
DOI: 10.1007/s00145-014-9179-8
J Cryptol (2015) 28:110–160

Cryptanalysis of SHA-0 and Reduced SHA-1

Eli Biham∗, Rafi Chen∗
Computer Science Department, Technion – Israel Institute of Technology, Haifa 32000, Israel

biham@cs.technion.ac.il; rafi_hen@inter.net.il; http://www.cs.technion.ac.il/∼biham/

Antoine Joux
Laboratoire PRISM, CNRS UMR-8144, Université de Versailles St-Quentin-en-Yvelines, 45, avenue des

Etats-Unis, 78035 Versailles Cedex, France
antoine.joux@m4x.org

Communicated by Preneel

Received 1 November 2008
Online publication 31 May 2014

Abstract. We present new techniques for the cryptanalysis of hash functions. Our
contributions are two-fold: both on the search level of the compression function and
on the meta-structure. The former led to the neutral bits technique, while the latter led
to the multi-block technique. The usefulness of these techniques is demonstrated on
SHA-0 and SHA-1, but they are applicable to other hash functions as well. We use these
techniques to find a collision of the full SHA-0 which is the first published collision of
this function, and very efficient collision attacks on reduced versions of SHA-1.

Keywords. Differential cryptanalysis, SHA-1, Hash functions.

1. Introduction

The cryptographic hash function SHA (called SHA-0 in this paper) was designed by the
National Security Agency (NSA) and issued by NIST in 1993 as a Federal Information
Processing Standard (FIPS-180) [28]. A revised version, called SHA-1, which introduces
an additional rotate operation in the message expansion, was later issued in 1995 as
FIPS-180-1 [29]. The revised version is intended to be a more secure replacement, that
improves the security provided by the hash function. No details of the weaknesses found
in SHA-0 were provided.

SHA-0 and SHA-1, as well as most hash functions currently in use, are based on
Merkle–Damgård construction [12,25]. This construction is proved to be collision resis-
tant if the underlying compression function is collision resistant. Our techniques use

∗ This work was supported in part by the Israel MOD Research and Technology Unit.

© International Association for Cryptologic Research 2014

Cryptanalysis of SHA-0 and Reduced SHA-1 111

differential cryptanalysis [6] in a way that exploits the iterative nature of the Merkle–
Damgård construction as well as weaknesses of the compression functions. The differ-
ences we use are in both inputs of the compression function, i.e., the initial values and the
message blocks, whereas previous techniques were limited to differences in the message
blocks. This extension allows us on one hand to use characteristics with much higher
probabilities, but on the other hand they do not lead to collisions, but to near-collisions.
In order to utilize the high probability characteristics that predict near-collisions, we
concatenate them to a longer characteristic that predicts a collision in a technique we
call multi-block technique. It should be noted that Wang et al. [36,37] independently
used two-block messages to find the collision of MD5, using a first block that creates a
near-collision, and a second block that restarts from this near-collision and ends with a
collision.

The compression functions of SHA-0 and SHA-1 (as well as RIPMD-128 [17],
RIPEMD-160 [18], HAVAL [42]) are based on the principles of MD4 [31] and MD5 [32].
These compression functions take a 512-bit message block, and output a pseudo-random
string (128 bits in MD4 and MD5, and 160 bits in SHA-0 and SHA-1). The basic com-
ponents of these functions are a message expansion, and an iterative round function that
manipulates one of the expanded message words with some intermediate values. The
round functions use the IF, XOR, MAJORITY, and addition modulo 232 operations to
manipulate the data.

1.1. Previous Attacks on MD4/SHA Family of Hash Functions

Shortly after Rivest introduced MD4 [31] in 1990, Merkle [26] showed in an unpublished
work that it is possible to find a collision of MD4 reduced to the first 32 (out of the 48)
rounds of MD4. Den Boer and Bosselaers [8] followed Merkle’s work and presented an
attack on the last 32 rounds of MD4 (rounds 16–47). Few years later, Dobbertin [15]
presented a full collision of MD4 with a complexity of 222. His attack is differential, and
the measure of difference is subtraction. The two colliding messages that he found differ
in a single word by three consecutive bits, where the subtraction difference is 1. The
attack is split into two parts: In the first part, a set of equations that describes the evolution
of the differences is solved to achieve a predefined difference at some Round i . In the
second part, a differential attack that starts with the difference of the first part and leads to
a collision is performed. In the first part of the attack an attacker has a full control on the
intermediate data, thus he reaches the predefined difference with a negligible complexity.
The second part has a probability of about 2−22, thus the overall complexity is about 222.

At CRYPTO’91 Rivest introduced MD5 [32] as a strengthened version of MD4. Two
years later at EUROCRYPT’93 [9], den Boer and Bosselaers presented an attack that
easily finds collisions of the compression function (also known as pseudo-collisions).
Their attack finds two colliding inputs, each consists of an initial value and a message
block, where the two initial values are different, but the two message blocks are identical.
Though their attack showed a substantial weakness of the function, MD5 became the
de facto standard of the industry in the following years. In the rump session of EURO-
CRYPT’96 [16] Dobbertin presented an attack on the compression function of MD5
that finds collisions of two different message blocks with a chosen (non-standard) initial
value.

112 E. Biham et al.

At CRYPTO’98, Chabaud and Joux [10] proposed a theoretical differential attack
on the full SHA-0 with a complexity of 261, using a weakness of the expansion algo-
rithm. Their attack is faster than the generic birthday attack, and partially explains the
withdrawal of SHA-0 by NIST. This attack uses the XOR operation as a measure of dif-
ference, and the characteristic is determined by approximating the non-linear operations
by XOR. Similarly to the attacks on MD4, the attack on SHA-0 is split into two parts. In
the first 18 rounds, an attacker has almost full control on the conditions that a message
should satisfy. From Round 19, the attack is probabilistic, and the chosen characteristic
determines the complexity of the attack. Since our attack is based on this attack, we give
a detailed description of it in Sect. 3.

For completeness we describe attacks that were published in parallel to or after our
contribution in Table 1 and Sect. 9.

1.2. Our Contribution

This paper presents two cryptanalysis tools: the neutral bits technique (first described
in [3]), and the multi–block technique (first described in [4,7]). The neutral bits technique
is used to attack the compression function by using a poor avalanche of the round
function, and the multi-block technique uses the iterative mode-of-operation of Merkle–
Damgård to enable efficient attacks. The relevance of these techniques to attack SHA-0
and SHA-1 was presented in the rump session of CRYPTO 2004 in the sessions “New
results on SHA-0 and SHA-1” by Biham and Chen [4] and “Collisions in SHA-0” by
Joux [20].

We define the notion of neutral bits to describe many bits of a pair of messages that
do not affect the differences and conditions that a pair should satisfy for a collision to
occur. These neutral bits allow an attacker to start the attack from Round 22 or later1 by
eliminating the probabilistic behavior of prior rounds.

We analyze the complexity of attacking reduced and extended versions of SHA-0,
and show that their complexities are not monotonous in the number of rounds. We then
observe that characteristics that predict collisions of reduced and extended versions of
SHA-0 may also be used to find small differences in the chaining values of the full 80-
round SHA-0. Following this observation, we discuss the usefulness of characteristics
that start with a zero or small difference in the chaining value and predict a collision or a
small difference of the chaining value. We show that the complexity of finding a pair of
message blocks that creates a small difference in the chaining values is much lower than
a pair that creates a collision. The reason is that for the former we use characteristics with
any differences at the message block, input chaining value, and output chaining value,
while for the latter the differences are limited to the message block, and the differences
of the input and output chaining values are zero. We then introduce the multi-block
technique that links the different types of characteristics to produce a collision of a
multi-block pair with much lower complexity than a collision of a single-block pair.

In the following subsection we present the results we achieved using these techniques.
We note that although all of our examples are on the SHA family of hash functions, the
techniques presented in this paper are general and may be used to cryptanalyze other

1 SHA-0 and SHA-1 have 80 rounds in their compression functions.

Cryptanalysis of SHA-0 and Reduced SHA-1 113

hash functions. We also note that the neutral bits technique was found applicable for the
cryptanalysis of stream ciphers as well [1,19,24].

1.3. Results

The applicability of the neutral bits and multi-block techniques is demonstrated on
SHA-0 and SHA-1. In Table 1 we summarize the main results on attacking these func-
tions in a chronological order. We start from the attack of Chabaud and Joux in 1998
then our results in 2004–2005 and other substantial results until 2013 (a short descrip-
tion of these later results is given in Sect. 9). The first column specifies the attacked
hash function, and the next two columns specify the number of rounds of the attacked
function and the number of message blocks used in the attack. The attack complex-
ity is given in number of message pairs under the Pair column, and in number of
SHA calls under the Time column. These two measures are given since some previ-
ous papers use the number of tested pairs as a measure of attack complexity, while
others use number of SHA calls. In the remainder of this paper, we use number of
SHA calls as a measure of attack complexity. In the Found column a “+” indicates
that a colliding pair is found. The Cite column cites the publication of the result with
our results in boldface. The last column specifies the year in which the result was pub-
lished.

Table 1. Up-to-date results on SHA-0 and SHA-1.

Rnd Blocks Pairs Time Found Cite Year

SHA-0 80 1 261 258 Chabaud and Joux [10] 1998
80∗ 1 243 240 [2,3] and Sect. 4 2004
82 1 243 240 [2,3] and Sect. 4 2004
50 2 219 216 + [2,11] 2004
80 4 251 246 + [7,20] and Sect. 7 2004
80 2 239 + Wang et al. [38] 2005

SHA-1 34 1 27 24 + [2,4,7] 2004
36 2 224 221 + [2,4,7] 2004
40 2 219 216 + [4,7] and Sect. 8.3 2004
53 1 271 268 Rijmen and Oswald [30] 2005
53 1 260 257 [7] 2005
58 2 275 272 [7] 2005
58 1 233 + Wang et al. [39] 2005
80 2 269 Wang et al. [39] 2005
80 2 263 Wang et al. [40] 2005
64 2 235 + De Cannière and Rechberger [13] 2006
70 2 244 + De Cannière et al. [14] 2007
72 2 247.6 + Grechnikov [21] 2010
73 2 250.7 + Grechnikov [21] 2010
80 3 258 Chen [11] 2011
75 2 257 + Grechnikov and Adinetz [22] 2011
80∗ 1 257.5 Stevens [33] 2013

Our results are in boldface
∗ Denotes near-collision

114 E. Biham et al.

The full collision of SHA-0 is the first published collision of SHA-0, and it uses
the neutral bits and multi-block techniques along with additional improvements. This
result is an improvement by a factor of 210 to the best previously known attack on
SHA-0 [10].

Our attacks and collisions on reduced SHA-1 are the first published attacks on this
function [4]. Each attack shows different weaknesses of the algorithm: SHA-1 reduced
to 34 rounds is the easiest to attack, thus we were able to find colliding messages with
ASCII letters and even meaningful words. The attack on SHA-1 reduced to 36 rounds
shows a workaround for a limitation that was identified in [10] as “the consecutive
disturbance problem in the IF rounds”. It also demonstrates how the first block in the
multi-block technique can be used to replace the standard initial values, in case they
are incompatible with the characteristic. The attacks on SHA-1 reduced to 53 and 58
rounds were the highest reduced versions. we could attack with a complexity less than
the generic birthday attack. In these attacks we use the technique mentioned above to
resolve the consecutive disturbances problem. In parallel to our results, Rijmen and
Oswald independently studied reduced versions of SHA-1, and found a characteristic of
SHA-1 reduced to 53 rounds [30].

1.4. Paper Organization

This paper is organized as follows: Sect. 2 describes SHA-0 and SHA-1, and Sect. 3
reviews the original attack of [10] on SHA-0. Section 4 defines neutral bits, describes
how to find and use them, and gives an example of such bits in SHA-0. Section 5 presents
analysis of attacks on variants of SHA-0 with different number of rounds. In Sect. 6 we
describe the multi-block technique, define near-collisions, pseudo-collisions and near-
pseudo collisions, and show how they are used to construct an attack. In Sect. 7 we give a
four-block collision of the full SHA-0, along with a further refinement of the prior tech-
niques that make them applicable. Section 8 describes the extension to variants of SHA-1,
and various attacks and results on reduced versions of SHA-1. Section 9 describes
remarkable advances in the last few years. Finally, Sect. 10 summarizes the paper.

2. Description of SHA-0, SHA-1, and Notations

Throughout this paper, big-endian is used to convert words into bit strings, i.e., the first
bit position is the most significant bit. A 32-bit word {b31, . . . , b0} is converted to an
integer by

∑i=31
i=0 bi · 2i . A right shift of a 32-bit word by r positions, where r zeroes are

appended to the leftmost 32 − r bits of the shifted word, is denoted by � r . Similarly,
a left shift is denoted by � r . X≪r and X≫r denote a left and a right rotation of X by
r positions, respectively.

2.1. SHA-0 and SHA-1 Algorithms

SHA-0 and SHA-1 are Merkle–Damgård iterative hash functions using specially
designed compression functions. The Merkle–Damgård construction is outlined in Fig. 1.
In this figure the sizes (in number of bits) of each message block Mi and chaining vari-

Cryptanalysis of SHA-0 and Reduced SHA-1 115

C C

bb

mc
C C

bb

mc mc mcmcmc
Hash Result

0 ’s, and message length
padding with 1,

M

IV

h1

M1 M2

h2

MnMn−1

hn−1 hn
h0

Fig. 1. Merkle–Damgård construction.

able hi are denoted by b and mc, respectively. The construction and the padding are as
follows:

1. A single “1” bit is appended to the message M , followed by a variable number
of “0” bits, followed by a 64-bit representation of the message length in bits. The
number of zeroes is in the range {0, . . . , 511} such that the total length of the
padded message is a multiple of 512 bits. The padded message is divided into
blocks of 512 bits each: M1, . . . , Mn .

2. A chaining variable h0 of five 32-bit words is initialized to

h0 = (67452301,EFCDAB89,98BADCFE,10325476,C3D2E1F0).

3. For k = 1 to n, call the compression function with the current block Mk (512 bits)
and the current chaining variable hk−1 (160 bits). In each iteration the output is a
160-bit chaining variable hk :

hk = C(Mk, hk−1).

4. hn is the output of the hash function.

We give here a non-standard (but equivalent) description of the compression function
of SHA-0 and SHA-1, which we found more convenient for the purpose of cryptanaly-
sis. A traditional description of SHA-0 and SHA-1 is given in [29]. In the traditional
description, five registers Ai , Bi , Ci , Di , and Ei are used along with a word Wi from
the expanded message W̄ to compute the values of Ai+1, Bi+1, Ci+1, Di+1, and Ei+1,
respectively. In our description we use five entries Ai−4, Ai−3, Ai−2, Ai−1, and Ai of
a reduced state vector A (that stores the values of Ai , Bi , Ci , Di , and Ei up to a rota-
tion), along with Wi to compute the value of the next entry Ai+1. We define a state of
the compression function si , i ∈ {0, . . . , 80}, and a transformation to the five registers
representation by:

si = (Ai , Ai−1, A≪30
i−2 , A≪30

i−3 , A≪30
i−4) = (Ai , Bi , Ci , Di , Ei).

An illustration of this description is given in Fig. 2. The definition of the compression
function of SHA-0 and SHA-1 and the computations of the entries of W̄ and Ā are as
follows:

116 E. Biham et al.

W15

A80W79

A1

A0

A−1

A−2

A−3

A−4

<<<

<<<

<<<

<<<

<<<

<<<

30

30

30

<<<

<<<

<<<hi−1

hi

<<<

<<<

<<<

<<<
Ei

Di

Bi
Ai

fi
Ci

5

30

30

30

Mk

<<<1

<<<

<<<

<<<

<<<

Ci

Ei

Di

Bi
Ai

fi

W

Expanded Message

0W

A76

A77

A78

A79

A

30

30

30

30

30

30

in SHA−1

Reduced State Vector

5

30

30

30

Wi−10

Wi−9

Wi−8

Wi−7

Wi−6

Wi−5

Wi−4

Wi−3

Wi−1

Wi−2

Wi

Wi−15

Wi−14

Wi−13

Wi−12

Wi−11

A

A

A

A

A

i−4

i−3

i−1

i

i+1

i−2

A

Wi−16

Ki

Ki

Fig. 2. The compression function of SHA-0 and SHA-1.

1. Divide the message block Mk into 16 words of 32 bits: Mk = W0, . . . , W15.
2. Expand the 16 words to 80 words by the recurrence equation:

Wi = (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16)
≪r , i = 16, . . . , 79, (1)

where r is 0 for SHA-0 and 1 for SHA-1. This rotate operation is the only dif-
ference between SHA-0 and SHA-1. We note that Eq. (1) represents a 16-word
linear feedback shift register (LFSR). The LFSR is loaded with the initial value
W0, . . . , W15, and it is clocked 64 times to generate W16, . . . , W79.

3. Divide hk−1 to the five first entries of the reduced state vector by

hk−1 = (A0, B0, C0, D0, E0),

Cryptanalysis of SHA-0 and Reduced SHA-1 117

Table 2. Functions and constants.

Round Function fi (X, Y, Z) Ki

0 ≤ i ≤ 19 IF XY ∨ X̄ Z 5A827999
20 ≤ i ≤ 39 XOR X ⊕ Y ⊕ Z 6ED9EBA1
40 ≤ i ≤ 59 MAJ XY ∨ X Z ∨ Y Z 8F1BBCDC
60 ≤ i ≤ 79 XOR X ⊕ Y ⊕ Z CA62C1D6

and

(A0, A−1, A−2, A−3, A−4) = (A0, B0, C≫30
0 , D≫30

0 , E≫30
0). (2)

4. For i = 0–79 compute the reduced state Ai+1 by the following round function
(Rounds 0, . . . , 79):

Ai+1 = A≪5
i + fi (Ai−1, A≪30

i−2 , A≪30
i−3) + A≪30

i−4 + Wi + Ki , (3)

where the functions fi and the constants Ki are given in Table 2.
5. The output of the compression function is the sum of the final state s80 and the last

chaining variable:

hk = hk−1 + s80, (4)

where the addition is word-wise modulo 232.

2.2. Notations

Unless it is explicitly written, an index in subscript denotes an index of a word in
a vector or a round number. An index in superscript denotes a bit index, e.g., A j

i is
bit j of the reduced state vector word Ai . The function fi denotes the 32-bit result
of fi (Ai−1, A≪30

i−2 , A≪30
i−3) in Round i . In SHA-0 and SHA-1 fi is a bit-wise func-

tion that processes each bit location independently, hence, we may use the notation
f j
i (A j

i−1, A j−30
i−2 , A j−30

i−3) to describe the j’th bit of its output. We sometimes use the
explicit name of the function instead of fi , i.e., instead of fi we may write IFi , XORi , or
MAJi .

We use the notation CARRY j
i to describe the value of the (single) carry bit from bit

j −1 (and prior bits) to bit j in the computation of Ai by Eq. (3), i.e., the XOR difference
of the output and all inputs of the addition operations in a SHA-round, which is

CARRYi = Ai ⊕ A≪5
i−1 ⊕ fi−1(Ai−2, A≪30

i−3 , A≪30
i−4) ⊕ A≪30

i−5 ⊕ Wi−1 ⊕ Ki−1. (5)

We use the standard notations of differential cryptanalysis [5] to specify the values
and differences of two messages and their parameters, e.g., M, M∗ and M ′ describe the
values and the difference of two messages, respectively. In addition, a bit is marked in
boldface, e.g., W1

i , to indicate that the value of this bit is different in both messages,
e.g., that W ′1

i = W 1
i ⊕ W ∗1

i = 1. We call such a bit an active bit.

