
J. Cryptol. (2015) 28: 745–768
DOI: 10.1007/s00145-013-9176-3

Almost-Everywhere Secure Computation with Edge
Corruptions∗

Nishanth Chandran†

Microsoft Research, 9, Lavelle Road, Bangalore, India
nichandr@microsoft.com

Juan A. Garay‡

Yahoo Labs, 701 First Avenue, Sunnyvale, CA, USA
garay@yahoo-inc.com

Rafail Ostrovsky§

Department of Computer Science and Department of Mathematics, UCLA, 3732D Boelter Hall,
Los Angeles, CA, USA

rafail@cs.ucla.edu

Communicated by Eike Kiltz

Received 23 April 2012
Online publication 19 December 2013

Abstract. We consider secure multi-party computation (MPC) in a setting where the
adversary can separately corrupt not only the parties (nodes) but also the communi-
cation channels (edges), and can furthermore choose selectively and adaptively which
edges or nodes to corrupt. Note that if an adversary corrupts an edge, even if the two
nodes that share that edge are honest, the adversary can control the link and thus deliver
wrong messages to both players. We consider this question in the information-theoretic
setting, and require security against a computationally unbounded adversary.

In a fully connected network the above question is simple (and we also provide an
answer that is optimal up to a constant factor). What makes the problem more chal-

∗ A version of this paper, entitled “Edge Fault Tolerance on Sparse Networks,” appears in the proceedings
of the 39th International Colloquium on Automata, Languages and Programming (ICALP 2012); this version
presents a more cryptographically oriented treatment, and also includes proofs and additional details.

† N. Chandran work done while the author was at Microsoft Research, Redmond and AT&T Labs—
Security Research Center.

‡ J.A. Garay work done while the author was at AT&T Labs—Research.
§ R. Ostrovsky research supported in part by NSF grants CNS-0830803; CCF-0916574; IIS-1065276;

CCF-1016540; CNS-1118126; CNS-1136174; US–Israel BSF grant 2008411, OKAWA Foundation Research
Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award,
Teradata Research Award, and Lockheed–Martin Corporation Research Award. This material is also based
upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval
Research under Contract N00014-11-1-0392. The views expressed are those of the author and do not reflect
the official policy or position of the Department of Defense or the US Government.

© International Association for Cryptologic Research 2013

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-013-9176-3&domain=pdf
mailto:nichandr@microsoft.com
mailto:garay@yahoo-inc.com
mailto:rafail@cs.ucla.edu

746 N. Chandran et al.

lenging is to consider the case of sparse networks. Partially connected networks are
far more realistic than fully connected networks, which led Garay and Ostrovsky [Eu-
rocrypt’08] to formulate the notion of (unconditional) almost everywhere (a.e.) secure
computation in the node-corruption model, i.e., a model in which not all pairs of nodes
are connected by secure channels and the adversary can corrupt some of the nodes
(but not the edges). In such a setting, MPC among all honest nodes cannot be guar-
anteed due to the possible poor connectivity of some honest nodes with other honest
nodes, and hence some of them must be “given up” and left out of the computation.
The number of such nodes is a function of the underlying communication graph and
the adversarial set of nodes.

In this work we introduce the notion of almost-everywhere secure computation with
edge corruptions, which is exactly the same problem as described above, except that
we additionally allow the adversary to completely control some of the communication
channels between two correct nodes—i.e., to “corrupt” edges in the network. While it
is easy to see that an a.e. secure computation protocol for the original node-corruption
model is also an a.e. secure computation protocol tolerating edge corruptions (albeit for
a reduced fraction of edge corruptions with respect to the bound for node corruptions),
no polynomial-time protocol is known in the case where a constant fraction of the
edges can be corrupted (i.e., the maximum that can be tolerated) and the degree of the
network is sublinear.

We make progress on this front, by constructing graphs of degree O(nε) (for ar-
bitrary constant 0 < ε < 1) on which we can run a.e. secure computation protocols
tolerating a constant fraction of adversarial edges. The number of given-up nodes in
our construction is μn (for some constant 0 < μ < 1 that depends on the fraction of
corrupted edges), which is also asymptotically optimal.

Key words. Almost-everywhere secure computation, bounded-degree network, Se-
cure message transmission, Byzantine agreement.

1. Introduction

Secure multi-party computation (MPC) [3,7,16,27] is perhaps the most popular
paradigm in the area of cryptographic protocols. It requires that n parties compute some
function f of their inputs without revealing any additional information, even when some
of them may behave arbitrarily. More specifically, n parties P1, . . . ,Pn, each holding
input xi , must run a protocol such that at the end of the protocol, all “honest” (i.e., not
misbehaving) parties obtain f (x1, . . . , xn), while any set of colluding malicious parties
Tnodes ⊂ [n] learn nothing more than what can be learnt from f (x1, . . . , xn) and the xi

values for all Pi ∈ Tnodes.
Traditionally, MPC protocols assume that any two of the n parties share a pri-

vate and authenticated channel which they can use for communication. In the case of
information-theoretic MPC, the channel between two honest nodes is assumed to be a
secure physical link which the adversary cannot eavesdrop or tamper with; in the com-
putational case, this channel is provided via a public-key infrastructure.

However, in many settings, the assumption of incorruptible pairwise secure channels
is unrealistic and overoptimistic. Think for example, of the communication subsystem
of a networked computer (e.g., network interface controller card) being infected by
malicious software designed to disrupt or alter operation. This would affect the commu-
nication between honest parties. Or worse, of a scenario where the secret keys shared
by two parties in the system is compromised, yet the parties themselves are honest. In

Almost-Everywhere Secure Computation with Edge Corruptions 747

fact, it is much easier for an adversary to corrupt a communication channel (as it only
requires the adversary to capture the session key used for communicating over that link)
than it is to corrupt and take complete control over the end terminal. In light of this, one
first question we can ask is whether we can obtain MPC protocols when both parties as
well as communication channels are corrupted.

Naturally, we must assume some bound on the number of parties as well as the num-
ber of communication channels that the adversary can corrupt. In this work, we focus
our attention on information-theoretic protocols (as in the context of large networks re-
quiring nodes to maintain certified public keys of all other nodes might be unrealistic).
First, observe that we cannot hope to obtain a protocol that is secure against an adver-
sary that corrupts at least 1

3

(
n
2

)
of the

(
n
2

)
communication channels (a constant fraction

of the edges in the network), even if all the parties are honest. This is because such
an adversary can effectively “simulate” the corruption of n

3 out of the n parties (in the
standard setting where only parties can be corrupted),1 and in this case information-
theoretically secure MPC is known to be impossible [3]. On the positive side, it is quite
easy to construct protocols that asymptotically match these bounds of edge corruptions;
i.e., protocols tolerating corruption of a constant fraction of communication channels as
well as a constant fraction of parties (for constants < 1

3).2

However, all the protocols discussed so far assume that any two parties share a secure
channel to begin with! (These channels may later on be corrupted, but the connectivity
of every party is still n.) For protocols that are executed over large networks such as
the Internet, in which nodes are typically connected by a communication graph of small
degree, this assumption is unreasonable. Thus, we turn our attention to the problem
of constructing information-theoretically secure MPC protocols (secure against corrup-
tion of both parties and communication channels) in which parties (or nodes) have low
connectivity.

1.1. Almost-Everywhere Secure Computation

Before we describe our model in more detail, we remark that the setting of constructing
protocols on networks that are not fully connected is not new. Obtaining protocols on
networks that are of low degree (in the presence of node corruptions alone), was first

1 Note that to simulate a node corruption via only edge corruptions, simply corrupt all edges incident
on a corrupt node u (instead of corrupting node u itself). For protocols that do not consider privacy, such
a simulation is perfect as an adversary corrupting all edges incident on u can control all messages sent and
received by u. In the case of protocols that do consider privacy, one can obtain a perfect simulation by simply
requiring the node, in the protocol, to secret-share its state (which includes input and randomness) to all its
immediate neighbors in the network using a d-out-of-d secret sharing scheme (where d is the degree of the
node in the network).

2 In a fully connected network (where every node shares a [possibly corrupted] edge with every other
node), such a protocol can be obtained by having (honest) nodes simply “simulate” an uncorrupted commu-
nication channel between themselves as follows: to communicate with node v, node u sends the message to
all nodes in the network, and all the nodes then forward this message to v. One can then show that if an ad-
versary corrupts only a constant fraction of edges, then the above protocol is a reliable message transmission
protocol between (most) pairs of uncorrupted nodes, which one can in turn use to build a secure message
transmission protocol as well as a secure computation protocol. Note, however, that such a protocol will, un-
avoidably,“leave out” certain honest parties from the computation. We will discuss this issue in more detail
later on.

748 N. Chandran et al.

considered for the task of Byzantine agreement [19,20] in the seminal work of Dwork,
Peleg, Pippenger, and Upfal [12]. More formally, in the Dwork et al.’s formulation,
the n parties (or nodes) are connected by a communication network G. Nodes that are
connected by an edge in G share a reliable and authentic channel, but other nodes must
communicate via paths in the graphs that may not be available to them (due to the
adversarial “corruption” of some of the nodes).

