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Abstract. In 2004, an algorithm is introduced to solve the DLP for elliptic curves de-
fined over a non-prime finite field Fqn . One of the main steps of this algorithm requires
decomposing points of the curve E(Fqn ) with respect to a factor base, this problem is
denoted PDP. In this paper, we will apply this algorithm to the case of Edwards curves,
the well-known family of elliptic curves that allow faster arithmetic as shown by Bern-
stein and Lange. More precisely, we show how to take advantage of some symmetries
of twisted Edwards and twisted Jacobi intersections curves to gain an exponential factor
2ω(n−1) to solve the corresponding PDP where ω is the exponent in the complexity of
multiplying two dense matrices. Practical experiments supporting the theoretical result
are also given. For instance, the complexity of solving the ECDLP for twisted Edwards
curves defined over F

q5 , with q ≈ 264, is supposed to be ∼ 2160 operations in E(F
q5 )

using generic algorithms compared to 2130 operations (multiplications of two 32-bits
words) with our method. For these parameters the PDP is intractable with the original
algorithm.

The main tool to achieve these results relies on the use of the symmetries and the
quasi-homogeneous structure induced by these symmetries during the polynomial sys-
tem solving step. Also, we use a recent work on a new algorithm for the change of
ordering of a Gröbner basis which provides a better heuristic complexity of the total
solving process.
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ner basis with symmetries, Index calculus, Jacobi intersections curves.
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1. Introduction

1.1. Context

One of the main number theoretic problems is, given a cyclic group (G,∗) of generator
g and an element h of this group, to find an integer x such that

h = g ∗ · · · ∗ g
︸ ︷︷ ︸

x times

.

This problem is called the discrete logarithm problem and it is denoted DLP. To solve
the DLP, there exist algorithms which do not consider the structure and the represen-
tation of the group where the DLP is defined. They are called generic algorithms and
Shoup shows in [46] that they are exponential in general. The Pollard rho method [43]
is optimal among generic algorithms, up to a constant factor, with a running time in
O(

√
#G) group operations. Nevertheless for some groups, the DLP is easier to solve.

For instance if G is a multiplicative group formed by the invertible elements of a finite
field, the index-calculus method [1] solves the DLP in sub-exponential time.

A major application of the DLP is to design cryptographic protocols whose security
depends on the difficulty of solving the DLP. A cryptosystem has to be secure and fast.
Hence we have to consider groups with an efficient arithmetic, a compact representation
of their elements and where the DLP is intractable. To this end, in 1985 Miller [39] and
Koblitz [36] independently introduced elliptic curve cryptography based on the DLP in
the group formed by rational points of an elliptic curve defined over a finite field. This
particular problem is denoted ECDLP. More recently, some curve representations such
as twisted Edwards [4,5,18] and twisted Jacobi intersections [9,29] have been widely
studied by the cryptology community for their efficient arithmetic. A few years after the
introduction of elliptic curve cryptography, it has been proposed to use the divisor class
group of a hyperelliptic curve over a finite field [37], in this case we note the discrete
logarithm problem HCDLP.

To estimate the security of cryptosystems based on the HCDLP, the resolution of
this problem has been extensively studied in recent years and index-calculus methods
[2,11,19,20,33] have been developed for various classes of high genus curves. Using
the double large prime variation of Gaudry, Thomé, Thériault and Diem [32], if the size
of the finite field is sufficiently large and for curves having genus greater than three, the
index-calculus method is then faster than Pollard rho method. In the particular case of
non-hyperelliptic curves of genus 3, Diem and Thomé got a further improvement of the
index calculus [14,17]. These methods do not apply to curves having genus 1 or 2.

If the curve is defined over a non-prime finite field, by applying a Weil restriction, the
discrete logarithm problem can be seen in an abelian variety of larger dimension over
the smaller field. In [31], an index-calculus attack suited to this context was proposed.
Later on, Diem [15,16] obtained rigorous proofs that for some particular families of
curves the discrete logarithm problem can be solved in sub-exponential time.

Let us recall the principle of the algorithm in [31] in the case of interest in this paper,
namely the ECDLP in an elliptic curve E defined over a non-prime finite field Fqn with
n > 1. Given P of prime order and Q, two points of E(Fqn) in Weierstrass represen-
tation, we look for an integer X, if it exists, such that Q = [X]P (where the notation
[m]P denotes, as usual, the scalar multiplication of P by m).
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Step 1: First we compute the factor base F = {(x, y) ∈ E(Fqn) | x ∈ Fq}.
Step 2: Then we look for #F + 1 relations (#F independent relations and any other)

of the form

[aj ]P ⊕ [bj ]Q = P1 ⊕ · · · ⊕ Pn (1)

where P1, . . . ,Pn ∈ F and aj and bj are randomly picked up in Z.
Step 3: Finally, using linear algebra, find λ1, . . . , λ#F+1 such that the neutral ele-

ment of E(Fqn) is equal to
∑

j [λj · aj ]P ⊕ [λj · bj ]Q and return X = −A
B

modulo the order of P , where A = ∑

j λj · aj and B = ∑

j λj · bj .

Our study starts from this algorithm. Thus, we assume the same two hypotheses as in
[31].

Hypothesis 1. There exist approximately qn

n! points of E(Fqn) which can be decom-
posed as the sum of n points in F . Thus each relation of Step 2 can be found with
probability 1

n! .

Hypothesis 2. Polynomial systems coming from the resolution of Eq. (1) in Step 2 are
of dimension zero (they thus have a finite number of solutions over an algebraic closure
of Fqn ).

Using the double large prime variation and for a fixed degree extension n, the com-

plexity of this index-calculus attack is ˜O(q2− 2
n ) where the notation ˜O means that we

omit the logarithmic factors in q . It is thus faster than Pollard rho method in ˜O(q
n
2 ) for

n ≥ 3 and sufficiently large q . However, this complexity hides an exponential depen-
dence in n in step 2, which is the main topic of this work. Thus, the main focus of this
paper is the resolution of the following problem.

Point Decomposition Problem (PDP). Given a point R in an elliptic curve E(Fqn) and
a factor base F ⊂ E(Fqn), find, if they exist, P1, . . . ,Pn in F , such that

R = P1 ⊕ · · · ⊕ Pn.

To solve the PDP, one can use the summation polynomials introduced by Semaev [44]
and the resolution of the PDP is equivalent to solving a polynomial system. This can
be done by first computing a Gröbner basis of the system for a degree ordering with F4

[21] or F5 [22]. Then computing the lexicographical Gröbner basis by using a change
of ordering algorithm [24–26].

We note that Nagao [41] introduced a variant of the index-calculus algorithm, well-
suited to hyperelliptic curves, in which the PDP step is replaced by another approach,
which creates relations from Riemann–Roch spaces. It also relies, in the end, on polyno-
mial system solving. If the curve is elliptic, the Nagao variant needs to solve polynomial
systems with a number of variables quadratic in n instead of n variables with the sum-
mation polynomials of Semaev. Therefore, in the elliptic case, it seems to be always
better to use Semaev’s polynomials, so we stick to that case in our study.
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1.2. Contributions

In the case of the Pollard rho and sibling methods, it is well known that if there is a
small rational subgroup in G, the Pohlig–Hellman reduction allows to speeds-up the
computation by a factor of roughly the square root of the order of this subgroup. It is
also the case if there is an explicit automorphism of small order. For index calculus in
general, it is far less easy to make use of such an additional structure. For instance, in the
multiplicative group of a prime finite field, the number field sieve algorithm must work
in the full group, even if one is interested only in the discrete logarithm in a subgroup.
A key element is the action of the rational subgroup that must be somewhat compatible
with the factor base. See for instance the article by Couveignes and Lercier [12], where
a factor base is chosen especially to fit this need, again in the context of multiplicative
groups of finite fields.

The aim of this paper is to emphasize some elliptic curves models where one can
indeed make use of the presence of a small rational subgroup to speed up the index-
calculus algorithm, and especially the PDP step. In particular, for curve representations
having an important interest from a cryptographic point of view, we decrease the bound
on the complexity by a factor of 2ω(n−1). More precisely, under the hypothesis that the
systems are regular, we have the following result.

Theorem 1.1. Let E be an elliptic curve defined over a non-binary field Fqn where
n > 1. If E can be put in twisted Edwards or twisted Jacobi intersections representation
then the complexity of solving the PDP is

• (proven complexity) ˜O(n · 23(n−1)2
)

• (heuristic complexity) ˜O(n2 · 2ω(n−1)2
)

where 2 ≤ ω < 3 is the linear algebra constant that is the exponent in the complexity of
multiplying two dense matrices.

The proven complexity of Theorem 1.1 is obtained by using the classical complexity
of change of ordering algorithm, FGLM in O(nD3) [25] where D is the number of so-
lutions counted with multiplicities in the algebraic closure of the coefficient field. The
heuristic complexity is obtained by using a change of ordering algorithm recently pro-
posed in [24]. This algorithm follows the approach of [26]. In the case of generic poly-
nomial systems this algorithm has a proven complexity of O(n log(D)D + log(D)Dω).
In the case where the given polynomial system is not generic, a randomization technique
allows to obtain the same, but heuristic, complexity.

The main ingredient of the proof of Theorem 1.1 is to use the symmetries of the
curves corresponding to a group action: they allow to reduce the number of solutions in
Fq of the polynomial systems to be solved and to speed up intermediate Gröbner bases
computations.

The first symmetries to be used are inherent in the very definition of the PDP: the
ordering of the Pi ’s does not change their sum, so that the full symmetric group acts
naturally on the polynomial system corresponding to the PDP. It is a classical way to
reduce the number of solutions by a factor n!, and speed up accordingly the resolution.
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Fig. 1. Edwards curve over the real numbers.

Fig. 2. Projection of a Jacobi intersection curve over the real numbers.

Twisted Edwards and twisted Jacobi intersections curves have more symmetries than
ordinary elliptic curves (Figs. 1 and 2), due to the presence of a rational 2-torsion point
with an interesting action. It is remarkable that, for the natural choice of the factor
base, this action translates into the polynomial systems constructed using summation
polynomials in a very simple manner: any sign change on an even number of variables
is allowed. This action combined with the full symmetric group gives the so-called
dihedral Coxeter group, see for instance [35]. Using invariant theory techniques [47], we
can thus express the system in terms of adapted coordinates, and therefore the number
of solutions is reduced by a factor 2n−1 · n! (the cardinality of the dihedral Coxeter
group). This yields a speed-up by a factor 23(n−1) (or 2ω(n−1) for the heuristic case) in
the change of ordering step, compared to the general case.

In the first step of the general method for solving polynomial systems, one has to
compute a degree reverse lexicographical ordering Gröbner basis. The complexity of
computing such a Gröbner basis with F4 or F5 is related to the maximal degree reached
by the polynomials during the computation. Without some assumptions on the system,
such a bound is very hard to handle. We will show that by using the 2-torsion of twisted
Edwards or Jacobi intersections curves the bound on the complexity of computing a
Gröbner basis for a degree monomial ordering is divided by 2ω(n−1) when the systems
are assumed to be regular (note that in [34], a similar hypothesis for overdetermined
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systems has been supposed). Indeed, a quasi-homogeneous structure (see [28]) appears
when we apply the change of coordinates associated to the action of the dihedral Coxeter
group. Such a structure amounts to consider a weighted degree instead of the usual
degree.

We present also several practical experiments which confirm the exponential decrease
of the complexity. All experiments were carried out using the computer algebra system
MAGMA [7] and the FGb library [23].

1.3. Consequences and Limitations

Our experiments show that for some parameters, the new version of the algorithm is sig-
nificantly faster than generic algorithms. For instance for a twisted Edwards or twisted
Jacobi intersections curve defined over Fq5 where log2(q) = 64, solving the ECDLP
with generic algorithms requires approximately 2160 operations in E(Fq5) and only 2130

basic arithmetic operations (multiplications of two 32-bits words) with our approach.
We do not change the very nature of the attack; therefore it applies only to curves de-

fined over small extension fields. This work has no implication on the ECDLP instances
recommended by the NIST [42], since they are defined over prime finite fields of high
characteristic or binary fields of prime degree extension.

1.4. Related Work

In [34], Joux and Vitse improve the complexity of the index-calculus algorithm for
medium q . Indeed, to decrease the cost of polynomial systems involved in the attack
they look for decompositions of points of the curve in n − 1 points instead of n. At
a high level, it can be seen as looking for a decomposition in n points, where one of
the point has been fixed to be the point at infinity. As a consequence, the probability
of finding a decomposition is reduced by a factor of q , so that the complexity grows
accordingly, and the range of application is for moderate values of q . Conversely, in our
work, the dependence in q is not affected, but it is only limited to twisted Edwards and
twisted Jacobi intersections curves.