118 E. Biham et al.

3. The Basic Attack on SHA-0

In [10], Chabaud and Joux present a differential attack on SHA-0 that uses the XOR
operation as a measure of difference. Their attack is aimed at finding a collision of a pair
of single-block messages that are hashed with the standard initial value.

The basic idea of the attack is to generate a pair of messages with specific patterns of
XOR differences in the first 16 words. Each pattern of differences that starts at Round i
is constructed such that with a non-negligible probability it creates a difference of a
single bit between the reduced states Ai+1 and A∗

i+1. After five rounds, at Round i + 6,
the reduced states Ai+1 and A∗

i+1 do not affect the computations of succeeding reduced
states, thus the states of the two messages are not affected by the difference that the
pattern created. These patterns of differences are duplicated by the LFSR of Eq. (1)
to the expanded messages. The result is a pair of expanded messages with patterns of
differences such that each pattern creates with some probability a difference of a single
bit between the reduced states. If each pattern in the expanded messages succeeds in
creating a difference of a single bit, then the differences in the reduced states follow the
patterns of differences in the expanded messages. Hence, if the difference that the last
pattern creates is in A′

75 (or before), then the last five reduced states are equal and a
collision occurs.

The basic pattern of differences between the two messages that creates such equal
states consists of six XOR differences. The first difference creates a minimal difference
of one bit in the reduced state vector, and the other five differences avoid the propagation
of this difference to the next words of the reduced state vector. We call such a pattern of
differences, a local collision sequence. The next subsection describes a local collision
sequence in detail.

3.1. A Local Collision Sequence

In the attacks on SHA-0 we concentrate only on local collision sequences that start at
bit 1 of any of the 32-bit message words. Such a pattern that creates a local collision
starts with a single-bit difference at W1

i , which we call a disturbance (or perturbation).
With a probability 1/2 this disturbance creates a difference in A1

i+1 while leaving the
carry to A2

i+1 unchanged. In order to avoid the propagation of the difference from A1
i+1

to the next rounds, five additional differences, called corrections, are inserted in the next
five rounds. In Table 3 we demonstrate a disturbance and five corrections which form
a local collision sequence. This table gives bit-wise computations of the round function
for the bits that are affected by the active bits of the local collision sequence. The local
collision sequence we show is: (W1

i , W6
i+1, W1

i+2, W31
i+3, W31

i+4, W31
i+5), and the desired

resulting difference in the reduced state vector is A1
i+1 only, i.e., W1

i activates A1
i+1, and

W6
i+1, W1

i+2, W31
i+3, W31

i+4, W31
i+5 result in A6

i+2, A1
i+3, A31

i+4, A31
i+5, and A31

i+6 inactive.
In terms of intermediate states differences, the state differences s′

i+1, . . . , s′
i+5 show

differences due to A1
i+1, while s′

i+6 is not affected, i.e.,

s′
i+1 = (00000002,0,0,0,0)

s′
i+2 = (0,00000002,0,0,0)

Cryptanalysis of SHA-0 and Reduced SHA-1 119

Table 3. A description of a pattern of differences that creates a local collision.

A disturbance
A1

i+1 = A28
i ⊕ f1

i (A1
i−1, A3

i−2, A3
i−3) ⊕ A3

i−4 ⊕ W1
i ⊕ K 1

i ⊕ CARRY1
i+1

Five corrections
A6

i+2 = A1
i+1 ⊕ f6

i+1(A6
i , A8

i−1, A8
i−2) ⊕ A8

i−3 ⊕ W6
i+1 ⊕ K 6

i+1 ⊕ CARRY6
i+2

A1
i+3 = A28

i+2 ⊕ f1
i+2(A1

i+1, A3
i , A3

i−1) ⊕ A3
i−2 ⊕ W1

i+2 ⊕ K 1
i+2 ⊕ CARRY1

i+3

A31
i+4 = A26

i+3 ⊕ f31
i+3(A31

i+2, A1
i+1, A1

i) ⊕ A1
i−1 ⊕ W31

i+3 ⊕ K 31
i+3 ⊕ CARRY31

i+4

A31
i+5 = A26

i+4 ⊕ f31
i+4(A31

i+3, A1
i+2, A1

i+1) ⊕ A1
i ⊕ W31

i+4 ⊕ K 31
i+4 ⊕ CARRY31

i+5

A31
i+6 = A26

i+5 ⊕ f31
i+5(A31

i+4, A1
i+3, A1

i+2) ⊕ A1
i+1 ⊕ W31

i+5 ⊕ K 31
i+5 ⊕ CARRY31

i+6

s′
i+3 = (0,0,80000000,0,0)

s′
i+4 = (0,0,0,80000000,0)

s′
i+5 = (0,0,0,0,80000000)

s′
i+6 = (0,0,0,0,0).

During a desired computation of a pair of messages that has a local collision sequence
difference (as in Table 3), only the bits marked in boldface may be active. Thus, we
require that the carries in the computations of Ai+1, Ai+2, and Ai+3, (at rounds i, i + 1,
and i + 2) remain unchanged (inactive). We note that since the addition is modulo 232,
there is no carry to bits next to bit 31. Thus, even though a disturbance may be located
at any bit index, we prefer bit 1, since the probabilistic behavior of the carry after the
rotation by 30 bits is eliminated at rounds i + 3, i + 4, and i + 5.

An illustration of a local collision sequence is given in Fig. 3. In this figure the dis-
turbance W1

i and the difference of the reduced state A1
i+1 are marked in dark gray.

The entries in light gray are the corrections, and entries with no background have

<<<

<<<

<<<

<<<

Ci

Ei

Di

Bi
Ai

x

x

x

x

x

x

x

x

x

x

’

’

’

’

’5

30

30

30

Expanded
Messages
Difference

Reduced States
Difference

= 00000000

= 00000000

= 00000000

= 00000000

= 00000000

= 00000000

= 00000000

= 00000000

= 00000000

= 00000000

Fi

Ai

Ai−2

Ai−1

Ai−3

i−4A

Ai+1Wi

Ai+2

Ai+3

Ai+4

Ai+5

Ai+6

i+1

i+2

i+3

i+4

i+5

W
W

W

W

W

Ki

xx

x

x

x

x

x

’

’

’

’

’

’

’= 80000000

= 00000040

= 00000002

= 80000000

= 80000000

= 00000002= 00000002

’

’

’

’
’

Fig. 3. A local collision sequence.

120 E. Biham et al.

no difference. The middle part of this figure shows the computation of the reduced
state difference A′

i+1 with the inputs of the disturbance W′
i = 00000002 and the

state differences s′
i = (0,0,0,0,0). The desired result is A′

i+1 = 00000002, i.e.,
s′

i+1 = (00000002,0,0,0,0). In Round i + 1 the middle part of the figure is
advanced by one entry such that its input differences are: W′

i+1 = 40 and s′
i+1 =

(00000002,0,0,0,0). The desired output difference of this round is A′
i+2 = 0. In

each consequent round the middle part in the figure is advanced by one entry, and the
reduced state difference is computed. After five such computations, the state difference
becomes s′

i+6 = (0,0,0,0,0), which forms a local collision.
A local collision sequence is a probabilistic process that depends on the function fi

and the carry. We now analyze each row of Table 3, and show how the desired differences
are achieved, and what the probabilities are at each round.

A disturbance W1
i turns A1

i+1 to be an active bit with probability 1. The carry from
bit 1 remains unchanged if W1

i = A1
i+1, thus we assume a probability 1/2 for this round.

In the next five rounds we apply corrections that compensate the active bit Ai+1, so that
Ai+2, . . . , Ai+6 remain inactive.

In the first correction at Round i + 1, the active bits W6
i+1 and A1

i+1 cancel each other

if W6
i+1 = A1

i+1 = W1
i . Thus, by setting W1

i = W6
i+1, both A6

i+2 and the carry remain
inactive. In the next three rounds the active bit A1

i+1 is an input to fi . For simplicity and
clarity we first consider fi being XOR. We will later discuss the differences for the IF
and MAJORITY operations.

At Round i+2 we need that A1
i+3 and the carry from this bit remain inactive. The result

of XOR1
i+2(A

1
i+1, A3

i , A3
i−1) is always active when A1

i+1 is active in the input of the XOR
function, thus the correction W1

i+2 maintain A1
i+3 inactive with probability 1. The carry

from bit 1 remains inactive if W1
i+2 = XOR1

i+2. By writing the explicit terms of XOR1
i+2,

and substituting A1
i+1 = W6

i+1, the carry remains inactive if W1
i+2 = W6

i+1⊕ A3
i ⊕ A3

i−1,
which occurs with probability 1/2. We note that the condition of Round i + 2 can be
tested at round i − 1 (when A3

i and A3
i−1 are known). Thus, an attacker knows if he

achieves the desired result three rounds in advance.
In the computations of A31

i+4, A31
i+5, and A31

i+6 we should not worry about changes
of the carry as it is ignored anyway. Furthermore, XOR31

i+3(A31
i+2, A1

i+1, A1
i) and

XOR31
i+4(A31

i+3, A1
i+2, A1

i+1) are always active when only A1
i+1 is active in the input.

Thus, in each of these three rounds the active bits W31
i+3, W31

i+4, W31
i+5 compensate the

active bit A1
i+1 with probability 1.

The differences between the analysis of the XOR, IF, and MAJORITY operations
are only in rounds i + 2, i + 3, and i + 4 where A1

i+1 is one of the inputs to the
function. In these rounds we require f1

i+2(A
1
i+1, A3

i , A3
i−1), f31

i+3(A31
i+2, A1

i+1, A1
i), and

f31
i+4(A31

i+3, A1
i+2, A1

i+1) to be active, such that the corrections W1
i+2, W31

i+3, and W31
i+4

cancel each of these active bits, respectively. Unlike the XOR operation whose output
is always active, IF and MAJORITY create an active output with probability 1/2 for a
random selection of their three inputs. In addition, at Round i + 2 we require

f1
i+2(A

1
i+1, A3

i , A3
i−1) = W1

i+2 (6)

Cryptanalysis of SHA-0 and Reduced SHA-1 121

Table 4. Local collision conditions for rounds i, . . . , i +5 with the XOR operation at rounds i +2, i +3, i +4.

Round Conditions Prob.

i A1
i+1 = W1

i 1/2

i + 1 W6
i+1 = W1

i 1

i + 2 W1
i+2 = W6

i+1 ⊕ A3
i ⊕ A3

i−1 1/2
i + 3 — 1
i + 4 — 1
i + 5 — 1

Table 5. Conditions for rounds i + 2, i + 3, i + 4 with the IF operation.

Round Conditions Prob.

i A1
i+1 = W1

i 1/2

i + 1 W6
i+1 = W1

i 1

i + 2 (A3
i = A3

i−1) and W1
i+2 = W6

i+1 ⊕ A3
i−1 1/4

i + 3 A31
i+2 = 1 1/2

i + 4 A31
i+3 = 0 1/2

i + 5 — 1

Table 6. Conditions for rounds i + 2, i + 3, i + 4 with the MAJORITY operation.

Round Conditions Prob.

i A1
i+1 = W1

i 1/2

i + 1 W6
i+1 = W1

i 1

i + 2 A3
i = A3

i−1, W1
i+2 = W6

i+1 1/2

i + 3 A31
i+2 = A1

i 1/2

i + 4 A31
i+3 = A1

i+2 1/2

i + 5 — 1

in order for the carry to remain unchanged, i.e., the output of the function is active, and it is
opposite to the correction.2 When the function is the IF operation and its output is active,
Eq. (6) is satisfied with probability 1/2. On the other hand, when fi is MAJORITY, and it

is active, MAJ1
i+2(A

1
i+1, A3

i , A3
i−1) = A1

i+1, and by setting W1
i+2 = W1

i , the probability
is 1. Thus, by adding a condition on the message bits which we control, we gain a factor
of 1/2 in the probability.

A summary of conditions of a local collision sequence and their probabilities with
the XOR operation are given in Table 4. The conditions and probabilities for the IF and
MAJORITY are given in Tables 5 and 6. In these tables, the first column shows the round

2 This requirement is not applicable to rounds i + 3 and i + 4 since at that rounds bit 31 is active, and the
carry is not considered.

122 E. Biham et al.

<<<

<<<

<<<

<<<

Ci

Ei

Di

Bi
Ai

x

x

x

x

x

x

x

’

’

’

’

’

5

30

30

30

IFi

= 00000000
The output difference
is never

= 00000000

= 00000000

The resultant
difference of

00000002
the IF is always

Differences

Message
Expanded

Differences

= 00000000

= 00000000

= 00000000

= 00000000

= 00000000

= 00000002

= 00000000

= 00000000x

00000000x

x

x

x

x

Reduced States

’

’

’

’

’

’

’

Ai−2

Ai−1

Ai−3

i−4A

Ai+1
Wi

W

Ai+2

i+3

i+4

i+5

A

A

Ai+7

A

Ai+6

Wi+2

i+4

Wi+5

Wi+6

Wi+3

Wi+1

Ai

Ki

x

= 00000000

x

x

x

x

x

x

x ’

’

’

’

’

’

= 00000002

’

= 00000002

= 00000042

= 00000000

= 80000000

= 80000002

= 00000042

Fig. 4. Two consecutive disturbances in the IF rounds.

number, where the application of the disturbance is at round i . The second column shows
the conditions on the expanded messages and reduced states bits. The third column is
the probability that the conditions hold. We note that according to the data in these tables
an attacker may know 2–3 rounds in advance if the required behavior of a local collision

sequence is achieved, e.g., in Round i he can already test whether A3
i = A3

i−1 to know
if he gains the desired behavior of Round i + 2.

3.1.1. Two Consecutive Disturbances

The computations of local collision sequences with two consecutive disturbances at
rounds i and i + 1 are similar to the computations in Table 3, except for Round i + 4
where Ai+5 is given by:

A31
i+5 = W 31

i+4 ⊕ A26
i+4 ⊕ f31

i+4(A31
i+3, A1

i+2, A1
i+1) ⊕ A1

i ⊕ K 31
i+4 ⊕ CARRY31

i+5 (7)

(see Fig. 4). At round i + 4, the two corrections for A1
i+1 and A1

i+2 cancel each other,
thus W 31

i+4 is inactive. On the other hand, when fi is the IF operation,
IF31

i+4(A31
i+3, A1

i+2, A1
i+1) is always active with A1

i+2 and A1
i+1 active in the input. Thus,

Eq. (7) is never satisfied when the IF operation is used. Hence, two consecutive distur-
bances are not allowed in the range i = 0, . . . , i = 16. This situation is known as the
consecutive disturbances problem in the IF rounds.3

A similar analysis when fi is the MAJORITY operation shows that:

MAJ31
i+4(A31

i+3, A1
i+2, A1

i+1) = MAJ31
i+4(A31

i+3, A1
i+2, A1

i+1) if A1
i+1 = A1

i+2.

3 Note that the resolution of this issue by Wang et al. [38] enables the usage of disturbance vectors with
much higher probabilities, and as a result it reduced the complexity of the attack by a factor of about 220.

Cryptanalysis of SHA-0 and Reduced SHA-1 123

Thus, by keeping the condition

W 1
i = W 1

i+1,

when two consecutive disturbances are in the range i = 37, . . . , i = 56, the probability
of the correction at round i + 4 is 1.

3.2. A Characteristic and a Disturbance Vector

The attack on SHA-0 is differential, and the differences we use have the form of local
collision sequences. Each local collision sequence starts with a disturbance and leads to
a local collision with some probability. It is clear that a pair of message blocks that has
such differences collides if all the local collisions occur as expected. We now show how
to construct a pair of message blocks that has such differences.

A pair of expanded message blocks is generated by the LFSR of Eq. (1), thus their
XOR difference is also generated by this LFSR. We use this property to construct the
XOR difference of the pair such that it has the form of local collision sequences, in two
steps. Firstly, we construct the differences that represent the disturbances, and describe
these differences by a disturbance vector D. Secondly, we manipulate the disturbance
vector D by the linear XOR and shift operations to construct the difference of the pair (in
the form of local collision sequences). We describe this difference by a disturbances and
corrections vector �. We note that since the operations we use for constructing these
two vectors (the disturbance vector D, and the disturbance and corrections vector �) are
linear, both of them can be generated by the LFSR of Eq. (1).

Definition 1 A disturbance vector D is a vector of 85 words D−5, . . . ,D79, that indi-
cates the locations of the disturbances. A bit in this vector is set to one if there is a
disturbance in this location, and is set to zero otherwise.

In the following list we describe the constraints on the disturbance vector that are
required for finding collisions of SHA-0.

1. Disturbances are applied only to bit 1 (see the discussion in Sect. 3.1).
2. The pair of messages starts with the standard initial value, i.e., the differences

of the initial state are s′
0 = (0,0,0,0,0), and the corresponding words of the

disturbance vector are D−5 = 0, . . . ,D−1 =0.
3. The differences of the final state are zero, i.e., s′

80 = (0,0,0,0,0), and the
corresponding words of the disturbance vector are D75 = 0, . . . ,D79 = 0.

4. No consecutive disturbances are allowed in D0, . . . ,D16 (as mentioned earlier,
this limitation was resolved by Wang et al. [38]).

Under these constraints we construct the disturbance vector using the LFSR of Eq. (1).
Given a disturbance vector, we define the difference of the analyzed expanded mes-

sages by a disturbances and corrections vector �. A disturbances and corrections vector
� is generated from a disturbance vector D in the form of local collision sequences as
follows: Let SRl(D) be the vector of 85 words obtained by prepending l zero words to
the first 85 − l words of D (i.e., a non-cyclic shift operation of the words). Then, for

124 E. Biham et al.

Si
’

<<<

<<<

<<<

W’15

Ω M

Ω W

<<<

<<<

<<<

30

30

30

<<<

<<<

<<<0h’Ω P

Ω A

<<< 30

<<< 30

<<< 30 h’1 Ω T

W’79

A’76

A’77

A’78

A’79

A’80

30

30

30

0W’

30

30

30

Expanded Message

Differences

Differences

Reduced State Vector

A’−2

A’−3

A’−4

A’−1

A’0
A’1

W’i−5

W’i−6

W’i−4

W’i−3

W’i−2

W’i−1

W’i

A’

A’

A’

A’

i−4

i−3

i−1

i

i−2

A’

Fig. 5. A characteristic of a single-block attack.

all the disturbances in D, corrections are made by SR1(D)≪5, SR2(D), SR3(D)≪30,
SR4(D)≪30, and SR5(D)≪30, where ≪ denotes a cyclic rotate of each word of the
vector separately. The linear combination of local collision sequences that start in each
disturbance of D is:

D ⊕
(

SR1(D)≪5
)

⊕ SR2(D) ⊕
((

SR3(D) ⊕ SR4(D) ⊕ SR5(D)
)≪30

)

. (8)

� is the 80 entries 0, . . . , 79, of the vector constructed by (8), and the difference W ′ of
the two expanded message blocks is:

W ′ = (W ′
0, . . . , W ′

79) = (�0, . . . ,�79) = �.

3.2.1. A Construction of Characteristics from Disturbance Vectors

We are now ready to define a characteristic for the attack, and then we show how
disturbance vectors are used to construct characteristics. The following definition is for
a characteristic which is suitable to attack a pair of single-block messages (see Fig. 5).
It is extended later to attack longer messages.