Naturally, in such a setting, one may not be able to guarantee agreement among all
honest parties; for example, one cannot hope to be able to communicate at all with an
honest party whose neighbors are all adversarial. Given this fact—and ubiquitously—
Dwork et al. termed the new problem almost-everywhere (a.e.) agreement, wherein the
number of such abandoned nodes (which henceforth will be called “doomed”) intro-
duces another parameter of interest, in addition to the degree of the communication
graph (which we wish to minimize), and the number of adversarial nodes that can be
tolerated (which we wish to maximize) in reaching agreement.

Indeed, in [12], Dwork et al. provide a.e. agreement protocols for various classes of
low-degree graphs and bounds on the number of adversarial nodes as well as abandoned
nodes. For example, they construct a graph of constant degree and show an agreement
protocol on this graph tolerating a α

logn
fraction of corrupted nodes (for constant 0 <

α < 1), guaranteeing agreement among (1 − α − μ)n of the honest nodes (for constant
0 < μ < 1). In another construction, they give a graph of degree O(nε) (for constant 0 <

ε < 1) and show an agreement protocol on this graph tolerating a constant α (0 < α < 1)
fraction of corrupted nodes, and again guaranteeing agreement among (1 − α − μ)n

nodes. In a subsequent and remarkable result, Upfal [23] constructed a constant-degree
graph and showed the existence of an a.e. agreement protocol on this graph tolerating a
constant fraction of corrupted nodes, while giving up a constant fraction of the honest
nodes. Unfortunately, the protocol of [23] runs in exponential time (in n).

Garay and Ostrovsky [15] were the first to consider the problem of unconditional
MPC in the context of partially connected networks with adversarial nodes, and ob-
tained results with bounds similar to those in [12]. More recently, Chandran, Garay, and
Ostrovsky [6] constructed a graph of degree O(logk n) (for constant k > 1) and show
an agreement, as well as an MPC protocol on this graph tolerating a constant fraction
of corrupted nodes, while giving up only O(n

logn
) of the honest nodes.

1.2. Almost-Everywhere Secure Computation with Edge Corruptions

All existing work on a.e. agreement and a.e. secure computation mentioned above con-
siders the case where only nodes may be corrupted and misbehave.3 Furthermore, all
existing work, construct specific graphs (of low degree) on which one can obtain an
a.e. secure computation protocol. In an ideal scenario, we would like to construct a.e.
computation protocols on arbitrary adversarially chosen communication networks. Un-
fortunately, this is impossible in general.4 However, we can take a step in this direction

3 In the closely related problem of secure message transmission [11] (and its variants), however, it is
assumed that the “wires” (abstraction of paths in a network) connecting sender and receiver might be corrupted
and misbehave.

4 The adversary could simply design networks where several nodes have extremely poor connectivity and
hence corrupting a few edges could create several disconnected components in the network of small size.

Almost-Everywhere Secure Computation with Edge Corruptions 749

Table 1. A.e. secure computation against edge corruptions from a.e. secure computation against node cor-
ruptions.

Reference Graph degree Frac. of corrupt edges Graph/Agreement protocol Running time

[12,15] O(nε) α
nε ; adaptive Explicit/Deterministic Polynomial

[12,15] O(1) α
logn

; adaptive Explicit/Deterministic Polynomial

[23] O(1) α; adaptive Explicit/Deterministic Exponential
[18] O(logk n) α

logk n
; static Explicit/Randomized Polynomial

[6] O(logk n) α

logk n
; adaptive Explicit/Deterministic Polynomial

[This work] O(nε) α; adaptive Randomized/Deterministic Polynomial

by allowing the adversary to corrupt edges in the network that we design. That is, we
will still construct a specific graph (on which we will obtain a.e. computation protocols);
however, we will allow the adversary to “modify” this graph by corrupting a constant
fraction of edges in it, thereby taking down (and even actively corrupting) certain chan-
nels in the communication network.

In more detail, in this work we will endow the adversary with additional powers
which allow him, in addition to corrupting nodes, to corrupt some of the edges in
the network—i.e., we consider a.e. agreement and computation with edge corruptions.
When he does (corrupt an edge), he is able to completely control the communication
channel between the two honest nodes, from simply preventing them to communicate,
to injecting arbitrary messages that the receiving end will accept as valid. As in the
node-only corruption case, in this case also some of the honest nodes in the network
must be abandoned. In this work, we ask the following question:

Can we obtain a.e. secure computation protocols on a network of low (i.e.,
sublinear) degree when a constant fraction of nodes as well as communica-
tion channels are corrupted?

Which we answer in the affirmative. To put things in perspective, observe that an a.e.
agreement or a.e. secure computation protocol for node corruptions can be readily trans-
formed into a corresponding a.e. protocol also tolerating edge corruptions, albeit for a
reduced fraction of edge corruptions. More specifically, let d be the maximum degree
of any node in a graph G on n nodes that admits an a.e. agreement (a.e. computation)
protocol Π among p < n nodes, in the presence of x corrupt nodes. Then, it is easy to
see that G admits an a.e. agreement (a.e. computation) protocol Π ′ among p nodes in
the presence of x corrupt edges.5 However, this means that the graph will only admit
an agreement/computation protocol for an x

nd
fraction of corrupted edges, as opposed

to an x
n

fraction of corrupted nodes in the former case. Therefore, the result that we
get for the case of edge corruptions using this naïve method is asymptotically weaker
than in the case of node corruptions (except when d is a constant). Indeed, by applying
this method, none of the existing protocols for a.e. agreement/computation against node
corruptions give us a solution tolerating a constant fraction of edge corruptions. This
is depicted in Table 1, where we outline the results one would obtain by applying this
approach to the a.e. agreement/computation protocols for node corruptions of [6,12,15,

5 To simulate an adversary that corrupts an edge (u, v), simply corrupt either node u or v.

750 N. Chandran et al.

18,23], and compare them with the results we obtain in this work. In all the results listed
in the table, 0 < α < 1 is a constant, 0 < ε < 1 can be any arbitrary constant, and k > 1
is a constant.

Note that all the previous results (except for the result obtained as a corollary to [23],
in which the protocol’s running time is exponential) cannot handle the case where we
have a constant fraction of corrupted edges. Here we are precisely interested in this
case. Specifically, we construct the first efficient (i.e., polynomial-time) protocols for
a.e. agreement and a.e. secure computation on graphs with sublinear degree that can
tolerate a constant fraction of edge corruptions. We remark that while the above graph
constructions are deterministic, we construct our graph probabilistically, and our result
holds with high probability. However, a graph satisfying the conditions required for our
protocols to be successful can be sampled with probability 1 − neg(n), where neg(n)

denotes a function that is negligible in n, and furthermore, one can also efficiently check
if the graph thus sampled satisfies the necessary conditions for our protocols.

1.3. Overview of Our Results

We show that for every constant ε, 0 < ε < 1, there exists a graph, call it Gmain, on
n nodes, with maximum degree dm = O(nε), such that it admits a.e. agreement and
a.e. secure computation protocols that guarantee agreement/computation among γmn

honest nodes (for some constant 0 < γm < 1), even in the presence of an αm fraction of
corrupted edges (i.e., at most αmndm

2 corrupted edges), for some constant 0 < αm < 1.
Our protocols work against an adversary that is adaptive (i.e., the adversary can decide
which edges to corrupt on the fly during the protocol after observing messages of honest
parties) and rushing (i.e., in every round, the adversary can decide on its messages after
seeing the messages from the honest parties).

First, note that the problem of a.e. secure computation can be reduced to the problem
of obtaining a public and authentic channel between any two pair of nodes in the set of
privileged nodes (i.e., the set of honest nodes from which the set of doomed nodes have
been excluded6) due to techniques developed in [15], and the problem of a.e. agreement
trivially reduces to the problem of obtaining such a public channel. Hence, our main
focus will be on constructing a protocol for this task. We now outline the high-level
ideas behind our construction:

1. The first step in our construction is to build a graph with higher degree,
O(

√
n logn), on which we obtain a public channel (between any two nodes in

a set of size O(n)) tolerating a constant fraction of corrupted edges.

– To do this, we first observe a property of a graph that is sufficient for such
a construction (besides, obviously, every node having degree O(

√
n logn)),

namely, that any two nodes in the graph have O(log2 n) number of paths of
length 2 between them.

6 Informally, a node is “doomed” if it is not possible for this node to reliably communicate with many
other nodes in the network. The set of doomed nodes in the network is a function of the communication
graph, the adversarial nodes in the network, and the specific communication protocol. See Lemma 2 for a
characterization of doomed nodes in our protocol.

Almost-Everywhere Secure Computation with Edge Corruptions 751

– Second, we observe that the Erdős–Renyi random graph G(n,
logn√

n
) satisfies

the above two properties with high probability. That is, a graph G on n nodes
satisfying the above two properties can be easily sampled by putting an edge
(u, v) in G, independently, with probability p = logn√

n
.