1.5. Organization of the Paper

The paper is organized as follows. In Sect. 2, we recall how to use the summation
polynomials to solve the PDP. We also present some properties of twisted Edwards
and Jacobi intersections curves. In Sect. 3 we give some results from invariant theory
and present a general algorithm for computing a Gröbner basis of an invariant ideal.
The end of this section is devoted to the complexity of computing a Gröbner basis
for a degree ordering of an invariant polynomial system. Section 4 is devoted to the
main contribution of this article. We show how 2-torsion and 4-torsion points can be
used to efficiently solve the PDP. Finally, we present in Sect. 5 some experiments that
confirm the theoretical results and Sect. 6 concludes the paper by giving some possible
perspectives.

2. Point Decomposition Problem

In this section we first present the point decomposition problem (denoted PDP) in the
context of ECDLP and a general method to solve it. Then, we recall the summation
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polynomials introduced by Semaev to improve the efficiency of this general method.
Finally, we show how to compute summation polynomials corresponding to the PDP
over twisted Edwards and Jacobi intersections curves and recall some properties of these
curves.

2.1. General Method for Solving the PDP

Let E be an elliptic curve in Weierstrass representation defined over Fqn with n > 1.
Recall the PDP: given a point R ∈ E(Fqn) and the factor base F = {(x, y) ∈ E(Fqn) |
x ∈ Fq} ⊂ E find P1, . . . ,Pn ∈ F such that

R = P1 ⊕ · · · ⊕ Pn.

Writing Fqn = Fq [X]/μ(X) = Fq [α] where μ(X) is an irreducible polynomial over Fq

of degree n and α is a root of μ(X) in Fqn , we can see Fqn as a vector space over Fq

for which {1, α, . . . , αn−1} is a basis. Frey [30] showed that any instance of the ECDLP
can be mapped to an instance of the DLP in the Weil restriction of E(Fqn) from Fqn

to Fq . In the same way, the PDP over any elliptic curve defined over a non-prime finite
field can be mapped to the PDP over the Weil restriction of this curve. Indeed the Weil
restriction A of E(Fqn) is the abelian variety of dimension n for which an affine patch
can be described by the set of 2n-tuples (x0, . . . , xn−1, y0, . . . , yn−1) ∈ (Fq)2n such that
(
∑n−1

i=0 xi · αi,
∑n−1

i=0 yi · αi) is a point of E(Fqn). The group law of E gives a group law
on A which is given by rational fractions depending on the coordinates of the summed
points. Consequently we can construct 2n rational fractions λj in terms of the n(n + 1)

variables xi,0, yi,0, . . . , yi,n−1 for i = 1, . . . , n such that

P1 ⊕ · · · ⊕ Pn = (λ1, . . . , λ2n)

where Pi = (xi,0,0, . . . ,0, yi,0, . . . , yi,n−1) ∈ F . To solve the PDP, we write P1 ⊕ · · · ⊕
Pn = R which gives 2n equations in Fq . Adding the equations describing Pi ∈ E

for i = 1, . . . , n − 1, we obtain a polynomial system with n(n + 1) variables and
n(n + 1) equations in Fq . It is not necessary to add the equation for Pn ∈ E be-
cause this information is already in the system. Indeed, we have P1, . . . ,Pn−1 ∈ E and
Pn = R � (P1 ⊕ · · · ⊕ Pn−1) with R ∈ E and by consequence Pn too. The system has
as many unknowns as equations then under regularity assumptions, it is of dimension 0.
The hypothesis of dimension 0 has been checked in practice so we follow Hypothesis 2.
In order to solve this system, we use Gröbner bases. The complexity of Gröbner basis
computation depends on the number of variables which is quadratic in n. To speed up
the resolution, one can reduce the number of variables by using the summation polyno-
mials introduced by Semaev in [44].

2.2. Solving the PDP Using Summation Polynomials

The summation polynomials are introduced by Semaev as a projection of the PDP over
the set of x-coordinate of each point.

Definition 1. Let E be an elliptic curve defined by a planar equation over a field Fqn

and let Fqn be an algebraic closure of this field. For all m ≥ 2, the mth summation
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polynomial of E is defined by fm(x1, . . . , xm) such that for all x1, . . . , xm in Fqn , its
evaluation fm(x1, . . . , xm) is zero if and only if there exist y1, . . . , ym ∈ Fqn such that
(xi, yi) is in E(Fqn) and (x1, y1) ⊕ · · · ⊕ (xm, ym) is the neutral element of E.

More generally the summation polynomials can be defined as a projection over the
set of any coordinate. Depending on the coordinate we project to, we need to adjust the
factor base: let c be the chosen coordinate, F has to be the set of all points of the curve
with c in Fq instead of Fqn . The probability of decomposing a point w.r.t. F still follows
the Hypothesis 1. In the context of Definition 1 and if E is in Weierstrass representation
we have the following result.

Theorem 2.1 (Semaev [44]). Let E be an elliptic curve defined over a field of charac-
teristic >3 by a Weierstrass equation

E : y2 = x3 + a4x + a6 (2)

the summation polynomials of E are given by

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

f2(x1, x2) = x1 − x2

f3(x1, x2, x3) = (x1 − x2)
2x2

3 − 2((x1x2 + a4)(x1 + x2) + 2a6)x3

+ (x1x2 − a4)
2 − 4a6(x1 + x2)

fm(x1, . . . , xn) = ResX(fm−k(x1, . . . , xm−k−1,X),fk+2(xm−k, . . . , xm,X))

for all m ≥ 4 and for all m − 3 ≥ k ≥ 1

where ResX(f1, f2) is the resultant of f1 and f2 with respect to X. Moreover, for all
m ≥ 3 the mth summation polynomial is symmetric and of degree 2m−2 in each variable.
Summation polynomials are irreducible.

We now detail how to use the summation polynomials to solve the PDP. Assume that
E is given by a Weierstrass equation. By definition, if the points P1, . . . ,Pn verify

fn+1(xP1 , . . . , xPn, xR) = 0Fqn (3)

then, up to signs, they give a solution of the PDP for R. By applying a Weil restriction,
we obtain

fn+1(xP1 , . . . , xPn, xR) = 0Fqn ⇐⇒
n−1
∑

k=0

ϕR,k(xP1 , . . . , xPn) · αk = 0Fqn

where the ϕR,k(xP1 , . . . , xPn) are polynomials in Fq [xP1, . . . , xPn]. Thus, solving Eq. (3)
is equivalent to solving the polynomial system S = {ϕR,k(xP1 , . . . , xPn), k = 0, . . . ,

n − 1} in Fq .
We will detail in the next section how to solve such a system, taking advantage from

the fact that it is symmetric. An important parameter is the degree in each variable which
is 2n−1.
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Remark 1. Let ı be the automorphism of degree 2 of E which associates to a point its
negation:

ı : E(Fqn) −→ E(Fqn)

(x, y) �−→ �(x, y) = (x,−y).

Let πx and πy be, respectively, the projection on x and y. We can note that πx(x, y) =
πx(ı(x, y)) and πy(x, y) �= πy(ı(x, y)). Clearly, πx(E) � E/ı and the PDP in m points
have more solutions in Em than in (E/ı)m. This is not true for πy . By consequence, by
projecting on x, we obtain summation polynomials with smaller degree. In the follow-
ing, we then choose to project on the coordinate c, if it exists, such that there exists an
automorphism ψ of E such that πc(E) � E/ψ and for all P , πc(P ) = πc(ψ(P )). For
both studied representations, this automorphism exists and will be ı.

We now study two curve representations having more symmetries than the Weier-
strass representation. Following the same idea, we will show in the sequel that these
additional symmetries allow to further reduce the difficulty of the resolution of the PDP.

2.3. Curve Representations Adding Symmetries in the PDP

Any elliptic curve can be represented by a Weierstrass equation. Among these curves,
some share common properties that allow to choose another form of equation. In par-
ticular, we study two families of elliptic curves, the twisted Edwards and Jacobi inter-
sections curves.

2.3.1. Twisted Edwards Curves

This family of elliptic curve was introduced in 2008 in cryptography [4]. This is a
generalization of the representation proposed by Edwards in [18]. These curves were
deeply studied by the cryptology community, especially by Bernstein and Lange [5],
for their efficient arithmetic. In [4] the authors show that the family of twisted Edwards
curves is isomorphic to the family of Montgomery curves [40]. In particular these curves
always have a rational 2-torsion point T2 = (0,−1) (and a rational 4-torsion point for
Edwards curves). A twisted Edwards curve is defined over a field K of characteristic
>2 by

Ea,d : ax2 + y2 = 1 + dx2y2 (4)

where a, d �= 0 and a �= d . If a = 1, E1,d is an Edwards curve. The group law of a
twisted Edwards curve is given by

(x1, y1) ⊕ (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1 − dx1x2y1y2

)

with neutral element P∞ = (0,1). The opposite of a point P = (x, y) ∈ Ea,d(K) is
�P = (−x, y), and adding T2 to P gives P +T2 = (−x,−y). Therefore the symmetries
can be interpreted in terms of the group law. If a is a square in K then a twisted Edwards

curve has two 4-torsion points T4 = (a− 1
2 ,0) or (−a− 1

2 ,0).
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To solve the PDP in twisted Edwards representation, we have to construct the sum-
mation polynomials of such a curve. As said in Remark 1, we compute the summation
polynomials as a projection of the PDP to the coordinate which is invariant under the �
action. That is to say the y-coordinate for twisted Edwards curves. The nth summation
polynomial for twisted Edwards curves is then given by

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

f2(y1, y2) = y1 − y2

f3(y1, y2, y3) = (y2
1y2

2 − y2
1 − y2

2 + a
d
)y2

3 + 2 d−a
d

y1y2y3

+ a
d
(y2

1 + y2
2 − 1) − y2

1y2
2

fn(y1, . . . , yn) = ResY (fn−k(y1, . . . , yn−k−1, Y ), fk+2(yn−k, . . . , yn,Y ))

for all n ≥ 4 and for all n − 3 ≥ k ≥ 1.

As in the case of Weierstrass representation, for all n ≥ 3 the nth summation polynomial
is symmetric (see proof in Sect. 4.1.2) and of degree 2n−2 in each variable. Moreover,
the proof of irreducibility of summation polynomials by Semaev does not depend on
the representation of the curve or the coordinate we project to. Hence, it can be applied
mutatis mutandis for twisted Edwards or Jacobi intersections summation polynomials.

2.3.2. Twisted Jacobi Intersections Curves

This form of elliptic curves was introduced in 2010 in [29]. As for twisted Edwards
curves, it is a generalization of Jacobi intersections curves (which are the intersections
of two quadratic surfaces defined in a three-dimensional space) proposed by D.V. and
G.V. Chudnovsky in [9]. The twisted Jacobi intersections curves are defined over a non-
binary field K by

Ea,b :
{

ax2 + y2 = 1

bx2 + z2 = 1

where a, b ∈ K, a, b �= 0 and a �= b. If a = 1, E1,b is a Jacobi intersection curve.
The family of twisted Jacobi intersections curves contains all curves having three ra-
tional 2-torsion points. These three 2-torsion points are T2 = (0,1,−1), (0,−1,1)

and (0,−1,−1). The neutral element is P∞ = (0,1,1) and the negative of a point
P = (x, y, z) ∈ Ea,b(K) is given by �P = (−x, y, z). Adding one of the 2-torsion
point to P gives, respectively, the points (−x, y,−z), (−x,−y, z) and (x,−y,−z).
The group law is given by

(x1, y1, z1)⊕ (x2, y2, z2)=
(

x1y2z2 + x2y1z1

y2
2 + az2

1x
2
2

,
y1y2 − ax1z1x2z2

y2
2 + az2

1x
2
2

,
z1z2 − bx1y1x2y2

y2
2 + az2

1x
2
2

)

.

Jacobi intersections curves can have zero, four or eight 4-torsion points:

• (± 1√
b
,±

√

b−a
b

,0), if a �= 1 non-square or a = 1 and −1 non-square and b and

b − a are squares in K.

• (± 1√
a
,0,±

√

a−b
a

), if b �= 1 non-square or b = 1 and −1 non-square and a and

a − b are squares in K.
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• (± 1√
b
,±

√

b−a
b

,0), (± 1√
a
,0,±

√

a−b
a

), if a, b,−1 and a − b are squares in K.