Definition 2 A characteristic of SHA-0 is a tuple � = (�P ,�M ,�W ,�S,�T). �P

is a 160-bit string that represents the differences of the initial values, i.e., �P = hk−1 ⊕
h∗

k−1. �T is a 160-bit string that represents the differences of the hash results, i.e.,
�T = hk ⊕ h∗

k . �P and �T are also called chaining differences. In general we refer

Cryptanalysis of SHA-0 and Reduced SHA-1 125

to chaining differences as tuples of five words of 32 bits. �M = M ⊕ M∗ is a 512-bit
string of the messages difference, and �W = (W ′

0, . . . , W ′
79) is the differences of the

words of the expanded messages. Since the 512 bits of �M are the first 16 words of W ′,
we generally refer to them by the 16 words: �M = (W ′

0, . . . , W ′
15). The differences of

the state vector �S = (s′
0, . . . , s′

80) start from a given difference of the initial values
(s′

0 = �P), and continue with the state differences from the first computed state (s′
1) to

the final state (s′
80). We note that �S is derived from the differences of the reduced state

vector �A = (A′−4, . . . , A′
80) by:

s′
i = (A′

i , A′
i−1, A′≪30

i−2 , A′≪30
i−3 , A′≪30

i−4), i ∈ {0, . . . , 80}.

We are now ready to describe how we use a disturbance vector to construct a character-
istic. A characteristic that predicts a collision with a pair of single-block messages starts
with the standard initial values and predicts equal hash results, thus �P = (0,0,0,0,0)

and �T = (0,0,0,0,0). Using a disturbance vector D we generate the disturbances
and corrections vector � and define the differences of the messages and expanded mes-
sages by �M = (�0, . . . ,�15) and �W = (�0, . . . , �79). The predicted differences
of the reduced state vector are then: �A = (A′−4, . . . , A′

80) = (D−5, . . . ,D79) =
SR1(D), and the predicted differences of the state vector �S = (s′

0, . . . , s′
80) are:

s′
i = (Di−1,Di−2,D≪30

i−3 ,D≪30
i−4 ,D≪30

i−5), i ∈ {0, . . . , 80}. The probability of the
characteristic depends on the number of disturbances, as discussed in Sect. 3.3.

Given a characteristic we measure how close a pair of messages is to a collision by
the definition of conformance.

Definition 3 Given a characteristic �, a pair of messages M and M∗ conforms to
R rounds if

s′
0 = �P and ∀i=1,...,R A′

i = Di−1.

The pair M and M∗ is a right pair if it conforms to all rounds (R = 80 in SHA-0 and
SHA-1).

We note that if a pair of messages conforms to the characteristic up to the last round of
the compression function then a collision occurs. In our discussion on SHA-1 we relax
the requirements for conformance and give a weaker definition.

3.2.2. Compact Representations of a Disturbance Vector D, Chaining Differences �P ,
and �T , and State Difference s′

i

In SHA-0 disturbances are applied only to bit 1, thus a disturbance vector may be
represented by the values of bit 1 in each word from −5 to 79. Furthermore, to identify
a disturbance vector it suffices to specify the first 16 bits from which the LFSR may
generate the complete vector. Thus, for SHA-0 we represent a disturbance vector, which
is a vector of 85 words, by a single 16-bit word. In this representation each bit from the
LSB to the MSB corresponds to a disturbance in D−5, . . . ,D10, respectively.

Similarly, we use a 5-bit word to represent the prediction of the chaining differences
�P , and �T , and state difference s′

i . A difference in a word is represented by “1” and

126 E. Biham et al.

Table 7. The disturbance vector of SHA-0 attack.

D: −5, . . . , 39: 00000 0010001000 0000101111 0110001110 0000010100
40, . . . , 79: 0100010010 0100111011 0011000011 1110000000

no difference by “0”, e.g., �T = 10010 corresponds to differences in bit 1 of A′
80 and

A′
77, while A′

79, A′
78, and A′

76 have no differences.

3.3. Selecting a Disturbance Vector for the Attack

A conformance of a pair of messages to 80 rounds for a given characteristic is a sufficient
condition for a collision. If we assume that the probability of each local collision sequence
is equal, then the fewer disturbances, the higher the probability to find a collision.

We now show that the requirement for the smallest number of disturbances can
be relaxed and optimized for the attack such that disturbances are not counted from
the first round. Note that up to Round 15 an attacker has full control over the
results of the round function, thus we assume that the corrections of each condi-
tion up to Round 15 are made with negligible complexity. Moreover, following the
analysis in Sect. 3.1, we see that an attacker has the ability to look ahead about
three rounds. Thus, the conformance conditions up to Round 18 can be tested along
with the computation of Round 15, and can be corrected with negligible complexity.
We conclude that the disturbance vector with the least number of disturbances between
Round 19 and the last round, has the highest probability to generate a collision.

We can now use the following procedure for the selection of the disturbance vector
with the highest probability. A 16-word register is initialized such that the first five
words are set to zero, and in the other 11 words bit 1 is set either to zero or one. We
expand it to 85 words by the LFSR of Eq. (1). From the 211 possible outcomes, 26 satisfy
D75 = 0, . . . ,D78 = 0 and D79 = 0, and have no consecutive disturbances in rounds
0, . . . , 16. From these 26 outcomes we select an outcome (an 85-word vector) which
has the least Hamming weight from round 19 to 79.

Using the compact representation of a disturbance vector, the best disturbance vector
for the attack is represented by the 16-bit string 0880. The 85-bit string that describes
the disturbance vector with the five leading zeros is shown in Table 7. In this table the
entries of the disturbance vector from which the initial and final state differences are
derived are marked with a boldface, and the first 16 bits that represent the disturbance
vector are in italic.

3.4. The Chaining Differences Transition Graph

A graphical description of the selection of a characteristic for an attack is given in
Fig. 6. In this figure we describe characteristics of an attack as edges in a directed graph,
in which the vertices are the chaining differences. Each characteristic is derived from
a disturbance vector Di , and has a probability pi to achieve the differences given by
its output edge. The vertex 00000 which is the initial and final chaining difference is
drawn twice for clarity. The five zeros in it denote that there is no difference at that

Cryptanalysis of SHA-0 and Reduced SHA-1 127

0880 x p = 2−61

ΩP
1 Ω

T
1

Ω
M
1

0000000000

Fig. 6. The chaining differences transition graph of a single-block attack on SHA-0.

location. Among the different disturbance vectors that predict this chaining difference
transition, the one that has the highest probability is selected for the attack. Following
these notations, this simple graph shows the path from no difference in the initial values
�1

P = 00000 to no difference in the final hash result �1
T = 00000, using a pair of

single-block messages with �1
M difference. We call this graph a chaining differences

transition graph. The edge that we choose for the attack is called a chaining difference
path. This edge is described by the 16-bit compact representation of the disturbance
vector. In the case of a single-block attack the chaining difference transition path with
the highest probability is represented by D = 0880.

3.5. A Characteristic of a Single-Block Attack of SHA-0

Given the disturbance vector D = 0880 we construct the characteristic of the attack in
accordance with the procedure in Sect. 3.2.1. The characteristic we obtain is given in
Table 8. At the top of this table we give the initial chaining difference �P , and at the
bottom the final chaining difference �T . The first column (R.) is the round index, and in
each row i we list the disturbance vector Di , the expanded message difference W ′

i , the
expected difference A′

i of the reduced state vector, and the probability to obtain A′
i . We

note that the column �A equals the disturbance vector shifted by one, i.e., �A = SR1(D),
the initial difference is given by �P = (A′

0, A′−1, A′≪30
−2 , A′≪30

−3 , A′≪30
−4) = 00000,

and the final difference is given by �T = (A′
80, A′

79, A′≪30
78 , A′≪30

77 , A′≪30
76) = 00000.

3.6. Constructing a Pair for the Attack

The conditions that a pair and its associated state vectors should satisfy are described in
Tables 4, 5, and 6. These conditions are sorted into two types: message-bit conditions and
state-bit conditions. Message-bit conditions depend only on the expanded message bits,
while state-bit conditions depend also on the reduced state vector bits. A pair M1, M∗

1 is
selected such that the message-bit conditions are satisfied for all of the 80 rounds. The
message-bit conditions are summarized as follows:

1. For any disturbance in round i ∈ {0, . . . , 74}

W1
i = W6

i+1.

128 E. Biham et al.

Ta
bl

e
8.

A
ch

ar
ac

te
ri

st
ic

of
a

si
ng

le
-b

lo
ck

at
ta

ck
on

SH
A

-0
.

�
P

=
(0

,
0
,
0
,
0
,
0
)
=

00
00

0

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

−5
0

17
2

8
0
0
0
0
0
4
2

2
1/

4
39

0
8
0
0
0
0
0
0
2

0
1/

2
61

0
0
0
0
0
0
0
0
2

0
1/

2
−4

0
0

18
2

8
0
0
0
0
0
4
0

2
1/

8
40

0
0
0
0
0
0
0
0
0

0
1/

2
62

2
0
0
0
0
0
0
0
2

0
1/

2
−3

0
0

19
2

0
0
0
0
0
0
4
0

2
1/

8
41

2
8
0
0
0
0
0
0
2

0
1/

2
63

2
0
0
0
0
0
0
4
2

2
1/

2
−2

0
0

20
0

0
0
0
0
0
0
4
2

2
1/

16
42

0
8
0
0
0
0
0
4
0

2
1/

4
64

0
8
0
0
0
0
0
4
2

2
1/

2
−1

0
0

21
2

8
0
0
0
0
0
0
0

0
1/

4
43

0
0
0
0
0
0
0
0
2

0
65

0
8
0
0
0
0
0
0
2

0
1/

2
0

0
0
0
0
0
0
0
0
0

0
22

2
8
0
0
0
0
0
4
2

2
1/

2
44

0
8
0
0
0
0
0
0
0

0
1/

2
66

0
0
0
0
0
0
0
0
0

0
1/

2
1

0
0
0
0
0
0
0
0
0

0
23

0
0
0
0
0
0
0
4
2

2
1/

4
45

2
8
0
0
0
0
0
0
2

0
1/

2
67

0
0
0
0
0
0
0
0
0

0
2

2
0
0
0
0
0
0
0
2

0
24

0
0
0
0
0
0
0
0
2

0
1/

2
46

0
8
0
0
0
0
0
4
0

2
1/

4
68

2
8
0
0
0
0
0
0
2

0
3

0
0
0
0
0
0
0
4
0

2
1/

2
25

0
0
0
0
0
0
0
0
0

0
1/

2
47

0
0
0
0
0
0
0
0
2

0
69

2
0
0
0
0
0
0
4
2

2
1/

2
4

0
0
0
0
0
0
0
0
2

0
26

2
0
0
0
0
0
0
0
2

0
48

2
8
0
0
0
0
0
0
2

0
1/

2
70

2
0
0
0
0
0
0
4
0

2
1/

2
5

0
8
0
0
0
0
0
0
0

0
1/

4
27

2
8
0
0
0
0
0
4
2

2
1/

2
49

0
8
0
0
0
0
0
4
0

2
1/

4
71

2
8
0
0
0
0
0
4
0

2
1/

2
6

2
8
0
0
0
0
0
0
2

0
1/

2
28

2
0
0
0
0
0
0
4
0

2
1/

2
50

0
8
0
0
0
0
0
0
2

0
1/

2
72

2
0
0
0
0
0
0
4
0

2
1/

4
7

0
8
0
0
0
0
0
4
0

2
1/

4
29

0
8
0
0
0
0
0
4
2

2
1/

2
51

2
8
0
0
0
0
0
0
2

0
1/

2
73

0
8
0
0
0
0
0
4
2

2
1/

4
8

0
0
0
0
0
0
0
0
2

0
30

0
0
0
0
0
0
0
0
2

0
1/

4
52

0
8
0
0
0
0
0
4
0

2
1/

4
74

0
8
0
0
0
0
0
0
2

0
1/

4
9

0
8
0
0
0
0
0
0
0

0
1/

4
31

0
8
0
0
0
0
0
0
0

0
1/

2
53

0
8
0
0
0
0
0
0
2

0
1/

2
75

0
8
0
0
0
0
0
0
0

0
1/

2
10

0
8
0
0
0
0
0
0
0

0
1/

2
32

0
0
0
0
0
0
0
0
0

0
54

2
8
0
0
0
0
0
0
2

0
1/

2
76

0
0
0
0
0
0
0
0
0

0
11

0
8
0
0
0
0
0
0
0

0
1/

2
33

0
8
0
0
0
0
0
0
0

0
55

2
8
0
0
0
0
0
4
2

2
1/

4
77

0
8
0
0
0
0
0
0
0

0
12

0
0
0
0
0
0
0
0
0

0
34

0
0
0
0
0
0
0
0
0

0
56

2
8
0
0
0
0
0
4
0

2
1/

4
78

0
0
0
0
0
0
0
0
0

0
13

0
0
0
0
0
0
0
0
0

0
35

2
0
0
0
0
0
0
0
2

0
57

0
8
0
0
0
0
0
4
2

2
1/

4
79

0
0
0
0
0
0
0
0
0

0
14

2
0
0
0
0
0
0
0
2

0
36

0
0
0
0
0
0
0
4
0

2
1/

2
58

2
0
0
0
0
0
0
0
0

0
1/

4
80

0
15

0
0
0
0
0
0
0
4
0

2
1/

2
37

2
0
0
0
0
0
0
0
0

0
59

2
8
0
0
0
0
0
4
2

2
1/

4
16

2
0
0
0
0
0
0
0
0

0
38

0
8
0
0
0
0
0
4
0

2
1/

2
60

0
0
0
0
0
0
0
4
2

2
1/

2

�
T

=
(0

,
0
,
0
,
0
,
0
)
=

00
00

0

Cryptanalysis of SHA-0 and Reduced SHA-1 129

2. For any disturbance in rounds i ∈ {38, . . . , 57}

W1
i = W1

i+2.

3. For any two consecutive disturbances in rounds i and i +1 where i ∈ {36, . . . , 55}

W1
i = W1

i+1.

4. For any two disturbances distant by two rounds, in rounds i and i + 2 where
i ∈ {36, . . . , 55}

W1
i = W1

i+4.

We note that all the conditions are on bit 1 and 6, and that there might be some additional
conditions for specific disturbance vectors.

The conditions are written as equations of the variables W1
i ’s, and W6

i ’s, i ∈
{0, . . . , 79}. The expansion equation (1) is then used to write the W1

i ’s and W6
i ’s

i ∈ {16, . . . , 79} as functions of W1
i ’s and W6

i ’s i ∈ {0, . . . , 15}. The obtained set
of equations are then solved by a Gauss elimination (or any other technique) for all the
W1

i ’s and W6
i ’s, and then the attacker selects a solution from the solution space. Each

solution determines all the values of bit 1 and 6 of the expanded pair.
Once the message-bit conditions are solved and bit 1 and 6 are fixed, the attacker

chooses the other message bits W j
i , i ∈ {0, . . . , 15}, j ∈ {0, . . . , 31}\{1, 6} such that

the state-bit conditions of Tables 4, 5, and 6 are satisfied. Even though these conditions
depend in a non-linear way on the bits of the message, the state-bit conditions up to
Round 15 can easily be satisfied by an appropriate selection of message bits. Once they
are solved, the first 15 words are fixed, and many values of W15 are tested. When all
(or a selected part) of the possible values of W15 are tested, the pair is replaced, and the
above procedure is repeated. We note that conformance up to Round 18 depends on state
bits of Round 15 and earlier rounds. Thus, most of the state-bit conditions are corrected
up to Round 18 with a negligible complexity.

3.7. Complexity Evaluation

As we have already indicated in Sect. 3.6, an attacker may choose message bits such
that a pair conforms to the characteristic up to Round 18 with a negligible complexity.
Conformance to higher rounds is considered uncontrollable. Thus, in the evaluation of
the probability that a chosen pair conforms to 80 rounds, we count the conditions of
Tables 4, 5, and 6 from Round 18 up to Round 79, and assume that each condition
contributes a factor 1/2 to the probability.

The complexity is measured by the number of SHA-0 calls. Hence, using an early
termination, when a non-conformance is detected, a factor 4 is saved, i.e., for each chosen
pair the execution of the compression function is terminated after 20 rounds on average.

Under these assumptions, the complexity of the attack of [10] (that uses the charac-
teristic described in Table 8) is 258 SHA-0 calls. We note that in [10] the announced

130 E. Biham et al.

complexity is 261 pairs of messages that an attacker needs to try. However, in an efficient
implementation, an attacker selects a message and modify it such that it conforms to the
first 15 rounds. He then modifies W15 many times (≈ 213 times), and reuses the values
of A1, . . . , A15. Hence, each computation starts at Round 15, and it is terminated when a
non-conformance is detected (on average at Round 20). Thus, the complexity of testing
a pair is equivalent to 1/8 SHA-0 call, and the overall complexity is about 258 SHA-0
calls.

4. The Neutral Bits Technique

The neutral bits technique improves the complexity of the attack of Sect. 3. Using the
neutral bits technique, an attacker gets the first 22 (or more) rounds for free (instead of
18 as in Sect. 3.6). Thus, the complexity of the attack that uses this technique depends
only on the conditions of rounds 22–79.

Let δbi be a string of 512 bits in which the bit with index bi set to “1” and all others are
set to “0”. The basic idea of the neutral bits technique is to generate a pair Mk, Mk ⊕�M

that conforms to a characteristic � up to some threshold round R (e.g., R = 22), and
that has a set B = {b1, b2, . . .} of bits (i.e., bit indices) with the following property:
For each bi ∈ B a simultaneous complementation this bit bi in both messages Mk and
Mk ⊕ �M , the obtained pair Mk ⊕ δbi , Mk ⊕ �M ⊕ δbi conforms to at least the same
number of rounds. We call the bits that have this property neutral bits, and use these bits
to generate many pairs that conform to at least R rounds with a negligible complexity.
Thus, effectively we start the attack from Round R.

In the remainder of this section we give a formal definition of neutral bits, and a
description of how to find and use them.

Definition 4 Let � be a characteristic, R a threshold round number, and Mk, Mk ⊕�M

a pair of message blocks that conforms to R rounds. A message bit W j
i is a (single) neutral

bit with respect to Mk,�, and R, if the pair obtained by a complementation of W j
i in

Mk as well as in Mk ⊕ �M also conforms to (at least) R rounds.

The above definition is concerned with a single bit difference. We now generalize the
definition of neutral bits to any larger set of bits.

Definition 5 Let � be a characteristic, R a threshold round number, and Mk, Mk ⊕
�M a pair that conforms to R rounds. We say that a subset of bits bi ⊆ {0, . . . , 511}
is a composite neutral bit4 with respect to Mk,�, and R, if the pair obtained by a
simultaneous complementation of all the bits in bi in Mk and Mk ⊕ �M also conforms
to (at least) R rounds.

We note that a composite neutral bit may consist of subsets of message bits that are
composite neutral bits by themselves. E.g., let {bi , b j , bk} be a composite neutral bit,

4 In [3] we used the term simultaneous neutral set. The term is replaced to convey both the ideas that it is
one neutral bit and that it is made of several bit positions.

Cryptanalysis of SHA-0 and Reduced SHA-1 131

then {bi , b j } may also be a composite neutral bit and bk may or may not be neutral. In
the remainder of this paper we use the term neutral bits for composite neutral bit as well
as for single neutral bits.

Once we have a set B = {b1, . . . , b|B|} of neutral bits with respect to Mk,�, and
R, we are able to construct with each bi a conforming pair, i.e., we can generate |B|
conforming pairs. We are now interested in constructing a much larger number of neutral
bits with a set B that has a compact representation in memory, i.e., the number of pairs
that can be generated from Mk , and B is not linear with the size of B. To describe how
we enlarge the set, and how it is represented in memory, we first define a neutral pair
and 2-neutral set with respect to Mk,� and R.

Definition 6 A pair of neutral bits bi and b j is a neutral pair with respect to Mk,�,
and R, if Mk , and each of the three message blocks obtained by complementing the bits
bi , b j , or both bi and b j conform to (at least) R rounds.

Definition 7 A set B = {b1, . . . , b|B|} of neutral bits is a 2-neutral-set with respect to
Mk,�, and R, if every pair of neutral bits in B is a neutral pair with respect to Mk,�,
and R, and the bi ’s are disjoint, i.e., composite neutral bits in B are disjoint.

