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Abstract. Over the last 20 years, the privacy of most GSM phone conversations was
protected by the A5/1 and A5/2 stream ciphers, which were repeatedly shown to be
cryptographically weak. They are being replaced now by the new A5/3 and A5/4 al-
gorithms, which are based on the block cipher KASUMI. In this paper we describe a
new type of attack called a sandwich attack, and use it to construct a simple related-key
distinguisher for 7 of the 8 rounds of KASUMI with an amazingly high probability of
2−14. By using this distinguisher and analyzing the single remaining round, we can
derive the complete 128-bit key of the full KASUMI with a related-key attack which
uses only 4 related keys, 226 data, 230 bytes of memory, and 232 time. These com-
pletely practical complexities were experimentally verified by performing the attack
in less than two hours on a single-core of a PC. Interestingly, neither our technique
nor any other published attack can break the original MISTY block cipher (on which
KASUMI is based) significantly faster than exhaustive search. Our results thus indi-
cate that the modifications made by ETSI’s SAGE group in moving from MISTY to
KASUMI made it extremely weak when related-key attacks are allowed, but do not
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imply anything about its resistance to single-key attacks. Consequently, there is no in-
dication that the way KASUMI is implemented in GSM and 3G networks is practically
vulnerable in any realistic attack model.

Key words. KASUMI, Sandwich attack, GSM/3G security, Related-key, Boomerang
attack

1. Introduction

The privacy of GSM cellular telephony is protected by the A5 family of cryptosystems.
The first two members of this family, the stream ciphers A5/1 (developed primarily for
European markets) and A5/2 (developed primarily for export markets) were designed
in the late 1980s in an opaque process and were kept secret until they were reverse
engineered in 1999 from actual handsets [12]. Once published, it became clear that A5/2
provided almost no security, and A5/1 could be attacked with practical complexity by
a variety of techniques (e.g., [2,3,10,13]). In particular, a team of cryptographers led
by Karsten Nohl published in December 2009 a 2-TBytes rainbow table for A5/1, that
makes it easy to derive the session key of any particular conversation with minimal
delay and hardware support [1].

In response to these developments, the GSM Association decided to design a new
block cipher with 128-bit keys called KASUMI [24], and to use it for both secrecy and
authentication purposes, deploying newly developed modes of operation. This time, the
process was significantly more open, and resulted in two ways to deploy KASUMI:
A5/3 (using a simplified 64-bit key version of KASUMI) which is mandatory in all
new handsets, and A5/4 (using the full 128-bit key version of KASUMI) which is op-
tional and does not seem to be in use by any operator. In UMTS (3G) cellular networks,
there are two possible encryption algorithms which are both mandatory on all hand-
sets: UEA1 which is based on 128-bit KASUMI, and UEA2 which is based on 128-bit
SNOW 3G. A5/3 and UEA1 are already implemented in a majority of the five billion
available handsets, and thus KASUMI had become one of the most widely deployed
cryptosystems in the world, and its security had become one of the most important
practical issues in cryptography.

The KASUMI block cipher is based on the MISTY block cipher which was published
at FSE 1997 by Matsui [20]. It has 64-bit blocks, 128-bit keys, and a complex recursive
Feistel structure with 8 rounds, each one of which consists of 3 rounds, each one of
which has 3 rounds of nonlinear SBox operations. MISTY withstood 15 years of crypt-
analytic efforts, and only recently a first attack faster than exhaustive search on its full
version has appeared, with a completely impractical complexity of 2125 [16]. However,
the designers of A5/3 decided to make MISTY faster and more hardware-friendly by
simplifying its key schedule and modifying some of its components. In [25], the de-
signers provide a rational for each one of these changes, and in particular they analyze
the resistance of KASUMI against related-key attacks [4] by stating that “removing all
the FI functions in the key scheduling part makes the hardware smaller and/or reduces
the key set-up time. We expect that related-key attacks do not work for this structure.”
The best attack found by the designers and external evaluators of KASUMI is described
as follows: “There are chosen plaintext and/or related-key attacks against KASUMI re-
duced to 5 rounds. We believe that with further analysis it might be possible to extend
some attacks to 6 rounds, but not to the full 8-round KASUMI.”