For these curves the y and z coordinates are invariant under the action of �. Hence
we can compute the summation polynomials for these curves as a projection of the PDP
to the y or z coordinate. In fact the two summation polynomials for n fixed are the same
up to permutation of a and b, so we give only the polynomials obtained by projection
to y:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

f2(y1, y2) = y1 − y2

f3(y1, y2, y3) = (y2
1y2

2 − y2
1 − y2

2 + b−a
b

)y2
3 + 2 a

b
y1y2y3

+ b−a
b

(y2
1 + y2

2 − 1) − y2
1y2

2

fn(y1, . . . , yn) = ResY (fn−k(y1, . . . , yn−k−1, Y ), fk+2(yn−k, . . . , yn,Y ))

for all n ≥ 4 and for all n − 3 ≥ k ≥ 1.

As for Weierstrass and twisted Edwards representations, these summation polynomi-
als are irreducible and for all n ≥ 3 the nth summation polynomial is symmetric and of
degree 2n−2 in each variable.

To take advantage of the symmetries introduced by twisted Edwards and Jacobi in-
tersections curves, we have to know how to use the symmetries of a polynomial ideal to
simplify the computation of its Gröbner basis; this is the topic of the next two sections.

3. Solving Polynomial Systems and Symmetries

In this section, we first recall some results about the complexity of computing Gröbner
bases. All these complexities are given in numbers of arithmetic operations. Then, we
give some background on invariant theory. Finally, we recall a classical strategy to solve
invariant polynomial systems and we discuss its impact on Gröbner basis computation
complexity. For a more thorough reading on the subject, see [13] for an introduction on
computational commutative algebra and [47] for a general exposition on computational
invariant theory. In all this section, we consider ideals generated by polynomial systems
and their corresponding algebraic variety. It is worth noticing that even if some consid-
ered ideals are generated by homogeneous polynomials, we always consider their affine
variety only. In particular, the dimension of such an ideal is the one corresponding to its
affine variety.

3.1. Gröbner Basis

A reduced Gröbner basis of a given ideal I ⊂ K[x1, . . . , xn] is a set of polynomials gen-
erating this ideal. It is not the unique basis of an ideal but once the monomial ordering is
fixed in the polynomial ring, it is a canonical basis after normalization. This canonical
basis can have a lot of useful properties. In particular, by setting K an algebraic closure
of K, from the lexicographical reduced Gröbner basis of I , one can read off the set of
elements in the affine space A

n = K
n

canceling all the polynomials in I . This set is
called the algebraic variety or the solutions of the ideal I . In the sequel, we consider
ideals with corresponding varieties of finite cardinality only, such ideals are said to be
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of dimension zero. In this particular case, the reduced lexicographical Gröbner basis has
the following triangular form:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

h1,1(x1, . . . , xn), . . . , h1,k1(x1, . . . , xn)

h2,1(x2, . . . , xn), . . . , h2,k2(x2, . . . , xn)

...

hn−1,1(xn−1, xn), . . . , hn−1,kn−1(xn−1, xn)

hn(xn).

From such a triangular form, one can deduce the solutions of I by factoring univariate
polynomials using Berlekamp or Cantor–Zassenhaus algorithm (see [49]). As here the
ideal is assumed to be zero-dimensional, one can count its number of solutions in A

n

with multiplicities, this number is denoted by D and it is also called the degree of the
ideal in this situation. The expected shape of a lexicographical Gröbner basis is named
shape position and has the following form:

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

x1 − h1(xn)

...

xn−1 − hn−1(xn)

hn(xn)

where h1, . . . , hn−1 are univariate polynomials of degree less than D and hn is a uni-
variate polynomial of degree exactly D.

Usually, to compute such a Gröbner basis we proceed in two steps. First we compute
a Gröbner basis for the degree reverse lexicographical ordering. Then, from this basis,
we compute the lexicographical Gröbner basis by using a change of ordering algorithm
[24–26]. For the first step, we consider the algorithms F4 or F5 [21,22], we now present
some results about their complexity.

3.1.1. Complexity of F4 and F5 Algorithms

For these algorithms, we investigate their complexity in the case of graded monomial
ordering, that is to say, the monomials are ordered with respect to a given graduation and
in case of equality, another ordering (e.g. reverse lexicographical) is applied in order to
make it total. Such a usual graded monomial ordering is the degree reverse lexicograph-
ical (see [13]). We recall that a graduation degw on the monomials of K[x1, . . . , xn] is
defined from a given sequence of weights w = (w1, . . . ,wn) in the following way:

degw

(

x
α1
1 · · ·xαn

n

) =
n

∑

i=1

wiαi.

It is worth noticing that the usual degree corresponds to degw with weights (1, . . . ,1).
In order to keep the standard notation, we use deg in this case and call weighted degree
for any other graduation (i.e. when w �= (1, . . . ,1)). In this general context, we say that
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a polynomial is homogeneous if all its monomials have the same graduation (in the
literature, a polynomial which is homogeneous for a weighted degree is usually said
quasi-homogeneous but we do not use this terminology here). It is important to note
that the homogeneity of a polynomial depends on the graduation.

Among polynomial systems, the homogeneous regular systems form a family of poly-
nomial systems for which the complexity of F4 and F5 is well handled.

Definition 2 (Regular Systems). Let F = (f1, . . . , fs) ∈ (K[x1, . . . , xn])s be a se-
quence of s ≤ n non-zero homogeneous polynomials for a fixed graduation degw . The
sequence F is said to be regular if for all i ∈ {1, . . . , s − 1}, the polynomial fi+1 is not
a zero divisor in the quotient ring K[x1, . . . , xn]/〈f1, . . . , fi〉. A homogeneous polyno-
mial system {f1, . . . , fs} is said to be regular if the sequence (f1, . . . , fs) is regular.

Here we consider only zero-dimensional ideals generated by a regular sequence of
polynomials. Moreover, if a regular sequence is of length the number of variables
(s = n) then the ideal that it generates is zero-dimensional. In order to simplify the
notations we then consider that the number of polynomials in the system is always the
number of variables. For homogeneous regular systems, the complexity of computing
a graded reverse lexicographical Gröbner basis can be bounded by the complexity of
computing the reduced row echelon form of a particular matrix (the Macaulay matrix,
see Definition 4 below) which its size depends on a certain graduation d = dreg (see [3])
called the degree of regularity of the system. This quantity is defined as follows.

Definition 3 (Degree of Regularity). Let I be a zero-dimensional ideal in the poly-
nomial ring K[x1, . . . , xn] equipped with a graded monomial ordering for a fixed grad-
uation degw . We assume that the ideal I is generated by a sequence of homogeneous
polynomials (f1, . . . , fn). Let LT(I) be the leading term ideal of I , also called initial
ideal, which is the ideal of K[x1, . . . , xn] generated by the leading terms LT(f ) of the
elements f in I . The degree of regularity of I , denoted dreg, is defined as the minimal
graduation d such that the set M(d) of monomials m ∈ K[x1, . . . , xn] of graduation
degw(m) greater or equal to d verifies

M(d) ⊂ LT(I).

For regular systems, the Macaulay bound gives a bound on dreg when the graduation
is the usual degree (see [38]). For a weighted degree, such a bound is given in [28].
These results can be summarized in the following theorem.

Theorem 3.1 [28,38]. Let F = (f1, . . . , fn) be a regular sequence of non-zero homo-
geneous polynomials of K[x1, . . . , xn] equipped with a graded monomial ordering for
a fixed graduation degw . By denoting di the graduation degw(fi) we have the following
bound:

dreg ≤ max
i=1,...,n

{wi} +
n

∑

i=1

(di − wi).
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One can notice that if w = (1, . . . ,1), this bound is consistent with the usual one
given by the Macaulay bound. Finally, in order to estimate the complexity of F4 or F5
algorithms, we need the size of the Macaulay matrix in graduation dreg.

Definition 4 (Macaulay Matrix). Let {f1, . . . , fn} be a set of homogeneous polyno-
mials of K[x1, . . . , xn] and > be a graded monomial ordering for a fixed graduation
degw . The Macaulay matrix in graduation d , denoted Mac(d), is the matrix whose rows
contain the coefficients of the polynomials tfj for j = 1, . . . , n and all monomials t

of K[x1, . . . , xn] such that degw(tfj ) = d . Each column of the matrix corresponds to a
monomial of K[x1, . . . , xn] of graduation d . The columns are arranged in descending
order w.r.t. the monomial ordering >.

The size of the Macaulay matrix in graduation d , is then deduce from the number
of monomials in n variables of graduation d . Hence, for homogeneous regular systems,
the arithmetic complexity of F4 or F5 algorithms can be bounded by

O

((

n + dreg − 1

dreg

)ω)

for the usual degree, (5)

O

((

Gcdi=1,...,n{wi}
∏n

i=1 wi

(

dreg + Sn

dreg + Sn − n + 1

))ω)

for a weighted degree (6)

where Sn is defined by S1 = 0 and Si = Si−1 + wi
Gcdj=1,...,i−1{wj }

Gcdj=1,...,i {wj } for i ≥ 2 and
2 ≤ ω < 3 is the linear algebra constant. See [28] for more details about the size of
Macaulay matrices with weighted degree.

In most applications as in this work, polynomial systems are not homogeneous. By
consequence one needs to relate the complexity of solving an affine polynomial system
to the complexity of solving a particular homogeneous system. For this purpose, we use
the homogeneous component of highest graduation as specified in the next definition.

Definition 5 (Affine Regular Systems). Let F = (f1, . . . , fn) be a sequence of non-
zero affine polynomials of K[x1, . . . , xn]. We denote by f

(h)
i the homogeneous compo-

nent of highest graduation of fi . The sequence F is said to be regular if the sequence
of homogeneous polynomials F (h) = (f

(h)
1 , . . . , f

(h)
n ) is regular. An affine polynomial

system is said to be regular if it is defined by an affine regular sequence.

Let F = {f1, . . . , fn} ⊂ K[x1, . . . , xn] equipped with a fixed graduation degw . As-
sume that F is an affine regular system as specified in the preceding definition. Let
G = {g1, . . . , gn} ⊂ K[x1, . . . , xn,h] be the set of the homogenization of the elements
in F . By equipping the polynomial ring K[x1, . . . , xn,h] with the graduation degw′
where w′

n+1 = 1 and w′
i = wi for i = 1, . . . , n, the complexity of computing the graded

reverse lexicographical Gröbner basis of 〈F 〉 can be bounded by the complexity of
computing the graded reverse lexicographical Gröbner basis of 〈G〉. By consequence,
for affine regular systems in K[x1, . . . , xn], the complexity of computing a graded re-
verse lexicographical Gröbner basis can be bounded by the formula in Eqs. (5) or (6)
after replacing n by n + 1 and setting wn+1 = 1.
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When the system is not regular, the complexity of algorithms F4 and F5 is much
more difficult to handle. Indeed, for affine non-regular systems, some polynomials of
graduation d in the ideal can be obtained by combination of polynomials of higher
graduation i.e.:

f =
n

∑

i=1

hifi and ∃i ∈ {1, . . . , n} such that degw(hifi) > degw(f ). (7)

As this phenomenon is difficult to anticipate, the complexity of F4 or F5 is very hard
to estimate and there is no general tight bound on the complexity of F4 and F5 in this
case.

Contrary to the computation of a Gröbner basis, for any class of polynomial sys-
tems, the complexity of the second step in the resolution of polynomial systems is well
understood. This is what we present in the next section.

3.1.2. Complexity of Change of Ordering

The classical algorithm of change of ordering for Gröbner basis is FGLM [25]. Its com-
plexity is in O(nD3) arithmetic operations. For generic systems, this complexity can be
reduced to O(n log2(D)D + log(D)Dω) (see [24]).

Nevertheless, polynomial systems arising in this work are not generic in the sense
of [24]. However, the authors proposed also an algorithm for non-generic polynomial
systems for which the complexity of the change of ordering can heuristically be bounded
by O(n log2(D)D+ log(D)Dω). This heuristic complexity has been checked on various
examples. In particular, it seems to be valid for polynomial systems considered here.

For systems having symmetries i.e. invariant under the action of a linear group, com-
puting directly a Gröbner basis breaks symmetries, which is not satisfactory. The two
next sections are devoted to handle symmetries in the polynomial systems solving pro-
cess.

3.2. Invariant Ring and Reflection Groups

In the sequel, we consider the action of a finite linear group G. We assume that the field
K has a positive “large enough characteristic”, that is to say, not dividing the cardinality
of G. All notions of invariant theory recalled in the following section, can be generalized
to an affine variety instead of the affine space.

A linear group G ⊂ GL(K, n) naturally acts on the affine space A
n or any K-vector

space of dimension n by the matrix vector multiplication. This action can be translated
to polynomial rings. More precisely we have the following definition.

