗ ← Encap∗(pk) be
a random invalid ciphertext. Given pk and c∗, the output k = Decap(sk, c∗) is
uniformly random and independent (information theoretically) of pk and c∗. The
randomness of k comes from the choice of the secret-key sk consistent with pk,
meaning that there must be multiple ones.

In other words, the secret-key skmaintains real entropy even conditioned on pk, and this
entropy is transferred to the output k = Decap(sk, c∗) when we decapsulate a random
invalid ciphertext c∗.
The above definition of wHPS departs from that of standard hash-proof systems in

several ways, butmost importantly, our “smoothness” property is defined for an average-
case invalid ciphertext c∗ ← wHPS.Encap∗(pk) rather than a worst-case choice of c∗
from some invalid set. Indeed, this makes our definition unsuitable for applications
dealing with chosen-ciphertext (CCA or even CCA-1) security, for which hash-proof
systems were originally intended.

Footnote 2 continued
to the identity-based setting. In both works, the distinction between the “weak” and “full” notions of HPS
was not considered important beyond simplifying exposition, and all of the given instantiations in these works
even achieve the “full” notion. In other words, although these works notice that weak HPS is sufficient, they
do not get any extra benefits from this observation.
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Leakage Resilience from wHPS. Weak hash-proof systems are particularly suited for
leakage resilience. Assume the attacker gets a wHPS public-key pk and observes �

bits of leakage on the secret-key sk. Later, the attacker sees a random valid ciphertext
c computed via (c, k) ← Encap(pk); what has she learned about the hidden value
k? Firstly, we can switch c to an invalid ciphertext c∗ ← Encap∗(pk) and define
k = Decap(c∗, sk). This change is indistinguishable even given the secret-key sk in full,
and therefore alsowhen only given leakage on sk. Secondly, because k = Decap(c∗, sk)

is information-theoretically random evenwhen given pk and c∗, the �-bits of leakage that
the attacker observes about sk can reduce the entropy of k by at most � bits. Therefore, if
k is sufficiently large, it still has high entropy given the view of the attacker, and we can
easily convert it to a uniformly random value using a randomness extractor. The above
argument closely follows that of [42].

Constructing wHPS. Our main result for public-key encryption is to construct wHPS
from general assumptions. As a starting point, we give a very simple construction where
the output k ∈ {0, 1} consists of a single bit. We do so given any standard public-key
encryption (PKE) scheme, as follows:

• Choose two random PKE key pairs (pk0, sk0), (pk1, sk1) and define the wHPS
public-key as pk = (pk0, pk1) and the wHPS secret-key as sk = (b, skb) where
b ← {0, 1} is a random bit. Notice that, given pk, there are at least two possible
consistent secret-keys: (0, sk0) and (1, sk1).

• The valid encapsulation algorithm (c, k) ← Encap(pk) chooses a random bit k ←
{0, 1} and sets c=(c0, c1)where c0 ← PKE.Enc(pk0, k), c1 ← PKE.Enc(pk1, k)

both encrypt the same bit k.
• The invalid encapsulation algorithm c∗ ← Encap∗(pk) chooses a random bit k ←

{0, 1} and sets c∗ = (c0, c1)where c0 ← PKE.Enc(pk0, k), c1 ← PKE.Enc(pk1,
1 − k) encrypt opposite bits.

• The decapsulation algorithm Decap(sk, c) takes c = (c0, c1) and the secret-key
sk = (b, skb), and outputs the decryption PKE.Dec(skb, cb) of the ciphertext cb

using the key skb.

The input indistinguishability property of the above construction follows since, even
given the secret-key sk = (b, skb), the attacker cannot distinguish if the ciphertext c1−b

encrypts the same bit k as contained in cb or the opposite bit 1 − k. The smoothness
property follows since the decapsulation of a random invalid ciphertext c∗ = (c0, c1) is
uniformly random over the choice of the secret-key bit b.

Amplifying wHPS. The above construction only gives us a wHPS with 1-bit output.
However, we can easily amplify the output size of a wHPS to any arbitrary polynomial
n = n(λ), simply by taking n independent copies of the scheme in parallel. Notice that
in the new scheme, there will be at least 2n possible secret-keys consistent with any
public-key, and the output of the wHPS on an invalid ciphertext will consist of n random
and independent bits. Since the amount of tolerated leakage � is roughly equal to the
wHPS output size n, we can set it to be arbitrarily high.
We note that the concept of amplifying leakage resilience directly via parallel repe-

tition has been suggested and explored in several works [2,3,9,35,40], with surprising
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counter-examples showing that it is not secure in general. In our special case, we only
argue that parallel repetition amplifies the output size of a wHPS (which is trivial), and
then use our connection between output size and leakage resilience to indirectly argue
that the latter amplifies as well.
The above construction can tolerate roughly n bits of leakage by storing n decryption

keys, meaning that the rate of leakage is roughly 1/s(λ), where s(λ) is the size of the
decryption key in the underlying PKE scheme. In our final construction, we show how
to increase this to any O(log(λ)/s(λ)) leakage rate. Getting an even higher rate remains
as an open problem.

Symmetric-Key wHPS. In the second part of our work, we carry the above ideas over to
the symmetric-key setting. To do so, we first define a notion of a symmetric-key wHPS
analogously to our public-key wHPS.We can think of symmetric-key wHPS as a special
type of pseudorandom function (PRF) fk(·) with the following properties (simplified):

• input indistinguishability: There are two special distributions on the inputs x
which we call valid and invalid, and which are indistinguishable from uniform even
given the secret-key k.

• smoothness: Given multiple inputs/outptus {(x, fk(x))} for various random valid
x , and a random choice of an invalid input x∗, the output fk(x∗) is uniformly
random and independent (information theoretically), where the randomness comes
from the choice of a consistent key k.

In other words, the key k maintains real entropy even conditioned on seeing fk(x) for
many random valid inputs x , but this entropy comes out when evaluating fk(x∗) at a
random invalid input x∗.
We showhow to use such symmetric-keywHPS schemes to construct leakage-resilient

symmetric-key encryption and weak PRFs. We then construct symmetric-key wHPS
generically fromstandardweakPRF, and therefore only assuming that one-way functions
exist. Our construction of message-authentication codes departs somewhat from this
abstraction and requires additional ideas.

1.2. Organization

In Sect. 2, we describe our notation and define the concept of a leakage oracle, which
we use to formalize leakage attacks. We also state several useful lemmas on entropy and
extractors. In Sect. 3, we give our results for leakage-resilient public-key encryption via
the intermediate abstraction of aweak hash-proof system (wHPS). In Sect. 4, we give our
results for leakage-resilient symmetric-key encryption via a symmetric-key wHPS. In
Sect. 5, we turn to the construction of leakage-resilient message-authentication codes.
Lastly, in Sect. 6, we present extensions of our results to entropy-bounded leakage,
after-the-fact leakage, and the bounded-retrieval model.

2. Preliminaries

Notation. We let λ denote the security parameter. For an integer n, we let [n] denote
the set {1, . . . , n}. For a randomized function f , we write f (x; r) to denote the unique
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output of f on input x with random coins r . We write f (x) to denote a random variable
for the output of f (x; r) over the random coins r . For a distribution or random variable
X , we write x ← X to denote the operation of sampling a random x according to X .
For a set S, we write s ← S to denote sampling s uniformly at random from S. For
distributions X, Y , we let SD(X, Y ) denote their statistical distance. We write X ≡ Y
to mean that X, Y are identically distributed, X ≈s Y to mean that they are statistically
close, and X ≈c Y to say that they are computationally indistinguishable. We let negl(λ)

denote the set of all negligible function μ(λ) = λ−ω(1). We use calligraphic letters such
asX to denote an ensemble of setsX = {Xλ}λ∈N. To simplify notation, we often exclude
the subscript λ when clear from context, and write e.g., x ← X to denote x ← Xλ. We
say that an ensemble X is efficient if the operations of sampling a uniformly random
x ← Xλ and testing x ∈ Xλ can be performed in poly(λ) time.

The Leakage Oracle. We model leakage attacks on a secret-key sk by giving the
adversary access to a leakage oracle, which he can adaptively access to learn information
about the secret-key. The leakage oracle, denoted O�

sk(·), is parameterized by a secret
key sk and a leakage parameter �. Each query to the leakage oracle consists of a function
fi : {0, 1}|sk| → {0, 1}�i (represented by a circuit), to which the oracle answers with
fi (sk).3 The oracle keeps track of the output sizes �i of all the leakage queries so far,
and only responds to the qth leakage query if

∑q
i=1 �i ≤ �. In other words, the total

number of bits output by the oracle is bounded by �.

2.1. Entropy and Extractors

Definition 2.1. (Min-Entropy) The min-entropy of a random variable X , denoted as

H∞(X) is defined as H∞(X)
def= − log(maxx Pr[X = x]).

Definition 2.2. (Average-Conditional Min-Entropy [21])Theaverage-conditional min-
entropy of a random variable X conditioned on a correlated variable Z , denoted as
H∞(X | Z) is defined as

H∞(X | Z)
def= − log

(
Ez←Z

[
max

x
Pr[X = x |Z = z]

])

= − log
(
Ez←Z

[
2H∞[X |Z=z]]) .

This notion of conditional min-entropy measures the best guess for X by an adversary
that may observe an average-case correlated variable Z . That is, for all (inefficient)
functions A, we have Pr[A(Z) = X ] ≤ 2−H∞(X |Z), and there is some A achieving
equality.

Lemma 2.3. [21] Let X, Y, Z be arbitrarily correlated random variables where the
support of Y has at most 2� elements. Then H∞(X |(Y, Z)) ≥ H∞(X |Z) − �. In partic-
ular, H∞(X |Y ) ≥ H∞(X) − �.

3 We insist on a circuit representation to ensure that a poly-time attacker can only query poly-sized circuits,
meaning that the leakage is poly-time computable.
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We give the following definition of randomness extractors [44], which is somewhat
stronger than the usual one and is also called an average-case strong extractor [21].

Definition 2.4. (Randomness Extractor) An efficient function Ext : X × S → Y is
a (v, ε)-extractor if for all (correlated) random variables X, Z such that the support of
X is X and H∞(X | Z) ≥ v, we have SD( (Z , S,Ext(X; S)) , (Z , S, Y ) ) ≤ ε, where
S (also called the seed) and Y are distributed uniformly and independently over their
domains S,Y respectively.

Theorem 2.5. [21,44] Let H = { hs : X → Y }s∈S be a universal family of hash
functionsmeaning that for all x �= x ′ ∈ X we have Prs←S [hs(x) = hs(x ′)] ≤ 1

|Y | . Then

Ext(x; s)
def= hs(x), is a (v, ε)-extractor for any parameter v ≥ log |Y| + 2 log(1/ε).

3. Leakage-Resilient Public-Key Encryption

We begin with a definition of leakage-resilient public-key encryption (PKE). Our defi-
nition is equivalent to that used by prior works [4,42].

Definition 3.1. (Leakage-Resilient PKE) An �(λ)-leakage-resilient PKE consists of
the algorithms (LR.Gen,LR.Enc,LR.Dec) and a message space M satisfying the
following properties:

Correctness: For all (pk, sk) in the support of LR.Gen(1λ) and all messages
m ∈ M, LR.Dec(sk,LR.Enc(pk,m)) = m.