826 O. Dunkelman, N. Keller, and A. Shamir

The existence of better related-key attacks on the full KASUMI was already shown
in [7]. The attack of [7] had a data complexity of 254.6 and time complexity of 276.1,
which are impractical but better than exhaustive search. In this paper we develop a new
attack, which requires only 4 related keys, 226 data, 230 bytes of memory, and 232 time.
Since these complexities are so low, we verified our attack experimentally, and our un-
optimized implementation on a single core of an old PC recovered about 96 key bits in
a few minutes, and the complete 128-bit key in less than two hours.1 Careful analysis
of our attack technique indicates that it cannot be applied against the original MISTY,
since it exploits a sequence of coincidences and lucky strikes which were created when
MISTY was changed to KASUMI by ETSI’s SAGE task force working for the GSM
Association. This calls into question the design of KASUMI, and especially its simpli-
fied key schedule.

In this paper, we develop a new type of attack which is an improved version of the
boomerang attack introduced in [26]. We call it a “sandwich attack,” since it uses a
distinguisher which is divided into three parts: A thick slice (“bread”) at the top, a thin
slice (“meat”) in the middle, and a thick slice (“bread”) at the bottom. The top and
bottom parts are assumed to have high probability differential characteristics, which
can be combined into a quartet by the standard boomerang technique. However, in our
case they are separated by an additional middle slice, which can significantly reduce the
probability of the resulting boomerang structure. Nevertheless, as we show in this paper,
careful analysis of the dependence between the top and bottom differentials allows us
in some cases to combine the two properties above and below the middle slice with an
enhanced probability. In particular, we show that in the case of KASUMI we can use
top and bottom 3-round differential characteristics with an extremely high probability
of 2−2 each, and combine them via a middle 1-round slice in such a way that the “cost
in probability” of the combination is 2−6, instead of the 2−32 we would expect from a
naive analysis. This increases the probability of our 7-round distinguisher from 2−40 to
2−14, and reduces significantly the data and the time complexities of the attack. Such
a three-level structure was used in several previous attacks such as [8,9] (where it was
called the “Feistel switch” or the “middle-round S-box trick”), but to the best of our
knowledge it was always used in the past in simpler situations in which the transition
probability through the middle layer (in at least one direction) was 1 due to the structural
properties of a single Feistel round, or due to the particular construction of a given S-
Box. Our sandwich attack is the first non-trivial application of such a structure, and
the delicacy of the required probabilistic analysis is demonstrated by the fact that a tiny
change in the key schedule of KASUMI or in the differentials (which both have no effect
on the differential probabilities of the top and bottom layers) can change the probability
of the combined distinguisher from the surprisingly high value of 2−14 to 0.

We note that after the sandwich technique was presented in the Crypto 2010 version
of our paper, it was successfully applied to attack the MMB block cipher in [15]. We
expect that other uses of this technique will be found in the future.

This paper is organized as follows: Section 2 describes the new sandwich attack,
along with a chosen-plaintext variant which we call “rectangle-like sandwich attack,”

1 Our implementation of the attack used the official reference implementation of KASUMI [25], which is
not optimized for exhaustive search.
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and discusses the transition between the top and bottom parts of the cipher through the
middle slice of the sandwich. Section 3 describes the KASUMI block cipher. Section 4
describes our new 7-round distinguisher for KASUMI which has a probability of 2−14,
and demonstrates its extreme sensitivity to tiny structural modifications. In Sect. 5 we
use the new distinguisher to develop a practical-time key recovery attack on the full
KASUMI cryptosystem. Finally, Section 6 concludes the paper.

2. Sandwich Attacks

In this section we describe the technique used in our attacks on KASUMI. We start
with a description of the basic (related-key) boomerang attack, and then describe a new
framework, which we call a (related-key) sandwich attack, that exploits the dependence
between the underlying differentials to obtain a more accurate estimation of the prob-
ability of the distinguisher. Finally, we describe the chosen plaintext variant of the at-
tack, which we call (related-key) rectangle-like sandwich attack. We note that the idea
of using dependence between the differentials in order to improve the boomerang dis-
tinguisher was implicitly proposed by Wagner [26], and was also used in some simple
scenarios in [8,9]. Therefore, our framework can be considered as a formal treatment
and generalization of the ideas proposed in [8,9,26].