– Once we have a graph satisfying these properties, the construction is fairly
straightforward: to obtain a public channel between any two nodes, say, u and
v, u simply sends the message to all nodes in the network via all the paths
of length 2, and all the nodes then send the message to v, again via all their
paths of length 2. One can then show that if v takes a simple majority of
the received values, then a constant fraction of the nodes can build a public
channel even in the presence of a constant fraction of corrupted edges.

2. Next, we show how to construct a graph, G′, recursively from G ← G(n,
logn√

n
)

above such that the new graph is of size n2 and its degree at most twice that of
G, and yet we can have a public channel on G′ (between every pair of privileged
nodes) tolerating a constant fraction of corrupted edges.

– We construct G′ by taking n “copies” of G to form n “clouds,” and then
connecting the clouds using another copy of G. We connect two clouds by
connecting the ith node in one cloud with the ith node in the other.

– Now our hope is to be able to simulate the communication between two
nodes, u and v, in the following way: u will send the message to all nodes
in its cloud (call this cloud Cu). Cloud Cu will then send the message to
cloud Cv (the cloud which v is a part of). Finally, v will somehow receive the
message from cloud Cv .

– The problem with this approach is that we need to have a protocol that will
allow two clouds to communicate reliably. But clouds themselves are com-
prised of nodes, some of which might be corrupted or doomed; hence, the
transmission from cloud Cu to cloud Cv might end up being unreliable. To
get over this problem, we make use of a specific type of agreement proto-
col known as differential agreement [13], which, informally and whenever
possible, allows parties to agree on the majority value of the honest parties’
inputs. Careful application of this protocol allows us to perform a type of
“error-correction” of the message when it is being transferred from one cloud
to another.

– Combining the above techniques leads us to our main result, the construction
of a public channel between any two nodes in a set of size O(n), on graphs of
degree O(nε) (for all constants 0 < ε < 1), tolerating a constant fraction of
corrupted edges, while giving up μn honest nodes (for a constant 0 < μ < 1).

Our new public channel construction directly gives us an a.e. agreement protocol tol-
erating both node and edge corruptions (with the required parameters), and by applying
our protocol to the construction in [15], we also obtain an a.e. MPC protocol tolerating
both node and edge corruptions for graphs of degree O(nε) and same parameters as
above.

Finally, our work should be viewed as conceptually introducing the model of ad-
versarial edge corruptions in secure computation and Byzantine agreement, as we do

752 N. Chandran et al.

not make any attempts to optimize the constants in the bounds achieved by our proto-
col. As a rough estimate, our a.e. agreement (resp. MPC) protocol on graphs of degree
O(

√
n logn) can tolerate an α < 1

192 fraction of corrupted edges and guarantees agree-
ment/MPC among at least 2

3 rd fraction of the nodes. Regarding efficiency bottlenecks,
executing differential agreement for every hop, as required by our communication pro-
tocol, would qualify as our construction’s most expensive component.

1.4. Related Work

As mentioned above, the problem we consider is most closely related to the problem
of almost-everywhere agreement tolerating node corruptions [5,6,12,23]. To our knowl-
edge, the problem of agreement or secure computation on networks with faulty (Byzan-
tine or benign) edges has been only considered before either in the setting of random
faults or where there are limited edge faults in a complete network. We now present a
brief overview of other related works.

Information-Theoretic Setting. The work of Lamport, Shostak, and Pease [19] intro-
duced the problem of Byzantine agreement and showed that a solution to the problem
(in the fully connected setting) exists if and only if more than two thirds of the parties
are honest. Dolev [10] and Dolev et al. [11] were the first to consider the issue of con-
nectivity in executing distributed tasks and showed that if there are t faulty processors
in a network, then every pair of processors can communicate reliably if and only if ev-
ery node has connectivity at least 2t + 1 (using a protocol for reliable communication,
one can then construct protocols for Byzantine agreement). This work also assumes that
whenever a connection is present between two nodes, the connection is reliable and not
under the control of an adversary (unlike in our work).

Regarding work on edge corruptions, Diks and Pelc [9] and Chlebus et al. [8] con-
sider the problem of obtaining an agreement protocol (among all nodes) in a complete
network when every edge in the network can fail independently with constant probabil-
ity pf (this in turn means that the expected degree of every node is linear (in n)). These
works, apart from only considering random faults, also deal only with non-Byzantine (or
non-malicious) faults. The work of Pelc [21] also considers only random edge corrup-
tions (where the failure probability is a constant less than 0.29), but considers Byzantine
faulty edges. Shanbhogue and Yung [22] study the necessary and sufficient conditions
for asynchronous agreement protocols among n nodes on a complete graph in the pres-
ence of Byzantine edges (and show a tight upper and lower bound of �n−2

2 	 on the
total number of corrupted edges). Similarly, the work of Yan et al. [24,26] also consid-
ers malicious faulty links in complete networks with the aim of constructing protocols
for optimal-round Byzantine agreement, while Wang and Yan [25] additionally con-
sider fault detection in a similar setting. Berman, Diks and Pelc [4] consider agreement
on protocols with random Byzantine edge faults (with a probability of failure < 1

2) and
show a broadcasting algorithm that works for n nodes in time O(logn), with probability
of correctness 1 − 1

n
.

Zikas, Hauser and Maurer [28] consider a model of secure computation where an
adversary can, in addition to corrupting parties, also block honest parties’ outgoing or
incoming messages. Their setting differs from ours in the following two ways. Firstly,

Almost-Everywhere Secure Computation with Edge Corruptions 753

their model allows the adversary to only block messages of honest parties, whereas, in
our setting, when an adversary takes over a channel, he completely controls all messages
being communicated on it. Secondly, their setting allows the adversary to either block a
party’s all incoming or outgoing messages, or none, whereas we allow the adversary to
selectively corrupt the edges incident on any node.

Computational Setting. We first remark that, in the computational setting, if we as-
sume a reliable public-key infrastructure, then executing distributed tasks (and perform-
ing secure computation) among most honest nodes over low-degree networks, reduces
to whether or not the honest nodes form a connected component (after removing adver-
sarially corrupted nodes and edges). In order to overcome the barrier on the maximum
number of nodes that can be corrupted for the case of reliable message transmission in
the information-theoretic setting [10,11], Beimel and Franklin [2], considered a model
in which some pairs of processors (other than the pairs that are already connected by
reliable channels), are also given authentication keys. The reliable channels define a nat-
ural “communication graph” and the pairs of parties sharing authentication keys define
a natural “authentication graph.” Beimel and Franklin show that every pair of proces-
sors can communicate reliably if and only if all nodes in the communication graph have
connectivity at least t + 1 and the union of the two graphs has connectivity at least
2t + 1.

The work of Barak et al. [1] considered the problem of secure computation in the
computational setting where parties are not authenticated to each other by any means.
In this setting, parties wish to run secure computation protocols when no two of them
share an authenticated channel, and, furthermore, the adversary controls the delivery
of messages. In this setting, the adversary can trivially partition the parties into vari-
ous sets of parties, with each set running its own “secure” computation protocol. Barak
et al. show that, essentially, this is all that an adversary can do. We remark that our
setting is different: while some pairs of parties share authenticated channels in our set-
ting (namely, those that are connected by an edge in the communication network), we
wish to include a much larger fraction of honest nodes in the computation protocol (by
making use of other nodes in the network to perform secure message transmission).

Finally, the work of Gordon et al. [17] considered the problem of broadcast with a
partially compromised public-key infrastructure. Their work is limited to networks that
are initially fully connected (and in the computational setting).

2. Model, Definitions, and Building Blocks

Let G = (V,E) denote a graph with n nodes (i.e., |V| = n). The nodes of the graph
represent the processors (parties) participating in the protocol, while the edges repre-
sent the communication links connecting them. We assume a synchronous network and
that the protocol communication is divided into rounds. In every round, all parties can
send a message on all of their communication links (i.e., on all edges incident on the
corresponding node); these messages are delivered before the next round.

An adversary A can “corrupt” a set of nodes (as in taking over them and completely
control their behavior), Tnodes ⊂ V , as well as a set of edges, Tedges ⊂ E , in the network
such that |Tnodes| ≤ tn and |Tedges| ≤ te . A has unbounded computational power and can

754 N. Chandran et al.

corrupt both nodes and edges adaptively (that is, the adversary can decide which nodes
and edges to corrupt on the fly during the course of the protocol, after observing the
messages from honest parties). Furthermore, A is rushing, meaning that it can decide
the messages to be sent by adversarial parties (or on adversarial edges) in a particular
round after observing the messages sent by honest parties in the same round.

Almost-Everywhere Agreement. The problem of almost-everywhere agreement (“a.e.
agreement” for short) was introduced by Dwork et al. [12] in the (traditional) context
of node corruptions. A.e. agreement “gives up” some of the non-faulty nodes in the
network from reaching agreement, which is unavoidable due to their poor connectivity
with other non-faulty nodes. We refer to the given-up nodes as doomed nodes, and to
the honest nodes for which we guarantee agreement as privileged nodes. Let the set of
doomed nodes be denoted by X and the set of privileged nodes by P ; note that the sets
P and X are a function of the set of corrupted nodes (Tnodes) and the underlying graph.
Let |X | = x and |P| = p. Clearly, we have p + x + t = n. We now present a definition
of a.e. agreement.