Semantic Security
with �-Leakage:

For all PPT adversaries A, the advantage of A in the following
game is negligible in λ:

Key Generation: The challenger runs (pk, sk) ← LR.Gen(1λ) and gives pk to
A.

Leakage Queries: A is given access to the leakage oracle O�
sk(·). Without loss of

generality, we can assume thatA queriesO�
sk(·) only once with

a function f whose output is � bits.
Challenge: A chooses two plaintexts m0,m1 ∈ M and gives these to the

challenger. The challenger chooses a random bit b ← {0, 1},
and sends c∗ ← LR.Enc(pk,mb) to A. The attacker A outputs
a bit b′.

We define the advantage of A as AdvA(λ) = ∣
∣Pr[b′ = b] − 1

2

∣
∣.

If an encryption scheme is 0-leakage-resilient, we simply refer to it as being seman-
tically secure.

Remarks. Notice that the attacker is only given access to the leakage oracle prior to
receiving the challenge ciphertext. This is a necessary restriction as otherwise, he could
leak (e.g.,) the first bit of the plaintext and easily win the distinguishing game. See the
extensions in Sect. 6.3 for a meaningful definition of “after-the-fact” leakage, which can
occur after observing the challenge ciphertext. Our default definition also does not allow
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leakage on the randomness used by the key-generation algorithm, but we will give some
positive results for this variant later on.

3.1. Leakage Resilience from Weak Hash-Proof Systems

We specify our notion of weak hash-proof systems (wHPS). Our definition essentially
follows an informal description given in [42] and a formal definition of [2], who consid-
ered a similar notion in the “identity-based” setting. As described in the introduction, we
will think of a wHPS as a special type of key encapsulation mechanism with additional
properties.

Definition 3.2. A weak hash-proof system (wHPS) with output space K consists of
four algorithms (Gen,Encap,Encap∗,Decap) with the following syntax:

• (pk, sk) ← Gen(1λ): Given security parameter λ, creates a public/secret-key pair.
• (c, k) ← Encap(pk): Given a public-key pk, creates a “valid” ciphertext c encap-
sulating k ∈ K.

• c∗ ← Encap∗(pk): Given a public-key pk, creates an “invalid” ciphertext c∗.
• k = Decap(c, sk): Given a ciphertext c and secret-key sk, deterministically recov-
ers k ∈ K.

We require a weak hash-proof system to satisfy the following properties:

Correctness: For all (pk, sk) in the range of Gen(1λ),

Pr

[

k = k′
∣
∣
∣
∣

(c, k) ← Encap(pk)

k′ = Decap(c, sk)

]

= 1.

Ciphertext
Indistinguishability:

If we sample (pk, sk) ← Gen(1λ), (c, k) ← Encap(pk),

c∗ ← Encap∗(pk), we have the computational indistinguisha-
bility:

(pk, sk, c) ≈c (pk, sk, c∗).

In other words, a valid ciphertext c created with Encap is indis-
tinguishable from an invalid ciphertext c∗ created withEncap∗,
even given the secret-key sk.

Smoothness: If we sample (pk, sk) ← Gen(1λ), c∗ ← Encap∗(pk), k ←
K, and set k∗ = Decap(c∗, sk), we have the distributional
equivalence:

(pk, c∗, k∗) ≡ (pk, c∗, k).

In other words, the decapsulated value k∗ = Decap(c∗, sk) is
uniformly randomoverK and independent of c∗ and pk. Since all
of the randomness of k∗ must therefore come from the choice of
sk, this implicitly requires that there are many possible choices
of sk for a fixed pk.
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Constructing LR-PKE from wHPS. We now describe the construction of leakage-
resilient PKE from hash-proof systems due to Naor and Segev [42]. We essentially
follow the construction and proof from that work, while formalizing that the weaker
security of wHPS is sufficient.
Let (wHPS.Gen,wHPS.Encap,wHPS.Encap∗,wHPS.Decap) be a wHPS with

output setK, and letExt : K×S → Mbe a (log |K|−�, ε)-extractor,whereK,S,M are
efficient ensembles, � = �(λ) is some parameter and ε = ε(λ) = negl(λ) is negligible.
Further, assume thatM is an additive group (e.g., bit strings under XOR). We define an
encryption scheme with message space M as follows:

• LR.Gen(1λ) : Output (pk, sk) ← wHPS.Gen(1λ).
• LR.Enc(pk,m) : Sample a seed s ← S and output c = (s, c0, c1), where:

(c0, k) ← wHPS.Encap(pk), c1 = m + Ext(k; s)

• LR.Dec(sk, c) : Parse c = (s, c0, c1) and set k := wHPS.Decap(sk, c0). Output
m := c1 − Ext(k; s).

Theorem 3.3. The encryption scheme (LR.Gen,LR.Enc,LR.Dec) described above
is an �(λ)-leakage-resilient public-key encryption.

Proof. Correctness of the encryption scheme follows directly from the correctness of
the weak hash-proof system. We argue security using a series of games argument.

Game 0: This is the security gamedefined inDefinition 3.1. In this game, the adversary’s
view consists of (pk, f (sk), s, c0, c1), where (pk, sk) ← wHPS.Gen(1λ),

s ← S and:

(c0, k) ← wHPS.Encap(pk), c1 ← mb + Ext(k; s).

The leakage function f is chosen by the attacker adaptively based on pk (recall
that, w.l.o.g., the attacker chooses a single leakage function with � bit output).

Game 1: In this game, we change how c1 is computed. The challenger now computes:

(c0, k0) ← wHPS.Encap(pk), k1 ← wHPS.Decap(c0, sk),

c1 ← mb + Ext(k1; s)

The only difference between Game 0 and Game 1 is the use of k0 versus k1.
However, by the correctness of the wHPS, we know that k0 = k1. Therefore,
Games 0 and 1 are identical.

Game 2: In this game, we change how c0 is computed. Instead of letting c0 be a valid ci-
phertext computed usingwHPS.Encap, we now let it be an invalid ciphertext
computed with wHPS.Encap∗:

c0 ← wHPS.Encap∗(pk), k ← wHPS.Decap(c0, sk),

c1 ← mb + Ext(k; s)

We claim that Games 1 and 2 are indistinguishable by the ciphertext indistin-
guishability property of the weak hash-proof system. Indeed, we know that
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valid and invalid ciphertexts are indistinguishable even given the entire secret
key sk, and therefore certainly given only the output of the leakage query
f (sk).

Game 3: Finally, we change how c1 is computed.

c0 ← wHPS.Encap∗(pk), R ← M,

c1 ← mb + R

Let pk, c0, k = wHPS.Decap(c0, sk), f (sk) be (correlated) random vari-
ables distributed as in Game 2 (since the function f is chosen adaptively
depending on pk, we can think of it as a correlated random variable as well).
By smoothness, we know that k is uniform over K even given pk and c0: that
is, H∞(k | pk, c0) = log(|K|). By Lemma 2.3, since the domain of f (sk) is
{0, 1}�, we know

H∞(k | pk, c0, f (sk)) ≥ log(|K|) − �.

(This holds even if f is adaptively chosen after seeing pk.) Since Ext is an
(average-case, strong) (log(|K|)−�, ε)-extractor for ε = negl(λ),we conclude
that Ext(k; s) is ε-close to a uniformly random R, even given pk, c0, f (sk).
Thus Games 2 and 3 are statistically close.

Observe that the view ofA in Game 3 is independent of both mb and the challenge bit b.
Therefore, the advantage of A in Game 3 is 0. We can thus conclude that the advantage
of A in Game 0 is negligible in λ. �

3.2. Constructing weak Hash-Proof Systems from any PKE

In this section, we present a weak hash proof system starting from any semantically
secure public-key encryption scheme. We begin by constructing a wHPS with a very
small output space K = Zm for some polynomial m = m(λ). In other words, the
entropy of the output is only log(m) = O(log(λ)) bits. We will then amplify this via
parallel repetition, where we take several independent copies of this scheme to get a
larger output. The construction below generalizes the simple scheme we described in
the introduction, which corresponds to the special case of m = 2 and the output is only
1 bit. By increasing m, we get an improvement in the leakage rate of our scheme.

Basic Construction. Let m = m(λ) be some polynomial parameter and let � =
(PKE.Gen, PKE.Enc, PKE.Dec) be a public-key encryption scheme with message
space M ⊇ Zm .4 We construct a wHPS with output space K = Zm as follows:

• wHPS.Gen(1λ): Generate m key pairs: {(pki , ski ) ← PKE.Gen(1λ)}i∈[m]. Sam-
ple a random t ← [m]. Output sk = (t, skt ), pk = (pk1, . . . , pkm).

• wHPS.Encap(pk): Choose k ← Zm , and set c := {ci ← PKE.Enc(pki , k)}i∈[m].
Output (c, k).

4 We can set M = {0, 1}�log(m)� and naturally interpret it as containing Zm .
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• wHPS.Encap∗(pk): Choose k ← Zm . Output c∗ = {c∗
i ← PKE.Enc(pki , k +

i)}i∈[m], where the addition k + i is performed in the group Zm .
• wHPS.Decap(sk, c): Parse sk = (t, skt ) and c = {ci }i∈[m]. Output

k = PKE.Dec(skt , ct ).

Theorem 3.4. If (PKE.Gen,PKE.Enc,PKE.Dec) is a semantically secure public-
key encryption scheme, then the construction above is a weak hash-proof system with
output space K = Zm.

Proof. It is clear that the construction satisfies the correctness property of wHPS.
For the ciphertext indistinguishability property of wHPS, we need to prove that

(pk, sk, c = {ci ← PKE.Enc(pki , k)}i∈[m])
≈c (pk, sk, c∗ = {c∗

i ← PKE.Enc(pki , k + i)}i∈[m])

where k ← Zm . Firstly, since for a fixed t and random k ← Zm the distribution of k and
k + t are equivalent, we can rewrite the left-hand side as {ci ← PKE.Enc(pki , k + t)}.
Notice that ct and c∗

t are both identically distributed (even conditioned on pk, sk) and
encrypt a random value k + t . Therefore, the difference in the above distributions lies
in the ciphertexts {ci }i �=t and {c∗

i }i �=t where the left-hand-ones encrypt k + t and the
right-hand-ones encrypt k + i . But, by the semantic security of the underlying PKE, this
is computationally indistinguishable even given pk = (pk1, . . . , pkm), sk = (t, skt )

and ct = c∗
t (which together determine k). Formally, we proceed via m − 1 hybrid

arguments where in each hybrid game, we change ci ← PKE.Enc(pki , k + t) to c∗
i ←

PKE.Enc(pki , k + i) for i ∈ [m] \ {t}. This implies that in the i th hybrid game the
first i ciphertexts are sampled according to wHPS.Encap∗(·), whereas the remaining
ciphertexts are sampled according to wHPS.Encap(·). The reduction follows easily by
obtaining the i th ciphertext via an encryption oracle while computing the rest of the
ciphertexts using the public-keys within pk, which are independent of pki .