2.1. The Basic Related-Key Boomerang Attack

The related-key boomerang attack was introduced by Kim et al. [14,18], and indepen-
dently by Biham et al. [6], as a transformation of the boomerang attack [26] to the
related-key differential settings [17]. In this attack, the cipher is treated as a cascade of
two sub-ciphers E = E1 ◦ E0, and related-key differentials of E0 and E1 are combined
into an adaptive chosen plaintext and ciphertext distinguisher for E.

Let us assume that there exists a related-key differential α → β for E0 under key
difference �Kab with probability p (i.e., Pr[E0(K)(P ) ⊕ E0(K⊕Kab)(P ⊕ α) = β] = p,
where E0(K) denotes encryption through E0 under the key K and the probability is
taken over all possible plaintexts and keys). Similarly, we assume that there exists a
related-key differential γ → δ for E1 under key difference �Kac with probability q .
The related-key boomerang distinguisher requires encryption/decryption under the se-
cret key Ka , and under the related keys Kb = Ka ⊕ �Kab , Kc = Ka ⊕ �Kac , and
Kd = Kc ⊕ �Kab = Kb ⊕ �Kac .

The attack is based on the following process:

1. Pick a random plaintext Pa , and let Pb = Pa ⊕ α.
2. Ask for the ciphertexts Ca = EKa(Pa) and Cb = EKb

(Pb). Denote Cc = Ca ⊕ δ

and Cd = Cb ⊕ δ.
3. Ask for the plaintexts Pc = E−1

Kc
(Cc) and Pd = E−1

Kd
(Cd).

4. Check whether Pc ⊕ Pd = α.

The probability that the pair (Pa,Pb) is a right pair with respect to the first differential
(i.e., the probability that the intermediate difference after E0 equals β , as predicted by
the differential) is p. Assuming independence, the probability that both pairs (Ca,Cc)
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Fig. 1. Related-key boomerang and sandwich quartets.

and (Cb,Cd) are right pairs with respect to the second differential is q2. If all these are
right pairs, then we have

(Xa ⊕ Xb = β) ∧ (Xa ⊕ Xc = γ ) ∧ (Xb ⊕ Xd = γ ),

where Xi is the intermediate encryption value of Pi . Thus,

Xc ⊕ Xd = (Xc ⊕ Xa) ⊕ (Xa ⊕ Xb) ⊕ (Xb ⊕ Xd) = β ⊕ γ ⊕ γ = β

(see left side of Fig. 1). This, in turn, implies that with probability p, Pc ⊕ Pd = α.
Hence, the total probability of this quartet of plaintexts and ciphertexts to satisfy the
condition Pc ⊕ Pd = α is at least (pq)2. For a random permutation the probability that
the last condition is satisfied is 2−n, where n is the block size. Therefore, if pq � 2−n/2,
it is possible to distinguish E from a random permutation given O((pq)−2) adaptively
chosen plaintexts and ciphertexts. The algorithm of the distinguisher is as follows:

1. Choose M plaintexts at random, and initialize a counter C to zero. For each plain-
text Pa , perform the following:
(a) Ask for the ciphertexts Ca = EKa(Pa) and Cb = EKb

(Pb) where Pb = Pa ⊕α.
(b) Ask for the plaintexts Pc = E−1

Kc
(Cc) and Pd = E−1

Kd
(Cd) where Cc = Ca ⊕ δ

and Cd = Cb ⊕ δ.
(c) If Pc ⊕ Pd = α, increment the counter C by 1.

2. If C > Threshold, output “E.” Otherwise, output “Random Permutation.”

The distinguisher can be improved by considering multiple differentials of the form
α → β ′ and γ ′ → δ (for the same α and δ). We omit this improvement here since it
is not used in our attack on KASUMI, and refer the reader to [6]. For a rigorous treat-
ment of the related-key boomerang attack, including a discussion of the independence
assumptions the attack relies upon, we refer the interested reader to [19,21].2

2 In [21] it was shown that the independence assumptions underlying the attack may fail in various cases,
and hence it is desirable to check the validity of the assumptions experimentally in each specific case. In the
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The way to transform a related-key boomerang distinguisher into a key-recovery
attack is rather standard, and thus we do not present it here and rely on the de-
tailed description of such a transformation in our attack on KASUMI presented in
Sect. 5.