The following experimental observation was made with data gathered in collision
attacks of SHA-0. It shows how we extend our original set of neutral bits, and how we
represent them in memory.

Observation 1 Given a 2-neutral-set B = {b1, . . . , b|B|} with respect to a message
block Mk,�, and R, a large fraction of the 2|B| different pairs which are obtained by
complementing the bits of each possible combination of the neutral bits of B, conforms
to (at least) R rounds.

A conclusion from Observation 1 is that conforming pairs may be represented in mem-
ory by a logarithmic factor of the number of pairs, e.g., Mk,�, and B = {b1, . . . , b|B|}
may represent about 2|B|−3 pairs that conform to R rounds.

In subsequent sections we refer to versions of SHA-0 with extended and reduced
number of rounds. The version of 82 rounds is particularly convenient, and we use it in
the following example.

Example 1 A disturbance vector for 82-round extended SHA-0 is given in Table 9.
For this disturbance vector the pair M1, M∗

1 given in Table 10 has many neutral bits. A
2-neutral set of this pair with respect to 22 rounds is given in Table 11 including single
neutral bits (|bi | = 1), pairs (|bi | = 2), triplets (|bi | = 3), quadruplets (|bi | = 4), and
quintuplets (|bi | = 5),each pair of neutral bits in this table is a neutral pair, and the
neutral bits are disjoint subsets of the 512 message bits. The size of the 2-neutral set

Table 9. A disturbance vector to attack SHA-0 extended to 82 rounds.

D: −5, . . . , 39: 00000 0001000010 1001000111 1001011000 0011100000
40, . . . , 81: 0000001100 0000110110 0000011000 1011011000 00

132 E. Biham et al.

Table 10. The pair M1, M∗
1 of Example 1.

M1 19EF75A8 D2F24D9A 8F179A7D 1A295690 2E84C143 D74B9DDC 18C10577 8107056E
5B1A47ED 6212C3F2 3B2D04F8 F5581AB0 26D8CDBC AB3A3248 F347E871 46278F39

M∗
1 19EF75A8 D2F24D9A 8F179A7D 1A295692 2E84C103 D74B9DDE 98C10577 0107056E
DB1A47EF 6212C3B2 3B2D04F8 75581AF0 A6D8CDBE AB3A324A 7347E831 C6278F3B

Table 11. The 2-neutral-set of Example 1.

Singles: W 4
12, W 9

14, W 10
14 , W 11

14 , W 16
14 , W 4

15, W 5
15, W 9

15, W 10
15 , W 11

15 , W 14
15 , W 15

15 , W 16
15 , W 19

15 , W 21
15 , W 26

15 , W 27
15

Pairs: (W 13
9 , W 8

8), (W 13
14 , W 8

13), (W 13
15 , W 8

14), (W 17
15 , W 12

14), (W 20
15 , W 15

14), (W 22
15 , W 12

13)

Triplets: (W 8
9 , W 15

5 , W 10
4), (W 21

10 , W 28
6 , W 23

5), (W 24
11 , W 31

7 , W 26
6), (W 2

12, W 9
8 , W 4

7), (W 7
12, W 14

8 , W 9
7),

(W 14
14 , W 10

13 , W 9
13), (W 18

14 , W 13
13 , W 9

12), (W 8
15, W 3

15, W 30
14), (W 12

15 , W 14
10 , W 9

9)

Quadru- (W 5
7 , W 9

4 , W 12
3 , W 7

2), (W 11
10 , W 18

6 , W 20
3 , W 15

2), (W 12
11 , W 18

10 , W 17
10 , W 12

9)

plets: (W 7
14, W 19

13 , W 18
13 , W 16

12), (W 25
15 , W 21

13 , W 15
13 , W 16

12)

Quintu- (W 23
14 , W 22

14 , W 21
14 , W 17

13 , W 11
12), (W 7

15, W 17
14 , W 24

10 , W 23
10 , W 18

9),

plets: (W 24
15 , W 0

15, W 3
14, W 22

13 , W 4
13)

is 40, thus there are 240 possible compositions of neutral bits, from which about 237 (a
fraction of 1/8) are neutral. Moreover,

1. A composition of 10 single neutral bits leads to a conformance of 49 rounds.
2. A composition of four single neutral bits and the first quadruplet leads to a confor-

mance of 54 rounds. Thus, in less than 218 complexity we can find conformance
to 54 rounds.

3. One of the 223 compositions of singles and pairs from Table 11 leads to confor-
mance of 58 rounds.

4.1. A Collision Attack Using a 2-Neutral Set

Given a 2-neutral set with respect to Mk,�, and R, we generate a new pair Mk ⊕
δ, Mk ⊕�M ⊕δ, where δ is a composition of neutral bits from the set. For each different
composition of the neutral bits, we obtain a different pair which with high probability
conforms to (at least) R rounds. If the set is of size n, then 2n different pairs can be
generated by the set, of which a fraction of about 1/8 conforms to R or more rounds.
These pairs are used for the attack. The probability of an attack that uses these pairs is
then:

p(s′
80 = �S80 |s′

R = �SR) =
79∏

t=R

pt ,

Cryptanalysis of SHA-0 and Reduced SHA-1 133

where pt is the probability of Round t . Hence, the probabilistic analysis starts from
round R. Using this technique in the attack on SHA-0, the attack complexity is reduced
from 260 to 254 SHA-0 calls, and a more careful analysis shows that the complexity is
reduced to 248 SHA-0 calls. We note that many neutral bits are in W15, thus, for most
tested messages generated in the attack A1, . . . , A15 are equal. Therefore, an efficient
implementation computes these values once and reuses them many times afterward.
The computation of each analyzed pair starts at Round 15 (instead of Round 0), and it
is terminated when a non-conformance is detected. On average, a non-conformance is
detected at Round 22. Hence, the complexity of testing each pair equals to a computation
of 8 rounds, i.e., from Round 15 to Round 22. Further speed-up is made by modifying
and testing Round 22, and only if this test passes a re-computation and testing of Rounds
15, . . . , 22 is made. In terms of SHA-0 calls, the complexity of such technique is about
1/8 SHA-0 call for each pair.

A collision search algorithm that uses neutral bits consists of two phases. It starts with
the generation of a 2-neutral set B, and continues with an exhaustive search for all the
candidate pairs derived from the set. If the search ends and a collision is not found, then
a new message is randomly selected, and the process is repeated.

The size of the set decreases with the round threshold R for which the set is generated.
We use the notation k(R) for the size of B with threshold R, i.e., B = {b1, . . . , bk(R)

}.
The round number R for which we generate the set is selected to be the maximal round
such that the complexity of finding a 2-neutral set of size k(R) is less than or equal to the
complexity of exhaustively testing the 2k(R) messages for collision. In SHA-0, typical
values for R are in the range 22–24.

The following observation shows that when the attack is performed using neutral bits,
the probabilistic analysis of rounds greater than R, is better than expected:

Observation 2 Let R′ and R (R′ > R) be some rounds, and k(R) the size of a 2-
neutral set with respect to Mk,�, and R, such that p(R → R′) = ∏R′−1

t=R pt ≈ 2−k(R).
By generating the 2k(R) pairs, we obtain few pairs that conform to R′ + l, which we
would expect to get with a larger set of neutral bits of a size k(R) + α, where 2 ≤ l ≤ 4
and 3 ≤ α ≤ 8.

4.2. Finding a 2-Neutral Set

In this section we describe an algorithm that finds a 2-neutral set. This algorithm chooses
a random message Mk and modifies it such that the pair Mk, Mk ⊕ �M conforms to R
rounds, and it has a 2-neutral set of size k(R). The pair is optimized such that the size
k(R) of the set is as large as possible, and the set is neutral with respect to the highest
possible round R. We note that since the time complexity of this algorithm is amortized
over 2k(R) pairs, it does not have to be negligible. We also do not claim that this algorithm
is optimal.

4.2.1. Finding Neutral Bits and Optimizing a Pair

Given a randomly chosen pair Mk, Mk ⊕ �M , we start to modify it one round at a time,
to conform to as many rounds of the characteristic as possible. The modifications up to

134 E. Biham et al.

Round 15 are performed by direct complementation of the message bits as mentioned
in Sect. 3. Once the pair conforms to some intermediate round r , where 16 ≤ r < R,
we find and count the neutral bits with respect to r . We then modify the pair such that
its conformance to the first r rounds is not affected, and with the aim of increasing the
number of neutral bits. When we cannot increase this number any further, we proceed
to the next round. The process ends when we get to round R, which is typically between
22 to 24.

A search for a single neutral bit for a given pair is performed simply by complementing
a bit in both messages of the pair and test whether conformance is not affected. Once it is
found, it is added to the set B. This search covers the 512 bits of the message, excluding
bit locations 1 and 6 which are set in advance to satisfy the message-bit conditions. The
complexity of this search is estimated by the number of tests for neutrality we have to
perform. In the case of a search for single neutral bits it is 480 tests (512 − 2 ∗ 16).
When a search for single neutral bits ends, a search for composite neutral bits of pairs is
conducted. This search is performed similarly to the search for single neutral bits except
that every pair of bits is complemented and tested for neutrality, and the search covers
the 512 bits of the message to exclude bit 1 and 6, and the bits in B. On average, the size
of B when this search starts is about 70, thus the number of pairs we test for neutrality is

about

(
410
2

)

= 83,845. Similarly, we find larger composite neutral bits until we identify

as many neutral bits as possible.
The modifications of the pair to extend the set are performed by trying to complement

two or more bits of a local collision sequence W j
i , W j+5

i+1 , W j
i+2, W j+30

i+3 , W j+30
i+4 , W j+30

i+5 ,
in both messages of a pair. These modifications are repeated where the index j is
advanced by one each time, until all j’s are covered. Each time we modify the pair,
we count the number of neutral bits. If the number is increased by the modification, then
we replace the original pair with the new one and start the procedure of modifying and
counting all over. We end up with a pair that conforms to R rounds and has the largest
number of neutral bits that we can find.

4.2.2. Finding Neutral Pairs and 2-Neutral Sets

Given a pair with a set of neutral bits, we are interested in finding the largest 2-neutral set.
We first identify neutral pairs by a simultaneous complementation of each pair of neutral
bits in the set, and by testing whether the conformance to R rounds is not affected. We
then represent each neutral bit as a vertex in a graph, and add an edge for each pair of
vertices that corresponds to a neutral pair. The largest 2-neutral set corresponds to the
largest clique in the graph, i.e., the maximal subset of vertices for which any vertex in
the subset is connected to any other vertex in the subset by an edge.

Although the general problem of finding a maximal clique is an NP-complete problem,
in our case finding a large enough clique is not difficult, as many vertices are connected
to all other vertices by edges. Therefore, we use simple heuristics that produce a very
good approximation to the maximal clique: We initialize the 2-neutral set to be an empty
set. We then generate a sorted list of vertices which represent single neutral bits, by the
number of edges that are connected to each vertex. The first vertex in the sorted list is
added to the 2-neutral set, and the vertices that are not connected to the vertex we have

Cryptanalysis of SHA-0 and Reduced SHA-1 135

Table 12. Complexities of attacks on reduced and extended versions of SHA-0 (further results are given in
Table 1).

Rounds Complexity # Rounds Complexity # Rounds Complexity

50 –(∗) 75 252 82 243

64 229 76 –(∗) 83 265

65 229 77 266 84 264

68 243 78 256 85 271

72 250 79 256 86 272

73 250 80 256 87 –(∗)
74 250 81 243 92 274

* There is no disturbance vector that predicts collisions after 50, 76, or 87 rounds (before the resolution of
consecutive disturbances in the IF rounds)

just added are removed from the graph. The procedure is repeated with the remaining
graph until the graph is empty. Once the graph is empty, the 2-neutral set contains a
clique of single neutral bits. Our next step is to add larger composite neutral bits. We
start by searching for neutral sets of size two (pairs) among the bits which are not in the
2-neutral set B we have just constructed. From the neutral sets we find, we remove those
which are not neutral pairs with each neutral bit in B. With the remaining neutral sets
we build a new graph and search the maximal clique as before. The procedure is then
repeated with neutral sets of size three (triplet), size four (quadruplet), and as many other
sets we can find.5 The result of such an algorithm is shown in Example 1 and Tables 10
and 11.

5. The Complexity is not Monotonous with the Number of Rounds

The attacks of Sections 3 and 4 are also applicable to SHA-0 with fewer or more than
80 rounds, i.e., for the attack of SHA with R rounds, we use the method of Sect. 3.2
to find a disturbance vector with the least number of disturbances from Round 22 up
to Round R and we use it to construct a characteristic. Consulting Tables 7 and 9 we
observed that the disturbance vector of the full 80-round SHA-0 has more disturbances
than that of the 82-round (22 vs. 19 respectfully). That is to say, we unexpectedly found
that the complexity of attacking a version with more rounds is lower than that with fewer
rounds.

Table 12 summarizes the complexities of attacking SHA with different number of
rounds. From this table we see that there are few reduced and extended versions with
no disturbance vector that predicts collisions: in these cases this attack cannot be used.
We also see that the complexity of collision attacks on the different versions is not
monotonous with the number of rounds, e.g., extended versions with 81 and 82 rounds
are much easier to attack than 80-round SHA-0.

The phenomenon of non-monotonic complexities with the number of rounds is a result
of the expansion of the disturbance vector by the LFSR. The number of disturbances that

5 The search is terminated when the effort of finding a larger set exceeds the effort of testing all the
candidates of the set.

136 E. Biham et al.

the LFSR produces depends on its initialization, and it does not necessarily grow with
R. Hence, the probability associated with each disturbance vector does not necessarily
decrease with the number of rounds.

A prior case of attack on an extended version of a hash function that has a smaller
complexity than the attack on the full version appeared in the differential cryptanalysis of
N-Hash [5,27]. N-Hash has eight rounds, while the attack can find collisions for versions
with 3, 6, 9, and 12 rounds. In particular, a collision of a 9-round extended version can
be found faster than a collision of the full 8-round version.

This non-monotonicity occurs because collision attacks require that the characteristic
prediction of the output difference will be zero. For comparison, in block ciphers, a
reduction of the characteristic to a smaller number of rounds necessarily results in another
characteristic with a higher probability. In hash functions, the reduced characteristic
has higher probability as well, but it does not have the zero difference as required
for a collision. Thus, unlike in the case of block ciphers, the probabilities of the best
characteristics are not monotonically decreasing with the number of rounds.

6. The Multi-Block Tool

Most hash functions currently in use are based on the Merkle–Damgård construction
which is proved to be collision resistant if the underlying compression function is colli-
sion resistant. In this section we investigate the strength of the construction in cases the
compression function is not collision resistant.

In a single-block attack an attacker uses the standard initial value and tries to find two
message blocks that hash to the same value, i.e., �P = �T = 0, and �M �= 0. Though
the domain of the input of the compression function consists of the message {0, 1}b and
chaining value {0, 1}mc domains, only the message domain is analyzed. As we show in
Sect. 3, this analysis suffices to break SHA-0. However, there are variants of SHA-0
(see Table 12) in which this type of attack is not applicable. Hence, an extension of the
analysis to the message and chaining value domains {0, 1}b+mc is natural.

Given characteristics with �P �= 0,�M �= 0, and �T = 0, an attack consists of
two steps. Firstly, characteristics that lead to the required �P �= 0 are used. Secondly,
the characteristic �P �= 0,�M �= 0, and �T = 0 is used to find a collision. The
iterative structure of the Merkle–Damgård construction enables such concatenations of
characteristics.

The multi-block technique allows for differences in both inputs of the compression
function and also in the output of the compression function. This extension allows us
to use characteristics with higher probabilities than previously used. Each characteristic
by itself (except the last one) does not lead to a collision but to a near-collision, and
the last characteristic leads to a collision. The technique shows how characteristics
that predict near-collisions are found and concatenated to a longer characteristic that
predicts a collision. In the next subsections we present the technique with examples that
emphasize different aspects and advantages. We note that although our examples are
all on the SHA family of hash functions, the multi-block technique is applicable to any
differential attack on hash functions that follow the Merkle–Damgård (or any iterative)
construction.

Cryptanalysis of SHA-0 and Reduced SHA-1 137

As a first and simple example we show a case where several blocks are used for an
attack, which is useful when the initial state of the compression function is incompatible
with the characteristic. The general and more interesting cases are described afterward.

6.1. Solving Initial State Incompatibility by an Additional Block

In some cases the initial state is incompatible with the characteristic. As an example
consider:

A0
1 = W 0

0 ⊕ A27
0 ⊕ IF(A0−1, A2−2, A2−3) ⊕ A2−4 ⊕ K 0

0 .

With h0 the standard initial values, A27
0 = 0, A0−1 = 1, A2−2 = 0, A2−3 = 0, A2−4 = 0,

and K 0
0 = 1, thus:

A0
1 = W 0

0 ⊕ 0 ⊕ IF(1, 0, 0) ⊕ 0 ⊕ 1 = W 0
0 .

In this case a disturbance in the first round in bit location 0 always leads to a difference
in the carry from bit 0 to bit 1, which contradicts the conditions of the characteristic.

Another incompatibility may occur by the fi function. Consider a disturbance in bit j of
the first message word, Wj

0, where A j−30
0 = A j−30

−1 . In this case, IF j
2(A

j
1, A j−30

0 , A j−30
−1)

is not active, so the correction Wj
2 always fails. In case the initial state equals the standard

initial value, this incompatibility occurs in 24 out of the 32 bit locations (except for
locations 1, 5, 9, 13, 17, 21, 25, and 29).

A straightforward solution for this incompatibility is to replace the initial state with
a compatible one. In the case of a first block where the initial state equals the standard
initial values, a first arbitrary message block (with zero difference) is added in both runs
to obtain a compatible initial state. The actual attack starts with the second block using
the compatible h1 instead of the incompatible h0. The result is a two-block attack with
no difference in the first block but with a difference in the second block.

6.2. Two-block Collisions

In this section we describe a technique to find two-block collisions. In a two-block attack,
the first pair starts with the same initial value h0 (which is usually the standard initial value
but may be different for reasons mentioned in the previous section). The pair M1, M∗

1 is
found such that h1 = C(M1, I V), h∗

1 = C(M∗
1 , I V), and h1 ≈ h∗

1, where the operator
≈ denotes a small Hamming distance between these two values. The pair M1, M∗

1 and
chaining variables h0 = I V, h1, and h∗

1 form a near-collision. A second pair of messages
M2, M∗

2 is now found such that h2 = C(M2, h1) = C(M∗
2 , h∗

1) = h∗
2. This second pair

starts from the chaining variables with the small difference of the previous pair, and ends
with a collision. The second pair M2, M∗

2 with the chaining variables h1, h∗
1, and h2 form

a pseudo-collision. An illustration of near-collision, pseudo-collision, and a two-block
collision is given in Fig. 7. Such an attack is useful since in many cases finding near-
collisions and pseudo-collisions is much easier than finding a single-block collision. It
is also useful when there is no disturbance vector that predicts a single-block collision.

138 E. Biham et al.

h’0 =0

h1
*h1

~~

M1 M1

h’0 =0

M2 M2
*

h1 h1
*

M 1

(h1 ,M2)

h1 h1
*

M2 2
*M

=0pΩ
1

C(h0 ,M1)C

h’2 =0

*

*(h0 1M,)

h’2 =0

C=C

Pseudo−Collision

*M 1

(h1,M2)* *

Near−Collision Two−Block Collision

pΩ
2

=0

MΩ

Ω T1

1

MΩ

ΩT2

2

Pseudo−Collision

Near−Collision

Fig. 7. Using intermediate near-collisions to find collisions with two blocks.