For the smoothness property ofwHPS,wenotice that given pk and an invalid ciphertext
c∗ = {c∗

i ← PKE.Enc(pki , k+i)}, the decapsulated value k∗ = wHPS.Decap(sk, c∗)
= PKE.Dec(skt , c∗

t ) = k + t is uniformly random in Zm over the choice of index t
contained in the secret-key, and therefore independent of pk, c∗. �

Output Amplification via Parallel Repetition. The above construction gives us a public-
key wHPS with a polynomial-sized output domain K = Zm , meaning that the entropy
of the output is only logarithmic. Unfortunately, we cannot use this scheme directly
with Theorem 3.3 to get a meaningful leakage-resilient PKE, since we do not even
have enough entropy to extract a single bit! However, it turns out to be very simple
to increase the output length of a wHPS just by taking several independent copies. In
particular, let � = (Gen,Encap,Encap∗,Decap) be any wHPS with output domain
K. For any integer n, we can define the n-wise parallel repetition scheme �n = (Genn,

Encapn,Encap
∗
n,Decapn) consisting of n independent copies of � as follows:

• Genn(1λ): outputs pk = (pk1, . . . , pkn), sk = (sk1, . . . , skn)where { (pki , ski ) ←
Gen(1λ) }.



Leakage-Resilient Cryptography from Minimal Assumptions 527

• Encapn(pk): outputs c = (c1, . . . , cn), k = (k1, . . . , kn) where { (ci , ki ) ←
Encap(pki ) }.

• Encap∗
n(pk): outputs c∗ = (c∗

1, . . . , c∗
n) where { c∗

i ← Encap∗(pki ) }.
• Decapn(sk, c = (c1, . . . , cn)): outputs (k1, . . . , kn)where { ki = Decap(ski , ci ) }.

Then, the scheme �n is a valid wHPS scheme with (bigger) output domainKn . In other
words, the output entropy is multiplied by a factor of n.

Theorem 3.5. Let�be any wHPS with output domainK. Let n = n(λ)be a polynomial
and �n be the n-wise parallel repetition of � as defined above. Then �n is a wHPS
with output domain Kn.

Proof. Correctness follows immediately. The ciphertext indistinguishability and
smoothness properties of �n follow from those of � by a simple hybrid argument
over the indices i ∈ [n]. �

Summary and Parameters. We now saw how to construct a wHPS with small output
size from any semantically secure PKE (Theorem 3.4), how to amplify the output size
of a wHPS (Theorem 3.5), and how to go from a wHPS to a leakage-resilient encryption
scheme (Theorem 3.3). Putting these results together, if we start with any PKE with
secret-key size s, take our basic construction ofwHPSwith parameterm and applyn-wise
parallel repetition, we get an �-LR-PKE scheme with leakage resilience � ≈ n · log(m)

and secret-key size ≈ n · s, meaning that we get a leakage rate α ≈ log(m)/s. By taking
a sufficiently large n and m, the following theorem follows.

Theorem 3.6. Assume the existence of semantically secure PKE with secret-key size
s = s(λ). Then, for any arbitrarily large polynomial � = �(λ) and any α = α(λ) =
O

(
log λ
s(λ)

)
there exists an �-leakage-resilient PKE where the leakage rate (ratio of � to

secret-key size) is α.

Proof. Take our construction of wHPS fromPKE (Theorem 3.4) with some polynomial
parameterm = m(λ), and apply parallel repetition (Theorem 3.5) with some polynomial
parameter n = n(λ) > 4λ. This gives us a wHPS with output space K = (Zm)n and
key size n(s + �logm�) < 2ns (since s > log(m) for secure PKE). Applying our
construction of LR-PKE from wHPS (Theorem 3.3) by using a universal hash function
with λ-bit output as the extractor (Theorem 2.5), we get an �-LR-PKE with leakage-
bound � = n log(m) − 2λ > 1

2n log(m) and leakage rate α > log(m)/4s. Therefore, by
choosing sufficiently large polynomials n, m, we can achieve the claim of the theorem,
where n mainly influences the leakage amount and m mainly influences the leakage rate.
This gives us a leakage-resilient PKEwhere the message size is λ bits, but we can always
apply hybrid encryption to expand this to any desired polynomial. �

Leakage During Key Generation. Recall that our definition of leakage-resilient PKE
only considered leakage on the secret-key sk and not on the randomness of the key-
generation process. We note that we can also achieve the latter type of security, un-
der an additional assumption. In particular, we need a wHPS scheme for which the
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ciphertext indistinguishability property holds even if the attacker gets the full random-
ness of key generation (rather than just the secret-key), and the proof of Theorem 3.3
goes through as before. Our current construction of wHPS does not have this prop-
erty. However, we can modify it slightly to get this property as follows: instead of
sampling all m key pairs {(pki , ski )} of the underlying PKE in full and storing only
a single secret-key (t, skt ), we sample the values pki for i �= t obliviously, without
the corresponding secret-keys. This requires that our PKE supports an oblivious public-
key sampling procedure, as defined in [20]. Although this property is not known to
hold generically for every PKE, it can be obtained under various assumptions, such
as CDH and RSA [20], for which we do not have prior leakage resilience results.

4. Leakage-Resilient Weak PRFs and Symmetric-Key Encryption

Defining LR-wPRF. We begin with the definition of a Leakage-Resilient weak PRF
(wPRF). Recall that the standard notion of a wPRF tells us that, given arbitrarily many
uniformly random inputs x1, . . . , xq , the outputs of the wPRF y1 = fk(x1), . . . , yq =
fk(xq) look pseudorandom. This is in contrast with standard PRFswhere the above holds
for a worst-case (adversarial) choice of inputs {xi }. Our definition of leakage-resilient
wPRF requires that wPRF security holds even if the attacker can leak some information
about the secret-key. In particular, any future output of the wPRF on a fresh random
input will still look random. Note that, since the attacker can always leak a few bits
of fk(x) for some x of his choice, we cannot hope to achieve full PRF security in the
presence of leakage, and hence settling for wPRF security is a natural choice.

Definition 4.1. (Leakage-Resilient weak PRF (LR-wPRF)) Let X ,Y,K be some effi-
cient ensembles and let F = { FK : X → Y}K∈K be some efficient function family.
We say thatF is an �(λ)-leakage-resilient weak PRF (LR-wPRF) if, for all PPT attackers
A the advantage of A is negligible in the following game:

Initialization: The challenger chooses a random K ← Kλ. The game then
proceeds as follows.

Learning Stage: The attacker AO�
K (·),FK ($)(1λ) gets access to the leakage oracle

O�
K (·) (allowing him to learn up to � bits of information about K )

and also the wPRF oracle FK ($) which does not take any input
and, on each invocation, chooses a freshly random X ← X and
outputs (X, FK (X)).5

Challenge Stage: The challenger chooses a challenge bit b ← {0, 1} and a random
input X∗ ← X . If b = 0, it sets Y ∗ := FK (X∗) and if b = 1 it
chooses Y ∗ ← Y . The challenger gives (X∗, Y ∗) toA who then
outputs a bit b′.

We define the advantage of the attacker A as AdvA(λ) = ∣
∣Pr[b′ = b] − 1

2

∣
∣.

5 Without loss of generality, we can also assume that the attacker only makes a single call to the leakage
oracle O�

K (·) after making all of its calls to the wPRF oracle FK ($).
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Remarks on the Definition. Notice that the above definition implicitly already requires
the input domain |X | to be super-polynomial to ensure that the challenge point X∗ is
fresh and FK (X∗)was not given out in the learning stage. Therefore, this definition rules
out information-theoretic solutions for small input domains. We find this definition to
be the easiest to use in our applications.
In the setting of no leakage (� = 0), we call a function F satisfying the above

definition a standard wPRF. Such wPRFs exist assuming only that one-way functions
exist [27,30]. The work of [45] (see also [23]) shows that any wPRF is also an �-LR-
wPRF for a logarithmic � = O(log(λ)). Constructions of �-LR-wPRF for larger � can be
derived from prior works on leakage-resilient public-key encryption [42], but only under
strong public-key assumptions such as DDH. There are no prior-known constructions
of �-LR-wPRF for any super-logarithmic � under any symmetric-key assumptions, such
as the existence of one-way functions or collision-resistant hash functions.
We note that the given definition of LR-wPRF security also implies a multi-challenge

variant where, during the challenge stage, the attacker is given arbitrarily many tu-
ples (X∗

1, Y ∗
1 ), . . . , (X∗

q , Y ∗
q ) which are either all pseudorandom with X∗

i ← X , Y ∗
i =

FK (X∗
i ) or all truly random with (X∗

i , Y ∗
i ) ← X × Y . This follows by a simple hybrid

argument.

From wPRF to CPA Encryption. We can use a LR-wPRF to construct leakage-resilient
CPA-secure (LR-CPA) symmetric-key encryption. Since this construction is relatively
obvious, we only sketch it and let the reader fill in the details. The security definition
of �-LR-CPA symmetric-key encryption consists of an initial learning stage where an
attacker can adaptively ask arbitrary chosen-plaintext encryption queries interleavedwith
leakage queries to the leakage oracleO�

sk(·). Later, after getting the challenge ciphertext,
the attacker can ask for additional chosen-plaintext encryption queries but not leakage
queries.
Assume that F = { FK : X → Y}K∈K is a wPRF where the output domain Y is

an additive group (e.g., bit strings under XOR). Then, we can encrypt a message m ∈ Y
via EncK (m) = (X, FK (X) + m) where X ← X comes from the random coins of the
encryption. Decryption is obvious. We claim that if F is an �-leakage-resilient wPRF,
then the above encryption scheme is �-LR-CPA secure. This simply follows by replacing
the value FK (X) in the challenge ciphertext by a uniformly random and independent
value, and arguing that this change is indistinguishable by the �-LR-wPRF security ofF .

We note that the above scheme also remains secure even if the attacker can observe
leakage that depends jointly on the secret-key and on the randomness used to answer
CPA queries during initial the learning stage (but not the randomness used to create
the challenge ciphertext). This simply follows since the scheme is public-coin, meaning
that the randomness X used by the encryption process is provided in-the-clear by the
ciphertext, and therefore, the attacker’s future leakage queries in the initial learning stage
can depend on X .

4.1. Leakage Resilience Via Symmetric-Key wHPS

Defining Symmetric-Key wHPS. Toward the goal of constructing a leakage-resilient
wPRF, we define a new notion of a symmetric-key weak hash-proof system (SwHPS),



530 C. Hazay et al.

which canbe thought of as a symmetric-keyversion ofwHPS fromSect. 3.1. In particular,
we define a symmetric-key wHPS as a type of wPRF familyF = { FK : X → Y}K∈K
with some special properties, analogously to the way we defined a public-key wHPS as
a key encapsulation mechanism (KEM) with special properties.
Other than being able to choose inputs X ← X uniformly at random from their

domain (which we refer to as the distribution Dist0), we can also define two additional
distributions Dist1 (valid), and Dist2 (invalid) over the input domain X . We require
that samples from these various distributions are indistinguishable even when given the
secret-key K . Furthermore, conditioned on seeing many pairs {(Xi , FK (Xi ))} for many
different Xi ← Dist1 (valid) and a random choice of X∗ ← Dist2 (invalid), the output
of FK (X∗) will be truly random and independent, where the randomness comes from
the choice of a consistent secret-key K . Notice that this implies that there must be many
keys K that are consistent with the values {(Xi , FK (Xi ))}. The additional distributions
Dist1,Dist2 are both only used in the context of the security definitions and proofs, and
never in the actual schemes, where we always sample X ← X uniformly at random. In
the definition, we will also allow an additional secret “sampling key” samK which is
needed in order to efficiently sample from the distributions Dist1,Dist2.