2.2. The Related-Key Sandwich Attack

In this framework we consider the cipher as a cascade of three sub-ciphers: E =
E1 ◦ M ◦ E0. Our assumptions are the same as in the basic boomerang attack: We
assume that there exists a related-key differential α → β for E0 under key difference
�Kab with probability p, and a related-key differential γ → δ for E1 under key dif-
ference �Kac with probability q . The attack algorithm is also exactly the same as in
the basic attack (ignoring the middle sub-cipher M). However, the analysis is more
delicate and requires great care in analyzing the dependence between the various distri-
butions.

The main idea behind the sandwich attack is the transition in the middle. In the basic
boomerang attack, if the pair (Pa,Pb) is a right pair with respect to the first differen-
tial, and both pairs (Ca,Cc) and (Cb,Cd) are right pairs with respect to the second
differential, then we have

(Xa ⊕ Xb = β) ∧ (Xa ⊕ Xc = γ ) ∧ (Xb ⊕ Xd = γ ), (1)

where Xi is the intermediate encryption value of Pi , and thus

Xc ⊕ Xd = (Xc ⊕ Xa) ⊕ (Xa ⊕ Xb) ⊕ (Xb ⊕ Xd) = β ⊕ γ ⊕ γ = β, (2)

resulting in Pc ⊕ Pd = α with probability p (see left side of Fig. 1).
In the new sandwich framework, instead of condition (1), we get

(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ ) ∧ (Yb ⊕ Yd = γ ), (3)

where Xi is the partial encryption of Pi under E0 (and the respective key) and Yi is the
partial decryption of Ci under E1 (see right side of Fig. 1). Therefore, the probability
of the three-layer related-key boomerang distinguisher is p2q2r , where

r = Pr
[
(Xc ⊕ Xd = β) | (Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ ) ∧ (Yb ⊕ Yd = γ )

]
. (4)

Without further assumptions on M , r is expected to be very low (close to 2−n for an
n-bit block), and thus the distinguisher is expected to fail. However, as observed in
[8,9,26], in some cases the differentials in E0 and E1 can be chosen such that the proba-
bility penalty r in going through M (in at least one direction) is 1, which is much higher
than expected.

An example of this phenomenon, introduced in [26] and described in [9] under the
name “Feistel switch,” is the following. Let E be a Feistel cipher, decomposed as E =
E1 ◦ M ◦ E0, where M consists of one Feistel round (see Fig. 2). Assume that the

case of KASUMI considered in this paper, we have verified both the distinguisher and the attack experimen-
tally, and the probabilities match the theoretical prediction with high precision (as described in Sect. 4.2).
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Fig. 2. A Feistel construction. M is the second round.

differentials α → β (for E0) and γ → δ (for E1) have no key difference (i.e., �Kab =
�Kac = 0), and satisfy βL = γ R (i.e., the left half of β which is the difference in the
state XL equals the right half of γ which is the difference in the state YR). We would
like to compute the value of r .

Assume that condition (3) holds. In this case, as by the Feistel construction, YR
i = XL

i

for all i, we have

XL
a ⊕ XL

b = βL = γ R = XL
a ⊕ XL

c = XL
b ⊕ XL

d , (5)

and thus,
(
XL

a = XL
d

)
and

(
XL

b = XL
c

)
. (6)

Therefore, the output values of the F-function in the Feistel round represented by M ,
denoted in Fig. 2 by (Oa,Ob,Oc,Od), satisfy

(Oa = Od) and (Ob = Oc).

Since by the Feistel construction, XR
i = YL

i ⊕ Oi and by condition (3), Ya ⊕ Yb ⊕ Yc ⊕
Yd = 0, it follows that

Xa ⊕ Xb ⊕ Xc ⊕ Xd = 0,

which by condition (3) implies Xc ⊕ Xd = β . Thus, in this case we get that

r = Pr
[
(Xc ⊕ Xd = β) | (Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ ) ∧ (Yb ⊕ Yd = γ )

] = 1,

independently of the choice of the F-function used.
Other examples of the same phenomenon are considered in [8] (under the name

“middle-round S-box trick”), and in [9] (under the names “ladder switch” and “S-box
switch”).