Definition 1. A protocol for parties {P1,P2, . . . ,Pn}, each holding initial value vi , is
an almost-everywhere agreement protocol for node corruptions if for any adversary A
that corrupts a set of nodes Tnodes with |Tnodes| ≤ t , there exists a set of honest nodes P ,
such that the following two conditions hold:

– AGREEMENT: All nodes in P output the same value.
– VALIDITY: If for all nodes in P , vi = v, then all nodes in P output v.

The difference with respect to standard Byzantine agreement [19,20] is that in the
latter the two conditions above are enforced on all honest nodes, as opposed to only the
nodes in P . For brevity, we keep the same names.

In the context of a.e. agreement, one would like the graph G to have as small a degree
as possible (in relation to the size of the graph and to the number of corrupted parties),
while tolerating a high value for tn (a constant fraction of n is the best possible), while
minimizing x.

In [12], Dwork et al. constructed graphs with degree O(nε) (for constant 0 < ε <

1) tolerating at most tn = αnn (for constant 0 < αn < 1) corruptions and at the same
time guaranteeing agreement among n − O(tn) nodes in the network, with a number
of doomed nodes a constant times tn; call such a graph GDPPU = (VDPPU,EDPPU). The
idea behind the a.e. agreement protocol is to simulate a complete graph on the set of
privileged nodes. The theorem from [12] is as follows:

Theorem 1 [12]. There exist constants 0 < α,μ < 1 independent of n and tn, an n-
vertex O(nε)-regular graph GDPPU which can be explicitly constructed, and a com-
munication protocol (transmission scheme) TSDPPU, such that for any set of adver-
sarial nodes Tnodes in GDPPU such that |Tnodes| = tn = αnn, TSDPPU guarantees reli-
able communication between all pairs of nodes in a set of non-faulty nodes P of size
|P| ≥ n− tn −μn. The protocol generates a polynomial (in n) number of messages and
has polynomial (in n) running time.

Almost-Everywhere Secure Computation with Edge Corruptions 755

Given the above theorem, Dwork et al. observed that one can run any Byzantine
agreement protocol designed for a fully connected graph on GDPPU by simulating
all communication between nodes in the network with the communication protocol
TSDPPU. We refer the reader to [12] for further details.

As a result, let μ,d , and tn be as defined above and let BA(n, t ′n) be a Byzantine agree-
ment protocol for a complete network tolerating up to t ′n = μn + tn faulty processors.
Then, simulating the protocol BA(n, t ′n) on the network GDPPU using the communication
protocol TSDPPU, guarantees agreement among at least n − tn − μn honest nodes in the
presence of up to tn = αnn faulty nodes.

Differential Agreement. In [13], Fitzi and Garay introduced the problem of δ-differ-
ential agreement. In the standard Byzantine agreement problem, n parties attempt to
reach agreement on some value v (for simplicity, we assume v ∈ {0,1}). Let cv denote
the number of honest parties whose initial value is v, and δ be a non-negative integer.
δ-differential agreement is defined as follows:

Definition 2. A protocol for parties {P1,P2, . . . ,Pn}, each holding initial value vi , is
a δ-differential agreement protocol if the following conditions hold for any adversary A
that corrupts a set Tnodes of parties with |Tnodes| ≤ tn:

– AGREEMENT: All honest parties output the same value.
– δ-DIFFERENTIAL VALIDITY: If the honest parties output v, then cv + δ ≥ cv̄ .

Theorem 2 [13]. In a synchronous, fully connected network, δ-differential agreement
is impossible if n ≤ 3tn or δ < tn. On the other hand, there exists an efficient (i.e.,
polynomial-time) protocol that achieves tn-differential agreement for n > 3tn in tn + 1
rounds.

We will use DA(n, tn, δ) to denote a δ-differential agreement protocol for a fully
connected network tolerating up to tn faulty processors.

The Edge-Corruption Model. In this work we additionally allow the adversary to cor-
rupt edges on the network graph—the set Tedges ⊂ E , |Tedges| ≤ te . We will bound this
quantity, as well as the total number of nodes that the adversary can corrupt, and attempt
to construct a network graph G of small (sublinear) degree on which a significant num-
ber of honest nodes can still perform MPC. We now give some definitions and make
some remarks about a.e. agreement and a.e. MPC for this setting.

We first observe that since we are working with (asymptotically) regular graphs, ob-
taining an a.e. (agreement, MPC) protocol in the presence of a constant fraction of
corrupted edges will also imply a protocol in the presence of a constant fraction of cor-
rupted edges and a constant fraction of corrupted nodes, as every corrupted node can be
“simulated” by corrupting all the edges incident on this node. Thus, we will henceforth
consider only adversarial edges and assume that all the nodes are honest.

As in the case of a.e. MPC on sparse networks in the presence of adversarial nodes,
a.e. MPC in the presence of adversarial edges also “gives up” certain honest nodes in
the network, which, as argued before, is unavoidable due to their poor connectivity with
other honest nodes. Let the set of such doomed nodes be denoted by X and the set of
privileged nodes by P . Note that the sets P and X are a function of both the set of

756 N. Chandran et al.

corrupted edges (Tedges) and the underlying graph. Let |X | = x and |P| = p; we let the
fraction of corrupt edges be αe. The definition of a.e. agreement with corrupted edges,
in particular, now readily follows in the same manner as in Definition 1.

Next, we remark that the problem of a.e. agreement for edge corruptions also reduces
to that of constructing a reliable and authentic channel between any two nodes u,v ∈P ,
in particular those which are not directly connected by an edge in E . (With foresight,
we will be calling such a channel a public channel.) Furthermore, Garay and Ostrovsky
showed that, given such a public channel between two nodes u and v ∈ P , plus some
additional paths, most of which (i.e., all but one) might be corrupted, it is possible to
construct a (unidirectional) secure (i.e., private and reliable) channel between them.
The construction is via a protocol known as secure message transmission by public
discussion (SMT-PD) [14,15]. In turn, from the protocol for a secure channel, an a.e.
MPC protocol among the nodes in P , satisfying the same notion of security as in [15],
readily follows (see Theorem 7 in Appendix A).

The definition of a secure channel between two nodes, which are not necessarily
directly connected, and in the presence of adversarial edges, essentially paraphrases
the more general definition of secure message transmission (see, e.g., [14]), where the
channel is parameterized by a privacy error (κ1) and a reliability error (κ2).

More formally, an execution of a (unidirectional) secure channel protocol between
two nodes u,v ∈ V , with u as the sender and u as the receiver, is determined by the
random coins of the two nodes and the adversary A controlling the set of edges Tedges,
and the message m (without loss of generality, we will assume that m ∈ {0,1}). Let
ViewA denote the view of the adversary in the execution of the protocol between u and
v; this view includes all messages seen by A (on edges in the set Tedges), as well as
the adversary’s random coins. Let ViewA(b) denote the view of the adversary. In each
execution, v will output a message mv . We now describe the security of secure-channel
protocol:

Definition 3. We say that a protocol Π between nodes u,v ∈ P , is a (κ1, κ2)-secure
channel protocol if it satisfies:

– PRIVACY: ViewA(0) and ViewA(1) are κ1-close.
– RELIABILITY: For m ∈ {0,1}, Pr[mv = m] ≥ 1−κ2. (The probability is taken over

all players’ coins.)

Similarly, we say a protocol Π between nodes u,v ∈ P , is a κ-public channel pro-
tocol between u and v if it satisfies the reliability property (as defined above) with
probability at least 1 − κ .

For completeness, we also provide the security definition of a.e. MPC (for node-
corruptions) given in [15] in Appendix A.

Finally, we remark that one can define the notion of a.e. differential agreement (for
edge corruptions) in the same manner as a.e. agreement by replacing the set of honest
parties with the set of privileged parties in Definition 2 (i.e., by treating doomed par-
ties also as adversarial). Furthermore, note that one can also obtain an a.e. differential
agreement protocol (for edge corruptions) from the construction of a public channel
between any two nodes u,v ∈P : simply, execute a standard differential agreement pro-
tocol and replace every communication between nodes with an execution of the public

Almost-Everywhere Secure Computation with Edge Corruptions 757

channel protocol. We will use AE-DA(n, tn, δ) to denote an a.e. δ-differential agreement
protocol for a partially connected network where the number of privileged parties is
n − tn.