Definition 4.2. (Symmetric-Key wHPS) Let X ,Y,K be some efficient ensembles and
letF = { FK : X → Y}K∈K be some efficient function family with the following PPT
algorithms:

• samK ← SamGen(K ) takes an input K ∈ K and outputs a sampling key samK.
• X ← Dist1(samK), X ← Dist2(samK) are two distributions that sample X ∈ X
using the sampling key samK. For convenience, we also define the distribution
X ← Dist0(samK) which just samples a uniformly random X ← X and ignores
the sampling key samK.

We say that F is a symmetric-key wHPS (SwHPS) if it satisfies the following two prop-
erties:

Input
Indistinguishability.

For any polynomial q = q(λ) and any choice of (b1, . . . , bq),

(b′
1, . . . , b′

q) ∈ {0, 1, 2}q , the following distributions are compu-
tationally indistinguishable:

(K , X1, . . . , Xq) ≈c (K , X ′
1, . . . , X ′

q)

where K ← Kλ, samK ← SamGen(K ), {Xi ← Distbi (samK)},
{X ′

i ← Distb′
i
(samK)}.

Smoothness For any polynomial q = q(λ) the following distributions are sta-
tistically equivalent:

(X1, . . . , Xq , Y1, . . . , Yq , X∗, Y ∗)
≡ (X1, . . . , Xq , Y1, . . . , Yq , X∗, U )

where the distributions are defined by K ← Kλ, samK
← SamGen(K ), {Xi ← Dist1(samK), Yi := FK (Xi )}i∈[q],
X∗ ← Dist2(samK), Y ∗ = FK (X∗), and U ← Y . In other
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words, Y ∗ is uniformly random and independent of the other ele-
ments,where the randomness comes from the choice of a consistent
key K .

Constructing LR-wPRF from SwHPS. We now construct a leakage-resilient wPRF
from any symmetric-key wHPS. This is analogous to our results in the public-key setting
(Theorem3.3). In particular, we simply apply an extractor to the output of the symmetric-
key wHPS.

Theorem 4.3. Assume thatX ,Y,S,Z are efficient ensembles such thatF = { FK : X
→ Y}K∈K is a symmetric-key wHPS and Ext : Y×S → Z is a (log(|Y|)−�(λ), ε(λ))-
extractor for some negligible ε(λ). Define the function familyF ′ = {

F ′
K : (X × S) →

Z}K∈K via F ′
K ((X, S)) := Ext(FK (X); S). Then F ′ is an �(λ)-LR-wPRF.

Proof. We prove the theorem via a hybrid argument over several games defined below.

Game 0. This game corresponds to the wPRF security game (Definition 4.1) where the
challenger uses the bit b = 0, meaning that the challenge tuple is pseudoran-
dom. In more detail, all wPRF queries during the learning stage are answered
by choosing the input (Xi , Si ) ← X × S at random and setting the output
Zi = F ′

K ((Xi , Si )) = Ext(FK (Xi ), Si ). The challenge tuple ((X∗, S∗), Z∗)
is chosen the same way.

Game 1. In this game, we rely on the symmetric-key wHPS properties of F to change
the distribution of all the {Xi } values during the learning stage to come from
Dist1 and the X∗ value in the challenge to come from Dist2. In particu-
lar, during initialization, the challenger still chooses K ← K, but now also
choose samK ← SamGen(K ). During the learning stage, whenever an-
swering wPRF queries, the challenger now chooses Xi ← Dist1(samK) and
then Si ← S, Zi = F ′

K ((Xi , Si )) as before. During the challenge stage, the
challenger now chooses X∗ ← Dist2(samK) and again completes it with
S∗ ← S, Z∗ = F ′

K ((X∗, S∗)) as before.
We argue that Game 0 and 1 are computationally indistinguishable by the
input indistinguishability property of the symmetric-key wHPS. Let q be
the total number of wPRF queries that A makes during the learning stages.
Then, we have a reduction which takes a tuple (K , X1, . . . , Xq , X∗) as input
and uses this to answer leakage and wPRF queries for A during the wPRF
game and to form the challenge. If {Xi }, X∗ are chosen uniformly at random
(Dist0), then this perfectly simulatesGame 0 and if they are chosen via {Xi ←
Dist1(samK)}, X∗ ← Dist2(samK) then this perfectly simulates Game 1.

Game 2. In this game, the challenge tuple ((X∗, S∗), Z∗) is chosen by selecting Z∗ ←
Z uniformly at random. All other values are computed as in Game 1.
Notice that in both Games 1,2 we choose Xi ← Dist1(samK) during the
learning stage and the challenge X∗ ← Dist2(samK). Let us define Y ∗ =
FK (X∗). We can rely on the smoothness property of symmetric-key wHPS to
claim that Y ∗ is uniformly random even given X∗ and all of the wPRF query
responses that the attacker sees in the learning stage, denoted by
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P = ({Xi , Si , Zi = F ′
K ((Xi , Si ))}i∈[q]),

Therefore, we know that H∞(Y ∗|X∗, P) = log(|Y|). Let L ∈ {0, 1}�(λ)

denote the response(s) of the leakage oracle O�
K (·) during the learning stage

(recall that we can assume the attacker just makes a single query at the end
of the learning stage). Therefore, by Lemma 2.3, we also have

H∞(Y ∗ | X∗, P, L) ≥ H∞(Y ∗ | X∗, P) − �(λ) = log(|Y|) − �(λ).

Therefore, conditioned on (X∗, L , P), the value Y ∗ has log(|Y|)−�(λ) bits of
entropy. Finally, we can rely on the security of extractors to get the statistical
indistinguishability:

(L , P, X∗, S∗, Z∗ = Ext(Y ∗; S∗)) ≈s (L , P, X∗, S∗, Z∗ ← Z)

where we rely on the fact that the seed S∗ ← S is chosen at random, in-
dependently of P, L . Therefore, even conditioned on everything the attacker
sees in the learning stage, and on the challenge input (X∗, S∗) the value
Z∗ = FK ′((X∗, S∗)) = Ext(Y ∗; S∗) is statistically indistinguishable from
uniform. This proves the indistinguishability of Games 1 and 2.

Game 3. This game corresponds to the wPRF security game (Definition 4.1) where the
challenger uses the bit b = 1. In particular, the difference fromGame 2 is that
we switch the distribution of all of the inputs {Xi } seen during the learning
stage, and the input X∗ used in the challenge, back to being chosen uniformly
at random (Dist0) via {Xi ← X } and X∗ ← X . All of the Zi values during
the learning stage are still chosen as wPRF outputs Zi = F ′

K ((Xi , Si )) and
the challenge Z∗ is still chosen uniformly at random via Z∗ ← Z (as in Game
2).
Games 2 and 3 are computationally indistinguishable by the input indistin-
guishability property of the symmetric-keywHPS.The reduction is essentially
the same as the one showing the indistinguishability of Games 0 and 1.

�

4.2. Constructing Symmetric-Key wHPS

We now construct symmetric-key wHPS (SwHPS) from any weak PRF, and therefore
also from the mere existence of one-way functions. As in the public-key setting, we
begin by constructing a simple SwHPS with a short output size, and then amplify the
output size via parallel repetition.

Basic Construction. Let m = m(λ) be some polynomial and let Fweak = { fk : X →
Zm}k∈K be a standard (0-LR) wPRF family.6 Let (Enc,Dec) be a standard symmetric-
key encryption scheme constructed from Fweak as follows:

6 If m is a power of 2, then we can just identify the elements of Zm with those of {0, 1}log(m) in a natural
way. Therefore, the existence of such wPRFs does not require any special assumptions.



Leakage-Resilient Cryptography from Minimal Assumptions 533

• Enck(m): Choose x ← X and output c = (x, fk(x) + m) where the addition is
performed in Zm .

• Deck(c = (x, z)): Output m := z − fk(x).

Notice that this encryption scheme has message space M = Zm , ciphertext space
C = (X ×Zm) and key spaceK. A useful property of this encryption scheme is that we
can obliviously sample c ← C without knowing the key k, and this induces the same
distribution as encrypting a random m ← Zm . Given the wPRF Fweak and the resulting
encryption scheme (Enc,Dec) as above, we define the symmetric-key wHPS system:

FSwH P S = {FK : Cm → Zm}K∈([m]×K)

where F( K=(t,k) )( X = (c1, . . . , cm)) := Deck(ct ).

Notice that we can efficiently sample uniformly random inputs from the domain Cm of
FK (without knowing K ), which corresponds to sampling from the distribution Dist0
(see Definition 4.2). We define the additional algorithms needed for the definition of
SwHPS as follows:

• samK ← SamGen(K ). Parse K = (t, k). Choose m − 1 values {ki ← K : i ∈
[m], i �= t} and define kt := k. Set samK := (k1, . . . , km).

• X ← Dist1(samK) (Valid). Choose r ← Zm and {ci ← Encki (r)}i∈[m]. Output
X = (c1, . . . , cm).

• X ← Dist2(samK) (Invalid). Choose r ← Zm and {ci ← Encki (r + i)}i∈[m]
where the addition is performed in Zm . Output X = (c1, . . . , cm).

For a valid X all of the ciphertexts ci decrypt to the same value r , and for an invalid X
they all decrypt to different values r +i . It is easy to see that the distributionsDist1,Dist2
are indistinguishable from uniform (Dist0) even given K = (t, k) since the ciphertext ct

always is uniform on its own, and we cannot distinguish the ciphertexts ci : i �= t from
uniform by the security of the wPRF. Furthermore, given many values {Xi , FK (Xi )}
where Xi is valid, we learn nothing (information theoretically) about the secret index
t contained in K = (t, k). Therefore, for a random invalid X∗ ← Dist2(samK), the
output FK (X∗) = Deckt (ct ) = r + t is truly random and independent.

Theorem 4.4. Assuming Fweak is a standard wPRF, the function family FSwH P S as
defined above is a symmetric-key wHPS.