Our attack on KASUMI is the first non-trivial example of this phenomenon in
which a careful analysis shows that r is smaller than 1, but much larger than its
expected value under the standard independence assumptions. In our attack, the ci-
pher E (7-round KASUMI) is a Feistel construction, M consists of a single round, and
βL = γ R . However, the argument presented above cannot be applied directly since there
is a non-zero key difference in M , and thus a zero input difference to the F-function
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does not imply a zero output difference. Instead, we analyze the F-function thoroughly
and show that in this case, r = 2−6 (instead of 2−32, which is the expected value for a
random Feistel round in a 64-bit block cipher).

Remark 1. We note that our treatment of the sandwich distinguisher allows us to spec-
ify the precise independence assumptions we rely upon. Since r is defined as a condi-
tional probability, the only independence assumptions we use are between the differen-
tials of E0 and E1, and thus the formula p2q2r relies on exactly the same assumptions
as the ordinary boomerang attack. In [8,9,26], this situation was treated as a “trick” al-
lowing to increase the probability of the distinguisher, or in other words, as a failure
of the formula p2q2 in favor of the adversary. This approach is problematic since once
we claim that the entire formula does not hold due to dependencies, we cannot rely on
independence assumptions in other places where such dependencies could be found.

2.3. The Rectangle-Like Sandwich Attack

The transformation of the (related-key) boomerang distinguisher into a chosen plain-
text rectangle attack relies on standard birthday-paradox arguments. The division into
sub-ciphers and the assumptions are the same as in the (related-key) boomerang distin-
guisher. The key idea behind the transformation is to encrypt many plaintext pairs with
input difference α, and to look for quartets that happen to conform to the requirements
of the boomerang process. In other words, the adversary considers quartets of plain-
texts of the form ((Pa,Pb = Pa ⊕ α), (Pc,Pd = Pc ⊕ α)) encrypted under the related
keys Ka,Kb,Kc , and Kd , respectively, and a quartet is called a “right quartet” if the
following conditions are satisfied:

1. E0(Ka)(Pa) ⊕ E0(Kb)(Pb) = β = E0(Kc)(Pc) ⊕ E0(Kd)(Pd) (i.e., Xa ⊕ Xb = β =
Xc ⊕ Xd ).

2. E0(Ka)(Pa) ⊕ E0(Kc)(Pc) = Xa ⊕ Xc = γ (which leads to E0(Kb)(Pb) ⊕
E0(Kd)(Pd) = Xb ⊕ Xd = γ if this condition holds along with the previous one).

3. Ca ⊕ Cc = δ = Cb ⊕ Cd .

The probability of a quartet to be a right quartet is a lower bound on the probability of
the event

Ca ⊕ Cc = δ = Cb ⊕ Cd. (7)

The usual assumption is that each of the above conditions is independent of the rest,
and hence the probability that a given quartet ((Pa,Pb), (Pc,Pd)) is a right quartet
is p2 · 2−n · q2. Since for a random permutation, the probability of condition (7) is
2−2n, the rectangle process can be used to distinguish E from a random permutation if
pq � 2−n/2 (the same condition as in the standard boomerang distinguisher).

However, the data complexity of the distinguisher is O(2n/2(pq)−1), which is much
higher than the complexity of the boomerang distinguisher. The higher data complex-
ity follows from the fact that the event E0(Ka)(Pa) ⊕ E0(Kc)(Pc) = γ occurs with a
“random” probability of 2−n (in fact, this is the birthday-paradox argument behind the
construction). The identification of right quartets is also more complicated than in the
boomerang case, as instead of checking a condition on pairs, the adversary has to go
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over all the possible quartets. At the same time, the chosen plaintext nature allows using
stronger key recovery techniques. An optimized method of finding the right rectangle
quartets is presented in [5].

The transformation of the (related-key) sandwich framework into the (related-key)
rectangle-like sandwich framework is performed similarly. The way in which the dis-
tinguisher is deployed remains the same, and the probability of a quartet to be a right
quartet is p2 · 2−n · r ′ · q2, where

r ′ = Pr
[
(Yb ⊕ Yd = γ ) | (Xa ⊕ Xb = β) ∧ (Xc ⊕ Xd = β) ∧ (Ya ⊕ Yc = γ )

]
. (8)

It follows from symmetry arguments that in the case where E is a Feistel cipher, M

consists of a single round, and βL = γ R , we have r ′ = r (even if there is a non-zero key
difference in M). Thus, in our attack on KASUMI we are able to use the computation of
r in the sandwich framework to find also the probability of the corresponding related-
key rectangle-like sandwich distinguisher.