In order to apply such an attack an attacker searches for a pair of disturbance vectors
from which he constructs the characteristics �1,�2. The disturbance vectors are selected
such that the differences of the characteristics are: �1

P = 0,�2
T = 0, and �1

T = �2
P ,

and the least probability of both characteristics (min(p1
�, p2

�)) is maximal. After the
construction of the characteristics the attacker searches for right pairs. The search starts
with the aim of finding a right pair for �1 with the initial value h0. Once it is found, h1
and h∗

1 of the first right pair are used in the search of a right pair for �2. The result forms
a two-block collision.

6.3. Characteristics For a Two-Block Attack

Given the disturbance vectors D1 and D2, we proceed with the construction of the
characteristic of each block. Constructing the characteristics of a two-block attack is
somewhat different than for a single-block attack, since the requirements imposed by
the concatenation of the first and second pairs should be considered. In a single-block
attack �T = 00000 if and only if

(�AR′ ,�AR′−1
,�AR′−2

,�AR′−3
,�AR′−4

) = 00000. (9)

In a two-block attack we set conditions to obtain �T . We denote the final chaining value
of block k by hk , and set conditions such that the difference hk ⊕h∗

k , equals the difference
defined by �k

T where

hk,i = AR′−i + A−i = A≪5
R′−1−i +fR′−1−i (AR′−2−i ,A≪30

R′−3−i ,A≪30
R′−4−i) + (10)

A≪30
R′−5−i + WR′−1−i + K R′−1−i + A−i , i = 0, . . . , 4, k = 1, 2.

In addition we should consider the compatibility of the initial state with the character-
istic. In the first block this requirement may be satisfied using the technique of Sect. 6.1,
which turns the attack into a three-block attack with the same first block in both runs.
Incompatibility of initial values with characteristics other than the first characteristic

Cryptanalysis of SHA-0 and Reduced SHA-1 139

cannot be resolved by the technique of adding an identical block to both runs. Hence,
conditions on the final chaining values h1, h∗

1 (or h2, h∗
2 in case a first block is added)

may be added in order to ensure that the chaining values are compatible with the char-
acteristic of the next block. These additional conditions contribute to the probability of
the previous characteristic, thus increasing the complexity of finding the near-collision
in that block.

6.4. Complexity Evaluation

The complexity of the attack is measured by the number of SHA-0 calls. It is computed
for each block by multiplying the complexity of generating a pair that conforms to at
least R rounds, by the number of pairs we need to generate in order to find a right pair
for each characteristic.

As shown in Sect. 4.1, the complexity of generating a pair that conforms to at least R =
22 rounds is about 0.25 SHA-0 call. The number of pairs we need to generate in the attack
depends on the probabilities of obtaining a pair that satisfies the requirements we have
just described. These probabilities are computed by counting the number of conditions
that such a pair should satisfy. It is assumed that the conditions are independent, and that
each condition is satisfied with probability 1/2. These probabilities are listed as follows:

1. The probability

pR→R′−5 = p(s′
R′−5 = �SR′−5

|s′
R = �SR , s′

0 = �P , M ′ = �M)

that a pair that conforms to at least R rounds also conforms to R′−5 rounds (where
R′ is the number of rounds we attack). In the computation of this probability we
count the conditions for conformance from Round R up to Round R′ − 5.

2. The probability

pR′−5→�T = p(h′
i = �T |sR′−5 = �S′

R′−5
, s′

0 = �P , M ′ = �M)

that a pair that conforms to R′ −5 rounds has the required final chaining difference
�T , where i is the block number we attack.

3. Let pconnect be the probability that a pair that conforms to the characteristic of the
current block, also has chaining values which are compatible with the characteristic
of the next block. pconnect is computed by counting the conditions on the initial
values of the next block, i.e., that depend on A j

i ’s where i ≤ 0.

Notice that in case the technique of Sect. 6.1 is used to generate an initial value
compatible with �P of the first block, the complexity of generating the first block
equals 1/pconnect .

6.5. Collisions with More than Two Blocks

The two-block attack is generalized to multi-block attack with longer paths of differ-
ences. In such an attack a first pair of message blocks M1, M∗

1 is found such that it leads
to a near-collision h1 ≈ h∗

1. A second pair M2, M∗
2 is then found such that M2 com-

140 E. Biham et al.

M1

Mn Mn
*

h1

h2 h2
*

M2 M2

h’0 =0

h1
*

Near−Collision

Collision

h’n =0

hn−1
*hn−1

*

*M1

Pseudo−Collision

Pseudo−Near−Collision

Pseudo−Near−Collision

The last pair is a pseudo−collision.

necessary to reduce the search complexity.

Additional pairs are added as

with a near−collision.

difference in the initial value and ends

The second pair starts with a small

The first pair creates a near−collision.

Fig. 8. The multi-block technique—using intermediate near-collisions to find collisions.

00010

11111

1000011110

1000011110

00000

Fig. 9. The modified chaining transition graph.

pressed with h1, and M∗
2 compressed with h∗

1 create a second near-collision h2 ≈ h∗
2.

We call such near-collision to near-collision blocks, near-pseudo-collision. After one or
more near-pseudo-collision blocks, a final pseudo-collision is applied to form a multi-
block-collision. An illustration of a multi-block collision is given in Fig. 8. The transition
graph contains 32 vertices, as shown in Fig. 9, and each pair of vertices is connected
with about 26 edges.

Cryptanalysis of SHA-0 and Reduced SHA-1 141

We note that in some cases it might be desirable to have the same difference twice,
i.e., h′

i = h′
j , i �= j , although it looks like the rest of the stream could be directly

computed from the first occurrence of that difference. Such cases may appear when
the next block cannot start with the currently found pair of intermediate values, due to
compatibility requirements with the next block. Of course in such cases it is possible to
search again for another previous block, and get another near-collision with the same
difference, which will hopefully solve the problem. But in some cases it may be faster
to find a block with equal input and output differences (or a series of blocks that lead to
the same difference after several blocks). Thus, the attacker may prefer not to discard
the near-collision he found, but to use it as an easy starting point for a more usable one
with the same difference.

6.6. Revisiting Characteristics and Disturbance Vectors

In the attacks we described so far, we assumed a one-to-one correspondence between
disturbance vectors and characteristics (see Sect. 3.2). This assumption is a result of our
approximation of the non-linear functions: IF, MAJORITY, and addition modulo 232 by
the XOR operation.

In particular, we assumed that a transition between a pair of vertices that represents
the chaining differences �P and �T is made by an edge (disturbance vector) D that
satisfies certain relations: D leaves a vertex which represents a difference �P if

�P = (D−1,D−2,D≪30
−3 ,D≪30

−4 ,D≪30
−5). (11)

Similarly, it enters a vertex that represents a difference �T if

�T = ((D−1 ⊕ D79), (D−2 ⊕ D78), (12)

(D−3 ⊕ D77)
≪30, (D−4 ⊕ D76)

≪30, (D−5 ⊕ D75)
≪30).

Using these relations we constructed the transition graph of Fig. 9 with about 26 edges
(disturbance vectors) that connect each pair of vertices.

We now show how characteristics (edges) that do not follow the XOR approximation
in the first few rounds are added to the transition graph. In these characteristics �P �=
(D−5, . . . ,D−1) but the remainder of the differences of the reduced state vector are still
approximated by �A = SR1(D). The updated transition graph includes edges D that
leave vertex �P , enter vertex �T and satisfy:

�T = �P ⊕ (D79,D78,D≪30
77 ,D≪30

76 ,D≪30
75) = �P ⊕ �s80 , (13)

where �P is not necessarily the first five entries of D. Note that if these characteristics
are used, then a few additional conditions should be added to the first rounds. However,
since the overall probability is measured from higher rounds (e.g., Round 22) they are
not a factor in the complexity of the attack.

In the following example we demonstrate how a disturbance vector that at a first look
seems incompatible is used to connect a pair of vertices in a transition graph.

142 E. Biham et al.

2 6about edges connect Ω TΩ P to due to D=11000xxxxxxxxxxx

2 6about edges are added to each vertex due to D=01000xxxxxxxxxxx

Ω P T
11000

Ω

Fig. 10. Matching seemingly incompatible disturbance vectors to a chaining difference.

Example 2 Consider the transition graph in Fig. 10. In this graph, transitions are
made from the vertex 11000 to �T by compatible disturbance vectors (i.e., that sat-
isfy Eq. (11)), but in addition disturbance vectors that start with 01000 (which obviously
does not equal the chaining difference of the vertex) are used. The disturbance vector
that is used to construct the differences �W between the runs, starts with 01000 while the
differences between the state vectors start with �P = 11000. With these incompatible
�W and �A we show that the difference A1−4 that has no corrections in �W , does not
propagate, i.e.,

(A′−3, A′−2, A′−1, A′
0, A′

1, A′
2) = (2,0,0,0,0,0).

A1−4 affects the computations only at Round 0; thus if it is compensated at Round 0, then
it does not affect successive computations. By setting A31−1 = 1 (instead of A31−1 = 0
per Table 5), IF31

0 (A31−1, A1−2, A1−3) = A1−2 is inactive, and its correction W31
0 is used to

compensate A1−4 as required.

Similar techniques to the one shown in Example 2 are used to find more ini-
tial chaining differences (�P ’s), and compatible disturbance vectors. A summary
of these compatibilities is given in Table 13. In this table the first column is
the compact representation of �P . The next three columns show the corrections
applied to bits 1, 6, and 31 of W ′

4, . . . , W ′
0. In this representation, no correc-

tion is denoted by “0”, and a correction by “1”. The next three columns spec-
ify the required differences to correct the disturbances. A “0” denotes an inac-
tive bit, “1” an active bit, and “*” denotes a bit that may be active or inactive.
Compatibility is determined by considering each “*” in the required differences
W ′

4, . . . , W ′
0 once as a “0” and then as “1”. The result is compared with the cor-

rections of the local collision sequence, and compatibility is determined accordingly.
The last column gives all the combinations of D1−1, . . . ,D1−5 which are compatible
with �P .

Table 13 is now used (instead of Eq. (11) to draw the edges that leave each vertex,
and Eq. (13) is used to compute the vertex to which each edge is entered. In the obtained
graph we search for the path with the least complexity as before.

Cryptanalysis of SHA-0 and Reduced SHA-1 143

Table 13. Chaining differences and their compatibility with disturbance vectors.

�P Corrections in
W ′

4, . . . , W ′
0

Required differences in
W ′

4, . . . , W ′
0

Compatible D−1, . . . , D−5

A1′
0 , . . . , A1′−4 Bit 1 Bit 6 Bit 31 Bit 1 Bit 6 Bit 31

00000 00000 00000 00000 00000 00000 00000 00000
00001 00000 00000 00001 00000 00000 00001 00001
00010 00000 00000 00011 00000 00000 0001* 00010 00011
00011 00000 00000 00010 00000 00000 0001* 00010 00011
00100 00000 00000 00111 00000 00000 001** 00100 00101 00110 00111
00101 00000 00000 00110 00000 00000 001** 00100 00101 00110 00111
00110 00000 00000 00100 00000 00000 001*1 00100 00111
00111 00000 00000 00101 00000 00000 001*0 00101 00110
01000 00001 00000 01110 0000* 00000 01**0 01000 01011 01101 01110
01001 00001 00000 01111 0000* 00000 01**1 01001 01010 01100 01111
01010 00001 00000 01101 0000* 00000 01*** 01000 01001 01010 01011

01100 01101 01110 01111
01011 00001 00000 01100 0000* 00000 01*** 01000 01001 01010 01011

01100 01101 01110 01111
01100 00001 00000 01001 0000* 00000 01*1* 01000 01001 01110 01111
01101 00001 00000 01000 0000* 00000 01*1* 01000 01001 01110 01111
01110 00001 00000 01010 0000* 00000 01*01 01010 01100
01111 00001 00000 01011 0000* 00000 01*00 01011 01101
10000 00010 00001 11100 000*0 00001 1**00 10000 10110
10001 00010 00001 11101 000*0 00001 1**01 10001 10111
10010 00010 00001 11111 000*0 00001 1**1* 10010 10011 10100 10101
10011 00010 00001 11110 000*0 00001 1**1* 10010 10011 10100 10101
10100 00010 00001 11011 000*0 00001 1**** 10000 10001 10010 10011

10100 10101 10110 10111
10101 00010 00001 11010 000*0 00001 1**** 10000 10001 10010 10011

10100 10101 10110 10111
10110 00010 00001 11000 000*0 00001 1***1 10001 10010 10100 10111
10111 00010 00001 11001 000*0 00001 1***0 10000 10011 10101 10110
11000 00011 00001 10010 000** 00001 1*1*0 10000 10011 11101 11110
11001 00011 00001 10011 000** 00001 1*1*1 10001 10010 11100 11111
11010 00011 00001 10001 000** 00001 1*1** 10000 10001 10010 10011

11100 11101 11110 11111
11011 00011 00001 10000 000** 00001 1*1** 10000 10001 10010 10011

11100 11101 11110 11111
11100 00011 00001 10101 000** 00001 1*01* 10100 10101 11000 11001
11101 00011 00001 10100 000** 00001 1*01* 10100 10101 11000 11001
11110 00011 00001 10110 000** 00001 1*001 10111 11010
11111 00011 00001 10111 000** 00001 1*000 10110 11011

7. A Four-Block Collision of SHA-0

The application of the technique of Sect. 6.6 to SHA-0 results in the 4-block path outlined
in Fig. 11. A complete description of the four disturbance vectors of this path is given
in Table 14.

In this path, the first pair of blocks starts with the standard initial value (i.e., s0 = s∗
0 =

I V and �P1 = 00000) and ends with a final chaining difference �T1 = �P2 = 00011.

144 E. Biham et al.

Ω P
1Ω T

4

=Ω P Ω T
12Ω T

3

=Ω P Ω T
4 3 Ω T

1

Ω T
2

=Ω P Ω T
3 2

x4022x1491

xA100x008B

00000

01000 00011

11001

Fig. 11. The four-block chaining differences path of SHA-0.

Table 14. The disturbance vectors of the four-block collision.

D1 00000 0001000010 1001000111 1001011000 0011100000
0000001100 0000110110 0000011000 1011011000

D2 01000 1000000001 0000101001 0001111001 0110000011
1000000000 0011000000 1101100000 0110001011

D3 10001 0010010100 0100101111 1100001000 0100001100
0010110010 0000000001 1101001110 1000010001

D4 11010 0010000000 0100001010 0100011110 0101100000
1110000000 0000110000 0011011000 0001100010

The characteristic we use for this transition is constructed using the disturbance vector
D1 = A100. Consulting Table 14,D1 predicts a final state difference s′

80 = 00011, hence
using Eq. (13), D1 is suitable for the first transition. The transition of the second pair of
blocks is from a chaining difference �P2 = 00011, to a final difference �T2 = 11001
using D2 = 4022. Consulting Table 13, the initial chaining difference �P2 = 00011 is
compatible with 00010, hence D2 = 4022 is suitable to leave vertex �P2 . The predicted
final state of D2 is s′

80 = 11010, thus by Eq. (13) the predicted chaining difference of the
second block is �T2 = �P3 = 11010, and D2 is suitable for the second transition. The
transition of the third block is from �P3 = 11001 to �T3 = 01000 using D3 = 1491.
�P3 = 11001 is compatible with 10001, thus D3 = 1491 is suitable to leave vertex
�P3 . D3 predicts a final difference s′

80 = 10001, hence the predicted chaining difference
of the third block is �T3 = �P4 = 01000, and D3 is suitable for the third transition.
The last transition in this path is made from �P4 = 01000 to �T4 = 00000 using
D4 = 008B. �P4 = 01000 is compatible with 01011, thus D4 = 008b is suitable

Cryptanalysis of SHA-0 and Reduced SHA-1 145

to leave �P4 . D4 predicts a final difference s′
80 = 01000, hence �T4 = 00000, and a

collision is predicted after the fourth block.
Using these disturbance vectors we constructed the characteristics of each block,

which are given in Tables 15, 16, 17, and 18. In these tables, the locations of inconsis-
tency between a disturbance vector and a reduced state vector are marked with a gray
background. The conditions at these locations are set as explained in Sect. 6.6. In the
last five rounds we set conditions such that the desired �T is obtained.

We implemented this attack on a highly parallel computer using this path of four
characteristics, and a four-block collision was found. The resulting collision is given in
Table 19. The chaining variables and differences of this four-block collision of SHA-0
are given in Table 20.

7.1. Complexity Evaluation

The complexity evaluation of the four-block attack on SHA-0 is similar to the evaluation
of the two-block attack. The contributions of each of the factors p22→75, p75→�T , and
pconnect to the overall probability and to the complexity of the attack are listed in Table 21.
In this table we present the probabilities and complexity of each block in two rows. In
the first row we present the probabilities to obtain the required differences of the pair of
message blocks. In the second row we write the probability of connecting the current
block with the next block, and the total probability and complexity of finding a right
pair. The overall complexity of the attack under these assumptions is approximately 246

SHA-0 calls.
When measured in terms of the number of pairs to test, about 251 pairs are tested until

a collision is found. This number is equivalent to about 249 SHA-0 calls. The actual
number (in comparison with the data in Table 21) is due to an analysis that considers
conformance to �A in all of the 80 rounds, and then checks whether the correct �T is
obtained. In addition, an implementation error of the neutral bits technique contributed
a factor to the excessive pairs that were tested.

8. Attacks on Reduced Versions of SHA-1

The only difference between SHA-1 and SHA-0 is an additional rotation operation in the
expansion process that mixes the bits in the expanded message in a more efficient way
than SHA-0 does. However, the expansion remains linear, and therefore the construction
of local collision sequences with the technique described in the previous sections is still
applicable.

The bit rotation increases the Hamming weight of disturbance vectors. However, it is
not sufficient to make this weight as heavy as in random codes of the same size. Indeed,
surprisingly low weight vectors still exist in SHA-1.

Even though the additional rotation mixes the message bits in a more efficient way,
it does not affect the efficiency of the neutral bits technique. Therefore, the neutral bits
technique can be used to attack SHA-1 with no modifications. We note that the existence
of neutral bits in SHA-1 is not a surprise, as it is still possible to create small differences
in the state vector with the local collision sequences technique.

146 E. Biham et al.

Ta
bl

e
15

.
A

ch
ar

ac
te

ri
st

ic
of

a
fo

ur
-b

lo
ck

at
ta

ck
on

SH
A

-0
(fi

rs
tb

lo
ck

).