Definition 6 (Invariant Rings). Let K[x1, . . . , xn] be a polynomial ring in n variables
with coefficients in K. The action of a group G ⊂ GL(K, n) on K[x1, . . . , xn] is defined
by

G×K[x1, . . . , xn] −→ K[x1, . . . , xn]
g,f �−→ g · f
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where g · f is defined by (g · f )(v) = f (g−1 · v) where v is the vector (x1, . . . , xn).
This definition uses the inverse of g in order to get a left action. The invariant ring of G
is the set of all invariant polynomials in K[x1, . . . , xn]:

K[x1, . . . , xn]G = {

f ∈ K[x1, . . . , xn] | g · f = f for all g ∈G
}

.

One of the fundamental results in invariant theory was proven by Hilbert in the last
decade of the 19th century and is summarized in the following theorem.

Theorem 3.2 (Hilbert’s Finiteness Theorem). The invariant ring of G is finitely gen-
erated.

Following this theorem, many results were provided for the decomposition of invari-
ant rings. In particular, it is proven that K[x1, . . . , xn]G is a finitely generated free mod-
ule over K[θ1, . . . , θn] where θ1, . . . , θn are algebraically independent. Consequently
there exist η1, . . . , ηt ∈ K[x1, . . . , xn]G such that

K[x1, . . . , xn]G =
t

⊕

i=1

ηiK[θ1, . . . , θn]. (8)

The decomposition (8) is called a Hironaka decomposition of K[x1, . . . , xn]G. The poly-
nomials θ1, . . . , θn (resp. η1, . . . , ηt ) are the primary invariants (resp. secondary invari-
ants) of K[x1, . . . , xn]G.

To solve pointwise invariant polynomial systems (i.e. each polynomial in the system
is in the invariant ring of the corresponding group) by using the symmetries, one has
to rewrite the systems in terms of the primary and secondary invariants. If the invariant
ring of G is not a polynomial algebra (i.e. the secondary invariants are not reduced to
{1}) considering the symmetries can complicate the resolution of the system. Actually,
since secondary invariants are not independent, then considering the symmetries when
these invariants are not trivial increases the number of equations and variables to con-
sider. Consequently, the polynomial systems could be more difficult to solve. Moreover,
computing a Hironaka decomposition can be a difficult task. In the case where the in-
variant ring is not a polynomial algebra one can use also SAGBI Gröbner bases, see for
instance [27]; we will not need this strategy in this work.

By consequence an elementary question is to know under which conditions on G,
its invariant ring is a graded polynomial algebra (and thus when the set of secondary
invariants is trivial). The answer is given in the following theorem.

Theorem 3.3 (Shephard, Todd, Chevalley [8,45]). The invariant ring of G is a poly-
nomial algebra if and only if G is a pseudo-reflection group.

A group G ⊂ GL(K, n) is said to be a pseudo-reflection group if it is generated by its
pseudo-reflections. A pseudo-reflection is a linear automorphism of An that is not the
identity map, but leaves a hyperplane H ⊂ A

n pointwise invariant.
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Example 1. Coxeter groups can be represented thanks to a pseudo-reflection group.
In particular, the dihedral Coxeter group Dn = (Z/2Z)n−1

�Sn can be represented by
the action on A

n defined by the rule that Sn permutes the coordinates of the vectors,
whereas (Z/2Z)n−1 changes the sign on an even number of its coordinates. From Theo-
rem 3.3 the invariant ring of Dn is then a polynomial algebra. In the sequel, the dihedral
Coxeter group Dn will always correspond to this representation. It is a well-known
group and its invariant ring is well known too. Actually,

K[x1, . . . , xn]Dn = K[p2, . . . , p2(n−1), pn] = K[s1, . . . , sn−1, en]

where pi = ∑n
k=1 xi

k is the ith power sum, si = ∑

1≤k1<···<ki≤n

∏i
j=1 x2

kj
is the ith el-

ementary symmetric polynomial in terms of x2
1 , . . . , x2

n and en = ∏n
k=1 xk is the nth

elementary symmetric polynomial in terms of x1, . . . , xn.

In the case where G is a pseudo-reflection group, Theorem 3.3 allows to construct an
isomorphism ΩG between K[x1, . . . , xn]G and K[y1, . . . , yn] where y1, . . . , yn are new
indeterminates.

Definition 7. Let G be a pseudo-reflective group and θ1, . . . , θn ∈ K[x1, . . . , xn]G
be the primary invariants of G. We denote by ΩG the ring isomorphism from
K[x1, . . . , xn]G to K[y1, . . . , yn] corresponding to the change of coordinates by the
θi ’s and defined by

Ω−1
G

: K[y1, . . . , yn] −→ K[x1, . . . , xn]G

f �−→ f (θ1, . . . , θn).

In the following, we denote by K[θ1, . . . , θn] the polynomial ring given by the image
of ΩG.

We now see how to simplify the resolution of polynomial systems that are pointwise
invariant under a pseudo-reflection group.

3.3. Solving Pointwise Invariant System

Let G ⊂ GL(K, n) be a pseudo-reflection group. Let I = 〈f1(x1, . . . , xn), . . . ,

fn(x1, . . . , xn)〉 be an ideal of K[x1, . . . , xn] such that for i = 1, . . . , n, the polyno-
mial fi is in K[x1, . . . , xn]G. Clearly the variety V (I) is G-invariant. Let V (I)/G be
the set of G-orbits of V (I), we call it the orbit variety of I . As the invariant ring of G
admits a Hironaka decomposition, we will see in the sequel that from V (I)/G one can
compute all elements in V (I). Thus, to compute Gröbner bases keeping symmetries,
one can compute a Gröbner basis of an ideal having for variety the orbit variety V (I)/G

instead of V (I) and then find all elements in all orbits ṽ ∈ V (I)/G.
Let {θ1(x1, . . . , xn), . . . , θn(x1, . . . , xn)} be a set of generators (primary invariants) of

K[x1, . . . , xn]G. Since, the primary invariants are algebraically independent, the G-orbit
space An/G is the variety A

n see [47]. Let Ginv be the lexicographical Gröbner Basis of
〈

θ1(x1, . . . , xn) − y1, . . . , θn(x1, . . . , xn) − yn

〉 ⊂ K[x1, . . . , xn, y1, . . . , yn]



612 J.-C. Faugère et al.

where x1 > · · · > xn > y1 > · · · > yn. Let ṽ = (̃v1, . . . , ṽn) ∈ V (I)/G. All elements in
the G-orbit ṽ can be found by substituting the variables y1, . . . , yn by ṽ1, . . . , ṽn in the
lexicographical Gröbner basis Ginv.

To compute V (I)/G we have to compute a Gröbner basis Gorb of

Ginv ∪ {

f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)
}

with respect to an ordering eliminating the xi ’s. Actually, G = Gorb ∩K[y1, . . . , yn] is a
Gröbner basis of an ideal of variety V (I)/G.

Example 2. Let n = 2 and K= F65521. Let us consider the ideal I = 〈f1, f2〉 where

f1(x1, x2) = x2
1x2

2 − x2
1 − x2

2 − 1

f2(x1, x2) = x4
1 + x3

1x2 + x1x
3
2 + x4

2 .

The action of D2 leaves invariant both I and its variety, but not its lexicographical
Gröbner basis, which is

{

4x1 + 3x15
2 − 16x13

2 + 29x11
2 − 23x9

2 − 2x7
2 + 21x5

2 + 16x3
2 + 8x2

x16
2 − 5x14

2 + 8x12
2 − 5x10

2 − 2x8
2 + 5x6

2 + 8x4
2 + 5x2

2 + 1.

The corresponding Ginv and Gorb Gröbner basis are, respectively,

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

x2
1 + x2

2 − y1

x1x2 − y2

x1y2 + x3
2 − x2y1

x4
2 − x2

2y1 + y2
2

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

x1 − x3
2y3

2 − x3
2y2

2 + 4x3
2y2 + x3

2 − x2y
3
2 − x2y

2
2 + 3x2y2 + x2

x4
2 − x2

2y2
2 + x2

2 + y2
2

y1 − y2
2 + 1

y4
2 + y3

2 − 4y2
2 − y2 + 1.

The corresponding G basis in terms of y1 and y2 only is then

{

y1 − y2
2 + 1

y4
2 + y3

2 − 4y2
2 − y2 + 1

which preserves the symmetries. One can notice that the degree of the ideal I is 16
whereas considering the symmetries yields an ideal of degree divided by 4.

In our case, we consider groups that are pseudo reflective, the impact on the com-
plexity comes from the fact that we reduce the degree of the polynomials we consider
by the change of coordinates ΩG and that all solutions in the same orbit will correspond
to only one solution of the new system. So that the total number of solutions decreases.
Hence, the complexity of the F4 and FGLM steps are reduced accordingly.

The end of this section is devoted to the impact of such a change of coordinates on the
complexity of computing a graded reverse lexicographical or lexicographical Gröbner
basis.
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3.3.1. Complexity of F4 and F5 Algorithms for a Given Pointwise Invariant System

For the resolution of the Point Decomposition Problem, we will see in the next section
that we can construct polynomial systems invariant under the action of the dihedral Cox-
eter group. We denote by SDn this system expressed in terms of the primary invariants
of Dn. Moreover, we have observed in practice that using the action of the symmetric
group only, yields a regular system, denoted SSn

. By consequence, we now consider the
complexity of computing a weighted degree reverse lexicographical, denoted WDRL,
Gröbner basis of SDn when it is assumed that SSn

is regular.
Let s1, . . . , sn−1, en ∈K[x1, . . . , xn] be the primary invariants of the dihedral Coxeter

group Dn. As the symmetric group is a subgroup of Dn each of the primary invariants
of Dn can be written in terms of the elementary symmetric polynomials. Let ρi denotes
an expression of si in K[e1, . . . , en] one can easily deduce that

⎧

⎪
⎨

⎪
⎩

ρi = e2
i + 2

∑i−1
j=1(−1)j ei−j ei+j + 2(−1)ie2i if i ≤ �n/2�

ρi = e2
i + 2

∑n−i
j=1(−1)j ei−j ei+j if �n/2� < i < n

ρn = en.

This representation of the primary invariants of Dn in K[e1, . . . , en] allows to
construct a weighted degree which preserves the grading between the two rings
K[e1, . . . , en] and K[s1, . . . , sn−1, en]. Note that ρ

(h)
1 , . . . , ρ

(h)
n are algebraically inde-

pendent.

Lemma 1. For all f ∈ K[x1, . . . , xn]Dn ⊂ K[x1, . . . , xn]Sn , if K[s1, . . . , sn−1, en] is
equipped with the graduation degw with weights (2, . . . ,2,1) then degw(ΩDn(f )) =
deg(ΩSn

(f )).

Proof. Let ΩDn(f ) = ∑

α=(α1,...,αn) cαs
α1
1 · · · sαn−1

n−1 e
αn
n with cα ∈K and

degw

(

ΩDn(f )
) = max

{

αn + 2
n−1
∑

i=1

αi | cα �= 0

}

.

Then ΩSn
(f ) = ∑

α=(α1,...,αn) cαρ
α1
1 · · ·ραn−1

n−1 ρ
αn
n with

deg(ΩSn
) = max

{

n
∑

i=1

deg(ρi)αi | cα �= 0

}

= degw

(

ΩDn(f )
)

.
�

Let F be a sequence of invariant polynomials under the action of the dihedral Coxeter
group. If the image of F by ΩSn

is a regular sequence, we now show that ΩDn also
allows to construct a regular sequence.

Proposition 1. Let (f1, . . . , fn) ∈ (K[x1, . . . , xn]Dn)n ⊂ (K[x1, . . . , xn]Sn)n be a se-
quence of polynomials such that (ΩSn

(f1), . . . ,ΩSn
(fn)) ∈ (K[e1, . . . , en])n is a reg-

ular sequence for the usual graduation deg = degw with w = (1, . . . ,1).
If K[s1, . . . , sn−1, en] is equipped with a weighted degree degw of weights w =

(2, . . . ,2,1) then (ΩDn(f1), . . . ,ΩDn(fn)) ∈ (K[s1, . . . , sn−1, en])n is a regular se-
quence.
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Proof. In order to simplify the notations, for all f ∈ K[x1, . . . , xn]Dn we denote by
f (s) (resp. f (d)) the polynomial ΩSn

(f ) (resp. ΩDn(f )) and by f (s,h) (resp. f (d,h))
its homogeneous component of highest degree (resp. weighted degree).