3. The KASUMI Block Cipher

KASUMI [24] is a 64-bit block cipher with 128-bit keys. It has a recursive Feistel
structure, following its ancestor MISTY. The cipher has eight Feistel rounds, where
each round is composed of two functions: the FO function which is in itself a 3-round
32-bit Feistel construction, and the FL function that mixes a 32-bit subkey with the data
in a linear way. The order of the two functions depends on the round number: in the
even rounds the FO function is applied first, and in the odd rounds the FL function is
applied first.

The FO function also has a recursive structure: its F -function, called FI, is a four-
round Feistel construction. The FI function uses two nonlinear S-boxes S7 and S9
(where S7 is a 7-bit to 7-bit permutation and S9 is a 9-bit to 9-bit permutation), and
accepts an additional 16-bit subkey, which is mixed with the data. In total, a 96-bit sub-
key enters FO in each round—48 subkey bits are used in the FI functions and 48 subkey
bits are used in the key mixing stages.

The FL function accepts a 32-bit input and two 16-bit subkey words. One subkey
word affects the data using the OR operation, while the second one affects the data
using the AND operation. We outline the structure of KASUMI and its components in
Fig. 3.

The key schedule of KASUMI is much simpler than the original key schedule of
MISTY, and the subkeys are linearly derived from the key. The 128-bit key K is divided
into eight 16-bit words: K1,K2, . . . ,K8. Each Ki is used to compute K ′

i = Ki ⊕ Ci ,
where the Ci ’s are fixed constants (we omit these from the paper, and refer the intrigued
reader to [24]). In each round, eight words are used as the round subkey (up to some
in-word rotations). Hence, each 128-bit round subkey is a linearly modified version of
the secret key. We summarize the details of the key schedule of KASUMI in Table 1.
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Fig. 3. Outline of KASUMI.

4. A Related-Key Sandwich Distinguisher for 7-Round KASUMI

4.1. The New Distinguisher

In our distinguisher, we treat rounds 1–7 of KASUMI as a cascade E = E1 ◦ M ◦ E0,
where E0 consists of rounds 1–3, M consists of round 4, and E1 consists of rounds 5–7.
The related-key differential we use for E0 is a slight modification of the differential
characteristic presented in [11], in which

α = (0x,0010 0000x) → (0010 0000x,0x) = β.
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Table 1. KASUMI’s key schedule algorithm.

Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3

1 K1 ≪ 1 K ′
3 K2 ≪ 5 K6 ≪ 8 K7 ≪ 13 K ′

5 K ′
4 K ′

8

2 K2 ≪ 1 K ′
4 K3 ≪ 5 K7 ≪ 8 K8 ≪ 13 K ′

6 K ′
5 K ′

1

3 K3 ≪ 1 K ′
5 K4 ≪ 5 K8 ≪ 8 K1 ≪ 13 K ′

7 K ′
6 K ′

2

4 K4 ≪ 1 K ′
6 K5 ≪ 5 K1 ≪ 8 K2 ≪ 13 K ′

8 K ′
7 K ′

3

5 K5 ≪ 1 K ′
7 K6 ≪ 5 K2 ≪ 8 K3 ≪ 13 K ′

1 K ′
8 K ′

4

6 K6 ≪ 1 K ′
8 K7 ≪ 5 K3 ≪ 8 K4 ≪ 13 K ′

2 K ′
1 K ′

5

7 K7 ≪ 1 K ′
1 K8 ≪ 5 K4 ≪ 8 K5 ≪ 13 K ′

3 K ′
2 K ′

6

8 K8 ≪ 1 K ′
2 K1 ≪ 5 K5 ≪ 8 K6 ≪ 13 K ′

4 K ′
3 K ′

7

(X ≪ i)—X rotated to the left by i bits.

Fig. 4. 3-Round related-key differential characteristic of KASUMI.