Proof. Let us startwith the input indistinguishability property of symmetric-keywHPS,
showing the indistinguishability of many samples from the various distributions Dist0
(uniform) Dist1, (valid) and Dist2 (invalid) even when given K in full. For this, it helps
to think of the three distributions in an alternate way. In all three of them, the ciphertext
ct ← C is just chosen uniformly at random, and we can define r := Deck(ct ). The
distributions only differ in how we choose ci for i �= t . In Distribution 0, we choose
all the other ci ← C to be random as well, in Distribution 1 we set ci ← Encki (r),
and in Distribution 2 we set ci ← Encki (r + i − t). This alternate description is
completely equivalent to the distributions defined above. Now, it is easy to see that for
i �= t , the ciphertexts ci from any of these distributions are indistinguishable from the
uniform distribution over C (by the security of wPRF Fweak with the key ki ) even if
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the attacker knows K = (t, k) and the choice of r . This even holds if the attacker can
see arbitrarily many other samples from these various distributions. This gives us input
indistinguishability.
Next, let us show the smoothness property of symmetric-key wHPS. We need to

show that given arbitrarily many values Valid = {Xi ← Dist1(samK), FK (Xi )} and
some challenge point X∗ ← Dist2(samK), the value FK (X∗) is (perfectly) uniformly
random and independent of Valid. Actually, we show that this holds even if the at-
tacker were also given samK in full. Notice that the value samK = (k1, . . . , km) al-
ready completely determines FK (Xi ) when Xi ← Dist1(samK) because we can write
FK (Xi = (c1, . . . , cm)) = Deck1(c1). Therefore, the choice of the index t in the key
K = (t, k) is uniform and independent of Valid, samK, X∗. On the other hand, when
X∗ ← Dist2(samK) then we can write:

F(t,k)(X∗ = (c∗
1, . . . , c∗

m)) = Deckt (c
∗
t ) = r + t

which is uniformly random in Zm over the choice of t and hence independent of
Valid, samK, X∗. �

Output Amplification via Parallel Repetition. The above construction of a symmetric-
key wHPS only gets us a polynomial-sized output domain, which means that the outputs
only have O(log(λ)) entropy. When using symmetric-key wHPS to get leakage-resilient
wPRF,we cannot use this to extract even one bit. Therefore, we somehowneed to amplify
the output domain and entropy. As in the public-key setting, this turns out to be very
easywith symmetric-keywHPS, just by using “parallel repetition”wherewe concatenate
several independent copies together. More specifically, we have the following theorem.

Theorem 4.5. Assume that F = { fk : X → Y}k∈K is a symmetric-key wHPS and
let n = n(λ) be an arbitrary polynomial. Define Fn = {FK : X n → Yn}K∈Kn via

F(k1,...,kn)(x1, . . . , xn)
def= ( fk1(x1), . . . , fkn (xn)).

Then Fn is also a symmetric-key wHPS, whose output is amplified by a factor of n.

Proof. The proof essentially follows directly from the definition of SwHPS. By the
definition, there are some algorithms SamGen,Dist1,Dist2 for the scheme F that
satisfy the input indistinguishability and smoothness properties. We naturally define the
algorithms SamGenn,Distn1,Dist

n
2 as:

samK ← SamGenn(K ). Parse K = (k1, . . . , kn) and sample {samKi ← SamGen
(ki ) :∈ [n]}. Output samK = (samK1, . . . , samKn).

X ← Distnb∈{1,2}(samK). Sample {xi ← Distb(samKi ) : i ∈ [n]}. Output X =
(x1, . . . , xn).

Now, we want to show that the input indistinguishability and smoothness properties
holds for Fn with the above algorithms.

• For input indistinguishability of Fn , we want to show that for any polynomial
q = q(λ) and any choice of (b1, . . . , bq), (b′

1, . . . , b′
q) ∈ {0, 1, 2}q , the following
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distributions are computationally indistinguishable:

(K = (k1, . . . , kn), X1 = (x1,1, . . . , x1,n) . . . , Xq = (xq,1, . . . , xq,n))

≈c (K = (k1, . . . , kn), X ′
1 = (x ′

1,1, . . . , x ′
1,n) . . . , X ′

q = (x ′
q,1, . . . , x ′

q,n))

where K ← (Kλ)
n, samK ← SamGenn(K ), {Xi ← Distnbi

(samK)}, {X ′
i ←

Distnb′
i
(samK)}. This follows via a sequence of n hybrid steps, where we use the

input indistinguishability property of the “small” scheme in position j ∈ [n] to
switch from sampling {xi, j ← Distb1 : i ∈ [q]} to sampling {x ′

i, j ← Distb′
1

: i ∈
[q]}.

• For the smoothness property of Fn , we want to show that for any polynomial
q = q(λ) the following distributions are statistically equivalent:

(X1, . . . , Xq , Y1, . . . , Yq , X∗ = (x∗
1 , . . . , x∗

n ), Y ∗ = (y∗
1 , . . . , y∗

n )

≡ (X1, . . . , Xq , Y1, . . . , Yq , X∗ = (x∗
1 , . . . , x∗

n ), U = (u1, . . . , un))

where the distributions are defined by K ← (K)n, samK ← SamGenn(K ),

{Xi ← Distn1(samK)}, X∗ ← Distn2(samK), {Yi = FK (Xi )}, Y ∗ = FK (X∗),
and U ← (Y)n . This too follows by a sequence of n hybrid steps where we use
the smoothness property of the “small” scheme in position j ∈ [n] to switch
y∗

j = fk j (x∗
j ) to u j ← Y . �

Putting it All Together. We now summarize our final results by combining all of the
ingredients we developed so far in this section.

Theorem 4.6. Assuming the existence of one-way functions, there exist �(λ)-LR-wPRFs
and �(λ)-LR-CPA symmetric-key encryption schemes for any arbitrarily large polyno-
mial �(λ). Furthermore, assuming the existence of standard wPRFs with key size s(λ),

the above schemes exist for any leakage rate α(λ) = O
(
log(λ)
s(λ)

)
.

Proof. Let m = m(λ) be some polynomial parameter, which is a power of 2. The
existence of standard one-way functions implies the existence of a standardwPRF family

FwP RF =
{

FK : {0, 1}i(λ) → {0, 1}log(m(λ))
}

K∈{0,1}s(λ)

for some super-logarithmic input size i = i(λ) = ω(log(λ)), by the classic results of
[27,30]. Using our basic construction of SwHPS (Theorem 4.4) with parameter m =
m(λ) and parallel repetition with some parameter n = n(λ) > 4λ, we get a symmetric-
key wHPS with key size n(s + log(m)) < 2ns and output size n logm (in bits). Using
our construction of leakage-resilient wPRFs (Theorem 4.3) and employing a universal
hash function with λ-bit output as the extractor, we get an �(λ)-LR-wPRF with leakage-
bound �(λ) = n logm − 2λ > 1

2n logm, leakage rate α = log(m)/4s, and output size
λ. Therefore, by choosing sufficiently large polynomials n, m we can achieve the claim
of the theorem, where n mainly influences the leakage amount and m mainly influences
the leakage rate. This gives us a leakage-resilient wPRF with λ-bit output, but we can
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easily amplify this to any number of bits without affecting the secret-key size or leakage
amount using a standard (non-leakage-resilient) pseudorandom generator (PRG). The
results for CPA encryption follow from those for wPRF. �

5. Leakage-Resilient Message Authentication

We now construct leakage-resilient message-authentication codes (LR-MACs) from the
minimal assumption that one-way functions exist.

5.1. Definitions

We begin by defining leakage-resilient MACs. We give a definition with several mean-
ingful variants and show interesting connections between them.

Definition 5.1. (Leakage-Resilient MAC)AMACconsists of the algorithms (Tag,Ver)
and an efficient ensemble K of secret-keys. For correctness, we require that for every
message m ∈ {0, 1}∗, and every key K ∈ K, and every correctly generated tag σ ←
TagK (m), we have VerK (m, σ ) = 1. For security, we consider the following game
between an attacker A and a challenger:

Initialization: The challenger chooses a random key K ← Kλ.
Learning Stage: The attackerAO�

K (·),TagK (·),VerK (·,·) can adaptively ask arbitrary leak-
age, tagging and verification queries to its oracles.

Forgery: The attacker provides a forgery (m∗, σ ∗) and wins if m∗ was never
given as an input to the tagging oracle TagK (·) during the leaning
stage and VerK (m∗, σ ∗) = 1.

We say that such a scheme is an �(λ)-leakage-resilient message-authentication code
(� − L R − M AC) if, for all PPT attackers A, the probability that A wins in the above
game is negligible.

In addition to the above definition, we define two useful variants.

Definition 5.2. (nvq-MAC, SU-MAC) We define two variants of the LR-MAC security
game:

• No-Verification-Query (nvq-MAC): In this weaker security notion, the attacker
does not get access to the verification oracle VerK (·, ·) during the learning stage.
(The default notion in Definition 5.1 allows unlimited verification queries.)

• Strongly Unforgeable MAC (SU-MAC): In this stronger security notion, the at-
tacker cannot come up with a new tag for a previously authenticated message.
Formally, we redefine the winning condition so that the attacker wins on a forgery
(m∗, σ ∗) as long as: the tagging oracle never returned the tag σ ∗ on any prior
tagging query with the message m∗ and VerK (m∗, σ ∗) = 1.

(The default notion in Definition 5.1 requires that the tagging oracle is never queried
with m∗.)
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We also consider a combination of both of the above variants (strong unforgeability
against a no-verification-query attack), which we call an SU-nvq-MAC.

We note that “no verification query (nvq)” security is a weaker but alreadymeaningful
notion, which may be useful in many practical scenarios. For example, we can insist
that whenever the user detects an invalid tag, she stops using the scheme in the future.
That way, the attacker does not get to make verification queries beyond a single forgery
attempt. We also note that any nvq-MAC which is �-leakage-resilient, is also secure as
long as the attacker can make up to q < � verification queries and gets up to (� − q)

bits of leakage, since each verification query can be thought of as an additional bit
of leakage on the secret-key. Of course, putting any a-priori bound on the number of
allowed verification queries may be too restrictive in some scenarios, and therefore,
we still desire a construction achieving full MAC security with unlimited verification
queries rather than just nvq security.

Relations Between Definitions. Unfortunately, there are examples of nvq-MACswhich
are completely insecure in the setting of unlimited verification queries. In other words,
it is not the case that nvq-MAC security is equivalent to full MAC security. However, we
now show that when it comes to strongly unforgeable SU-MACs, the above equivalence
does hold and there is no distinction between only considering a “no-verification-query”
attack and a general attack in which unlimited verification queries are allowed. In other
words, we show that the seeminglyweaker notion of an SU-nvq-MACsecurity is actually
equivalent to SU-MAC security. The above equivalence even holds in the setting of
leakage.

Theorem 5.3. Let � be any �-leakage-resilient SU-nvq-MAC (strongly unforgeable
MAC against a no-verification-query attack). Then, � is also an �-leakage-resilient
SU-MAC (strongly unforgeable MAC against unlimited verification queries).

Proof. Let A be an attacker against the �-leakage-resilient SU-MAC security of some
scheme (Tag,Ver). Without loss of generality, assume thatA asks at most q verification
queries and always asks a verification query (m∗, σ ∗) for the values that it later submits
as its forgery. We call a verification query (m, σ ) “fresh” if no prior tagging query with
the message m returned σ .