�
1 P

=
(0

,
0
,
0
,
0
,
0
)
=
0
0
0
0
0

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

−5
0

17
2

8
0
0
0
0
0
0
2

0
1/

2
39

0
8
0
0
0
0
0
0
0

0
61

0
0
0
0
0
0
0
0
0

0
1/

2
−4

0
0

18
2

8
0
0
0
0
0
4
2

2
1/

4
40

0
0
0
0
0
0
0
0
0

0
62

0
0
0
0
0
0
0
0
0

0
−3

0
0

19
2

0
0
0
0
0
0
4
0

2
1/

2
41

0
0
0
0
0
0
0
0
0

0
63

0
8
0
0
0
0
0
0
0

0
−2

0
0

20
2

8
0
0
0
0
0
4
0

2
1/

4
42

0
0
0
0
0
0
0
0
0

0
64

0
0
0
0
0
0
0
0
0

0
−1

0
0

21
0

0
0
0
0
0
0
4
2

2
1/

4
43

0
0
0
0
0
0
0
0
0

0
65

2
0
0
0
0
0
0
0
2

0
0

0
0
0
0
0
0
0
0
0

0
22

0
8
0
0
0
0
0
0
2

0
1/

4
44

0
0
0
0
0
0
0
0
0

0
66

2
0
0
0
0
0
0
4
2

2
1/

2
1

0
0
0
0
0
0
0
0
0

0
23

2
8
0
0
0
0
0
0
2

0
1/

2
45

0
0
0
0
0
0
0
0
0

0
67

0
0
0
0
0
0
0
4
2

2
1/

2
2

0
0
0
0
0
0
0
0
0

0
24

0
0
0
0
0
0
0
4
0

2
1/

2
46

2
0
0
0
0
0
0
0
2

0
68

0
8
0
0
0
0
0
0
2

0
1/

2
3

2
0
0
0
0
0
0
0
2

0
25

2
8
0
0
0
0
0
0
0

0
47

2
0
0
0
0
0
0
4
2

2
1/

2
69

0
0
0
0
0
0
0
0
0

0
1/

2
4

0
0
0
0
0
0
0
4
0

2
1/

2
26

2
8
0
0
0
0
0
4
2

2
1/

2
48

0
0
0
0
0
0
0
4
2

2
1/

2
70

2
0
0
0
0
0
0
0
2

0
5

0
0
0
0
0
0
0
0
2

0
27

0
8
0
0
0
0
0
4
2

2
1/

4
49

0
8
0
0
0
0
0
0
2

0
1/

2
71

0
8
0
0
0
0
0
4
0

2
1/

2
6

0
8
0
0
0
0
0
0
0

0
1/

4
28

0
0
0
0
0
0
0
0
2

0
1/

2
50

0
0
0
0
0
0
0
0
0

0
1/

4
72

2
0
0
0
0
0
0
0
0

0
7

0
8
0
0
0
0
0
0
0

0
1/

2
29

0
0
0
0
0
0
0
0
0

0
1/

2
51

0
0
0
0
0
0
0
0
0

0
73

2
8
0
0
0
0
0
4
2

2
1/

2
8

2
8
0
0
0
0
0
0
2

0
1/

2
30

0
0
0
0
0
0
0
0
0

0
52

0
8
0
0
0
0
0
0
0

0
1/

2
74

0
8
0
0
0
0
0
4
2

2
1/

4
9

0
0
0
0
0
0
0
4
0

2
1/

2
31

0
8
0
0
0
0
0
0
0

0
53

0
0
0
0
0
0
0
0
0

0
75

2
0
0
0
0
0
0
0
0

0
1/

2
10

2
0
0
0
0
0
0
0
0

0
1/

4
32

2
0
0
0
0
0
0
0
2

0
54

2
0
0
0
0
0
0
0
2

0
76

2
0
0
0
0
0
0
4
2

2
1/

2
11

0
8
0
0
0
0
0
4
0

2
1/

4
33

2
0
0
0
0
0
0
4
2

2
1/

2
55

2
0
0
0
0
0
0
4
2

2
1/

2
77

0
0
0
0
0
0
0
4
2

2
1/

4
12

0
8
0
0
0
0
0
0
2

0
1/

8
34

2
0
0
0
0
0
0
4
0

2
1/

2
56

0
0
0
0
0
0
0
4
2

2
1/

2
78

0
0
0
0
0
0
0
0
2

0
1/

2
13

2
0
0
0
0
0
0
0
2

0
35

0
8
0
0
0
0
0
4
2

2
1/

2
57

2
8
0
0
0
0
0
0
0

0
1/

2
79

0
0
0
0
0
0
0
0
0

0
1/

2
14

0
8
0
0
0
0
0
4
0

2
1/

4
36

0
0
0
0
0
0
0
0
2

0
1/

4
58

2
0
0
0
0
0
0
4
2

2
1/

8
80

0
15

0
8
0
0
0
0
0
0
2

0
1/

2
37

0
8
0
0
0
0
0
0
0

0
1/

2
59

0
0
0
0
0
0
0
4
2

2
1/

2
16

0
8
0
0
0
0
0
0
0

0
1/

4
38

0
0
0
0
0
0
0
0
0

0
60

0
0
0
0
0
0
0
0
2

0
1/

4

�
1 T

=
(0

,
0
,
0
,
2
,
2
)
=

00
01

1

Cryptanalysis of SHA-0 and Reduced SHA-1 147

Ta
bl

e
16

.
A

ch
ar

ac
te

ri
st

ic
of

a
fo

ur
-b

lo
ck

at
ta

ck
on

SH
A

-0
(s

ec
on

d
bl

oc
k)

.

�
2 P

=
�

1 T
=

(0
,
0
,
0
,
2
,
2
)
=

00
01

1

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

−5
0

17
0

8
0
0
0
0
0
4
0

2
1/

4
39

2
0
0
0
0
0
0
4
2

2
1/

2
61

2
0
0
0
0
0
0
4
2

2
1/

2
−4

2
2

18
0

8
0
0
0
0
0
0
2

0
1/

4
40

2
0
0
0
0
0
0
4
0

2
1/

2
62

0
0
0
0
0
0
0
4
2

2
1/

2
−3

0
2

19
2

0
0
0
0
0
0
0
2

0
1/

4
41

0
8
0
0
0
0
0
4
2

2
1/

4
63

2
8
0
0
0
0
0
0
0

0
1/

2
−2

0
0

20
0

8
0
0
0
0
0
4
0

2
1/

4
42

0
0
0
0
0
0
0
0
2

0
1/

4
64

2
0
0
0
0
0
0
4
2

2
1/

2
−1

0
0

21
0

8
0
0
0
0
0
0
2

0
43

0
8
0
0
0
0
0
0
0

0
1/

2
65

0
0
0
0
0
0
0
4
2

2
1/

4
0

2
8
0
0
0
0
0
0
2

0
22

0
8
0
0
0
0
0
0
0

0
1/

2
44

0
0
0
0
0
0
0
0
0

0
66

0
0
0
0
0
0
0
0
2

0
1/

2
1

0
8
0
0
0
0
0
4
0

2
1/

4
23

2
8
0
0
0
0
0
0
2

0
45

0
8
0
0
0
0
0
0
0

0
1 /

2
67

0
0
0
0
0
0
0
0
0

0
1/

2
2

0
0
0
0
0
0
0
0
2

0
24

2
8
0
0
0
0
0
4
2

2
1/

2
46

0
0
0
0
0
0
0
0
0

0
68

0
0
0
0
0
0
0
0
0

0
3

0
8
0
0
0
0
0
0
0

0
1/

4
25

2
0
0
0
0
0
0
4
0

2
1/

2
47

0
0
0
0
0
0
0
0
0

0
69

0
8
0
0
0
0
0
0
0

0
4

0
8
0
0
0
0
0
0
0

0
1/

2
26

2
8
0
0
0
0
0
4
0

2
1/

2
48

0
0
0
0
0
0
0
0
0

0
70

0
0
0
0
0
0
0
0
0

0
5

0
8
0
0
0
0
0
0
0

0
1/

2
27

0
0
0
0
0
0
0
4
2

2
1/

4
49

0
0
0
0
0
0
0
0
0

0
71

2
0
0
0
0
0
0
0
2

0
6

0
0
0
0
0
0
0
0
0

0
28

0
8
0
0
0
0
0
0
2

0
1/

4
50

0
0
0
0
0
0
0
0
0

0
72

2
0
0
0
0
0
0
4
2

2
1/

2
7

0
0
0
0
0
0
0
0
0

0
29

2
8
0
0
0
0
0
0
2

0
1/

2
51

0
0
0
0
0
0
0
0
0

0
73

0
0
0
0
0
0
0
4
2

2
1/

2
8

0
0
0
0
0
0
0
0
0

0
30

0
0
0
0
0
0
0
4
0

2
1/

2
52

2
0
0
0
0
0
0
0
2

0
74

0
8
0
0
0
0
0
0
2

0
1/

2
9

2
0
0
0
0
0
0
0
2

0
31

2
8
0
0
0
0
0
0
0

0
53

2
0
0
0
0
0
0
4
2

2
1/

2
75

0
0
0
0
0
0
0
0
0

0
1/

2
10

0
0
0
0
0
0
0
4
0

2
1/

2
32

2
8
0
0
0
0
0
4
2

2
1/

2
54

0
0
0
0
0
0
0
4
2

2
1/

2
76

2
0
0
0
0
0
0
0
2

0
11

0
0
0
0
0
0
0
0
2

0
33

0
8
0
0
0
0
0
4
2

2
1/

4
55

0
8
0
0
0
0
0
0
2

0
1/

2
77

0
8
0
0
0
0
0
4
0

2
1/

2
12

0
8
0
0
0
0
0
0
0

0
1/

4
34

0
0
0
0
0
0
0
0
2

0
1/

2
56

0
0
0
0
0
0
0
0
0

0
1/

4
78

2
0
0
0
0
0
0
0
0

0
13

0
8
0
0
0
0
0
0
0

0
1/

2
35

0
0
0
0
0
0
0
0
0

0
1/

2
57

0
0
0
0
0
0
0
0
0

0
79

2
8
0
0
0
0
0
4
2

2
1/

2
14

2
8
0
0
0
0
0
0
2

0
1/

2
36

0
0
0
0
0
0
0
0
0

0
58

0
8
0
0
0
0
0
0
0

0
1/

2
80

2
1/

4
15

0
0
0
0
0
0
0
4
0

2
1/

2
37

0
8
0
0
0
0
0
0
0

0
59

0
0
0
0
0
0
0
0
0

0
16

2
0
0
0
0
0
0
0
0

0
38

2
0
0
0
0
0
0
0
2

0
60

2
0
0
0
0
0
0
0
2

0

�
2 T

=
(2

,
2
,
0
,
0
,
2
)
=

11
00

1

148 E. Biham et al.

Ta
bl

e
17

.
A

ch
ar

ac
te

ri
st

ic
of

a
fo

ur
-b

lo
ck

at
ta

ck
on

SH
A

-0
(t

hi
rd

bl
oc

k)
.

�
3 P

=
�

2 T
=

(2
,
2
,
0
,
0
,
2
)
=

11
00

1

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

−5
2

17
2

8
0
0
0
0
0
4
2

2
1/

4
39

0
8
0
0
0
0
0
0
2

0
1/

2
61

2
0
0
0
0
0
0
4
0

2
1/

2
−4

0
2

18
2

8
0
0
0
0
0
4
0

2
1/

8
40

0
0
0
0
0
0
0
0
0

0
1/

2
62

0
8
0
0
0
0
0
4
2

2
1/

2
−3

0
0

19
2

0
0
0
0
0
0
4
0

2
1/

8
41

0
0
0
0
0
0
0
0
0

0
63

2
0
0
0
0
0
0
0
0

0
1/

4
−2

0
0

20
2

0
0
0
0
0
0
4
0

2
1/

16
42

2
8
0
0
0
0
0
0
2

0
64

0
8
0
0
0
0
0
4
0

2
1/

2
−1

2
2

21
2

8
0
0
0
0
0
4
0

2
1/

4
43

0
0
0
0
0
0
0
4
0

2
1/

2
65

0
0
0
0
0
0
0
0
2

0
1/

2
0

0
8
0
0
0
0
0
4
0

2
22

0
8
0
0
0
0
0
4
2

2
1/

4
44

2
0
0
0
0
0
0
0
0

0
66

2
0
0
0
0
0
0
0
2

0
1/

2
1

0
0
0
0
0
0
0
0
2

0
1/

2
23

0
8
0
0
0
0
0
0
2

0
1/

4
45

2
8
0
0
0
0
0
4
2

2
1/

4
67

2
8
0
0
0
0
0
4
2

2
1/

2
2

2
8
0
0
0
0
0
0
2

0
1/

4
24

0
8
0
0
0
0
0
0
0

0
1/

2
46

0
8
0
0
0
0
0
4
2

2
1/

4
68

2
8
0
0
0
0
0
4
0

2
1/

2
3

0
8
0
0
0
0
0
4
0

2
1/

2
25

0
0
0
0
0
0
0
0
0

0
47

0
0
0
0
0
0
0
0
2

0
1/

4
69

0
8
0
0
0
0
0
4
2

2
1/

2
4

0
8
0
0
0
0
0
0
2

0
1/

2
26

2
8
0
0
0
0
0
0
2

0
48

2
0
0
0
0
0
0
0
2

0
1/

4
70

2
0
0
0
0
0
0
0
0

0
1/

4
5

2
8
0
0
0
0
0
0
2

0
1/

4
27

0
0
0
0
0
0
0
4
0

2
1/

2
49

0
0
0
0
0
0
0
4
0

2
1/

2
71

0
8
0
0
0
0
0
4
0

2
1/

2
6

0
8
0
0
0
0
0
4
0

2
1/

4
28

0
0
0
0
0
0
0
0
2

0
50

0
8
0
0
0
0
0
0
2

0
72

0
0
0
0
0
0
0
0
2

0
1/

2
7

2
8
0
0
0
0
0
0
0

0
1/

2
29

0
8
0
0
0
0
0
0
0

0
1/

2
51

0
8
0
0
0
0
0
0
0

0
1/

2
73

0
0
0
0
0
0
0
0
0

0
1/

2
8

0
8
0
0
0
0
0
4
0

2
1/

4
30

0
8
0
0
0
0
0
0
0

0
52

0
8
0
0
0
0
0
0
0

0
1/

2
74

0
8
0
0
0
0
0
0
0

0
9

0
8
0
0
0
0
0
0
2

0
1/

4
31

2
8
0
0
0
0
0
0
2

0
53

0
8
0
0
0
0
0
0
0

0
1/

2
75

2
8
0
0
0
0
0
0
2

0
10

0
0
0
0
0
0
0
0
0

0
1/

8
32

0
0
0
0
0
0
0
4
0

2
1/

2
54

0
0
0
0
0
0
0
0
0

0
76

0
0
0
0
0
0
0
4
0

2
1/

2
11

2
8
0
0
0
0
0
0
2

0
1/

2
33

0
0
0
0
0
0
0
0
2

0
55

0
0
0
0
0
0
0
0
0

0
77

0
0
0
0
0
0
0
0
2

0
12

0
8
0
0
0
0
0
4
0

2
1/

4
34

0
8
0
0
0
0
0
0
0

0
1/

2
56

0
0
0
0
0
0
0
0
0

0
78

0
8
0
0
0
0
0
0
0

0
1/

2
13

0
0
0
0
0
0
0
0
2

0
35

0
8
0
0
0
0
0
0
0

0
57

0
0
0
0
0
0
0
0
0

0
79

2
8
0
0
0
0
0
0
2

0
1/

2
14

2
8
0
0
0
0
0
0
2

0
1/

4
36

2
8
0
0
0
0
0
0
2

0
58

0
0
0
0
0
0
0
0
0

0
80

2
15

0
8
0
0
0
0
0
4
0

2
1/

4
37

2
0
0
0
0
0
0
4
2

2
1/

2
59

2
0
0
0
0
0
0
0
2

0
16

2
8
0
0
0
0
0
0
0

0
1/

2
38

0
0
0
0
0
0
0
4
2

2
1/

2
60

2
0
0
0
0
0
0
4
2

2
1/

2

�
3 T

=
(0

,
2
,
0
,
0
,
0
)
=

01
00

0

Cryptanalysis of SHA-0 and Reduced SHA-1 149

Ta
bl

e
18

.
A

ch
ar

ac
te

ri
st

ic
of

a
fo

ur
-b

lo
ck

at
ta

ck
on

SH
A

-0
(f

ou
rt

h
bl

oc
k)

.

�
4 P

=
�

3 T
=

(0
,
2
,
0
,
0
,
0
)
=

01
00

0

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

R
.

D
�

W
�

A
p

−5
2

17
0

0
0
0
0
0
0
4
0

2
1/

2
39

0
8
0
0
0
0
0
0
0

0
61

0
0
0
0
0
0
0
0
0

0
−4

2
0

18
2

0
0
0
0
0
0
0
0

0
40

2
0
0
0
0
0
0
0
2

0
62

2
0
0
0
0
0
0
0
2

0
−3

0
0

19
0

8
0
0
0
0
0
4
0

2
1/

4
41

2
0
0
0
0
0
0
4
2

2
1/

2
63

2
0
0
0
0
0
0
4
2

2
1/

2
−2

2
0

20
0

8
0
0
0
0
0
0
2

0
1/

4
42

2
0
0
0
0
0
0
4
0

2
1/

2
64

0
0
0
0
0
0
0
4
2

2
1/

2
−1

0
2

21
2

0
0
0
0
0
0
0
2

0
1/

2
43

0
8
0
0
0
0
0
4
2

2
1/

4
65

2
8
0
0
0
0
0
0
0

0
1/

2
0

0
0
0
0
0
0
0
0
2

0
22

0
8
0
0
0
0
0
4
0

2
1/

2
44

0
0
0
0
0
0
0
0
2

0
1/

4
66

2
0
0
0
0
0
0
4
2

2
1/

2
1

0
0
0
0
0
0
0
0
0

0
1/

4
23

0
8
0
0
0
0
0
0
2

0
45

0
8
0
0
0
0
0
0
0

0
1/

2
67

0
0
0
0
0
0
0
4
2

2
1/

4
2

2
8
0
0
0
0
0
0
2

0
1/

2
24

0
8
0
0
0
0
0
0
0

0
1/

2
46

0
0
0
0
0
0
0
0
0

0
68

0
0
0
0
0
0
0
0
2

0
1/

2
3

0
8
0
0
0
0
0
4
0

2
1/

4
25

2
8
0
0
0
0
0
0
2

0
47

0
8
0
0
0
0
0
0
0

0
1/

2
69

0
0
0
0
0
0
0
0
0

0
1/

2
4

0
0
0
0
0
0
0
0
2

0
26

2
8
0
0
0
0
0
4
2

2
1/

2
48

0
0
0
0
0
0
0
0
0

0
70

0
0
0
0
0
0
0
0
0

0
5

0
8
0
0
0
0
0
0
0

0
1/

4
27

2
0
0
0
0
0
0
4
0

2
1/

2
49

0
0
0
0
0
0
0
0
0

0
71

0
8
0
0
0
0
0
0
0

0
6

0
8
0
0
0
0
0
0
0

0
1/

2
28

2
8
0
0
0
0
0
4
0

2
1/

2
50

0
0
0
0
0
0
0
0
0

0
72

0
0
0
0
0
0
0
0
0

0
7

0
8
0
0
0
0
0
0
0

0
1/

2
29

0
0
0
0
0
0
0
4
2

2
1/

4
51

0
0
0
0
0
0
0
0
0

0
73

2
0
0
0
0
0
0
0
2

0
8

0
0
0
0
0
0
0
0
0

0
30

0
8
0
0
0
0
0
0
2

0
1/

4
52

0
0
0
0
0
0
0
0
0

0
74

2
0
0
0
0
0
0
4
2

2
1/

2
9

0
0
0
0
0
0
0
0
0

0
31

2
8
0
0
0
0
0
0
2

0
1/

2
53

0
0
0
0
0
0
0
0
0

0
75

0
0
0
0
0
0
0
4
2

2
1/

2
10

0
0
0
0
0
0
0
0
0

0
32

0
0
0
0
0
0
0
4
0

2
1/

2
54

2
0
0
0
0
0
0
0
2

0
76

0
8
0
0
0
0
0
0
2

0
1/

2
11

2
0
0
0
0
0
0
0
2

0
33

2
8
0
0
0
0
0
0
0

0
55

2
0
0
0
0
0
0
4
2

2
1/

2
77

0
0
0
0
0
0
0
0
0

0
1/

2
12

0
0
0
0
0
0
0
4
0

2
1/

2
34

2
8
0
0
0
0
0
4
2

2
1/

2
56

0
0
0
0
0
0
0
4
2

2
1/

2
78

2
0
0
0
0
0
0
0
2

0
cr

e
13

0
0
0
0
0
0
0
0
2

0
35

0
8
0
0
0
0
0
4
2

2
1/

4
57

0
8
0
0
0
0
0
0
2

0
1/

2
79

0
8
0
0
0
0
0
4
0

2
14

0
8
0
0
0
0
0
0
0

0
1/

4
36

0
0
0
0
0
0
0
0
2

0
1/

2
58

0
0
0
0
0
0
0
0
0

0
1/

4
80

0
15

0
8
0
0
0
0
0
0
0

0
1/

2
37

0
0
0
0
0
0
0
0
0

0
1/

2
59

0
0
0
0
0
0
0
0
0

0
16

2
8
0
0
0
0
0
0
2

0
1/

2
38

0
0
0
0
0
0
0
0
0

0
60

0
8
0
0
0
0
0
0
0

0
1/

2

�
4 T

=
(0

,
0
,
0
,
0
,
0
)
=
0
0
0
0
0

150 E. Biham et al.

Table 19. A four-block collision of SHA-0.