3. Remote and Secure Channels on Low-Degree Networks

In this section we construct a graph in which the maximum degree of any node is low,
and yet, there exists a set of nodes (of size a constant times the total number of nodes),
such that any two nodes in this set can communicate with each other privately and
reliably, even when an adaptive and rushing adversary corrupts a constant fraction of the
edges in the graph. More specifically, our goal is to construct a graph G = (V,E) on n

nodes with maximum degree d , and a protocol for a secure channel, SCu,v(m), with the
following properties. Let the set of edges that are corrupted by an adversary be denoted
by Tedges ⊂ E, |Tedges| ≤ αnd . We shall show that there exists a set of nodes P ⊆ V ,
such that |P| ≥ γ n, and any two nodes u,v ∈ P can communicate using SCu,v(m). As
mentioned earlier, our main focus will be on building a public channel PCG

u,v(m) that
can be used by any two nodes u,v ∈ P to communicate authentically, but publicly, as
this will be sufficient to obtain a protocol for secure channel using the techniques from
Garay and Ostrovsky [15]. Our graph will have maximum degree O(nε), for arbitrary
constants 0 < ε < 1, such that |P| ≥ γ n, for constant 0 < γ < 1.

We begin this section by constructing such a public channel scheme on a graph of
larger degree, O(

√
n logn), and then show how to use that construction to obtain a

scheme on a graph of maximum degree O(nε). Finally, we show how to obtain a secure
channel between any two nodes in P .

3.1. Public Channels on O(
√

n logn)-Degree Graphs

We now show how to construct a graph of maximum degree O(
√

n logn), and then
present a protocol for a public channel between any two nodes u,v ∈ P , tolerating a
constant fraction of corrupted edges. For simplicity, we will assume that all messages
in our protocols are binary. We remark that this restriction can be easily removed.

Let G = (V,E) denote a graph on n nodes, dv the degree of vertex v ∈ V , and
Paths2(u, v) the set of all paths between any two vertices u,v ∈ V of length exactly
2. Let G satisfy the following two properties:

1.
√

n logn
2 ≤ dv ≤ 2

√
n logn for all v ∈ V ; and

2. |Paths2(u, v)| ≥ log2 n
2 for all u,v ∈ V .

We will construct our public channel on any graph G satisfying the above properties.
We first observe that such a graph is easy to construct probabilistically. Consider the
Erdős–Renyi random graph G(n,p), with p = logn√

n
; that is, construct the graph G such

that there is an edge between every pair of nodes u and v, independently with probability
p = logn√

n
(for simplicity, we allow self-edges). Then, except with negligible (in n) prob-

ability, G(n,p) satisfies the conditions that we require of graph G. (For completeness,
we provide the proof of this in Appendix B.) For brevity, sometimes we will denote this
process by G ← G(n,p). We now present two lemmas for graph G satisfying the two
properties above.

758 N. Chandran et al.

Lemma 1. In graph G, no edge participates in more than 4
√

n logn paths of length
exactly 2 (Paths2(u, v)) between any two vertices u,v ∈ V .

Proof. Since paths in any Paths2(u, v) are of length exactly 2, an edge (w, t) can
participate only in paths of the form {x, y, z} where either (x, y) = (w, t) or (y, z) =
(w, t). From graph G’s property 1 above, every vertex has degree ≤ 2

√
n logn. Hence,

edge (w, t) participates in no more than 4
√

n logn paths. �

Let 0 < αe,αn < 1 be constants denoting the fraction of corrupt edges and corrupt
nodes in the graph, respectively. Note that if we are able to design a protocol that can
tolerate αe

√
n(n − 1) logn + 2αn

√
n(n − 1) logn edge corruptions, then we will au-

tomatically get a protocol that can tolerate an αe fraction of corrupt edges and an αn

fraction of corrupt nodes.7 Hence, let α = αe + 2αn; we will construct a protocol that
can tolerate an α fraction of corrupt edges (and no corrupt nodes). The next lemma
bounds the number of nodes in G with poor connectivity.

Lemma 2. Let Yu denote the set of nodes v such that the fraction of paths in
Paths2(u, v) with no corrupt edges is ≤ 1

2 . We say that a node u ∈ V is doomed if
|Yu| ≥ n

4 . Then, in graph G, at most 64αn nodes are doomed.

Proof. Consider a particular node u. In order to make u doomed, an adversary must

corrupt at least log2 n
4 · n

4 paths. Recall (Lemma 1) that every edge can participate in
at most 4

√
n logn paths. Since at most α

√
n(n − 1) logn edges can be corrupt, this

contributes to at most 4αn(n−1) log2 n corrupt paths. Hence, the total number of nodes
that can be doomed is at most 64α(n − 1) < 64αn. �

The set of privileged nodes P in G will simply be the nodes that are not doomed. By
Lemma 2 above, we have that |P| ≥ (1 − 64α)n = γ n (for some constant 0 < γ < 1).
We now present the construction of a public channel between any two nodes u,v ∈ P :

PCG
u,v(m).

1. For every node w ∈ V , u sends m over all paths in Paths2(u,w).
2. Every node w ∈ V , upon receiving m over the different paths, takes the majority

of the values received, and sends this value to v over all paths in Paths2(w,v).
3. For every w, v takes the majority value of all messages received over Paths2(w,v)

as the message received from w. Then, v takes the majority (over all w) of the
received values as the value sent by u.

We now show that if nodes u and v are not doomed, then the protocol described above
is a 0-public channel protocol.

Lemma 3. Let u,v ∈P (i.e., any two nodes in G that are not doomed), Then, after an
execution of PCG

u,v(m), v outputs m with probability 1.

7 As mentioned in the Introduction, it is easy to simulate node corruptions via edge corruptions by simply
corrupting all edges incident on a corrupt node.

Almost-Everywhere Secure Computation with Edge Corruptions 759

Proof. Since u is not doomed, when u sends m to every node w in the first step of
the protocol, the number of nodes that will receive the value m correctly is more than
3n
4 (since more than half of the paths from u to each of these nodes is not corrupted).

Note that in this analysis, it does not matter when an adversary corrupts an edge or
whether an adversary sees the message before deciding his next move and hence we
handle adaptive as well as rushing adversaries. Consider now one of these nodes w that
receives the value correctly from u. Let us discount those nodes w that do not have a
majority of uncorrupted paths to v. Since there can be only less than n

4 such nodes (as
otherwise, v would be doomed), this leaves us with > 3n

4 − n
4 = n

2 nodes. Each of these
nodes have a majority of uncorrupted paths to v and hence values sent by these nodes to
v in step 2 will be received correctly by v. Hence, v will receive, out of the n values,8

more than n
2 values correctly, and hence when v takes the majority of values received in

step 3 it will output m correctly. Note also, that our protocol is deterministic, and hence
v will furthermore output m correctly with probability 1 when it takes the majority of
values received. �

3.2. Public Channels and Secure Channels on O(nε)-Degree Graphs

In this section we present our main technical result: we show how to recursively increase
the number of nodes in graph G from the previous section, while not increasing its
degree (asymptotically), and show how to implement a public channel on such graphs.
We will do this in two steps. Let γ = (1 − 64α). We will first show the following:

Lemma 4. Let G be a graph on n nodes with maximum degree d . Furthermore, let G
be such that it admits a public channel protocol, PCG

u,v(·), between any two nodes u and
v from a set of size at least γ n nodes even in the presence of αnd corrupt edges. Then,
there exists a graph G′ on n2 nodes of maximum degree 2d , such that G′ admits a public
channel protocol between any two nodes u and v from a set of size at least γ 2n2 nodes
even in the presence of α2n2d corrupt edges.

Later on, we will show how to apply the G′ construction from G recursively to obtain
the desired result on graphs of degree O(nε).

Construction of G′. We construct G′ as follows. Take n copies of graph G; we will call
each copy a cloud, and denote them C1, . . . ,Cn. Connect the n clouds using another
copy of graph G. We do this by connecting the ith node in cloud Cj to the ith node in
cloud Ck by an edge, whenever there is an edge between Cj and Ck in G. We will call
such a collection of edges between cloud Cj and cloud Ck as a cloud-edge. Note that
the maximum degree of any node in G′ is 2d .

We now describe how a node u in cloud Cj will communicate with a node v in cloud
Ck—call this protocol PCG′

u,v(m). To do this, we will first describe how two clouds that
share a cloud-edge will communicate. Let every node i ∈ Cj hold a value mi as input
(note that every node need not hold the same value mi) and assume cloud Cj wishes

8 v receives values from all nodes, including u as well as v itself. This is because, in the first step, u sends
m to all nodes (including u and v).

760 N. Chandran et al.

to communicate with cloud Ck . We describe a protocol such that, assuming a large-
enough fraction of nodes in Cj , hold the same input value, say m, then at the end of this
protocol’s execution a large-enough fraction of nodes in cloud Ck will output m. We
call this protocol CloudTransmitCj ,Ck

(mi). Let δ be such that 64αn < δ < (γ − 130α)n.

CloudTransmitCj ,Ck
(mi).

1. For every node 1 ≤ i ≤ n, the ith node in Cj sends m to the ith node in Ck through
the edge connecting these two nodes.

2. The nodes in Ck execute a.e. differential agreement protocol AE-DA(n,64αn, δ)

using the value they received from their counterpart node in Cj as input. (Recall
that the existence of protocol PCG

u,v(m) between privileged nodes in G guarantees
that one can construct an a.e. differential agreement protocol; see Sect. 4 for more
details on constructing an a.e. agreement protocol on G.)