The corresponding key difference is �Kab = �Kcd = (0,0,8000x,0,0,0,0,0), i.e.,
only the third key word has a single bit difference �K3 = 8000x . This related-key dif-
ferential is depicted in Fig. 4. The related-key differential we use for E1 is the same
differential shifted by four rounds, in which the data differences are

γ = (0x,0010 0000x) → (0010 0000x,0x) = δ,

and the key difference is �Kac = �Kbd = (0,0,0,0,0,0,8000x,0) (to handle the dif-
ferent subkeys used in these rounds).

As shown in [11], the probability of each one of these 3-round differential character-
istics is 1/4. In order to find the probability of the related-key sandwich distinguisher,
we need to compute the probability

Pr
[
(Xc ⊕ Xd = β) | (Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ ) ∧ (Yb ⊕ Yd = γ )

]
, (9)

where (Xa,Xb,Xc,Xd) and (Ya,Yb,Yc, Yd) are the intermediate values before and af-
ter the middle slice of the sandwich during the encryption/decryption of the quartet
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Fig. 5. Rounds 3–5 of the sandwich distinguisher and the notations used in the attack description.

(Pa,Pb,Pc,Pd) (see the right side of Fig. 1). This computation, which is a bit complex,
spans the rest of this subsection.

Consider a quartet (Pa,Pb,Pc,Pd) for which the condition

(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ ) ∧ (Yb ⊕ Yd = γ ) (10)

is satisfied. Note that for our differentials, we have βL = γ R , as illustrated in Fig. 5.
Hence, we can apply the argument of Sect. 2, since M is a single Feistel round. In
particular, we obtain

(
XL

a = XL
d

) ∧ (
XL

b = XL
c

)
, (11)

where XL
i denotes the left half of Xi , which enters the function FO4 (see left part of

Fig. 5). Moreover, as the right half of βL and γ R is zero, we have

XLR
a = XLR

b = XLR
c = XLR

d , (12)

where XLR
i denotes the right half (i.e., the 16 rightmost bits) of XL

i (see central part of
Fig. 5).

The following transitions are illustrated in Fig. 6 and the notations we use in their de-
scription are shown in Fig. 5. The function FO4 is a 3-round Feistel construction whose
32-bit values after round j are denoted by (X

j
a,X

j
b,X

j
c ,X

j
d). The functions FI4,1,FI4,2,

and FI4,3 are 4-round Feistel constructions, and the 16-bit outputs of FI4,j are denoted

by (I
j
a , I

j
b , I

j
c , I

j
d ). Note that the key differences �Kab and �Kac affect in round 4 the

subkeys KI4,3 and KI4,2, respectively, and in particular, there is no key difference in the
first round of FO4. As a result, Eq. (11) implies that

(
X1

a = X1
d

) ∧ (
X1

b = X1
c

)
. (13)
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Fig. 6. The development of differences in FO4 and in FI4,3.

Furthermore, there is no key difference in the pairs corresponding to (Pa,Pb) and
(Pc,Pd) in the second round of FO4, and thus Eq. (12) implies that:

(
I 2
a = I 2

b

) ∧ (
I 2
c = I 2

d

)
. (14)

Combining Eqs. (13) and (14), we get the following relation in the right half of the
intermediate values after round 3 of FO4:

X3R
a ⊕ X3R

b ⊕ X3R
c ⊕ X3R

d = 0. (15)

In the F-function of round 3 of FO4 we consider the pairs corresponding to (Pa,Pd)

and (Pb,Pc). Since the key difference in these pairs (which equals to Kab ⊕Kac) affects
only the subkey KI4,3,1, Eq. (13) suggests that

I 3R
a ⊕ I 3R

b ⊕ I 3R
c ⊕ I 3R

d = 0 (16)

in the 9 bits which composes the right hand side of the output. In the left hand side
of the output, the XOR of the four values is not necessarily equal to zero, due to the
subkey difference that affects the inputs to the second S7 in FI4,3. However, if these
7-bit inputs, denoted by (Ja, Jb, Jc, Jd), satisfy one of the conditions,

(
(Ja = Jb) ∧ (Jc = Jd)

)
or

(
(Ja = Jc) ∧ (Jb = Jd)

)
, (17)

then Eq. (16) implies

I 3L
a ⊕ I 3L

b ⊕ I 3L
c ⊕ I 3L

d = 0. (18)
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Since we have Ja ⊕ Jd = Jb ⊕ Jc (both are equal to the subkey difference in KI4,3,1),
each one of the two conditions in Eq. (17) is expected to hold3 with probability 2−7.
Therefore, combining Eqs. (15), (16), and (18) we get that the condition