M
M1 A766A602 B65CFFE7 73BCF258 26B322B3 D01B1A97 2684EF53 3E3B4B7F 53FE3762

24C08E47 E959B2BC 3B519880 B9286568 247D110F 70F5C5E2 B4590CA3 F55F52FE
M2 EFFD4C8F E68DE835 329E603C C51E7F02 545410D1 671D108D F5A4000D CF20A439

4949D72C D14FBB03 45CF3A29 5DCDA89F 998F8755 2C9A58B1 BDC38483 5E477185
M3 F96E68BE BB0025D2 D2B69EDF 21724198 F688B41D EB9B4913 FBE696B5 457AB399

21E1D759 1F89DE84 57E8613C 6C9E3B24 2879D4D8 783B2D9C A9935EA5 26A729C0
M4 6EDFC501 37E69330 BE976012 CC5DFE1C 14C4C68B D1DB3ECB 24438A59 A09B5DB4

35563E0D 8BDF572F 77B53065 CEF31F32 DC9DBAA0 4146261E 9994BD5C D0758E3D
M∗
M∗

1 A766A602 B65CFFE7 73BCF258 26B322B1 D01B1AD7 2684EF51 BE3B4B7F D3FE3762
A4C08E45 E959B2FC 3B519880 39286528 A47D110D 70F5C5E0 34590CE3 755F52FC

M∗
2 6FFD4C8D 668DE875 329E603E 451E7F02 D45410D1 E71D108D F5A4000D CF20A439
4949D72C D14FBB01 45CF3A69 5DCDA89D 198F8755 AC9A58B1 3DC38481 5E4771C5

M∗
3 796E68FE BB0025D0 52B69EDD A17241D8 7688B41F 6B9B4911 7BE696F5 C57AB399
A1E1D719 9F89DE86 57E8613C EC9E3B26 A879D498 783B2D9E 29935EA7 A6A72980

M∗
4 6EDFC503 37E69330 3E976010 4C5DFE5C 14C4C689 51DB3ECB A4438A59 209B5DB4
35563E0D 8BDF572F 77B53065 CEF31F30 DC9DBAE0 4146261C 1994BD5C 50758E3D

Table 20. The intermediate chaining variables and differences of the four-block collision of SHA-0.

Common initial value
h0 = h∗

0 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0
h′

0 00000000 00000000 00000000 00000000 00000000
h1 83C1CE2D C5BF5480 C2AF2358 104B337B 9E78A1E7
h∗

1 83C1CE2D C5BF5480 C2AF2358 904B337B 1E78A1E7
h′

1 00000000 00000000 00000000 80000000 80000000
h2 27AE025A 9D36F7B6 29FA88E7 87B70063 984119F3
h∗

2 27AE0258 9D36F7B4 29FA88E7 87B70063 184119F3
h′

2 00000002 00000002 00000000 00000000 80000000
h3 4DD120B4 D6EC801F 468628A7 0CC26464 371F36B2
h∗

3 4DD120B4 D6EC801D 468628A7 0CC26464 371F36B2
h′

3 00000000 00000002 00000000 00000000 00000000
Common chaining value

h4 = h∗
4 81FB4643 08FDF1F4 A3C4F3A3 6188FED3 FD2378E6

h′
4 00000000 00000000 00000000 00000000 00000000

Common hash result
C9F16077 7D4086FE 8095FBA5 8B7E20C2 28A4006B

The multi-block technique is applicable to any differential attack on iterative hash
functions, including SHA-1. Actually this technique is more important in the case of
SHA-1 since it is difficult to find a disturbance vector that predicts a single-block colli-
sion.

8.1. Selecting a Disturbance Vector for the Attack

The attacks on SHA-0 use only bit 1 as the location of disturbances. This selection
is possible since the LFSR that expands the message does not mix bits in different

Cryptanalysis of SHA-0 and Reduced SHA-1 151

Table 21. Probabilities and complexities of the four-block attack on SHA-0.

Block p22→75 p75→�T pconnect ptotal Complexity

1 2−38 2−5

2−2 2−45 243

2 2−40 2−4

2−3 2−47 245

3 2−40 2−3

2−2 2−45 243

4 2−39 2−2

1 2−41 239

bit indices. Furthermore, disturbances in bit 1 have the highest probability since the
probabilistic behavior of the carry when corrections are made to bit 31 is eliminated.
In SHA-1 the rotation by one bit in the expansion process moves the disturbances to
different bit indices. Therefore, bits in several locations are used for disturbances. Notice
that since disturbances may be located in different bit indices, the short representations
we used in SHA-0 for disturbance vectors, state differences, and initial and final chaining
differences are not applicable for SHA-1.

Since disturbances can be made at any bit location, the number of candidate distur-
bance vectors is raised from 216 in SHA-0 to 2512 in SHA-1. From these disturbance
vectors those that have the minimal Hamming weight should be selected. In order to
reduce the search domain, we heuristically chose disturbances in adjacent bits, e.g., bits 0
and 1. With this selection, disturbances sometimes cancel each other in the expansion
process due to the rotation by one bit. By searching in a domain of vectors with adjacent
disturbances we found some that lead to attacks faster than the birthday attack on various
reduced versions of SHA-1.

Once a disturbance vector with a low Hamming weight is found we may cyclically
rotate all the words of the vector simultaneously by one bit and obtain a different dis-
turbance vector with the same low Hamming weight. Similarly, different disturbance
vectors with the same low Hamming weight are obtained by a rotation of two bits, three
bits, and so forth, up to 31 bits. Each of those 32 disturbance vectors with the same
Hamming weight may have a different probability, mainly due to the different number
of computations with differences at bit location 31 where probabilistic behavior of the
carry is eliminated. Therefore, once a low Hamming weight disturbance vector is found,
we compute the probabilities of each of the 32 different disturbance vectors that are
obtained by rotations, and select the one with the highest probability for the attack.

8.2. Constructing a Two-Edge Path with the Same Disturbance Vector

As we have already seen in Example 10 and in the attack on full SHA-0 (Sect. 7), a dis-
turbance vector may be compatible with many initial chaining differences. In particular,
a disturbance vector which is compatible with a zero chaining difference and with the
chaining difference that it predicts might be used for our construction: Firstly, since it
is compatible with a zero chaining difference then it can be used to construct the edge

152 E. Biham et al.

that leaves the zero initial value toward a near-collision. Secondly, it is compatible with
the differences it predicts, thus it can also be used to construct an edge that leaves this
near-collision. Finally, by Eq. (13) (which is applicable to SHA-0 as well as to SHA-1)
it predicts a collision, thus it meets the requirements for the construction of our path.

The first advantage of such a construction is its simplicity: Instead of constructing a
very complex transition graph and then search for the optimal path, we are concentrated
only on a very specific type of paths in a graph. The second advantage is that using
the efficient algorithm that finds disturbance vectors with low Hamming weight (see
Sect. 8.1), the paths that are generated by the construction have high probability. More-
over, if the disturbance vector that is used to construct the path has the highest probability
then this path is optimal. We note that by using carries as an additional resource for dis-
turbances and corrections the number of compatible chaining differences substantially
increases. Thus, if a low Hamming weight disturbance vector is found then it is most
likely suitable for the construction.

8.3. A Collision of SHA-1 Reduced to 40 Rounds

This section demonstrates the idea of Sect. 8.2 by a typical type of a two-block collision.
The two blocks use the same basic characteristic with some changes in the first few rounds
that allow the concatenation of the two blocks. This type of attack is generally more
efficient than finding two different characteristics when using the general construction
of the multi-block technique. It enables high probabilities in the two blocks even when
only one characteristic with high probability is known (compared with the other case in
which a lower probability characteristic is also used).

The construction of a two-edge path with the same disturbance vector is demonstrated
on SHA-1 reduced to 40 rounds. The disturbance vector we are using is the same vector
used in the 34-round attack [7], rotated by 28 bits to the left and expanded to 40 rounds.
The characteristic of the first and second blocks are given in Table 22.

Using these characteristics we easily found a two-block collision of 40-round SHA-1.
The messages and chaining variables of the 40-round collision are given in Table 23.
The probability and complexity of the attack is given in Table 24.

8.4. Strength of Reduced Versions of SHA-1 with More Rounds

SHA-1 with more than 40 rounds is also vulnerable to the attacks described in this paper.
Though all the disturbance vectors that we found have consecutive disturbances in the
first 17 rounds, many of them are correctable. We therefore list here two sets of results:
the first set of results for SHA-1 reduced to fewer rounds, where consecutive disturbances
are correctable by the techniques we have already described. The second set of results,
denoted later by NO-IF, have consecutive disturbances which are not correctable by these
techniques. These disturbance vectors might be used if the reduced version of SHA-1
starts at a different location (such as from Round 20 with the XOR function at the first
20 rounds). They also may be used if these consecutive disturbances would be corrected
with more creative usage of carries as a source of disturbances and corrections.

Table 25 lists the Hamming weights of the best disturbance vectors results we found
to attack various reduced versions of SHA-1. For each reduced version, and each set of

Cryptanalysis of SHA-0 and Reduced SHA-1 153

Table 22. A two-block characteristic of 40-round reduced SHA-1.

�1
P = (0,0,0,0,0)

R. D �W �A p R. D �W �A p

−5 00000000 18 00000000 08000000 00000000 1/2
−4 00000000 00000000 19 00000000 08000000 00000000 1/2
−3 00000000 00000000 20 20000000 20000000 00000000
−2 00000000 00000000 21 00000000 00000004 20000000 1/2
−1 00000000 00000000 22 20000000 00000000 00000000
0 20000000 20000000 00000000 23 00000000 08000004 20000000 1/2
1 00000000 00000004 20000000 1/2 24 00000000 28000000 00000000 1/4
2 20000000 00000000 00000000 25 00000000 00000000 00000000 1/4
3 00000000 08000004 20000000 1/2 26 00000000 08000000 00000000 1/2
4 20000000 08000000 00000000 1/2 27 00000000 08000000 00000000 1/2
5 00000000 00000004 20000000 1/4 28 00000000 00000000 00000000
6 30000000 18000000 00000000 1/4 29 00000000 00000000 00000000
7 00000000 00000006 30000000 1/16 30 00000000 00000000 00000000
8 00000000 38000000 00000000 1/4 31 00000000 00000000 00000000
9 20000000 24000000 00000000 1/32 32 00000000 00000000 00000000
10 00000000 0C000004 20000000 1/8 33 00000000 00000000 00000000
11 00000000 2C000000 00000000 1/4 34 40000000 40000000 00000000
12 00000000 08000000 00000000 1/4 35 00000000 00000008 40000000 1/2
13 00000000 08000000 00000000 1/2 36 00000000 40000000 00000000
14 20000000 28000000 00000000 1/2 37 80000000 90000000 00000000 1/2
15 00000000 00000004 20000000 1/2 38 40000000 50000010 80000000 1/2
16 00000000 20000000 00000000 39 00000000 90000008 40000000 1/8
17 00000000 08000000 00000000 1/2 40 00000000

�1
T = (0,40000000,20000000,0,0)

�2
P = �1

T = (0,40000000,20000000,0,0)

R. D �W �A p R. D �W �A p
−5 00000000 18 00000000 08000000 00000000 1/2
−4 00000000 00000000 19 00000000 08000000 00000000 1/2
−3 00000000 00000000 20 20000000 20000000 00000000
−2 00000000 80000000 21 00000000 00000004 20000000 1/2
−1 00000000 40000000 22 20000000 00000000 00000000
0 20000000 20000000 00000000 23 00000000 08000004 20000000 1/2
1 00000000 00000004 20000000 1/8 24 00000000 28000000 00000000 1/4
2 20000000 00000000 00000000 1/4 25 00000000 00000000 00000000 1/4
3 00000000 08000004 20000000 1/8 26 00000000 08000000 00000000 1/2
4 20000000 08000000 00000000 1/16 27 00000000 08000000 00000000 1/2
5 00000000 00000004 20000000 1/4 28 00000000 00000000 00000000
6 30000000 18000000 00000000 1/4 29 00000000 00000000 00000000
7 00000000 00000006 30000000 1/16 30 00000000 00000000 00000000
8 00000000 38000000 00000000 1/4 31 00000000 00000000 00000000
9 20000000 24000000 00000000 1/32 32 00000000 00000000 00000000
10 00000000 0C000004 20000000 1/8 33 00000000 00000000 00000000
11 00000000 2C000000 00000000 1/4 34 40000000 40000000 00000000
12 00000000 08000000 00000000 1/4 35 00000000 00000008 40000000 1/2
13 00000000 08000000 00000000 1/2 36 00000000 40000000 00000000

154 E. Biham et al.

Table 22. continued.

�2
P = �1

T = (0,40000000,20000000,0,0)

R. D �W �A p R. D �W �A p

14 20000000 28000000 00000000 1/2 37 80000000 90000000 00000000 1/2
15 00000000 00000004 20000000 1/2 38 40000000 50000010 80000000 1/2
16 00000000 20000000 00000000 39 00000000 90000008 40000000 1/4
17 00000000 08000000 00000000 1/2 40 00000000

�2
T = (0,0,0,0,0)

Table 23. Two-block collision of 40-round SHA-1.

Common initial value
h0 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0
M1 404B674C B70CB385 D2DDAC0D 3A0E9BD3 CA7F1780 7FEFDA17 05E43AF2 444344C2

641A2CB6 86C2CFE6 EBCDEF67 6577E095 1A9CAD10 CFE48484 78639157 B13B759A
M∗

1 604B674C B70CB381 D2DDAC0D 320E9BD7 C27F1780 7FEFDA13 1DE43AF2 444344C4
5C1A2CB6 A2C2CFE6 E7CDEF63 4977E095 129CAD10 C7E48484 50639157 B13B759E

Chaining values and differences
h1 2B0283FF 1E8DD54E DEB06917 E978C73E 19AE1EEB
h∗

1 2B0283FF 5E8DD54E FEB06917 E978C73E 19AE1EEB
h′

1 00000000 40000000 20000000 00000000 00000000
M2 E63C47F7 0AB5F259 47DE1E6B 09E06877 6229CC42 604CF1AB 9B14B8F3 7261186C

1A5370F9 822E13EB FB7157EF 6B0919C5 1F3D744B FA4DE198 FBB10C06 FDA3C3E9
M∗

2 C63C47F7 0AB5F25D 47DE1E6B 01E06873 6A29CC42 604CF1AF 8314B8F3 7261186A
225370F9 A62E13EB F77157EB 470919C5 173D744B F24DE198 D3B10C06 FDA3C3ED

Common chaining value
h2 F8C3A3AF 9386BE31 433ABEA3 E5467C05 0BD7EF08

Table 24. Probabilities and complexities of the 40-round SHA-1 attack.

Block p22→35 p35→�T pconnect ptotal Complexity

1 2−8 2−5

2−4 2−17 215

2 2−8 2−4

1 2−12 210

results (SHA-1 or NO-IF) the table lists the Hamming weight of the disturbance vector
from round 20 for three cases: the first, marked by HW, is the Hamming weight of the
best disturbance vector predicting a single-block collision. The second, marked by 2B,
is the best disturbance vector predicting a two-block collision; and the last, marked by
NC, is the best disturbance vector predicting a near-collision. The numbers in boldface
are the number of disturbances in the disturbance vectors we actually used to attack
the reduced version. We note that the disturbance vectors that are listed under the 2B
column are used in a two-block attack with the technique described in Sect. 8.1, i.e., the
same disturbance vector is used to construct the characteristic of the first and second
block.

Cryptanalysis of SHA-0 and Reduced SHA-1 155

Table 25. The hamming weights of the best disturbance vectors that we found (counted from round 20).

Rounds SHA-1 NO-IF Rounds SHA-1 NO-IF
HW 2B NC HW 2B NC HW 2B NC HW 2B NC

34 2 2 48 28 25 13 14 14 13
35 7 6 3 4 5 3 49 32 22 15 14 14 14
36 7 3 3 5 3 3 50 35 29 16 14 14 14
37 11 9 3 5 5 3 51 38 26 19 15 15 15
38 12 7 4 8 6 3 52 42 32 19 16 16 15
39 12 11 5 8 8 4 53 42 32 20 16 16 16
40 19 5 5 11 5 5 54 39 42 24 36 34 16
41 17 14 6 12 10 6 55 39 48 27 39 38 16
42 17 14 7 13 11 7 56 41 39 28 41 29 16
43 17 15 8 17 13 7 57 61 56 29 42 23 17
44 19 17 9 15 15 8 58 58 52 29 42 17 17
45 25 16 10 15 15 10 59 64 53 29 51 17
46 25 18 10 23 13 10 60 45 45 29 18
47 26 23 12 24 21 11 61 45 38 30 19

Table 26. The disturbance vector of 53-round SHA-1.

Rnd. D Rnd. D Rnd. D Rnd. D

−5 00000000 −1 00000000 3 10000000 7 D0000000
−4 00000000 0 00000000 4 00000000 8 00000000
−3 00000000 1 00000000 5 80000000 9 40000000
−2 00000000 2 00000000 6 20000000 10 A0000000

The complexities of the attacks can be approximated by the number of disturbances
in rounds where the IF, XOR, and MAJ functions are used. For each disturbance where
the IF, XOR, and MAJ functions are in use we approximate probabilities of 2−5, 2−2,
and 2−4, respectively. The overall complexity is then 25·HWIF+2·HWXOR+4·HWMAJ , where
HW is the Hamming weight of the disturbance vector from round 20 and on (i.e., the
HW value in Table 25). A less accurate approximation of 23·HW might be used.

Using this approximation, we can see that disturbance vectors with Hamming weight
of up to 26 predict collisions with complexity (slightly) faster than the generic birthday
attack (as 23·26 = 278 < 280). We marked the location of this threshold by underlines.
Hamming weights much smaller than 26, predict much more practical complexities, and
as can be seen from the table, Hamming weights up to about 10 require only a short
computation on a personal computer (all the found collisions marked in boldface were
found within a few seconds of computation).

According to Table 25, SHA-1 reduced to 53 rounds can be attacked with a complexity
less than a generic attack. It is a single block attack and the disturbance vector from which
the characteristic is derived is given in Table 26. This disturbance vector has consecutive
disturbances in two locations: the first is bit 29 of D10 and D11, and the second is bit 31
of D15 and D16. From Round 20 to Round 52, this disturbance vector has 16 distur-
bances, thus the complexity of a characteristic which is derived from it is approximated
by 260.

156 E. Biham et al.

Table 27. The disturbance vector of 58-round SHA-1.