We show how to convert A into an attacker B that breaks the �-leakage-resilient
SU-nvq-MAC security of the scheme. In other words, B manages to break strong un-
forgeability without making any verification queries during the learning stage.
The attacker B chooses a random index i ← [q]. It runs A and gives it access to its

own tagging and leakage oracles during the learning stage, and simulates the verification
oracle for A as follows. For the first i − 1 verification queries that A makes, B simply
checks if the query is “fresh” and if so responds with 0 (rejects) else with 1 (accepts).
For the i th verification query (m, σ ) asked by A, the attacker B submits (m, σ ) as its
forgery attempt.
Let E j be the event that j th verification query made by A in the original SU-MAC

security game is the first one that would qualify as a valid forgery (it is “fresh” and the
signature verifies). For j = i , the probability of E j happening is exactly the same in the
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original SU-MAC security game and in the simulation. This is because the simulation
only differs in how it responds to verification queries, but in both cases if the event E j

occurs, then the first j − 1 verification queries simply reject. Recall that we assume A
always submits its forgery as a verification query, and hence, one of the events E j must
occur if A wins the game. Letting i be the random index chosen by B we have:

Pr[B wins ] = Pr

⎡

⎣
q⋃

j=1

(E j ∧ (i = j))

⎤

⎦ =
q∑

j=1

Pr[E j ∧ (i = j)]

= 1

q

q∑

j=1

Pr[E j ] ≥ 1

q
Pr[

q⋃

j=1

E j ] ≥ 1

q
Pr[A wins ].

where we rely on the fact that the events E j are disjoint and that the choice of i is random
and independent of E j .
Therefore, the advantage of the attacker B in the SU-nvq-MAC game is only a factor

of q smaller than that of A in the SU-MAC game, proving the theorem. �

5.2. Leakage-Resilient MAC with “No Verification Query” Security

We begin by presenting a simple construction of a leakage-resilient nvq-MAC, meaning
that it only achieves security against a no-verification-query (nvq) attack. In Sect. 5.3, we
will then show how to “upgrade” any such MAC into a fully secure (and even strongly
unforgeable) MAC.

Constructing nvq-MACs. Let Fprf = { fk : {0, 1}∗ → Y}k∈K be a pseudorandom
function (PRF) familywith super-polynomial output domain |Yλ| = λω(1). Let n = n(λ),
m = m(λ) be arbitrary polynomials. We construct a MAC with key space KM AC =
(K × [m])n , by parsing the keys K ∈ KM AC as K = ((k1, t1), . . . , (kn, tn)) where
ki ∈ K, ti ∈ [m]. We define the algorithms (Tag,Ver) as follows:

• TagK (m): Parse K = ((k1, t1), . . . , (kn, tn)). Choose a random nonce r ← {0, 1}λ
and output the tag σ = (r, {σi, j }) where {σi, j } is an n × m matrix defined by:

σi, j :=
{

fki (r ||m) if j = ti
y ← Y otherwise

In other words, each row i ∈ [n] of the matrix {σi, j } contains one pseudorandom
value under the key ki in the column ti , and the rest of the row is truly random.

• VerK (m, σ ): Parse σ = (r, {σi, j }). For all i ∈ [n], check that fki (r ||m) = σi,ti .

Security Intuition. Although we do not formally frame the above construction inside
of an abstraction (as we did with wHPS for encryption), it is useful to explain its security
via several abstract properties.
Firstly, we can define an alternate tagging oracle which is computationally indistin-

guishable from the original one even given the secret-key K = ((k1, t1), . . . , (kn, tn))

in full. The alternate oracle initially chooses an entire n × m matrix of PRF keys {ki, j },
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where the keys ki,ti := ki are taken from K and the rest of the keys ki, j for j �= ti are
chosen randomly. When answering tagging queries, the alternate tagging oracle sets all
of the values σi, j := fki, j (r ||m) to be pseudorandom under the appropriate keys.
Once we define the alternate tagging oracle, we can also define two types of forgeries:

valid and invalid. A forgerym∗, σ ∗ = (r∗, {σ ∗
i, j }) is valid if there is some pair (i, j)with

j �= ti such that σ ∗
i, j = fki, j (r

∗||m∗), and is invalid otherwise. We have the following
properties:

1. Given access to the alternate tagging oracle and the key K in full, it is computa-
tionally hard to come up with a valid accepting forgery.
Doing so requires guessing a PRF output at some fresh point (r∗||m∗), for some
PRF key ki, j which doesn’t appear in K .

2. Given access to the alternate tagging oracle but not the key K , the information-
theoretic probability of outputting an invalid accepting forgery is < 2−n log(m).
Doing so is no easier than guessing the value T = (t1, . . . , tn) since the only pairs
(i, j) for which σ ∗

i, j = fki, j (r
∗||m∗) are ones where j = ti .But T has n log(m) bits

of entropy and is completely independent of the outputs of the alternate tagging
oracle.

The above properties ensure leakage resilience for up to � = n log(m)−ω(log(λ)) bits of
leakage on the key K . Given such leakage, producing a valid forgery becomes no easier,
since it is already hard given K in full. On the other hand, the probability of producing
an invalid forgery can go up by a factor of at most 2�, which remains negligible. We
formalize this in the following theorem.

Theorem 5.4. If Fprf is a PRF family with parameters as above, then the given con-
struction is an�(λ)-leakage-resilient nvq-MAC for any�(λ)=n(λ) log(m(λ))−ω(log(λ)).

Proof. Let Game 0 be the original �-LR nvq-MAC security game with some PPT at-
tackerA (as in Definition 5.1). Let Game 1 be a modified version of the game where the
challenger picks an entire n × m matrix of random PRF keys {ki, j ← K : i ∈ [n], j ∈
[m]} at the beginning of the game and sets theMAC key K = ((k1,t1 , t1), . . . , (kn,tn , tn))

by picking the indices {ti ← [m]} randomly. During the learning stage, whenever
answering some tagging query with message m for A, the challenger now computes
σ = {σi, j = fki, j (r ||m)}. In other words, the only change from Game 0 is that, in Game
1, the values σi, j are now all chosen pseudorandomly under different PRF keys. We rely
on the PRF security of fki, j (·) for i ∈ [n], j ∈ [m] \ {ti } to claim that Games 0 and 1 are
indistinguishable and the attacker’s winning probability does not change between them.
This holds even if the attacker were given the MAC key K in full. (Here we rely on the
fact that the random nonce r chosen in each tagging query is likely to be fresh even if
the message m has been queried before, and therefore, the PRF inputs (r ||m) are always
fresh.) Therefore, we have

Pr[A wins in Game 1] ≥ Pr[A wins in Game 0] − negl(λ).

In Game 1, define the event E occurs if, in the attacker’s forgery m∗, σ ∗ = (r∗, {σ ∗
i, j }),

there is some pair (i, j) ∈ [n] × [m] with j �= ti such that fki, j (r
∗||m∗) = σ ∗

i, j . In other
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words, the attacker correctly predicts one of the PRF values in the matrix, outside of the
special positions (i, ti ).

On the one hand, we claim that the attacker is unlikely to win by causing E to occur:

Pr[A wins in Game 1 ∧ E] ≤ Pr[E] ≤ negl(λ).

This follows by the security of the PRF, where we replace the functions fki, j for j �= ti
by truly random functions fi, j . Since the forgery message m∗ is fresh, the attacker
does not get any information about fi, j (r∗||m∗) throughout the game, and therefore,
the probability that fi, j (r∗||m∗) = σ ∗

i, j is at most 1
|Y | = negl(λ). The inequality then

follows by taking a union bound over all such pairs (i, j) with j �= ti .
On the other hand, we also claim that the attacker is unlikely to win while ensuring

that E does not occur:

Pr[A wins in Game 1 ∧ ¬E] ≤ 2−n log(m)+� ≤ negl(λ).

This follows by an information-theoretic argument, showing thatA does not have enough
information about the indices T = (t1, . . . , tn) to only predict the correct outputs σ ∗

i, j =
fki, j (r

∗||m∗) when j = ti . Notice that in Game 1, the challenger’s responses to the
tagging queries only depend on the values {ki, j } and is completely independent of T .
Therefore, the attacker’s view in Game 1 contains only � bits of information about T
from its leakage queries. However, if the event “A wins in Game 1 ∧ ¬E” occurs, it
means that the attacker’s forgery has the property that the only tuples (i, j) for which
fki, j (r

∗||m∗) = σ ∗
i, j are ones where j = ti . In this case, we can completely recover T

from the attacker’s forgery given {ki, j }. Since the min-entropy of T given the set {ki, j }
and the view of A in Game 1 is

H∞(T | {ki, j }, view A) ≥ H∞(T | {ki, j }) − � ≥ n log(m) − �

the above probability is bounded by 2−n log(m)+� ≤ negl(λ) as claimed.
Putting the above claims together, we get Pr[A wins in Game 1] ≤ negl(λ) and there-

fore:

Pr[A wins in Game 0] ≤ Pr[A wins in Game 1] + negl(λ) ≤ negl(λ)

which proves the theorem as claimed. �

Insecurity with verification queries. The main problem with allowing verification
queries in the above construction is that the attacker can completely learn the indices
t1, . . . , tn in the secret-key. In particular, the attacker can make a single tagging query on
somemessagem andget back the tagσ = (r, {σi, j }). Then for eachpair (i, j) ∈ [n]×[m],
the attacker can modify only the component σi, j of σ (say, flip the last bit of it) and make
a verification query to check whether the modified tag is still valid for the message m. If
not, then the attacker learns that ti = j . By making sufficiently many such verification
queries, the attacker then recovers (t1, . . . , tn). Although this by itself does not lead to
a concrete attack on the leakage-resilient security of the scheme, it completely breaks
our proof technique which relied on the fact that the attacker does not gain information
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about (t1, . . . , tn) other than through leakage queries. Next, we show how to generically
convert a leakage-resilient nvq-MAC into a strongly unforgeable SU-MAC that allows
verification queries.

5.3. Leakage-Resilient Strongly Unforgeable MAC

We now show how to convert any leakage-resilient nvq-MAC (no-verification-query)
into an SU-MAC (strongly unforgeable), which is the strongest notion of security we
defined. Outside of the setting of leakage resilience, a transformation along these lines
was given in the work of Dodis et al. [18]. Unfortunately, this transformation requires
additional components in the secret-key and is not known to be secure in the presence
of leakage. We give an alternative transformation, which we can prove secure even in
the presence of leakage. The construction is described as follows:

• Let (nvqTag,nvqVer)be an�(λ)-leakage-resilient nvq-MAC(no-verification-query
security) with key space Knvq and tag space T .

• Let F = { fk : X → Y}k∈Khps be a symmetric-key wHPS with key space Khps .
• Let H = {hk : T → Z}k∈Y be a 2−u(λ)-secure (information-theoretic) one-time-

MAC, meaning that: for all (computationally unbounded) A and all ψ ∈ T we
have

Pr[hk(ψ
′) = τ ′ ∧ ψ ′ �= ψ | k ← Y, τ := hk(ψ), (ψ ′, τ ′) ← A(τ )] ≤ 2−u(λ).

We assume u(λ) is super-logarithmic.

Define the MAC (Tag,Ver) with key space K = Knvq × Khps as follows.

• TagK (m): Parse K = (k1, k2). Choose x ← X , ψ ← nvqTagk1(x ||m). Compute
k3 := fk2(x), τ := hk3(ψ). Output σ := (x, ψ, τ).