3. Each node takes the output of protocol AE-DA(n,64αn, δ) as its output in this
protocol.

We are now ready to describe PCG′
u,v(m):

PCG′
u,v(m).

1. u sends m to i for all nodes i in cloud Cj using PCG
u,i(m) from Sect. 3.1. The ith

node in Cj receives message mi .

2. Clouds Cj and Ck now execute protocol PCG
Cj ,Ck

(mi) over the graph G connecting

the n clouds.9 Whenever cloud Cw is supposed to send a message to Cz accord-
ing to the protocol, they use protocol CloudTransmitCw,Cz(·) over the cloud-edge
connecting Cw and Cz.

3. Node v ∈ Ck takes its output in the protocol PCG
Cj ,Ck

(mi) as the value sent by u.

We prove the correctness of the transmission scheme above through a series of lem-
mas. At a high level, our proof goes as follows. We will call a cloud Cj as good if it
does not have too many corrupt edges within it (that is, corrupt edges of the form (u, v)

with both u and v in Cj); otherwise we will call the cloud as bad (Definition 4). We first
show that an adversary cannot create too many bad clouds (Lemma 5). Next, we define
what it means for a cloud-edge between two clouds Cj and Ck to be good in Definition
5 (informally, the cloud-edge is good if both Cj and Ck are good clouds and there are
sufficient number of edges connecting privileged nodes in Cj and Ck). We then show
that the adversary cannot create too many bad cloud-edges (Lemma 6). Next, we show
that two good clouds can communicate reliably across a good cloud-edge (Lemma 7).
Finally, we show that there exists a large set of clouds such that any two privileged
nodes in any two clouds from this set, can communicate reliably (Lemma 8). From this,
the proof of Lemma 4 readily follows.

We begin with a few definitions. First, let tCj
denote the number of edges that an

adversary corrupts within cloud Cj (that is, any corrupt edge of the form (u, v) with
both u and v in Cj adds to this count); let tc = ∑

1≤j≤n tCj
be the total number of such

9 We again use mi as the input argument, since the input values to nodes in Cj might be different.

Almost-Everywhere Secure Computation with Edge Corruptions 761

“intra-cloud” corrupted edges. In addition, let tce denote the total number of corrupt
edges that connect two clouds—that is, any corrupt edge (call these “inter-cloud” edges)
of the form (u, v) with u ∈ Cj and v ∈ Ck , for j
= k, adds to this count. (Thus, the total
number of corrupt edges te = tc + tce.) We proceed with a few definitions:

Definition 4. We say that a cloud Cj , 1 ≤ j ≤ n, is good if tCj
≤ αnd . Otherwise, we

say that the cloud is bad.

Lemma 5. The number of bad clouds in G′ is at most � tc
αnd

	.

Proof. By Lemma 2, in order to make a cloud bad, A must corrupt more than αnd

edges within the cloud. Since the total number of edges that the adversary corrupts
within clouds is tc , the total number of bad clouds is at most � tc

αnd
	. �

Definition 5. We say that a cloud-edge between two clouds Cj and Ck is good if:

1. Both Cj and Ck are good; and
2. The number of nodes i such that the ith node in Cj as well as the ith node in Ck

are both not doomed (in the graph G connecting the nodes in the respective cloud),
while the edge connecting these two nodes is corrupt, is ≤ αn.

Otherwise, we say that the cloud-edge is bad.

Lemma 6. The number of bad cloud-edges is at most � tce
αn

	.

Proof. In order to make a cloud-edge between two good clouds Cj and Ck bad,
A must corrupt at least αn edges connecting them. Since the total number of corrupt
inter-cloud edges is tce , the total number of bad cloud-edges is at most � tce

αn
	. �

Lemma 7. Let Cj and Ck be two good clouds connected by a good cloud-edge. Fur-
ther, let all nodes in Cj that are not doomed (in G) hold value mi = m as input. Then,
after executing protocol CloudTransmitCj ,Ck

(mi), all nodes in Ck that are not doomed
(in G) output m.

Proof. Since Cj is a good cloud, at most αnd edges in cloud Cj are corrupt. Hence,
there are at least γ n nodes in Cj that are not doomed, and that hold value m as input.
When CloudTransmitCj ,Ck

(mi) is executed, all these nodes will send m across their
edges to their counterpart nodes in Ck . Now, since a node that is not doomed in Cj

may be connected to a node that is doomed in Ck , and some of the edges connecting
two nodes that are not doomed may also be corrupted, the number of nodes that are
not doomed in Ck that receive the value m correctly is at least γ n − 64αn − αn =
(γ − 65α)n.

Next, in step 2 of protocol CloudTransmitCj ,Ck
(mi), the nodes in Ck execute proto-

col AE-DA(n,64αn, δ). In cloud Ck , we shall consider every doomed node as corrupt
and every node that is not doomed as honest. By the property of the a.e. differential
agreement protocol (cf. Definition 2), we have that whenever the honest nodes output a
value, say, v, we have cv + δ ≥ cv̄ , where cv denotes the number of honest nodes with

762 N. Chandran et al.

initial value v (recall that, for simplicity, we are considering the binary case). From the
calculation above, the number of nodes that are not doomed with the correct value m is
at least (γ − 65α)n. Hence, the number of nodes with the wrong value (m̄) is at most
65αn. Since 65αn + δ < (γ − 65α)n by the way δ is picked (in transmission scheme
for G′), we have that the nodes that are not doomed will never output m̄ in protocol
AE-DA(n,64αn, δ) and hence all the nodes in Ck that are not doomed will output m

after protocol CloudTransmitCj ,Ck
(mi). �

Lemma 8. There exists a set of clouds PC , |PC | = γ n, such that for all Cj ,Ck ∈ PC

and for all nodes u ∈ Cj and v ∈ Ck that are not doomed, v always outputs m after
protocol PCG′

u,v(m).

Proof. Let us consider the graph G that connects the n clouds in graph G′. By Lemma 5
we know that at most � tc

αnd
	 clouds are bad. Furthermore, we know by Lemma 6 that in

this graph G at most � tce
αn

	 cloud-edges are bad. Thus, in total, in graph G connecting the
n clouds A can corrupt � tc

αnd
	 clouds and � tce

αn
	 cloud-edges. Now, such an adversary

can be perfectly simulated by an adversary that corrupts tc
αnd

· d + tce
αn

cloud-edges in
total. Since, the total number of edges that A is allowed to corrupt in G′ is tc + tcex and
is bounded by α2n2d , we get that this new adversary can corrupt at most α fraction of
cloud-edges.

Now assume, as in Lemma 4, that the graph G that connects the n clouds, admits a
public channel between any two clouds in a set of clouds of size at least γ n (since at
most α fraction of cloud-edges are corrupted), provided that any two clouds that are
connected by a good cloud-edge can communicate reliably. Let this set of γ n clouds
be PC . By now applying Lemma 7 which precisely gives us the guarantee that any two
clouds that are connected by a good cloud-edge can communicate reliably, the lemma
follows. �

Public Channels and Secure Channels on O(nε)-Degree Graphs. We now arrive at our
main result by applying the construction of G′ from G recursively, a constant number of
times, beginning with graph G described in Sect. 3.1. We first show:

Theorem 3. For all constants 0 < ε < 1 and sufficiently large n, there exists a graph,
call it Gmain, on n nodes, of degree at most dm = O(nε), admitting a 0-public channel
protocol between any two nodes in a set of size at least γmn (for some constant 0 <

γm < 1) even in the presence of an αm fraction of edge corruptions (for some constant
0 < αm < 1).

Proof. Applying Lemma 4 recursively, in conjunction with Theorem 5 (that states
that we can obtain a.e. agreement on any graph that admits a public channel between
the nodes in the privileged set), we get that there exists a graph G′′ on nk (for constant
k ≥ 1) nodes, with maximum degree at most d ′′ = 2k−1√n logn and such that G′′ admits
a public channel between any two nodes in a set of size at least γ knk nodes even in the
presence of αknkd ′′ corrupted edges (for constants 0 < α,γ < 1). Setting nm = nk , we
get that there exists a graph Gmain on nm nodes, with maximum degree at most dm =

Almost-Everywhere Secure Computation with Edge Corruptions 763

2k−1

k
n

1
2k
m lognm = O(nε) (for all constants k ≥ 1 and appropriately chosen 0 < ε < 1)

admitting a public channel between any two nodes in a set of size at least γmnm nodes
even in the presence of αmnmdm corruptions (for some constants 0 < αm,γn < 1). �

As mentioned in the beginning of the section, the availability of public channels in
Gmain for a constant fraction of nodes, together with the techniques in [15], allow those
nodes to communicate securely even in the presence of a constant fraction of corrupted
edges.

Theorem 4. For all constants 0 < ε < 1 and sufficiently large n, there exists a graph,
call it Gmain, on n nodes, of degree at most dm = O(nε), admitting a (0, κ2)-secure
channel protocol (for negligible κ2) between any two nodes in a set of size at least
γmn (for some constant 0 < γm < 1) even in the presence of an αm fraction of edge
corruptions (for some constant 0 < αm < 1).