Rnd. D Rnd. D Rnd. D Rnd. D

−5 00000000 −1 00000000 3 20000000 7 A0000000
−4 00000000 0 10000000 4 D0000000 8 20000000
−3 00000000 1 00000000 5 00000000 9 80000000
−2 00000000 2 80000000 6 40000000 10 40000000

The reduced version of SHA-1 with the largest number of rounds we could attack
with a complexity less than a generic attack is SHA-1 reduced to 58 rounds. This attack
is a two-block attack, and its characteristic is derived from the disturbance vector which
is given in Table 27. We note that the disturbance vectors of 53-round and 58-round
SHA-1 are derived from the same stream of the LFSR (the latter starts at the consequent
three rounds of the former). This disturbance vector has consecutive disturbances in
three locations: bit 29 of D7 and D8, bit 31 of D12 and D13 and bit 31 of D13 and D14.
From Round 20 it has 17 disturbances and the approximated complexity of a two-block
attack that uses characteristics which are derived from this disturbance vector, is 278.

9. Advances in Cryptanalysis of Hash Functions

At the rump session of CRYPTO 2004 two novel techniques for the cryptanalysis of
hash functions were presented by Wang et al. The first technique applies differential
cryptanalysis by a simultaneous usage of subtraction and XOR differences. This tech-
nique called precise characteristic is used to construct a characteristic that possibly has
a low probability in the first rounds, and relatively high probability in later rounds. Given
such a characteristic, the second technique shows how to use it to construct an efficient
attack. This technique called message modification technique constructs pairs of mes-
sages that conform to the characteristic up to at least Round R with a low complexity
(even though the probability of the characteristic in these rounds may be very low).
Hence, the complexity of the attack is affected only by the relatively high probability in
rounds beyond R.

These techniques are applicable to any hash function of the MD4 and SHA families.
Wang demonstrated their usefulness on MD4 (in [35]), MD5 (in [37]), RIPEMD-128
(in [35]), SHA-0 (in [38]), SHA-1 (in [39] and [40]), and HAVAL (in [41]).

In the context of SHA-0 and SHA-1 the construction of a characteristic starts with a
selection of a disturbance vector. Some of the candidate disturbance vectors have low
Hamming weights in rounds beyond Round 20, thus a high probability characteristic
may be derived. However, they also have disturbances at D−5, . . . ,D−1 (that represent
differences in the initial values), or consecutive disturbances at the first 17 rounds. In [7]
we showed techniques that locally use the non-linear behavior of the addition mod 232

and IF operations to make some of these disturbance vectors usable. Wang et al. show
how the analysis by subtraction and XOR differences facilitates the usage of the non-
linear addition mod 232 and IF operations such that in practice most disturbance vectors
may be selected. In particular, they show how to use disturbance vectors which were
considered unusable by previous techniques.

Cryptanalysis of SHA-0 and Reduced SHA-1 157

Given a disturbance vector with disturbances that represent differences in the ini-
tial values or consecutive disturbances, it is shown how to derive a characteristic.
In the first rounds (usually Rounds 0,…,9) the differences of the messages cannot
generate differences in the reduced state vector that have the form of local collision
sequences. Therefore, the non-linear behavior of the addition mod 232 and IF opera-
tions are used to control the differences of the state vector. In these rounds the subtrac-
tion and XOR differences of the characteristic represent these controlled differences.
The usage of the non-linear behavior of the functions imposes many conditions on
the values of certain bits, and substantially reduce the probability of the characteristic.
Therefore, the characteristic is designed to minimize the number of rounds where the
differences of the reduced state vector are controlled by the non-linear behavior of the
functions.

Typically, starting around Round 10 (and up to the last round) the differences of the
reduced state follow the disturbance vector, and the differences of the characteristic are
defined accordingly. The analysis of subtraction and XOR differences in these rounds
facilitate the selection of differences that give an overall high probability, and in partic-
ular higher than the probabilities of characteristics that use only XOR differences. The
complete characteristic is expressed in [39] and [40] as conditions on values of message
bits, state bits, and their differences.

Given a characteristic, a collision search starts by satisfying the conditions on the mes-
sage bits. The remaining bits of the 16 words (that were not involved in the message-bit
conditions) are randomly selected, and the conditions on the state bits are gradually
satisfied from Round 0 to Round 15 by the message modification technique. The mes-
sage modification technique complements a message bit for each unsatisfied condition.
Advanced message modification technique is applied in Round 16 and up to Round 26.
In this technique a control path is defined to correct each unsatisfied condition. A control
path consists of one or more message and state bits, whose complementation corrects
some yet unsatisfied condition, and does not affect any already satisfied conditions. The
claimed complexity of these controlled corrections of all the conditions up to Round 25,
is two SHA-1 calls [40]. From round 26 to the last round the remaining conditions are
satisfied at random (and their success is not controlled by the attacker).

The complexity of an attack that uses these techniques is determined by two factors:
The complexity of generating a pair of messages that follows the characteristic up to
Round 26, and the number of conditions beyond Round 26. The attack is a two-block
attack. The characteristics of the first and second blocks are constructed from the same
disturbance vector. The claimed total complexity of [40] is 263.

In [13] De Cannière and Rechberger present an algorithm to find high probability
characteristics of SHA-1. Their idea is based on an algorithm that estimates the com-
plexity of a given characteristic, which is then used as a starting point to find more
complex characteristics that minimize the complexity. They used their ideas and found
a collision of SHA-1 reduced to 64 rounds with a complexity 232. In [14] De Cannière,
Mendel and Rechberger described a better characteristic, and used it to find a collision
of SHA-1 reduced to 70 rounds.

In 2007 the neutral bits technique was enhanced by Joux and Peyrin in [23]. In their
paper they show how the amplified boomerang attack [34] of block ciphers is adapted to
cryptanalyze hash functions using ideas from the neutral bits technique. The enhance-

158 E. Biham et al.

ment in the context of SHA-1 is done by selecting a pair of messages that conforms to
R rounds, and modify the pair by complementing certain groups of bits which are called
auxiliary differentials. These auxiliary differentials are used to correct unsatisfied con-
ditions at rounds beyond Round R. The claimed improvement to the attack complexity
on SHA-1 is by a factor of 2−5.

The techniques of De Cannière et al. [13,14] were improved in 2010 by Grech-
nikov [21]. His improvements include speed optimization and an improvement in the
search for characteristics. With these improvements he was able to find 2-block col-
lisions of SHA-1 reduced to 72 and 73 rounds. In 2011 Grechnikov and Adinetz [22]
optimized the search technique of [21] to run on a GPU cluster, and they found a collision
of SHA-1 reduced to 75 rounds. We note that both [21] and [22] report that their results
were received earlier than expected. We also note that we had a similar experience in
our attacks.

In [11] Chen introduces a characteristic and a collision search called second-order
differential that leads to a collision of SHA-1 reduced to 72 rounds with a complexity of
250 SHA-1 calls. It is a 2-block attack in which the first block equals in both runs, and
the differences are in the second message block. This attack can be extended to a 3-block
attack on the full SHA-1 in which the same disturbance vector (of the 72-round attack) is
used to construct the characteristics of the second and third blocks. The selection of this
disturbance vector was made such that it takes into account the dependencies of the local
collision sequences and it is one of a few optimal disturbance vectors. The complexity
of this attack is estimated to be 258 calls of SHA-1.

In [33] Stevens analyzes the dependency of local collision sequences (which were
assumed independent in most previous attacks). He introduces techniques that enable
to determine the theoretical maximum success probability for a given set of local col-
lisions, and the smallest set of message conditions that attains this probability. Using
these techniques a near-collision attack of SHA-1 was found with a claimed complexity
equivalent to 257.5 SHA calls. This near-collision may be used to find a collision of
SHA-1 with a complexity 261.

10. Summary

This paper presents various techniques for the cryptanalysis of hash functions. The
usefulness of these techniques is demonstrated on SHA-0 and SHA-1, but they are
applicable to other hash functions as well.

The neutral bits technique shows that a poor avalanche effect of a round function leads
to the elimination of the probabilistic behavior of many rounds.

The multi-block technique is applicable to any iterative hash function. In the context
of Merkle–Damgård construction it shows that the analysis of both inputs of the com-
pression function (the message block and chaining variable) may result in a much more
efficient attack. We also show that a two-block attack in which the same difference is
used in the first and second block, is usually the most efficient.

In the case of SHA-0 we show that the collision resistance of a compression function
is not monotonous with the number of rounds. We conclude that adding rounds to a
compression function might result in a weaker function.

Cryptanalysis of SHA-0 and Reduced SHA-1 159

The discussion on consecutive disturbances reveals some weaknesses of the non-linear
IF, MAJORITY, and addition modulo 232 functions. Since these functions are used in
many other algorithms, these techniques might be found useful to attack other algorithms
as well.

Some of the techniques for the cryptanalysis of hash functions we discussed in this
paper are also useful for the cryptanalysis of stream ciphers. We expect that with some
adaptations they will be useful for the cryptanalysis of block ciphers as well.

Acknowledgements

This research was supported in part by the Israel MOD research and Technology unit.

References

[1] J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, C. Rechberger, New features of Latin dances, in FSE
2008. LNCS, vol. 5086 (Springer, Berlin, 2008), pp. 470–488

[2] E. Biham, New results on SHA-0 and SHA-1, Stafford Tavares invited lecture in SAC 2004. http://www.
cs.technion.ac.il/~biham/Reports/Slides/invited-talk-sac-2004.ps.gz

[3] E. Biham, R. Chen, Near-collisions of SHA-0, in Advances in Cryptology, Proceedings of CRYPTO
2004. LNCS, vol. 3152 (Springer, Berlin, 2004), pp. 290–305

[4] E. Biham, R. Chen, New results on SHA-0 and SHA-1, in CRYPTO 2004 Rump Session
[5] E. Biham, A. Shamir, Differential cryptanalysis of Snefru, Khafre, REDOC-II, LOKI and Lucifer, in

Advances in Cryptology, Proceedings of CRYPTO 1991. LNCS, vol. 576 (Springer, Berlin, 1992), pp.
156–171

[6] E. Biham, A. Shamir, Differential Cryptanalysis of the Data Encryption Standard (Springer, Berlin,
1993)

[7] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, W. Jalby, Collisions of SHA-0 and reduced SHA-1,
Advances in Cryptology, Proceedings of EUROCRYPT 2005. LNCS, vol. 3494 (Springer, Berlin, 2005),
pp. 36–57

[8] B. den Boer, A. Bosselaers, An attack on the last two rounds of MD4, in Advances in Cryptology,
Proceedings of CRYPTO 1991. LNCS, vol. 576 (Springer, Berlin, 1992), pp. 194–203

[9] B. den Boer, A. Bosselaers, Collision of the compression function of MD5, in Advances in Cryptology,
Proceedings of EUROCRYPT 1993. LNCS, vol. 765 (Springer, Berlin, 1994), pp. 293–304

[10] F. Chabaud, A. Joux, Differential collisions in SHA-0, in Advances in Cryptology, Proceedings of
CRYPTO ’98. LNCS, vol. 1462 (Springer, Berlin, 1999), pp. 56–71

[11] R. Chen, New Techniques for Cryptanalysis of Cryptographic Hash Functions, Ph.D. thesis, Tech-
nion, 2011. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2011/PHD/PHD-2011-08.pdf
and https://www.iacr.org/phds/index.php?p=detail&entry=651

[12] Ivan B. Damgård, A design principle for Hash functions, Advances in Cryptology, Proceedings of
CRYPTO 1989. LNCS, vol. 435 (Springer, Berlin, 1990), pp. 416–427

[13] C. De Cannière, C. Rechberger, Finding SHA-1 characteristics: general results and applications, in
Advances in Cryptology, Proceedings of ASIACRYPT 2006. LNCS, vol. 4284 (Springer, Berlin, 2006),
pp. 1–20

[14] C. De Cannière, F. Mendel, C. Rechberger, Collisions for 70-Step SHA-1: on the full cost of collision
search, in Advances in Cryptology, Proceedings of SAC 2007. LNCS, vol. 4876 (Springer, Berlin, 2007),
pp. 56–73

[15] H. Dobbertin, Cryptanalysis of MD4. J. Cryptol.11, 253–271 (1998)
[16] H. Dobbertin, Cryptanalysis of MD5 compress, in EUROCRYPT 1996 Rump Session
[17] RIPE, Integrity primitives for secure information systems, in Final Report of RACE Integrity Primitives

Evaluation (RIPE Race 1040). LNCS, vol. 1040 (Springer, Berlin, 1995)
[18] H. Dobbertin, A. Bosselaers, B. Preneel, RIPEMD-160: a strengthened version of RIPEMD, in Proceed-

ings of Fast Software Encryption. LNCS, vol. 1039 (Springer, Berlin, 1996), pp. 71–82

http://www.cs.technion.ac.il/~biham/Reports/Slides/invited-talk-sac-2004.ps.gz
http://www.cs.technion.ac.il/~biham/Reports/Slides/invited-talk-sac-2004.ps.gz
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2011/PHD/PHD-2011-08.pdf
https://www.iacr.org/phds/index.php?p=detail&entry=651

160 E. Biham et al.: Cryptanalysis of SHA-0 and Reduced SHA-1

[19] S. Fischer, S. Khazaei, W. Meier, Chosen IV statistical analysis for key recovery attacks on stream
ciphers, in AFRICACRYPT 2008. LNCS, vol. 5023 (Springer, Berlin, 2008), pp. 236–245

[20] A. Joux, Collisions in SHA-0, in CRYPTO 2004 Rump Session
[21] E.A. Grechnikov, Collisions for 72-step and 73-step SHA-1: improvements in the method of character-

istics. Cryptology, ePrint Archive 2010/413
[22] E.A. Grechnikov, A.V. Adinetz, Collision for 75-step SHA-1: intensive parallelization with GPU. Cryp-

tology, ePrint Archive 2011/641
[23] A. Joux, T. Peyrin, Hash functions and the (amplified) Boomerang attack, in Advances in Cryptology,

Proceedings of CRYPTO 2007. LNCS, vol. 4622 (Springer, Heidelberg, 2007), pp. 244–263
[24] S. Khazaei, W. Meier, New directions in cryptanalysis of self-synchronizing stream ciphers, in

INDOCRYPT 2008. LNCS, vol. 5365. (Springer, Berlin, 2008), pp 15–26
[25] R. Merkle, One-way Hash function and DES, in Advances in Cryptology, Proceedings of CRYPTO 1989.

LNCS, vol. 435 (Springer, Berlin, 1990), pp. 428–446
[26] R. Merkle, A fast software one-way Hash function. J. Cryptol.3(1), 43–58 (1990)
[27] S. Miyaguchi, K. Ohta, M. Iwata, 128-bit hash function (N-Hash), in Proceedings of SECURICOM’90,

March 1990, pp. 123–137
[28] National Institute of Standards and Technologies, Secure Hash standard, in Federal Information Process-

ing Standards, FIPS-180 (U.S. Department of Commerce, Washington, 1993)
[29] National Institute of Standards and Technologies, Secure Hash standard, in Federal Information Process-

ing Standards, FIPS-180-1 (U.S. Department of Commerce, Washington, 1995)
[30] V. Rijmen, E. Oswald, Update on SHA-1, in RSA Crypto Track 2005. LNCS, vol. 3376 (Springer,

Heidelberg, 2005), pp. 58–71
[31] R. Rivest, The MD4 message-digest algorithm, in Advances in Cryptology, Proceedings of CRYPTO

1990. LNCS, vol. 537 (Springer, Berlin, 1990), pp. 303–311
[32] R. Rivest, The MD5 message-digest algorithm, in Network Working Group Request for Comments: 1321,

April 1992
[33] M. Stevens, New collision attacks on SHA-1 based on optimal joint local-collision analysis, in Proceed-

ings of EUROCRYPT 2013. LNCS, vol. 7881 (Springer, Berlin, 2013), pp. 245–261
[34] D. Wagner, The Boomerang attack, in Advances in Cryptology, Proceedings of FSE 1999. LNCS, vol.

1636 (Springer, Berlin, 1999), pp. 156–170
[35] X. Wang, X. Lai, H. Chen, X. Yu, Cryptanalysis of the Hash functions MD4 and RIPEMD, in Advances

in Cryptology, Proceedings of EUROCRYPT 2005. LNCS, vol. 3494 (Springer, Berlin, 2005), pp. 1–18
[36] X. Wang, D. Feng, X. Lai, H. Yu, Collisions for Hash functions MD4, MD5, in HAVAL-128 and RIPEMD.

http://eprint.iacr.org/2004/199
[37] X. Wang, H. Yu, How to break MD5 and other Hash functions, in Advances in Cryptology, Proceedings

of EUROCRYPT 2005. LNCS, vol. 3494 (Springer, Berlin, 2005), pp. 19–35
[38] X. Wang, H. Yu, Y.L. Yin, Efficient collision search attacks on SHA-0, in Advances in Cryptology,

Proceedings of CRYPTO 2005. LNCS, vol. 3621 (Springer, Berlin, 2005), pp. 1–16
[39] X. Wang, H. Yu, Y.L. Yin, Finding collisions in the full SHA-1, in Advances in Cryptology, Proceedings

of CRYPTO 2005. LNCS, vol. 3621 (Springer, Berlin, 2005), pp. 17–36
[40] X. Wang, A.C. Yao, F. Yao, Cryptanalysis on SHA-1, Presented by Adi Shamir at CRYPTO 2005 rump

session. http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
[41] H. Yu, X. Wang, A. Yun, S. Park, Cryptanalysis of the full HAVAL with 4 and 5 passes, in Advances in

Cryptology, Proceedings of FSE 2006. LNCS, vol. 4047 (Springer, Berlin, 2006), pp. 89–110
[42] Y. Zheng, J. Pieprzyk, J. Sebbery, HAVAL—a one-way algorithm with variable length of output, in

Asiacrypt 1992. LNCS, vol. 718 (Springer, Berlin, 1993), pp. 83–104

http://eprint.iacr.org/2004/199
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf

	Cryptanalysis of SHA-0 and Reduced SHA-1
	1. Introduction
	1.1. Previous Attacks on MD4/SHA Family of Hash Functions
	1.2. Our Contribution
	1.3. Results
	1.4. Paper Organization

	2. Description of SHA-0, SHA-1, and Notations
	2.1. SHA-0 and SHA-1 Algorithms
	2.2. Notations

	3. The Basic Attack on SHA-0
	3.1. A Local Collision Sequence
	3.1.1. Two Consecutive Disturbances

	3.2. A Characteristic and a Disturbance Vector
	3.2.1. A Construction of Characteristics from Disturbance Vectors
	3.2.2. Compact Representations of a Disturbance Vector calD, Chaining Differences ΩP, and ΩT, and State Difference si

	3.3. Selecting a Disturbance Vector for the Attack
	3.4. The Chaining Differences Transition Graph
	3.5. A Characteristic of a Single-Block Attack of SHA-0
	3.6. Constructing a Pair for the Attack
	3.7. Complexity Evaluation

	4. The Neutral Bits Technique
	4.1. A Collision Attack Using a 2-Neutral Set
	4.2. Finding a 2-Neutral Set
	4.2.1. Finding Neutral Bits and Optimizing a Pair
	4.2.2. Finding Neutral Pairs and 2-Neutral Sets

	5. The Complexity is not Monotonous with the Number of Rounds
	6. The Multi-Block Tool
	6.1. Solving Initial State Incompatibility by an Additional Block
	6.2. Two-block Collisions
	6.3. Characteristics For a Two-Block Attack
	6.4. Complexity Evaluation
	6.5. Collisions with More than Two Blocks
	6.6. Revisiting Characteristics and Disturbance Vectors

	7. A Four-Block Collision of SHA-0
	7.1. Complexity Evaluation

	8. Attacks on Reduced Versions of SHA-1
	8.1. Selecting a Disturbance Vector for the Attack
	8.2. Constructing a Two-Edge Path with the Same Disturbance Vector
	8.3. A Collision of SHA-1 Reduced to 40 Rounds
	8.4. Strength of Reduced Versions of SHA-1 with More Rounds

	9. Advances in Cryptanalysis of Hash Functions
	10. Summary
	Acknowledgements
	Reference