• VerK (m, σ ) : Parse K = (k1, k2), σ = (x, ψ, τ). Compute k3 := fk2(x). If
nvqVerk1((x ||m), ψ) = 1 and hk3(ψ) = τ output 1 else output 0.

Security Intuition. We show that the above construction is a leakage-resilient strongly
unforgeable MAC (SU-MAC). Recall that, by Theorem 5.3, we only need to prove SU-
nvq security (strong unforgeability against a no-verification-query attack) and we get
security against unlimited verification queries for free. Let us consider an attack where
the adversary gets some tag σ = (x, ψ, τ) for a message m under the above MAC and
attempts to come up with a modified tag σ ∗ = (x∗, ψ∗, τ ∗) �= σ for the same message
(this appears to be the most illustrative case).
If the attackermodifies x∗ �= x , thenψ∗ would be a valid tag for anewmessage (x∗||m)

under the original nvq-MAC, which would violate its security. Therefore, assume that
the attacker leaves x∗ = x the same. If ψ∗ = ψ is also left the same, then we must
have τ ∗ = τ = h fk2

(ψ∗) in order for the tag to verify, in which case the entire tag
σ ∗ = σ has been unchanged and hence is not a valid forgery. On the other hand, if the
attacker changes ψ∗ �= ψ , then he cannot come up with a valid τ ∗ = hk3(ψ

∗) given
only τ = hk3(ψ) since k3 = fk2(x) is pseudorandom and hk3(·) is a one-time MAC.
The main difficulty lies in proving that the above holds in the setting of leakage, if the
attacker can leak information about k2 after seeing x . Here, we use the fact that fk2(·)
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is a symmetric-key wHPS to argue that this information can decrease the entropy of
k3 = fk2(x) by at most � bits, which is insufficient to break one-time MAC security.
Implicitly, we are relying on the fact that a (symmetric-key) wHPS is secure against
after-the-fact leakage, a property that we examine in further detail in Sect. 6.3.

Theorem 5.5. Let (nvqTag,nvqVer) be an �(λ)-leakage-resilient nvq-MAC (secure
against a no-verification-query attack). LetF be a symmetric-key wHPS andH a 2−u(λ)-
secure (information-theoretic) one-time MAC with parameters as described above. Then,
the above construction of (Tag,Ver) is �′(λ)-leakage-resilient SU-MAC (strongly un-
forgeable with unlimited verification queries) for any�′(λ)=min{�(λ), u(λ)−ω(log(λ))}.

Proof. By Theorem 5.3, we only need to prove SU-nvq-MAC security (strongly un-
forgeable security against a “no-verification-query” attack), and full SU-MAC security
(against unlimited verification queries) follows automatically. Let A be a PPT attacker
against the �′-leakage-resilient SU-nvq-MAC security game (as in Definitions 5.1, 5.2)
of the scheme (Tag,Ver). Assume thatAmakes at most q queries to the tagging oracle
throughout the game. We define the following events within the context of the security
game:

• The event Win occurs if A wins the security game against the challenger. In other
words, it outputs a valid forgerywhere the combination of (m∗, σ ∗) is fresh,meaning
that no prior tagging query with message m∗ returned the tag σ ∗.

• The event Match j to occur if the attacker’s final forgery attempt is of the form
m∗, σ ∗ = (x∗, ψ∗, τ ∗) and the j th query to the tagging oracle is for a matching
message m j = m∗ and the response is σ j = (x j , ψ j , τ j ) with matching x j = x∗
(the other components may not match).

• We define the event Match := ⋃q
j=1Match j . In other words, the attacker’s final

forgery attempt is of the form m∗, σ ∗ = (x∗, ψ∗, τ ∗) such that some prior query
to the tagging oracle has a matching message m∗ and is answered with a tag σ =
(x, ψ, τ) having a matching x = x∗.

Firstly, we wish to show that

Pr[Win ∧ Match] = Pr[Win] − Pr[Win ∧ ¬Match] ≥ Pr[Win] − negl(λ) (5.1)

We show this by relying on the security of the underlying nvq-MAC. Notice that when-
everWin∧ ¬Match occurs, the tag ψ∗ is a valid tag of the message (x∗||m∗) under the
nvq-MAC, and the nvqTag algorithm was previously never executed with (x∗||m∗)
as an input during the course of the game. Therefore, we have a simple reduction
that breaks the �′-LR nvq-MAC security of the underlying nvq-MAC with probabil-
ity Pr[Win ∧ ¬Match], meaning that the latter must be negligible.
Next, we wish to show that

∀ j ∈ [q] : Pr[Win ∧ Match j ] ≤ negl(λ) (5.2)

To show this,weneed to rely on the security of the symmetric-keywHPS (SwHPS).Let us
consider amodified version of the security experiment. The challenger samples a SwHPS
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sampling key samK ← SamGen(k2) at the beginning of the game. All tagging queries
other than the j th one are answered by choosing the component x ← Dist1(samK)

from the valid distribution and the j th tagging query are answered by choosing x ←
Dist2(samK) from the invalid distribution. The remainder of the tagging process (aside
from how x is chosen) remains the same. By the input indistinguishability of the SwHPS,
these two experiments are indistinguishable even when given the MAC secret-key K =
(k1, k2) in full. Let Win′,Match′

j be the analogous events in the modified experiment.
Since these events can be described as efficient predicates of the attacker’s view and the
MAC key K in the experiment, we have

∣
∣
∣ Pr[Win ∧ Match j ] − Pr[Win′ ∧ Match′

j ]
∣
∣
∣ ≤ negl(λ)

Hence, to prove Eq. (5.2) it suffices to show Pr[Win′ ∧ Match′
j ] ≤ negl(λ) in the

modified experiment.Assume thatMatch′
j occurs, so that the j th tagging query/response

is (m, σ = (x, ψ, τ)) and the attacker’s forgery attempt is (m, σ ∗ = (x, ψ∗, τ ∗)) where
the values m, x match. Let k3 = fk2(x). If ψ = ψ∗ also match between the two tags,
then the forgery can only be accepting if τ ∗ = hk3(ψ) = τ meaning that the tags σ ∗ = σ

must match entirely. In this case, the attacker automatically loses. Hence, if the event
Win′ ∧ Match′ occurs, we must also have ψ �= ψ∗. By the smoothness of the SwHPS,
the value k3 is uniformly random given the entire view of the attacker during the game
aside from the value τ = hk3(ψ) and the outputs of the leakage oracle. Therefore, the
probability of Win′ ∧ Match′

j is at most the probability of breaking the security of the
one-timeMACgiven �bits of leakageon the (otherwise uniformly random) secret-key k3.
Since the one-timeMAC is 2−u(λ)-securewithout any leakage, it is also at least 2�(λ)−u(λ)

secure given � bits of leakage (since we can always guess such leakage with probability
2−�(λ)). Therefore, we can upper-bound Pr[Win′ ∧ Match′

j ] ≤ 2�(λ)−u(λ) = negl(λ).
As we argued, this also proves Eq. (5.2).

Taking a union bound, Eq. (5.2) shows that Pr[Win ∧ Match] ≤ ∑q
j=1 Pr[Win ∧

Match j ] ≤ negl(λ). Combining this with Eq. (5.1), we get Pr[Win] ≤ negl(λ) meaning
that the attacker A has a negligible probability of winning the �′-leakage-resilient SU-
nvq-MAC security game against the MAC (Tag,Ver), as we wanted to show. �

Putting it All Together. We now combine the results from this section to state our main
theorem for leakage-resilient message-authentication codes.

Theorem 5.6. Assuming the existence of one-way functions, there exist �(λ)-leakage-
resilient strongly unforgeable MACs for arbitrarily large polynomial �(λ). Furthermore,
assuming there exist standard PRFs with variable-length input size, output size λ, and

key size s(λ), the above schemes exist for any leakage rate α(λ) = O
(
log(λ)
s(λ)

)
.

Proof. First, we use our construction of leakage-resilient nvq-MACs from PRFs (The-
orem 5.4) with polynomial parameters n = n(λ) > 4λ and m = m(λ) > 4 (assume m is
a perfect power of 2). If the PRF key size is s = s(λ), we get an �-leakage-resilient nvq-
MACswith leakage-bound � = n log(m)−λ > 1

2n log(m), key sizen(s+log(m)) < 2ns
and tag size nmλ + λ (in bits).
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We then use our construction for upgrading nvq-MAC security to SU-MAC security
Theorem 5.5 using a wHPS and a one-time MAC constructed as follows:

• We use a one-time MAC with key size 2w and output size w and input size tw
defined by

hr,s(a1, . . . , at ) :=
t∑

i=1

ai · r i + s

where all operations are over the field F2w . We set w := n log(m) and t := mλ.
The security is given by t/2w which we can write as 2−u for u = w − log(t) =
n log(m) − (log(m) + log(λ)).

• We use an SwHPS with key size n(s + log(m)) < 2ns and output size 2n logm (in
bits) from the proof of Theorem 4.6, under the same PRF assumption.

Note that the output size of the wHPS matches the key size of the one-time MAC as
needed. Also, the input size of the one-time MAC is

tw = (mλ)n log(m) ≥ 2nmλ ≥ nmλ + λ

and therefore large enough so that we can feed it the tags of the nvq-MAC as inputs (as
needed).
By Theorem 5.5, this construction is �′-leakage-resilient for �′ = min(�, u − λ) ≥

n log(m) − 2λ > 1
2n log(m) and has key size < 4ns. Therefore, the leakage rate is

α > log(m)/8s. By choosing sufficiently large polynomials n, m, we can achieve the
claim of the theorem, where n mainly influences the leakage amount �′ and m mainly
influences the leakage rate α. �

6. Extensions

6.1. Entropy-Bounded Leakage

The notion of entropy-bounded leakage was first suggested by Naor and Segev [42]
to capture scenarios where the length of the leakage obtained by the attacker is much
longer than the length of the secret-key, but its relevant information content is still small.
More specifically, in the model of entropy-bounded leakage, we restrict the amount of
entropy that can be lost by seeing the output of the leakage function, rather than bounding
its output size. There are several (similar but not equivalent) ways to model entropy-
bounded leakage and the concept of entropy loss (see [9,11,16,42]). We follow [16] and
consider the entropy loss over the uniform distribution as the measure of leakiness, since
this measure turns out to be very robust and easy to use. We recall that we consider an
average min-entropy notion, formally defined in Definition 2.2.

Definition 6.1. [16] A probabilistic function h : {0, 1}∗ → {0, 1}∗ is �-leaky if, for all
n ∈ N, we have H∞(Un | h(Un)) ≥ n − �, where Un is the uniform distribution over
{0, 1}n .
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When we define the �-leakage-resilient security of various primitives in the entropy-
bounded leakage model, the attacker can adaptively query the “leakage oracle” with
arbitrary functions hi , each of which is �i -leaky, as long as the total leakiness is bounded
by

∑
i �i ≤ �.7

Notice that by Lemma 2.3, a length-bounded function h : {0, 1}∗ → {0, 1}� is �-leaky.
Thus, entropy-bounded leakage provides a generalization of length-bounded leakage.
Furthermore, as was shown in [16], if a function is �-leaky (decreases the entropy of the
uniform distribution by at most � bits), then it decreases the entropy of every distribu-
tion by at most � bits. Moreover, the definition composes nicely and an adversary that
adaptively chooses several �i -leaky functions, only learns

∑
i �i bits of information.