Let α = (α1, . . . , αn) ∈ N
n, we denote |α| = ∑n

i=1 αi and |α|w = ∑n−1
i=1 2αi + αn.

For all f ∈K[x1, . . . , xn]Dn we have

f (d)(s1, . . . , sn−1, en) =
∑

|α|w=δ

cαs
α1
1 · · · eαn

n + R1(s1, . . . , sn−1, en)

where δ is the weighted degree of f (d), cα ∈ K and R1 is a polynomial of weighted
degree less than δ. Let denote ρi − ρ

(h)
i by ri we have

f (s)(e1, . . . , en) = f (d)(ρ1, . . . , ρn)

=
∑

|α|w=d

cα

(

ρ
(h)
1 + r1

)α1 · · · (ρ(h)
n + rn

)αn + R1(ρ1, . . . , ρn)

=
∑

|α|w=d

cα

(

ρ
(h)
1

)α1 · · · (ρ(h)
n

)αn + R2(e1, . . . , en)

where R2 is a polynomial of degree less than δ which contains R1(ρ1, . . . , ρn) by
Lemma 1. This implies that

f (s,h) =
∑

|α|w=d

cα

(

ρ
(h)
1

)α1 · · · (ρ(h)
n

)αn

= f (d,h)
(

ρ
(h)
1 , . . . , ρ(h)

n

)

. (9)

Assume that the sequence (f
(d,h)
1 , . . . , f

(d,h)
n ) is not regular i.e. there exists i ∈

{2, . . . , n} and 0 �= g,g1, . . . , gi−1 ∈ K[s1, . . . , sn−1, en] such that

g1f
(d,h)
1 + · · · + gi−1f

(d,h)
i−1 − gf

(d,h)
i = 0.

From Eq. (9) this implies that

g(h)
(

ρ
(h)
1 , . . . , ρ(h)

n

)

f
(s,h)
i −

i−1
∑

j=1

g
(h)
j

(

ρ
(h)
1 , . . . , ρ(h)

n

)

f
(s,h)
j = 0.

Since, ρ
(h)
1 , . . . , ρ

(h)
n are algebraically independent we have g(h)(ρ

(h)
1 , . . . , ρ

(h)
n ) �= 0.

Hence, f
(s,h)
i is a zero divisor in the quotient ring K[e1, . . . , en]/〈f (s,h)

1 , . . . , f
(s,h)
i−1 〉.

This yields a contradiction hence the sequence (f
(d,h)
1 , . . . , f

(d,h)
n ) is regular. �

Finally, we study the complexity of computing a (W)DRL Gröbner basis with F4 or
F5 for some regular sequences.
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Theorem 3.4. Let f1, . . . , fn ∈ K[x1, . . . , xn]Dn be such that deg(ΩSn
(fi)) = 2n−1

and such that the sequence F (s) = (ΩSn
(f1), . . . ,ΩSn

(fn)) is regular for the usual
graduation deg. The arithmetic complexity of computing a DRL Gröbner basis of the
system generated by F (s) is bounded by

O

((

n2n−1 + 1

n

)ω)

= O
(

2ωn(n−1)
)

.

Let F (d) = (ΩDn(f1), . . . ,ΩDn(fn)). The arithmetic complexity of computing a
WDRL Gröbner basis with weights (2, . . . ,2,1) of the system generated by F (d) is
bounded by

O

(

2−ω(n−1)

(

n2n−1 + 2

n

)ω)

= O
(

2ω(n−1)2)
.

Proof. As F (s) is a regular sequence, from Theorem 3.1 we can bound dreg(F
(s)) by

the Macaulay bound i.e.

dreg
(

F (s)
) ≤ 1 +

n
∑

i=1

(

2n−1 − 1
) = n2n−1 − n + 1.

Hence, from Eq. (5) we obtain the expected result. From Lemma 1 and Proposition 1,
F (d) is a regular sequence such that degw(ΩDn(fi)) = 2n−1. Thus, again from Theo-
rem 3.1, we obtain

dreg
(

F (d)
) ≤

n−1
∑

i=1

(

2n−1 − 2
) + 2n−1 − 1 + 2 = n2n−1 − 2(n − 1) + 1.

Hence, from Eq. (6) we obtain the second expected result. �

Remark 2. One can notice that considering the sequence F (d) (i.e. the system SDn )
instead of F (s) (i.e. SSn

) divides by 2ω(n−1) the complexity of F4 or F5 in the step of
Gröbner basis computation. This factor on the complexity is consistent with the results
that we obtain in practice (see Sect. 5).

We now present the impact on the complexity of the change of ordering algorithm.

3.3.2. Complexity of Change of Ordering for Invariant Ideals

Let I be a zero-dimensional ideal of K[x1, . . . , xn] which is invariant under the action of
a finite pseudo-reflection group G ⊂ GL(K, n). We now see more precisely the relation
between the number of solutions of I and the number of solutions of the ideal corre-
sponding to I after the change of variables associated to G denoted IG. Let Orb(G, v)

be the orbit of v ∈ A
n under the action of G and Stab(G, v) be the stabilizer of v. From

the orbit-stabilizer theorem, for all v ∈ A
n we have

#Orb(G, v) = #G

#Stab(G, v)
.
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The degree deg(I) of the ideal I is the number of its solutions counted with multiplici-
ties. Let v ∈ V (I) such a solution, its orbit Orb(G, v) under the action of G is a solution
of IG. The multiplicity of v is then given by the multiplicity of Orb(G, v), seen as a so-
lution of IG, times the number of elements in the stabilizer Stab(G, v) of v. Moreover,
V (I) = ⋃

v∈V (I) Orb(G, v) thus

deg(I) =
∑

ṽ∈V (I)/G

mṽ · #Stab(G, v) · #Orb(G, v) = N · #G

where mṽ is the multiplicities of ṽ in V (I)/G, v is a representative of the orbit ṽ and
N is the number of G-orbits counted with multiplicities in V (I)/G.

By applying the change of variables associated to G we work in the orbit space. Hence
the number of solutions counted with multiplicities of IG is the number of G-orbits
counted with multiplicities in V (I) that is to say N . In conclusion, considering the
action of a linear group divides the degree of the ideal by the group cardinality. Since the
complexities of change of ordering algorithms are polynomial in the degree of the ideal,
their complexities are then reduced accordingly. This is summarized in the following
Proposition.

Proposition 2. Let G be a pseudo-reflection group. Let I be an ideal generated by
pointwise invariant polynomials under G. Applying the change of coordinates associ-
ated to G divides the complexity of the change of ordering algorithm by (#G)3 and by
(#G)ω in the heuristic case.

Example 3. Continuing the example 2, the degree of I is 16 where the solu-
tions (2996,62525), (6897,58624), (58624,6897) and (62525,2996) are of multiplic-
ity two. The degree of 〈G〉 is 4 = 16

#D2
and

• O1 = (64799,361) is a representative of {(2996,62525), (62525,2996)}
• O2 = (726,65158) is a representative of {(6897,58624), (58624,6897)}
• O3 = (6009,6009) is a representative of {(7493,55256), (10265,58028), (55256,

7493), (58028,10265)}
• O4 = (59513,59513) is a representative of {(14169,28989), (28989,14169),

(36532,51352), (51352,36532)}

Remark 3. Note that in general, a K-rational orbit can be formed by non K-rational el-
ements. That is to say, some K-rational solutions of the system after a non-linear change
of variables can correspond to solutions of the initial system which have coordinates not
in K.

4. Use of Symmetries to Improve the ECDLP Solving

We now come back to the PDP problem, which is the heart of the index-calculus attack
on elliptic curves. We will start by recalling the well-known strategy of using the sym-
metric group to reduce the size of the systems, and then we will consider the case of
twisted Edwards and Jacobi intersections that provide further symmetries.
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Depending on the curve representation, the coordinate chosen for the projection
can be x, y or z. For more generality, here we note the chosen coordinate c and
the (n + 1)th summation polynomial evaluated in one variable in the c-coordinate of
R is denoted f R

n+1. The notation c(P ) denotes the c-coordinate of the point P . Let

Fi = {P ∈ E(Fqn) | c(P )

αi ∈ Fq} for any i = 0, . . . , n − 1 where α is a generator of Fqn .
For Weierstrass or twisted Edwards representations, we take as factor base F = F0. For
Jacobi intersections curves, if Fq is a prime field then F0 contains only the 2-torsion of
the curves; hence it does not contain enough points to be used as factor base. Therefore,
for this representation we take as factor base F = F1.

4.1. Group Action on the Point Decomposition Problem

4.1.1. The Symmetric Group Sn

As we have seen in Sect. 2, the summation polynomials are symmetric and it is natural
[31] to use this to decrease the cost of the Gröbner basis computation. It is well known
that the invariant ring of Sn is a polynomial algebra with basis {e1, . . . , en} where ei is
the ith elementary symmetric polynomial in terms of c1, . . . , cn. There exists a unique
polynomial gR

n ∈ Fqn [e1, . . . , en] such that gR
n is the expression of f R

n+1 in terms of
the ei . We have seen in Sect. 2 that fn+1 is of degree 2n−1 in each variable thus f R

n+1
too. Consequently, by construction gR

n is of total degree 2n−1. Hence after the Weil
restriction on gR

n we obtain a new system SSn
⊂ Fq [e1, . . . , en]1 with n polynomials of

total degree 2n−1. The Bezout’s bound allows to bound the degree of the ideal generated
by SSn

by 2n(n−1). In practice, we observe in this context that this bound is reached.
Without taking into account the symmetric group, the bound would have been n! times
larger, therefore, the complexity of FGLM is reduced by (n!)ω (or by (n!)3 in the non-
heuristic case). Moreover the degree of the equations of SSn

are smaller than those of
the equations of S and we observe that the system becomes regular. Even if the gain of
the F4, F5 algorithms is not quantifiable in theory, it is significant in practice.

We are able to solve these systems for n = 2,3,4. For n = 2 or 3 the resolution is
instantaneous for all curve representations. In the following, we present some practical
results for n = 4 obtained by using the computer algebra system MAGMA (V2.17-1) on
a 2.93 GHz Intel® E7220 CPU.

log2(q) F4 (s) Change-order (s) Total time (s)

16 Weierstrass [31] 4 531 535
Edwards 0 201 201
Jacobi 0 209 209

64 Weierstrass [31] 354 4363 4717
Edwards 3 1100 1103
Jacobi 4 1448 1452

1 The notation SG means that the system is expressed w.r.t. the change of variables associated to G i.e. the

change of variables formed by the primary and secondary invariants of Fq [x1, . . . , xn]G .
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We note that for twisted Edwards or Jacobi intersections curves the running time
of the system resolution is equivalent and significantly smaller than for Weierstrass
representation. This can be explained by the particular shapes of the lexicographical
Gröbner basis:

Lexicographical Gröbner basis of 〈SSn
〉 Lexicographical Gröbner basis of 〈SSn

〉
for Weierstrass representation: for twisted Edwards and Jacobi

intersections representations:
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

e1 + h1(en)

e2 + h2(en)

...

en−2 + hn−2(en)

en−1 + hn−1(en)

hn(en)

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

e1 + p1(en−1, en)

e2 + p2(en−1, en)

...

en−2 + pn−2(en−1, en)

pn−1(en−1, en)

pn(en)

where deg(hn) = 2n(n−1), deg(pn) = 2(n−1)2
, degen−1

(pn−1) = 2n−1 and for all curve

representations the degree of 〈SSn
〉 is 2n(n−1).

Remark 4. The form of the lexicographical Gröbner basis is given here in order to
explain some intuition of our approach. In particular, such a form does not represent
any assumption in the proof of our main result Theorem 4.1, below. Actually, one needs
only a bound on the degree of the ideal considered in this proof. This bound is obtained
thanks to Bezout’s theorem and results from invariant theory.