The proof of the theorem follows directly from Theorems 3 and 7 (from [15]). The
reliability error, κ2, comes from the SMT-PD (secure message transmission by public
discussion) protocol used in [15], and it is unavoidable when a majority of paths be-
tween sender and receiver are corrupted (see, e.g., [14]), which is the case for privileged
nodes in our low-degree setting.

4. A.E. Agreement and Secure Computation with Edge Corruptions on
Low-Degree Networks

In this section, we describe our protocols and derive our conclusions for a.e. agree-
ment and secure computation on O(nε)-degree networks, achieving security even in the
presence of a constant fraction of edge corruptions.

We start by showing a.e. agreement on graph G, of degree O(
√

n logn) (Sect. 3.1).
The nodes in G simply execute any standard Byzantine agreement protocol BA(n,64αn)

(α defined below), executing PCG
u,v(m) whenever node u is supposed to send message

m to node v according to BA(n,64αn). Let Priv be the set of nodes in V that are not
doomed at the end of the execution of the protocol. We then have the following.

Lemma 9. Let α < 1
192 . Then there exists a set P ⊂ V , |P| ≥ γ n (for some constant

0 < γ < 1), such that all nodes in P can reach agreement in the presence of an α

fraction of edge corruptions in G. Since the number of doomed nodes is 64αn, we can
obtain agreement when 64α < 1

3 .

Proof. Let P = Priv. From Lemma 3, we have that any two nodes u,v ∈P can reliably
communicate with each other using protocol PCG

u,v(m) in the presence of an α fraction
of edge corruptions in G. Hence, nodes in P can reach agreement by executing any
standard Byzantine agreement protocol BA(n,64αn) (that is, treating the number of
doomed nodes as corrupt nodes—recall Lemma 2) and by simply executing PCG

u,v(m)

whenever u is supposed to send message m to v in BA, and provided that 64α < 1
3

(necessary condition on the number of faulty players for Byzantine agreement in the

764 N. Chandran et al.

fully connected setting, yielding α < 1
192). Hence, we have that |P| ≥ (1 − 64α)n =

γ n. �

The following theorem establishes the soundness of our construction.

Theorem 5. Let G be a graph as specified in Sect. 3.1. Then G is a graph of maximum
degree d = O(

√
n logn) such that γ n nodes in V can reach agreement even in the

presence of an α fraction of edge corruptions (for constant 0 < α < 1).

The proof of the theorem follows from Lemma 9. As a corollary, we get:

Corollary 1. G is a graph of maximum degree d = O(
√

n logn) such that γ n nodes
in V can reach agreement even in the presence of an αe fraction of edge corruptions
and an αn fraction of node corruptions (with αe + 2αn ≤ α).

We now turn to our target degree: O(nε), for constant 0 < ε < 1. We first describe an
agreement protocol on graph G′ (Sect. 3.2), with n2 nodes and degree same as that of
G. Applying this recursively, we will obtain our agreement protocol on Gmain. To reach
agreement on G′, the n2 nodes execute any standard agreement protocol BA(n2, (1 −
γ 2)n2) for a complete graph, replacing the sending of a message between any two
nodes, say, u and v, by an invocation to protocol PCG′

u,v(m). We now show that almost
all nodes in G′ can reach agreement.

Lemma 10. There exists a set P ⊂ V , |P| ≥ γ 2n2 (for some constant 0 < γ < 1),
such that all nodes in P can reach agreement in the presence of an α2 fraction of edge
corruptions in G′.

Proof. We put a vertex u in P if the following conditions hold:

1. u ∈ Cj such that Cj ∈PC (from Lemma 8); and
2. u is not doomed in graph G which connects Cj .

By Lemma 8, since at most αnd cloud-edges are bad, we get that |PC | ≥ γ n. Further-
more, since all clouds in PC are good, we have (from Definition 4) that for any given
cloud in PC at most αnd edges are corrupted, and therefore at least γ n nodes in each
cloud in PC are not doomed. Hence, |P| ≥ γ 2n2.

Also by Lemma 8, any two nodes in P , say, u and v, can communicate reliably
using protocol PCG′

u,v(m) in the presence of an α2 fraction of edge corruptions in G′.
Hence, nodes in P can reach agreement by executing any standard Byzantine agreement
protocol BA(n2, (1 − γ 2)n2) for complete networks, and simply executing PCG′

u,v(m)

whenever u is supposed to send message m to v in BA. �

Applying this protocol recursively (similarly to what is done in the proof of Theo-
rem 3), we get our a.e. agreement protocol on Gmain, which is a graph on n nodes with
maximum degree O(nε) (for constant 0 < ε < 1). We now state our main conclusion,
whose proof follows from Theorems 3 and 7.

Almost-Everywhere Secure Computation with Edge Corruptions 765

Theorem 6. For all sufficiently large n and all constant 0 < ε < 1, there exists a graph
Gmain = (V,E) with maximum degree O(nε), and a set of nodes P ⊆ V , with |P| ≥ μn

(for constant 0 < μ < 1), such that the nodes in P can execute a secure multi-party
computation protocol (satisfying the security definition of [15]), even in the presence of
an α fraction of edge corruptions in Gmain (for some constant 0 < α < 1).

5. Summary and Open Problems

In this work, we considered the problem of a.e. secure computation in the presence of
edge corruptions, and in particular focussed on the case when a constant fraction of the
edges in the network can be corrupted. We presented (probabilistic constructions of)
graphs of degree O(nε) (for arbitrary constant 0 < ε < 1) on which such protocols for
a.e. secure computation are possible. Several natural questions remain.

While it is easy to show that one can obtain an a.e. secure computation protocol
(among a constant fraction of the honest nodes) in the presence of a constant fraction
of corrupted edges when the network is fully connected, whether one can obtain such a
protocol when less than a 1

3 rd fraction of the edges are corrupted remains an interesting
open problem.10

Together, the results of Upfal [23], and Garay and Ostrovsky [15], show a protocol
for a.e. secure computation on networks of constant degree when a constant fraction of
the edges are corrupted. The running time of the parties in the protocol thus obtained,
however, is exponential (in n). Another interesting question is whether we can obtain
polynomial-time protocols for a.e. secure computation in such a setting.

Appendix A. Additional a.e. Definitions and Protocols

Here we present the definition of a.e.computation (in the node-corruptions model) found
in [15]. The definition of a.e. computation (in the edge-corruptions model) follows triv-
ially from this.

Definition 6 [15]. Let G = (V,E), |V| = n, be a network. Let Tnodes ⊂ V be the set of
corrupted nodes and let the privileged set of nodes be denoted by P (i.e., the nodes in P
will be the nodes for which we will guarantee the secure computation). Let |Tnodes| ≤ αn

(with α being such that |P| ≥ μn, for some constant 0 < μ < 1, for all sets Tnodes).
An n-player two-phase protocol Π is a secure a.e. multi-party computation protocol
if for all sets of corrupted nodes Tnodes controlled by a single adversary A, and any
probabilistic polynomial-time computable function f , the following two conditions are
satisfied at the end of the respective phases:

Commitment phase: During this phase, all players in V commit to their inputs.

– BINDING: For all Pi ∈ V , there is a uniquely defined value x∗
i ; if Pi ∈ P , then

x∗
i = xi .

– PRIVACY: For all players Pi ∈P , x∗
i is information-theoretically hidden.

10 It can be easily seen that this fraction of corrupted edges is the best that one could hope for.

766 N. Chandran et al.

Computation phase:

– CORRECTNESS: For all players Pi ∈ P , f (x∗
1 , x∗

2 , . . . , x∗
n) is the value output

by Pi .
– PRIVACY: Let

−→
x∗
S denote the vector of committed inputs corresponding to play-

ers in a given set S, and PrivCompA,Π denote the following indistinguishability
experiment:

1. The adversary A specifies a set P and input vectors
−−→
x∗
P,0,

−−→
x∗
P,1 and

−−→
z∗
V\P

such that f (
−−→
x∗
P,0,

−−→
z∗
V\P) = f (

−−→
x∗
P,1,

−−→
z∗
V\P).

2. A random bit b ← {0,1} is chosen (by the challenger). Then Π is executed
on inputs

−−→
x∗
P,b,

−−→
z∗
V\P .

3. A outputs a bit b′.
4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise;

we write PrivCompA,Π = 1 if the output is 1.

Then it holds that

Pr[PrivCompA,Π = 1] ≤ 1

2
+ ε,

where ε is negligible in the input size.