We claim that all of our results, both in the public-key and in the symmetric-key setting,
hold if we consider entropy-bounded leakage instead of length-bounded leakage. This
essentially follows immediately from our proofs of security, where we only used the
entropy loss of the leakage to argue security.

6.2. Bounded-Retrieval Model

Motivation. The Bounded-Retrieval Model (BRM) [2,3,12,15,24] attempts to address
the issue of system compromise, where an attacker can download large amounts of
data from a compromised system storing cryptographic keys. In some cases, we may
still be able to assume that the attacker is constrained, and the amount of data that
he can download is bounded by some sufficiently huge bound � (e.g., on the order of
Gigabytes). This may be a reasonable assumption if the attacker’s bandwidth is bounded,
downloadingmore data is not a cost-effective attack, or the system can detect and prevent
larger amounts of leakage. The main idea of the BRM is to use leakage resilience to
maintain security in this scenario.

BRM Requirements. On a high level, the BRM requires efficient leakage-resilient cryp-
tosystems that can tolerate huge amounts of leakage �. In other words, the BRM places
additional efficiency requirements on leakage-resilient schemes. If wewant to instantiate
a scheme so as to tolerate � bits of leakage, then the secret-key size must be sufficiently
large (|sk| > �) so that the attacker cannot leak the key in full. However, in the BRM,
we insist that all other efficiency parameters of the scheme (the computation time of all
algorithms, the public-key sizes, ciphertext sizes etc.) must remain small and essentially
independent of �. In other words, if the leakage-bound � grows to the order of Gigabytes,
the secret-key will need to grow as well, but the cryptographic scheme should otherwise
remain efficient and usable. One outcome of this requirement is that schemes in the BRM
cannot even access their entire (huge) secret-key during each cryptographic operation.

Prior Work on Encryption in the BRM. The work of Alwen et al. [2] shows how to
obtain encryption schemes in the BRM from identity-based weak hash-proof systems

7 Since we cannot efficiently measure the amount of “leakiness” of a function, the leakage oracle cannot
efficiently verify the above condition. Instead, we simply insist that the attacker satisfies this condition and is
agnostic to how this is ensured. In other words, we quantify over all attackers that satisfy the above condition.
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(IB-wHPS).8 Such schemes were then constructed under several concrete assumptions
including LWE (+ random oracle), QR (+ random oracle), and the “q-truncated aug-
mented bilinear Diffie-Hellman exponent (q-TABDHE) assumption.” We now show
how to achieve BRM encryption under general assumptions, by leveraging the ideas be-
hind our constructions of public-key and symmetric-key wHPS from Sects. 3.2 and 4.2.
First, let us give an overview of how IB-wHPS is used to construct encryption schemes
in the BRM.

Random Sampling. The main idea behind all prior constructions in the BRM is to
randomly sample some subset of the secret-key bits which will be relevant for the current
cryptographic operation. That way, even if the attacker observed some leakage in the
past, we are still likely to sample bits of the secret-key that have high entropy. We review
this idea in more detail for the example of public-key encryption studied in [2] (a similar
idea also applies to symmetric-key encryption).
LetH be somewHPSwith a small secret-key (e.g., our basic construction in Sect. 3.2).

We can use it to construct an efficient �-leakage-resilient public-key encryption E , where
the bound � and the secret-key can be made arbitrarily large while maintaining low
computation cost. The public/secret-key pair of E consists of n independent public/secret
keys of H, i.e., pk = (pk1, . . . , pkn), sk = (sk1, . . . , skn), where n is proportional to
the leakage-bound �. So far, this is the same as parallel repetition ofH. However, when
we encrypt under E , we now sample a random subset of t � n indices I ⊆ [n], |I | = t
and only compute (ci , ki ) ← wHPS.Encap(pki ) for the indices i ∈ I . We then apply
an extractor to the values {ki }i∈I and use the output as a one-time-pad to encrypt an
arbitrary message. Intuitively, when we switch from valid to invalid encapsulation, the
collection of {ki }i∈I is likely to have entropy even given the attacker’s leakage. This
happens because the choice of I is random and hence the attacker’s leakage is unlikely
to have been concentrated on the positions {ski }i∈I . This type of intuition is formalized
in the work of Vadhan on locally computable extractors [50]. The computation time of
encryption/decryption in E is only proportional to t , which is small and independent of �.
Unfortunately, the encryption scheme E still has a huge public-key (in the symmetric-key
setting, a variant of the above idea using symmetric-key wHPS is already sufficient).

Reducing Public-Key Size. To reduce the public-key size, the work of [2] introduces
a notion of identity-based wHPS (IB-wHPS). Informally, IB-wHPS is a generalization
of wHPS, where the wHPS.Encap,wHPS.Encap∗ algorithms take a master public
key mpk and an identity ID, and the wHPS.Decap algorithm takes in a secret-key skID
corresponding to identity ID. See [2] for a formal definition. Using an IB-wHPS H,
we can construct an encryption scheme E in the BRM as follows. The public-key of
E is set to the master public-key mpk of H. The secret-key of E consists of n identity
secret-keys sk = (skID1, . . . , skIDn ) corresponding to somen fixed identities. Encryption
and decryption work essentially the same way as before. To encrypt, we first choose t
random indices I = (i1, . . . , it ), and compute (c j , k j ) ← wHPS.Encap(mpk, IDi j )

for the t relevant identities. We then apply an extractor with a random seed s to get

8 Although that work does not use the term “weak”HPS, the abstraction therematches the natural extension
of our notion of wHPS to the identity-based setting.
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r = Ext((k1, . . . , kt ); s) and use r as a one-time-pad. In particular, the ciphertext for a
message m is given by C = (I, c1, . . . , ct , r + m). See [2] for a formal description of
IB-wHPS and an analysis of this abstract approach.

Our Observations. Firstly, we can directly plug in our construction of symmetric-key
wHPS into the above framework to get symmetric-key encryption schemes in the BRM
under general assumptions. Similarly, we can directly use our public-key wHPS to get
a public-key encryption scheme in a relaxed version of the BRM, where the public-key
size is large. To get a short public-key, we need to have an IB-wHPS. We notice that
we can use our techniques to construct IB-wHPS generically from any identity-based
encryption (IBE) scheme. Assume that the identities of the underlying IBE scheme
have the form ID = (i, j) where i, j ∈ N. The identities in our IB-wHPS scheme will
have the form ID = i ∈ N and the secret-key of the IB-wHPS for identity i will be
a pair (t, ski,t ) where t ← [m] is random and ski,t is an IBE secret-key for identity
(i, t). Notice that the IB-wHPS secret-key for each identity i has at least log(m) bit
of entropy depending on the choice of t . To encapsulate toward identity i , we create
m IBE ciphertexts (c1, . . . , cm) toward the identities (i, 1), . . . (i, m), respectively. In a
valid encapsulation, all ciphertexts encrypt the same random value k ← [m], and in an
invalid encapsulation, they encrypt different values, where ci encrypts k + i (modm).
The analysis showing that this scheme satisfies IB-wHPS essentially follows the proof
of Theorem 3.4. Therefore, we get public-key encryption in the BRM assuming the
existence of any standard IBE scheme. It is not known whether this assumption is
minimal.

6.3. After-the-Fact Leakage

In this section, we consider the notion of after-the-fact leakage-resilient encryption de-
fined by Halevi and Lin [31]. Loosely speaking, after-the-fact leakage-resilient security
implies that an attacker who gets to observe �post bits of leakage on the secret-key
adaptively after seing the challenge ciphertext learns at most �post bits of information
about the plaintext (in contrast, standard leakage-resilient security of encryption implies
that seing � bits of leakage on the secret-key before seing the challenge ciphertext will
not help reveal any information about the encrypted message). For simplicity, we will
assume that the message M is picked at random from {0, 1}m . We formulate the notion
of after-the-fact leakage by defining two games: a real versus a simulated one. The real
game has two phases of leakage: prior to the challenge phase and afterward. Therefore,
the leakage oracle O�pre,�post

sk (·) is parameterized by a secret-key sk, two leakage para-
meters �pre, �post, and a security parameter λ. Formally, we define the following two
games:

The Real Game. Given the parameters λ, �pre, �post and an encryption scheme � =
(LR.Gen, LR.Enc, LR.Dec), the real game is defined as follows:

Key Generation: The challenger chooses at random a plaintext MRl ← {0, 1}m .
The challenger also runs (pk, sk) ← LR.Gen(1λ) and gives pk
to A.
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Pre-Challenge
Leakage Queries:

A is given access to the leakage oracleO�pre,�post
sk (·). Note thatwe

can assumewithout loss of generality thatAqueriesO�pre,�post
sk (·)

only once with a function f whose output is �pre bits.
Challenge: The challenger sends c∗ ← LR.Enc(pk, MRl) to A.
Post-Challenge
Leakage Queries:

A is given access to the leakage oracleO�pre,�post
sk (·). Again, we

can assumewithout loss of generality thatAqueriesO�pre,�post
sk (·)

only once with a function f whose output is �post bits.

Denote by ViewRl
A (�) the random variable describing the view of the adversary A in

the real game.

The Simulated Game. In the simulated game the challenger is replaced by a simulator
S that gets a uniformly chosen plaintext MSm as input and simulates the interaction with
A conditioned on this plaintext. The view of A when interacting with S is denoted by
ViewSm

A,S(�).
We continue with a definition of after-the-fact leakage-resilient encryption.

Definition 6.2. (After-the-Fact Leakage-Resilient Encryption) We say that an encryp-
tion scheme � = (LR.Gen,LR.Enc,LR.Dec) is (�pre, �post)-after-the-fact leakage
resilient if there exists a simulator S, such that for all PPT adversaries A the following
properties are satisfied:

• (ViewRl
A (�), MRl) ≈c (ViewSm

A,S(�), MSm).

• H∞(MSm|ViewSm
A,S(�)) ≥ m − �post.

Constructions. Halevi and Lin [31] showed how to achieve after-the-fact leakage-
resilient PKE from hash-proof systems. It is easy to see that their proof remains the
same if we only have a weak hash-proof system (wHPS). The main idea is that the
simulator uses invalid encapsulation algorithm so as to inject real (information-theoretic)
entropy into the ciphertext. Moreover, we can also naturally define and construct after-
the-fact leakage-resilient symmetric-key CPA secure encryption from symmetric-key
wHPS using the same techniques.

7. Conclusions

We saw how to construct several leakage-resilient primitives under the minimal assump-
tion that they exists in the standard setting without any leakage. Perhaps the main open
question is to improve the leakage rate of such constructions (say, to some constant
fraction of the secret-key), or to provide black-box separations showing that this is not
possible. Another interesting open question is to construct leakage-resilient signatures
under the minimal assumption that one-way functions exist. Lastly, it would be inter-
esting to come up with other applications where weak hash-proof systems (wHPS) can
replace standard HPS.
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