The gain of efficiency observed in the case of twisted Edwards and Jacobi intersec-
tions curves is due to the smaller degree appearing in the computation of Gröbner basis
of SSn

in comparison with the Weierstrass case. Note that the lexicographical Gröbner
bases for Weierstrass representation is in shape position. That is to say, to find the solu-
tions of the system from the lexicographical Gröbner basis, we need to factor only one
univariate polynomial in the smallest variable. The value of the others variables is ob-
tained when the value of the smallest variable is fixed. In this case, the smallest variable,
here en, is said to be separating (see for instance [10]). This means that any element in
the variety of the ideal generated by SSn

is distinguishable by en. Contrary to Weier-
strass representation, the lexicographical Gröbner bases for twisted Edwards and Jacobi
intersections curves are not in shape position. The variable en is not separating for these
two representations. In fact, for each solution of the system, there are 2n−1 − 1 others
solutions with same value in en. By consequence, one would like to find a larger group
than Sn acting on the system (and thus on the variety of solutions) such that each orbit
gathers all such solutions with the same value in en. In the next section, we show how
to use such a larger group related to 2-torsion points in order to increase the efficiency
of the computation.
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4.1.2. Consequence of the Existence of 2-Torsion Points for Twisted Edwards and
Jacobi Intersections Curves

Suppose that we have a solution (P1,P2, . . . ,Pn) to the PDP, and denote by T2 a
2-torsion point. Thus for all k = 1, . . . , �n

2 � we have P1 ⊕· · ·⊕Pn ⊕[2k]T2 = R. There-

fore from one decomposition of R (modulo the order) we have in fact
∑� n

2 �
k=0

(
n
2k

) = 2n−1

decompositions of R obtained by adding an even number of times a 2-torsion point:

R = P1 ⊕ · · · ⊕ Pn

= (P1 ⊕ T2) ⊕ (P2 ⊕ T2) ⊕ P3 ⊕ · · · ⊕ Pn

= (P1 ⊕ T2) ⊕ P2 ⊕ (P3 ⊕ T2) ⊕ P4 ⊕ · · · ⊕ Pn

...

= P1 ⊕ · · · ⊕ Pn−2 ⊕ (Pn−1 ⊕ T2) ⊕ (Pn ⊕ T2)

= (P1 ⊕ T2) ⊕ (P2 ⊕ T2) ⊕ (P3 ⊕ T2) ⊕ (P4 ⊕ T2) ⊕ P5 ⊕ · · · ⊕ Pn

....

In general, these decompositions do not correspond to solutions of the PDP, since (Pi +
T2) is not always in the factor base F . If the action of the 2-torsion point leaves invariant
the factor base F i.e. P ∈ F implies that P ⊕ T2 ∈ F then the 2-torsion point can be
used to reduce the size of the factor base (see Remark 5). By consequence, if we know
a decomposition of R w.r.t. the factor base F (respectively a solution of the polynomial
system to solve for solving the PDP) we can construct 2n−1 decompositions of R w.r.t.
F (respectively 2n−1 solutions of the polynomial system).

Let c and c2 be, respectively, the c-coordinate of P and P ⊕ T2. The action of the
2-torsion point leaves the factor base invariant if

{

c2 = p1(c)
p2(c)

with p1,p2 ∈ Fq [c] if F = F0

c2 = βc + γ with β ∈ Fq and γ

αi ∈ Fq if F = Fi ,1 ≤ i < n
(10)

where α is a generator of Fqn . The difference between the two cases is due to when
F = F0 the c-coordinates of the points in the factor base are in a field whereas when
F = Fi with i > 0 the c-coordinates of the points in the factor base are in a vector
space.

By consequence, if condition (10) is satisfied then the size of the factor base can
be reduced. Moreover, we can a priori use the action of the 2-torsion to speed up the
polynomial systems solving step in the PDP solving. Nevertheless, in order to use the
action of the 2-torsion point in the polynomial system solving process, we need that
c2 depends only on c and that the action of T2 on the coordinates is not too much
complicated. The simplest being a linear action.
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For Weierstrass representation, the 2-torsion points of E(Fqn) are T2 = (X,0) where
X is a root of X3 + a4X + a6 = 0 and we have

P ⊕ T2 =
(

x3 + a4x + a6

(X − x)2
− x − X,

(2x + X)y

(x − X)
− y3

(x − X)3
− y

)

.

In this representation, we project the PDP on x-coordinate. As the x-coordinate of the
point P ⊕T2 does not verify any of the equalities in (10), the 2-torsion points cannot be
used to decrease the factor base. Moreover, the action of the 2-torsion points is not easy
to handle in the polynomial systems solving process.

In the case of twisted Edwards representation, the 2-torsion point of a twisted Ed-
wards curve is T2 = (0,−1) and P ⊕ T2 = (−x,−y). Thus the action of the 2-torsion
point leaves invariant the factor base and the 2n−1 decompositions of the point R trans-
late into as many solutions of the PDP. Furthermore, the action of the 2-torsion point
being very simple we can use it to decrease the number of solutions in the polynomial
systems solving process.

Finally for twisted Jacobi intersections representation, the three 2-torsion points of
a twisted Jacobi intersections curve are T2 = (0,1,−1), (0,−1,1), (0,−1,−1). Thus
we have P ⊕ T2 = (−x, y,−z), (−x,−y, z), (x,−y,−z) and similarly to the twisted
Edwards curves, the decompositions mentioned above should correspond to solutions
of the system associated to the decomposition of the point R.

Obviously, as Jacobi intersections curves have three 2-torsion points, the factor base
can be further decreased and from one decomposition of R one can construct more
than 2n−1 decompositions of R. However, since after projection on the c-coordinate
(y or z) for any 2-torsion points, c2 = ±c these decompositions will match with only
2n−1 solutions of the system we want to solve.

As a consequence, for twisted Edwards or Jacobi intersections curve from one
solution of the polynomial system (c1, . . . , cn) corresponding to the decomposition
R = P1 ⊕ · · · ⊕ Pn, we can construct 2n−1 solutions of the system by applying an
even number of sign changes. Obviously, each of these solutions can be the projection
of many decompositions. Hence, from one solution (c1, . . . , cn) of f R

n+1, we have not
only n! solutions coming from Sn (see Sect. 4.1.1) but n! · 2n−1: all n-tuples formed by
(c1, . . . , cn) to which we apply an even number of sign changes and a permutation of
Sn, that is, the orbit of (c1, . . . , cn) under the action of the Coxeter group Dn introduced
in Sect. 3.

If a linear group acts on the variety of a polynomial system, there is no guarantee that
the system is in the invariant ring of the linear group. In our case, the system obtained
from f R

n+1 by a Weil restriction is invariant under the action of Dn and we have the
following result.

Proposition 3. f R
n+1(c1, . . . , cn) ∈ Fqn [c1, . . . , cn]Dn .

The idea of the proof is to use the relations between generators of the dihedral Coxeter
group to show that these generators leave f R

n+1 invariant. First we use the action of the
linear group Dn on the solutions of f R

n+1 to underline that for any g in Dn, the action
of g on f R

n+1 leaves it invariant, up to a multiplicative factor hg ∈ Fqn . Then we use the
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fact that Dn is generated by elements of order 2, relations between generators of Dn and
that Dn contains Sn to show that hg = ±1 and hg = hg′ for all elements g and g′ in Dn.
Finally we use the recursive construction of summation polynomials to show that one
generator of Dn leaves f R

n+1 invariant and consequently that Dn leaves f R
n+1 invariant.

Proof. The summation polynomials are irreducible hence f R
n+1 too and 〈f R

n+1〉 =
√

〈f R
n+1〉. The solutions of f R

n+1 are invariant by the action of Dn thus for all g ∈ Dn,

g ·f R
n+1 vanishes in all solutions of f R

n+1. Consequently for all g ∈ Dn, g ·f R
n+1 ∈ 〈f R

n+1〉
and so g · f R

n+1 = hg · f R
n+1 where hg ∈ Fqn [c1, . . . , cn]. The group Dn is a linear group

hence for all g ∈ Dn, deg(g · f R
n+1) = deg(f R

n+1) thus hg ∈ F
×
qn .

Let φ : Dn → F
×
qn be the application which maps g to hg as defined above. Clearly,

this application is a group morphism and thus φ(g)m = hm
g = 1 where m is the order

of g.
We note τi,j the transposition which swaps the elements in position i and j . Let

B = {τi,i+1 | i = 1, . . . , n − 1} be a basis of Sn. A transposition is of order two and all
the transpositions are conjugated, hence φ(τi,j ) = φ(τk,l) ∈ {−1,1} for all i, j, k, l ∈
{1, . . . , n}.

We now show, by induction, that fm is invariant under the permutation τ1,2. Clearly
(see Sect. 2.3), f3 is invariant under τ1,2. Let k > 2, assume that fk is invariant under
τ1,2. We have

fk+1 = ResX

(

fk(c1, . . . , ck−1,X),f3(ck, ck+1,X)
)

= Det
(

SylX
(

fk(c1, . . . , ck−1,X),f3(ck, ck+1,X)
))

where SylX(p1,p2) is the Sylvester matrix of p1 and p2 w.r.t. the variable X. The
Sylvester matrix of fk(c1, . . . , ck−1,X) and f3(ck, ck+1,X) w.r.t. X is stable by per-
mutation of c1 and c2 (induction hypothesis). Hence its determinant too and fk+1 also.
Consequently, fm is invariant under τ1,2 for all m ≥ 3. Thus f R

n+1 is invariant under τ1,2
and hτ = 1 for all τ ∈ B. This confirms that the summation polynomials are symmetric.

A basis of Dn is given by A = B ∪ (−1,−2) where (−1,−2) denotes the sign
changes of the first two elements. The element (−1,−2) is of order 2 hence h(−1,−2) =
±1. Let g = (−1,−2) ·τ2,3 ·τ1,2, g is of order 3 thus h3

g = 1 = (hτ1,2 ·hτ2,3 ·h(−1,−2))
3 =

h3
(−1,−2). Consequently for all elements g in A, hg = 1 and so f R

n+1 is invariant un-
der Dn. �

As previously announced in Sect. 3, Fqn [c1, . . . , cn]Dn is a polynomial algebra of
basis {s1, . . . , sn−1, en} (or {p2, . . . , p2(n−1), pn}). Hence, there exists a unique polyno-
mial gR

n ∈ Fqn [s1, . . . , sn−1, en] (respectively Fqn [p2, . . . , p2(n−1), pn]) such that gR
n is

the expression of f R
n+1 in terms of the primary invariants {s1, . . . , sn−1, en} (respectively

{p2, . . . , p2(n−1), pn}). By applying a Weil restriction on gR
n we obtain a new system

SDn ⊂ Fq [s1, . . . , sn−1, en] (respectively Fq [p2, . . . , p2(n−1), pn]) with n variables and
n equations. The degree of 〈SDn〉 can be bounded by

deg(〈S〉)
#Dn

= deg(〈S〉)
n! · 2n−1

= deg(〈SSn
〉)

2n−1
= 2n(n−1)

2n−1
= 2(n−1)2

.
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To estimate an explicit complexity bound on the resolution of the Point Decomposi-
tion Problem we need to assume that the system SSn

is regular. This property for SSn

has been verified on all experiments we did (see Table 1). Moreover, a similar hypoth-
esis was already done for the same kind of systems in [34]. Hence, it is reasonable to
assume it.

Hypothesis 3. Polynomial systems arising from a Weil descent on summation polyno-
mial on which we apply the change of coordinates corresponding to the action of the
symmetric group are regular.

We can note that Hypothesis 3 implies Hypothesis 2. We have therefore obtained our
main theorem.

Theorem 4.1. In twisted Edwards (respectively twisted Jacobi intersections) repre-
sentation, under the Hypothesis 3, the Point Decomposition Problem can be solved in
time

• (proven complexity) ˜O(n · 23(n−1)2
)

• (heuristic complexity) ˜O(n2 · 2ω(n−1)2
)

where 2 ≤ ω < 3 is the linear algebra constant.

Proof. From Theorem 3.4, computing a Gröbner basis for a degree order of SDn can

be done in time ˜O(2ω(n−1)2
).

Given this previous Gröbner basis, computing the lexicographical Gröbner basis can
be done in time ˜O(n · 23(n−1)2

) (resp. ˜O(n2 · 2ω(n−1)2
) in the heuristic case).

Finally, it is straightforward that the change of ordering step dominates which con-
cludes the proof. �

Considering the action of the dihedral Coxeter group reduces the lexicographical
Gröbner basis (for twisted Edwards and Jacobi intersections curves) which is now in
shape position.

Lexicographical Gröbner basis of 〈SSn
〉: Lexicographical Gröbner basis of 〈SDn〉:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

e1 + p1(en−1, en)

e2 + p2(en−1, en)

...

en−2 + pn−2(en−1, en)

pn−1(en−1, en)

pn(en)

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

s1 + h1(en)

s2 + h2(en)

...

sn−2 + hn−2(en)

sn−1 + hn−1(en)

hn(en)

where

• deg(〈SSn
〉) = 2n(n−1) and deg(〈SDn〉) = 2(n−1)2

• degen−1
(pn−1) = 2n−1, deg(pn) = 2(n−1)2

and deg(hn) = 2(n−1)2
.
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As expected the degree of the ideal is divided by the cardinality of Dn, 2n−1 · n! instead
of n! when taking into account only the symmetric group.