We next state the result from [15]:

Theorem 7 ([15]—informal). Let G = (V,E) be a graph with maximum degree d , and
let P ⊆ V be such that any two nodes u,v ∈ P can execute a κ-public channel protocol,
call it PCG

u,v(m) (for negligible κ). Then, there exists a graph G′ with maximum degree
2d such that there exists a set P ′ in G′, with |P ′| ≥ θ |P| (for some constant 0 < θ < 1),
such that:

1. Every pair of nodes in G′ can execute a (κ1, κ2)-secure channel protocol, call it
SCu,v(m) (for negligible κ1, κ2);

2. All nodes in P ′ can execute an a.e. MPC protocol (satisfying Definition 6).

The above theorem, as stated, applies to the node-corruptions model. However, it is
easy to see that one can get an analogous theorem in the edge-corruptions model as
well, using the same techniques as in [15].

Appendix B. Properties of Erdős–Renyi Random Graphs

We show below that the Erdős–Renyi random graph G(n,p), with p = logn√
n

satisfies
the two properties we need with high probability.

Proposition 1. Let dv be the degree of vertex v ∈ V . Then, in G(n,p), except with
probability pd = 2ne− pn

3 , we have pn
2 ≤ dv ≤ 2pn for all v ∈ V .

Almost-Everywhere Secure Computation with Edge Corruptions 767

Proof. Let d be the expected degree of a vertex v ∈ V . Then d = pn. By the Cher-
noff bound, Pr[dv ≤ pn

2] ≤ e−2pn and Pr[dv ≥ 2pn] ≤ e− pn
3 . So Pr[pn

2 ≤ dv ≤ 2pn] ≤
2e− pn

3 . Applying the union bound, we get that except with probability 2ne− pn
3 ,

pn
2 ≤

dv ≤ 2pn for all v ∈ V . �

Proposition 2. Except with probability pa = n2

e2p2n
, we have |Paths2|(u, v) ≥ p2n

2 for

all u,v ∈ V in graph G(n,p).

Proof. For any given vertex w ∈ V , probability that u − w − v is a path of length 2 in
the graph is p2. Hence, the expected number of paths between u and v is p2n. Hence,

by the Chernoff bound, we get that Pr[|Paths2(u, v)| ≤ p2n
2] ≤ e−2p2n. Applying the

union bound, we get the required proposition. �

Note, that when p = logn√
n

, both pd and pa are negligible (in n) and hence properties

1 and 2 described above hold in G(n,
logn√

n
), except with negligible probability.

References

[1] B. Barak, R. Canetti, Y. Lindell, R. Pass, T. Rabin, Secure computation without authentication, in Pro-
ceedings CRYPTO’05, The 25th Annual International Cryptology Conference, August 14–18, 2005,
Santa Barbara, California, USA (2005), pp. 361–377

[2] A. Beimel, M. Franklin, Reliable communication over partially authenticated networks. Theor. Comput.
Sci. 220(1), 185–210 (1999)

[3] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract), in STOC, Proceedings of the Twentieth Annual ACM Sym-
posium on Theory of Computing, May 2–4, 1988, Chicago, Illinois, USA (1988), pp. 1–10

[4] P. Berman, K. Diks, A. Pelc, Reliable broadcasting in logarithmic time with Byzantine link failures.
J. Algorithms 22, 199–211 (1997). 1997

[5] P. Berman, J.A. Garay, Fast consensus in networks of bounded degree (extended abstract), in WDAG,
Distributed Algorithms, the 4th International Workshop, September 24–26, 1990, Bari, Italy (1990), pp.
321–333

[6] N. Chandran, J.A. Garay, R. Ostrovsky, Improved fault tolerance and secure computation on sparse
networks, in Proceedings ICALP (2), The 37th International Colloquium, ICALP 2010, Part II, July
6–10, 2010, Bordeaux, France (2010), pp. 249–260

[7] D. Chaum, C. Crépeau, I. Damgård, Multiparty unconditionally secure protocols (abstract), in STOC,
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, May 2–4, 1988,
Chicago, Illinois, USA (1988), pp. 11–19

[8] B. Chlebus, K. Diks, A. Pelc, Reliable broadcasting in hypercubes with random link and node failures,
in Combinatorics, Probability and Computing, vol. 5 (1996)

[9] K. Diks, A. Pelc, Reliable gossip schemes with random link failures, in Proc. of the 28th Annual Allerton
Conference on Communication, Control and Computing, Allerton, Illinois (1990), pp. 978–987.

[10] D. Dolev, The Byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)
[11] D. Dolev, C. Dwork, O. Waarts, M. Yung, Perfectly secure message transmission, in FOCS, The 31st

Annual Symposium on Foundations of Computer Science, October 22–24, 1990, St. Louis, Missouri,
USA (1990), pp. 36–45

[12] C. Dwork, D. Peleg, N. Pippenger, E. Upfal, Fault tolerance in networks of bounded degree (preliminary
version), in STOC, Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
May 28–30, 1986, Berkeley, California, USA (1986), pp. 370–379

768 N. Chandran et al.

[13] M. Fitzi, J.A. Garay, Efficient player-optimal protocols for strong and differential consensus, in PODC,
(2003), pp. 211–220

[14] J.A. Garay, C. Givens, R. Ostrovsky, Secure message transmission by public discussion: a brief survey,
in Coding and Cryptology—The Third International Workshop, IWCC Proceedings 2011, May 30–June
3, 2011, Qingdao, China (2011), pp. 126–141

[15] J.A. Garay, R. Ostrovsky, Almost-everywhere secure computation, in EUROCRYPT, 27th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, April 13–17, 2008,
Istanbul, Turkey (2008), pp. 307–323

[16] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game or a completeness theorem for
protocols with honest majority, in STOC, Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, 25–27 May 1987, New York City, NY, USA (1987), pp. 218–229

[17] S.D. Gordon, J. Katz, R. Kumaresan, A. Yerukhimovich, Authenticated broadcast with a partially com-
promised public-key infrastructure, in Stabilization, Safety, and Security of Distributed Systems—The
12th International Symposium, Proceedings SSS 2010, September 20–22, 2010, New York, NY, USA
(2010), pp. 144–158

[18] V. King, J. Saia, V. Sanwalani, E. Vee, Towards secure and scalable computation in peer-to-peer net-
works, in FOCS, 47th Annual IEEE Symposium on Foundations of Computer Science, 21–24 October
2006, Berkeley, California, USA (2006), pp. 87–98

[19] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem. ACM Trans. Program. Lang. Syst.
4(3), 382–401 (1982)

[20] M. Pease, R. Shostak, L. Lamport, Reaching agreement in the presence of faults. J. ACM 27, 228–234
(1980)

[21] A. Pelc, Reliable communication in networks with Byzantine link failures. Networks 22, 441–459
(1992)

[22] V. Shanbhogue, M. Yung, Distributed computing in asynchronous networks with Byzantine edges, in
Proceedings COCOON’96, Computing and Combinatorics, Second Annual International Conference,
June 17–19, 1996, Hong Kong (1996), pp. 352–360

[23] E. Upfal, Tolerating linear number of faults in networks of bounded degree, in PODC, (1992), pp. 83–89
[24] S.-C. Wang, Y.-H. Chin, K.-Q. Yan, Byzantine agreement in a generalized connected network. IEEE

Trans. Parallel Distrib. Syst. 6(4), 420–427 (1995)
[25] S.-C. Wang, K.-Q. Yan, Revisiting fault diagnosis agreement in a new territory. Oper. Syst. Rev. 38(2),

41–61 (2004)
[26] K.-Q. Yan, Y.-H. Chin, S.-C. Wang, Optimal agreement protocol in malicious faulty processors and

faulty links. IEEE Trans. Knowl. Data Eng. 4(3), 266–280 (1992)
[27] A.C.-C. Yao, Protocols for secure computations (extended abstract), in FOCS, The 23rd Annual Sym-

posium on Foundations of Computer Science, 3–5 November 1982, Chicago, Illinois, USA (1982), pp.
160–164

[28] V. Zikas, S. Hauser, U.M. Maurer, Realistic failures in secure multi-party computation, in Theory of
Cryptography, the 6th Theory of Cryptography Conference, Proceedings TCC 2009, March 15–17,
2009, San Francisco, CA, USA (2009), pp. 274–293

	Almost-Everywhere Secure Computation with Edge Corruptionsn1
	Abstract
	Introduction
	Almost-Everywhere Secure Computation
	Almost-Everywhere Secure Computation with Edge Corruptions
	Overview of Our Results
	Related Work
	Information-Theoretic Setting.
	Computational Setting.

	Model, Deﬁnitions, and Building Blocks
	Almost-Everywhere Agreement.
	Differential Agreement.
	The Edge-Corruption Model.

	Remote and Secure Channels on Low-Degree Networks
	Public Channels on O(sqrt(n)logn)-Degree Graphs
	PCGu,v(m).

	Public Channels and Secure Channels on O(nepsilon)-Degree Graphs
	Construction of G'.
	CloudTransmitCj,Ck(mi).
	PCG'u,v(m).
	Public Channels and Secure Channels on O(nepsilon)-Degree Graphs.

	A.E. Agreement and Secure Computation with Edge Corruptions on Low-Degree Networks
	Summary and Open Problems
	Appendix A. Additional a.e. Deﬁnitions and Protocols
	Appendix B. Properties of Erdos-Renyi Random Graphs
	References