Remark 5. In [31], the author uses the action of the automorphism ı to decrease the
size of the factor base. Let S1, S2 ⊂ E be such that F = S1 ∪ S2, S1 ∩ S2 = {P ∈
F |[2]P = P∞} and Si = Img(ı(Sj )) with i �= j . Instead of taking F as factor base,
he takes S1 of size ∼ q

2 without decreasing the probability of decomposition.
In addition to speed up the resolution of the polynomial systems, the use of the

2-torsion points of twisted Edwards or Jacobi intersections curves allows to further
decrease the size of the factor base by keeping the same probability of decomposition.
Following the previous idea we can write F = S1 ∪ S2 such that for all P ∈ F , S1 con-
tains a representative of the orbit of P under the action of ı and T2 and S2 contains all
the others points in the orbit of P . Finally, we take as factor base S1 of size ∼ q

4 for
twisted Edwards curves and ∼ q

8 for twisted Jacobi intersections curves.

In Sect. 5 we will show some experimental results which confirm that considering the
action of the 2-torsion points significantly simplifies the resolution of the PDP.

4.2. Can the 4-Torsion Points be Used in the Same Way?

As we saw in Sect. 2.3 the twisted Edwards and Jacobi intersections curves can also
have rational 4-torsion points. The natural question follows, whether 4-torsion points
are as useful as 2-torsion points for PDP resolution?

4.2.1. Action of the 4-Torsion Points of a Twisted Edwards Curve

The two 4-torsion points of a twisted Edwards curve are T4 = (±a− 1
2 ,0). Thus, if P =

(x, y) ∈ Ea,d(Fqn) then we have

P ⊕ T4 = (±a− 1
2 · y,±a

1
2 · x)

.

The sum of P with a 4-torsion point swaps (up to multiplication by ±a
1
2 or ±a− 1

2 ) the
coordinates of the point P . Hence, the action of T4 does not leave invariant the factor
base. Moreover, in this representation the x-coordinate cannot be expressed in terms of
the y-coordinate only so we cannot use this action to decrease the number of solutions
of polynomial systems to solve.

4.2.2. Action of the 4-Torsion Points of a Twisted Jacobi Intersections Curve

In this section, we present a similar method, as for 2-torsion, to use the 4-torsion of
twisted Jacobi intersections curves. Although we will see in Sect. 5 that this method
does not allow to simplify the polynomial system solving step in the PDP solving, we
present it for completeness and in order to report the experiments we did. Moreover, we
will see that this approach is not useless, since it allows to further decrease the size of
the factor base and consequently to speed up the complete solving of the ECDLP by
index-calculus attack.
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We concentrate first on the case of the following 4-torsion point:

T4 =
(

± 1√
a
,0,±

√

a − b

a

)

.

After a few simplifications, adding T4 to a generic point P = (x, y, z) of Ea,b(Fqn)

gives the formula

P ⊕ T4 =
(

± 1√
a

· y

z
,±√

a − b · x

z
,±

√

a − b

a
· 1

z

)

.

As seen in Sect. 2.3, for twisted Jacobi intersections curves, it is possible to use
either y or z for projecting the PDP and obtain interesting summation polynomials.
To take advantage of the action of T4, we project on z and work with the summation
polynomial fz.

One can notice that the z-coordinate of P ⊕ T4 depends only on the z-coordinate

of P . However, due to the factor ±
√

a−b
a

and also that for this representation the factor
base cannot be F0 the action of T4 does not leave the factor base invariant.

By consequence, in order to normalize a bit more the action of T4 and to use the
action of the 4-torsion, we assume that a−b

a
is a fourth power and do the change of

coordinate

Z = 4

√

a

a − b
z

so that adding T4 changes the Z-coordinate to ±1/Z. Moreover, in this case the fac-
tor base F = F0 seems to be large enough. Hence, the action of T4 leaves the factor
base invariant and can be used to further decrease the size of the factor base ∼ q

16 .
This change of coordinate preserves the property that adding T2 changes the sign of the
Z-coordinate, so that we still have the action of Dn on fZ . This explicit action of T4

transforms a decomposition into another one, but unfortunately, this action is not linear
and therefore does not fit easily in the framework that we have developed. As a con-
sequence, we will not be able to reduce the degree of the ideal as much as we could
hope for. Still, by adding a well-chosen variable to make the symmetry more visible,
we constrain the LEX Gröbner basis to be in non-shape position that had shown to be
useful for T2, before reducing the degree of the ideal.

We explain this strategy in the case of n = 4. Adding T4 to the four points of a
decomposition gives another decomposition, where all the Zi have been inverted. We
defined a new coordinate v4 that is invariant by this involution:

v4 = Z1Z2Z3Z4 + 1

Z1Z2Z3Z4
= e4(Z1,Z2,Z3,Z4) + 1

e4(Z1,Z2,Z3,Z4)
.

Therefore, we add the equation e4v4 − e2
4 − 1 = 0 to the system obtained by applying a

Weil restriction on g4 (the expression of f R
Z,5 in terms of s1, s2, s3, e4). The correspond-
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ing LEX Gröbner basis has the following form:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

s1 + �1(e4, v4)

s2 + �2(e4, v4)

s3 + �3(e4, v4)

e4v4 − e2
4 − 1

�4(v4)

where deg(�i) = 2n(n−2) for all i = 1, . . . ,4 and the degree of the ideal remains 2(n−1)2

as when using only T2.

Remark 6. For n > 4, the variable v4 must be replaced by a variable that is invariant
by any change of a multiple of four number of variables by their inverses.

We can note that adding two times T4 (i.e. adding a 2-torsion point) does not change
the Z-coordinate. By consequence, we can change only an even number of variables by

their inverse. Instead of v4 = e4 + 1
e4

we could use v′
4 = s2+1+e2

4
e4

to further decrease the
degree of the univariate polynomial in the lexicographical Gröbner basis.

The construction that we have just shown works mutatis mutandis with the other
4-torsion point of the form

T4 =
(

± 1√
b
,±

√

b − a

b
,0

)

but in that case, we have to work with the y-coordinate instead of the z-coordinate.
From the parameters of the system, it is not clear that adding a variable to reduce the

degree of the polynomials in the resulting Gröbner basis is worthwhile. Nevertheless,
whether we add the variable v4 or not, the action of this 4-torsion point allows to further
decrease the size of the factor base by a factor 2. Indeed, we mention in the beginning
of Sect. 4 that for twisted Jacobi intersections curves we cannot use the factor base
F0 since it does not contain enough points. Hence, in this case the 4-torsion does not
leave invariant the factor base and then cannot be used to decrease to size of the factor
base. However, by changing the representation of the curve to normalize the action of
the 4-torsion, the corresponding factor base F0 seems to contain the expected number
of points and then can be choose for index-calculus attack. Moreover, in this case the
action of the 4-torsion leaves invariant the factor base and in consequence can be used
to further decrease the size of the factor base by a factor 2.

5. Experimental Results and Security Estimates

All experiments or comparisons in this section assume that the elliptic curve is a twisted
Edwards or twisted Jacobi intersection curve. We recall that only curves with a particu-
lar torsion structure can be put into these forms and are subject to our improved attack.

The PDP problem for n = 2 is not interesting, since it does not yield an attack
that is faster than the generic ones. For n = 3, the PDP problem can be solved
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very quickly, so that our improvements using symmetries are difficult to measure.
Therefore, we will concentrate on the n = 4 and higher cases. Most of our experi-
ments are done with MAGMA, which provides an easy-to-reproduce environment (the
MAGMA codes to solve the PDP are available on the website of the third author at
http://www-polsys.lip6.fr/~huot/CodesPDP). For the largest computations, we used the
FGb library which is more efficient for systems of the type encountered in the context
of this paper. The FGb library also provides a precise count of the number of basic op-
erations (a multiplication of two 32-bit integers is taken as unit) that are required in a
system resolution. We will use this information to interpolate security levels for large
inputs.

5.1. Experiments with n = 4

In the case of n = 4, as mentioned in [34] the resolution is still fast enough so that the
“n − 1” approach by Joux and Vitse does not pay. So we compare the three follow-
ing approaches: the classical index calculus of [31] based on Weierstrass representation
(denoted W. [31], in the following) and our approaches using the 2-torsion point (de-
noted T2) and using additionally the 4-torsion point (denoted T2,4). For T2 and T2,4,
we have implemented the two choices for the basis of the invariant ring for the dihe-
dral Coxeter group given in Sect. 3.2, which we denote by si and pi . As previously
announced, we observe that SSn

∈ K[e1, . . . , en] is a regular sequence. Which is not
the case of SSn

∈ K[p1, . . . , pn]. Hence, following results in Sect. 3, we equipped the
ring K[s1, . . . , sn−1, en] with the weighted degree with weights (2, . . . ,2,1). While the
ring K[p2, . . . , p2(n−1), pn] is equipped with the usual degree. The results are given in
Table 1, where one finds for various sizes of the base field the runtimes and the maximal
(weighted) degree reached by polynomials during the computation of a (W)DRL Gröb-
ner basis with F4. In column dmax/dtheo one can find the maximal (weighted) degree
reached by the polynomials and when the system is regular the bound on this maximal
degree given by Theorem 3.1. The two last columns of Table 1 give the number of multi-
plications of two 32-bits words required to solve the corresponding polynomial system.
The penultimate column gives an interpolated number of multiplications of two 32-bits
words required by the MAGMA software. Since we observe that the most consuming
step is the change of ordering we interpolate this number thanks to the complexity of
the FGLM algorithm in O(nD3) arithmetic operations. The last column gives the exact
number of multiplications of two 32-bits words required by the FGb implementation.
Since, FGb library uses the recent sparse change of ordering algorithm in [26] its prac-
tical arithmetic complexity is closer to be quadratic in the number of solutions than
cubic.

We can observe that taking into account the symmetries dramatically decreases the
computing time of the PDP resolution by a factor of about 400. This is consistent with
the theoretical expected gain, as shown by the interpolated number of multiplications
of two 32-bits words required by MAGMA which is divided by 29 = 23(n−1); and also
shown by the exact number of multiplications of two 32-bits words required by FGb
which is divided by 25 of the order of 22(n−1) corresponding to a quadratic complexity
for the change of ordering.

These experiments also show that the choice of the invariant ring basis si or pi for
the dihedral Coxeter group is not computationally equivalent. Indeed, the degrees of the

http://www-polsys.lip6.fr/~huot/CodesPDP
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polynomials depend on it: it is 8 for the si basis and 12 with the pi . Moreover, one of
the sequence is regular while the other is not. As a consequence, the DRL part of the
computation is more costly for the pi than for the si . One can notice that for the systems
expressed in terms of the primary invariant of Sn and the systems expressed in terms of
the primary invariants of Dn, s1, . . . , sn−1, en, the maximal (weighted) degree reached
by the polynomials during the computation of a degree monomial ordering Gröbner
basis is tightly bounded by the bound of Theorem 3.1. We observe that the system SSn

(resp. SDn ) is regular when we consider the usual degree (resp. the weighted degree
with weights (2, . . . ,2,1)).

Moreover, we notice that the change of ordering step is the most time consuming step
which is consistent with the complexity analysis of Theorem 4.1. This shows that it is
important to have precise complexity bound for the change of ordering. Moreover, the
complexity of change of ordering depends on the number of solutions of the system so
this emphasizes the impact of the action of a pseudo-reflective group.

One can notice that adding a variable to decrease the degree of polynomials in the
computation of Gröbner basis (to use the 4-torsion) does not speed up the computation
in this case. Indeed, adding the variable v4 breaks the quasi-homogeneous structure
since we do not find an appropriate weight for this variable. Hence, in the following the
4-torsion point is used only to further decrease the size of the factor base. That is to say,
we change the representation as presented in the previous section but we do not add the
variable v4. In this context the 4-torsion can be used for any n.

It can be observed that the two steps of the resolution are faster with the si basis.
This is a general practical fact observed during our experiments. Thus, in the sequel, we
consider only the si basis.

5.2. Experiments for n = 5 and n = 6

Until now, the only viable approach for handling the cases where n is at least 5 was
the approach by Joux and Vitse [34]. This approach can be seen as an hybrid approach
where one mixes an exhaustive search and an algebraic resolution (e.g. see [6] for ap-
plication of such a strategy in another context). If one looks for a decomposition of a
given point R, instead of searching for n points of the factor base whose sum is equal
to R, one can search for only n − 1 points of the factor base whose sum is equal to R.
Using this technique simplifies the resolution of the polynomial systems, since we ma-
nipulate the summation polynomial of degree n instead of n + 1 so that the degree and
the number of variables are reduced. Furthermore the systems become overdetermined
and if they have a solution, then in general it is unique. Hence the DRL Gröbner basis is
also the LEX Gröbner basis and we do not need the FGLM step in the general solving
strategy. On the other hand, it decreases the probability of finding a decomposition by a
factor q/n.

One of the main improvement brought by this work, is that we are now able to solve
the polynomial systems coming from the summation polynomials for n = 5 when the
symmetries are used. Still, these computations are not feasible with MAGMA and we
use the FGb library. Actually, the graded reverse lexicographical Gröbner basis can be
computed with MAGMA but the change of ordering cannot. The timings are given in
Table 2.
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Table 2. Computing time of Gröbner basis with FGb on a 3.47 GHz Intel® X5677 CPU for n = 5.

log2(q) F5 dmax/dtheo Change-order Total # ops

16 W. [31] >2 days ??/76
T2 567 s 72/73 2165 s 2732 s 244

Table 3. Computing time of Gröbner basis with MAGMA (V2-19.1) on one core of a 2.00 GHz Intel® E7540
CPU for n = 5 and decomposition in n − 1 points. Operation counts are obtained using FGb.

log2(q) F4 # ops

16 W. [34] 13.400 s 232

T2 0.090 s 222

T2,4 0.130 s 224

32 W. [34] 1278 s 234

T2 1.100 s 224

T2,4 1.760 s 226

Table 4. Computing time of DRL Gröbner basis with FGb on a 3.47 GHz Intel® X5677 CPU for n = 6 and
decomposition in n − 1 points.

log2(q) F5 # ops
si si

16 W. [34] >2 days
T2 2448 s 239

For n = 5 Theorem 3.1 gives also a precise bound on the maximal degree reached by
the polynomials. The regular hypothesis has been checked also on these systems.

Our improved algorithm using symmetries can be combined with the “n − 1” ap-
proach of Joux and Vitse. This allows us to compare the running times with the ap-
proach taken in [34] in the case of n = 5, and to handle, for the first time, the case of
n = 6. The results are summarized in Tables 3 and 4. For n = 6, MAGMA was not able
to solve the system, so we used again FGb. Because of the low success probability, this
technique is interesting only for medium q . Hence, we limit the size of q to 32 bits, and
even to 16 bits for n = 6.

Using symmetries decreases the running time also for decompositions in n−1 points.
For n = 5, the speed-up is by a factor about 150 for a 16-bit base field and by 1000 for a
32-bit base field. For n = 6, without using the symmetries of twisted Edwards or twisted
Jacobi intersections curves, we cannot compute decompositions in n − 1 points while
this work allows to compute them in approximately 40 minutes.

In Table 3, we can observe that considering the action of 4-torsion points of Jacobi
intersections curves is more time consuming. Indeed, if the system admits a solution
then it also admits all the solutions associated to the action of the 4-torsion points. By
consequence, the overdetermined systems have not the same DRL and LEX Gröbner
basis and their computation are slower. By consequence, for the “n − 1” variant, the
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trade-off between the size of the factor base and the difficulty of decomposing a point
is better when using only the 2-torsion.

Indeed, when we consider only the action of T2, we use the factor base F = F1
(F0 is too small). Hence, the action of T4 does not leave the factor base invariant. More-
over, the decompositions related to the action of the 4-torsion do not necessarily corre-
spond to solutions of the system obtained after the Weil restriction on summation poly-
nomials. In fact, we observe that the corresponding system has the expected number of
solutions that is 0 or 1.

Remark 7. For n ≥ 6, the first difficulty to solve the PDP is the construction of the
summation polynomials. Actually, the seventh summation polynomial or the seventh
summation polynomial evaluated in the c-coordinate of a point R have never been com-
puted.

5.3. Security Level Estimates

To conclude these experimental results, we use our operation counts for the PDP to es-
timate the cost of a complete resolution of the ECDLP for twisted Edwards or twisted
Jacobi intersections curves. In this section, we count only arithmetic operations and we
neglect communications and memory occupation. Hence, this does not give an approx-
imation of the computation time but this gives a first approximation of the cost to solve
some instances of the ECDLP.

We compare the result with all previously known attacks, including the generic al-
gorithms, whose complexity is about q

n
2 operations in E(Fqn). The cost of an elliptic

curve operation can be approximated by log2(q
n)2. Since our cost unit for boolean op-

erations is a 32-bit integer multiplication, we roughly approximate the cost of an elliptic
curve operation by n2 log232(q)2 and the total boolean cost of a generic attack by

n2q
n
2 log232(q)2.

According to Remark 5 and the end of Sect. 4, for index calculus using the point
decomposition in n points we look for N relations where N is:

• q
2 for Weierstrass representation,

• q
4 for twisted Edwards curves,

• q
8 for twisted Jacobi intersections curves and by using only the 2-torsion,

• q
16 for twisted Jacobi intersections curves and by using the 2-torsion and the
4-torsion.

The probability to decompose a point is 1
n! . Let c(n, q,m) be the number of boolean

operations needed to solve one polynomial system obtained from a Weil restriction
of the (m + 1)th summation polynomial defined over Fqn , evaluated in one variable.
This number of operations is obtained by experiments with FGb as demonstrated in the
previous subsections. From the function c(n, q,m) one can deduce the total number of
operations needed to solve the ECDLP over Fqn :

N · n! · c(n, q,n) + n3 log232(q)2N2.
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The second term in the sum is the cost of sparse linear algebra by using for instance
Wiedemann algorithm [50].

If we use the point decomposition in n− 1 points, due to exhaustive search, the prob-
ability to find a decomposition is now 1

q·(n−1)! . Hence the total number of operations is,
in this case, given by

q(n − 1)! · N · c(n, q,n − 1) + n2(n − 1) log232(q)2 · N2.

When the linear algebra step is more time consuming than the relation search, by
using the double large prime variation [32] we can rebalance the costs of these two
steps (see [32,48]). The total number of operations needed to solve the ECDLP over
Fqn by using the double large prime variation is given by

log2(q)

(

1 + r
n − 1

n

)

(n − 2)!q1+(n−2)(1−r)c(n, q,n) + n3 log232(q)2N2r

where we look for r such that the two parts of this complexity are equal.
The results are summarized in Table 5. The notations T2 and T2,4 still denote the

use of the 2-torsion points of twisted Edwards and twisted Jacobi intersections curves
and the use of the 2-torsion and 4-torsion points of twisted Jacobi intersections curves,
respectively.

We observe that the smallest number of operations obtained for each parameter is
given by index calculus using symmetries induced by the 2-torsion points (and 4-torsion
point when decomposing in n points is possible) or generic algorithms. We note that for
n ≤ 5 our version of the index-calculus attack is better than generic algorithms. For ex-
ample, if log2(q) = 64 and n = 4 generic algorithms need 2134 operations to attack the
ECDLP and we obtain 2116 by using the 2-torsion points and 4-torsion point. In this
case, our approach is more efficient than the basic index calculus, solving this instance
of ECDLP in 2121 operations. For n = 5, the resolution of the PDP was intractable but
with our method, we can now solve these instances of PDP and we attack the corre-
sponding instances of ECDLP with a gain of 239 over generic algorithms and a gain of
240 over Joux and Vitse approach.

We remark that for parameters for which it is possible to choose between the decom-
position in n or n − 1 points, the best solution is the first. For n = 6 we are not able
to decompose a point in n points of the factor base. Consequently it is necessary to
use the decomposition in n − 1 points. For n = 6 generic algorithms have a complex-
ity in O(q3), while the index-calculus attack using the decomposition in n − 1 points
has a complexity in O(C(n) · q2) where C(n) is exponential in n. Hence to be better
than generic algorithms, we have to consider high values of q and consequently high
security levels. For instance if log2(q) = 64, the index-calculus attack using symmetries
of twisted Edwards or twisted Jacobi intersections curves and decomposition in n − 1
points needs less operations (2176) than the generic algorithms, (2200). In our point of
view the only hope to have a better gain in general (for lower security level) compared
to generic algorithms, would be to remove the bad dependence in q in the complexity
that seems intrinsic to the “n − 1” approach.

In cryptology, one looks for parameters giving some user-prescribed security level.
Thereafter we give the domain parameters for different security levels expressed in num-
ber of boolean operations.
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Table 5. Number of operations needed to solve the ECDLP defined over Fqn for n = 4,5,6 and 32 ≤
log2(q) ≤ 128.

Curve
parameters

Curve repre-
sentation and
torsion used

Generic
algorithm

Linear
algebra

Relations search
decomposition in

Double large
prime
variation

Total DLP

n log2(q) n points n − 1 points

4 32 Weierstrass 268 268 267 [31] 268

T2 Edwards 266 261 266 266

T2 Jacobi 264 260 264 264

T2,4 Jacobi 262 259 262

64 Weierstrass 2134 2134 2101 [31] 2121 2121

T2 Edwards 2132 295 2118 2118

T2 Jacobi 2130 294 2117 2117

T2,4 Jacobi 2128 293 2116 2116

128 Weierstrass 2264 2264 2167 [31] 2220 2220

T2 Edwards 2262 2161 2216 2216

T2 Jacobi 2260 2160 2215 2215

T2,4 Jacobi 2258 2159 2215 2215

5 32 Weierstrass 285 269 ∞ 2102 [34] 285

T2 Edwards 267 283 291 283

T2 Jacobi 265 282 290 282

T2,4 Jacobi 263 281 292 281

64 Weierstrass 2167 2135 ∞ 2168 [34] 2167

T2 Edwards 2133 2117 2157 2130 2130

T2 Jacobi 2131 2116 2156 2129 2129

T2,4 Jacobi 2129 2115 2158 2128 2128

128 Weierstrass 2329 2265 ∞ 2298 [34] 2298

T2 Edwards 2263 2183 2287 2235 2235

T2 Jacobi 2261 2182 2286 2234 2234

T2,4 Jacobi 2259 2181 2288 2233 2233

6 32 Weierstrass 2102 270 ∞ ∞ 2102

T2 Edwards 268 ∞ 2110 2102

T2 Jacobi 266 ∞ 2109 2102

64 Weierstrass 2200 2136 ∞ ∞ 2200

T2 Edwards 2134 ∞ 2176 2176

T2 Jacobi 2132 ∞ 2175 2175

128 Weierstrass 2394 2266 ∞ ∞ 2394

T2 Edwards 2264 ∞ 2306 2306

T2 Jacobi 2262 ∞ 2305 2305

In Table 6, we compare for a fixed security level the size of q that we have to choose
for n = 4,5,6 by considering the attack based on generic algorithms with the attack
based on the best version of index calculus. For the index-calculus attack, except for
n = 6, the size of q is obtained by considering decomposition in n points using the
symmetries (2-torsion and 4-torsion) of twisted Jacobi intersections curves. This table
confirms the previous observations. For n = 4,5, the size of q is increased because of
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Table 6. Domain parameters according to the security level given in number of boolean operations needed
to solve the ECDLP.

Security level 280 2112

n 4 5 6 4 5 6

Generic Algorithm log2(q) 38 31 26 54 43 36
Index Calculus 42 32 19 62 56 34

Security level 2128 2192

n 4 5 6 4 5 6

Generic Algorithm log2(q) 62 49 41 93 74 62
Index Calculus 72 64 42 113 103 73

the new version of index calculus proposed in this work. For n = 6 this is true only for
very high security level.

6. Perspectives

We have highlighted some geometrical properties of twisted Edwards and Jacobi inter-
sections curves implying new symmetries simplifying the resolution of the Point De-
composition Problem. However, this improvement applies to only particular instances
of ECDLP defined over a finite field of characteristic different from two. Using sym-
metries to improve some instances of ECDLP in characteristic two is more difficult.
Actually, when the characteristic of the based field divides the order of the linear group
acting on the polynomial system to solve, the invariant theory cannot be applied in the
same way as done here. This is in general the case when the characteristic is two. Thus,
even if we note some symmetries in characteristic two, it is still an open issue to prove
same results in this case as the ones we provide here.

In order to solve the PDP, we construct the (n + 1)th summation polynomials. How-
ever, in practice, one can effectively compute the mth summation polynomials up to
m = 6 only. Hence, without the n − 1 variant, one can use the index calculus attack
only for elliptic curves defined over Fqn with n < 6. Thus to further improve the PDP
resolution, a question remains: how good polynomial systems modeling the PDP for
n ≥ 6 can be constructed efficiently? Here good means a polynomial system with a
comparable resolution complexity as the one given in Theorem 4.1.

Finally, as we study only instances of ECDLP, a natural question follows: in the same
way, by using symmetries, is it possible to increase the efficiency of the resolution of
some instances of HCDLP for genus two curves?
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