X3
a ⊕ X3

b ⊕ X3
c ⊕ X3

d = 0 (19)

holds with probability 2−6.
Finally, since the FL function is linear for a given key and there is no key difference

in FL4, we can conclude that whenever Eq. (19) holds, the outputs of the F-function in
round 4 (denoted in Fig. 5 by (O4

a ,O4
b ,O4

c ,O4
d )) satisfy

O4
a ⊕ O4

b ⊕ O4
c ⊕ O4

d = 0. (20)

Since by condition (10),

YL
a ⊕ YL

b ⊕ YL
c ⊕ YL

d = 0,

it follows that

XR
a ⊕ XR

b ⊕ XR
c ⊕ XR

d = 0 (21)

also holds with probability 2−6. Combining this with Eq. (11) yields

Pr
[
(Xc ⊕ Xd = β) | (Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ ) ∧ (Yb ⊕ Yd = γ )

] = 2−6. (22)

Therefore, the overall probability of the related-key sandwich distinguisher is

(1/4)2 · (1/4)2 · 2−6 = 2−14, (23)

which is much higher than the probability of (1/4)2 · (1/4)2 · 2−32 = 2−40 which is
expected by the naive analysis of the sandwich structure.

4.2. Experimental Verification

To verify the properties of the new distinguisher, we used the official code available as
an appendix in [24]. The verification experiment was set up as follows: In each test we
randomly chose a key quartet satisfying the required key differences. We then generated
216 quartets by following the boomerang procedure described above. We utilized a slight
improvement of the first differential suggested in [11] that increases its probability in
the encryption direction by a factor of 2 by fixing the value of two plaintext bits. Hence,
the number of right quartets in each test was expected to follow a Poisson distribution
with a mean value of 216 ·2−14 ·2 = 8. We repeated the test 100,000 times, and obtained
a distribution which is extremely close to the expected distribution. The full results are
summarized in Table 2.

3 This estimate is based on a randomness assumption that could be inaccurate in our case due to depen-
dence between the differential characteristics. However, our experiments verify that this probability is indeed
as expected.
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Table 2. The number of right quartets in 100,000 experiments.

Right quartets 0 1 2 3 4 5 6 7 8

Theory (Poi(8)) 34 268 1,073 2,863 5,725 9,160 12,214 13,959 13,959
Experiment 32 259 1,094 2,861 5,773 9,166 12,407 13,960 13,956

Right quartets 9 10 11 12 13 14 15 16 17

Theory (Poi(8)) 12,408 9,926 7,219 4,813 2,962 1,692 903 451 212
Experiment 12,230 9,839 7,218 4,804 3,023 1,672 859 472 219

Right quartets 18 19 20 21 22 23 24 25

Theory (Poi(8)) 94 40 16 6 2 0.8 0.26 0.082
Experiment 89 39 13 12 2 0 0 1

4.3. A Tale of Two Sandwiches

In this subsection we present two examples which demonstrate the extremely delicate
nature of the probability estimations used in the sandwich attack, and the “lucky strikes”
which made our attack on KASUMI possible. These two examples, along with a detailed
analysis of various related-key boomerang distinguishers of a similar nature presented
in [19], illustrate the thorough analysis of the structure of M which must be performed in
each specific case in order to compute the probability r analytically. Another possibility
is to give up the rigorous theoretical analysis and sample the probability r experimen-
tally instead.

In the first example we present, we make a tiny change in the key schedule of KA-
SUMI, which does not seem to have any effect on the differential probabilities of any
one of its three sub-ciphers. However, for this example, the probability of the distin-
guisher is zero! In the second example, we use the original KASUMI key schedule, and
slightly alter the differentials, such that the differential probabilities in the top and bot-
tom sub-ciphers are not changed. As in the first example, it turns out that the probability
of the distinguisher becomes zero.

4.3.1. A Slight Change in the KASUMI Key Schedule

The only change we make in KASUMI is the order of the subkeys. We take the original
key schedule of KASUMI, and swap the roles of KIi,1 and KIi,3. Namely, the word used
in KASUMI as KIi,1 is used in this variant as KIi,3 and vice versa. For example, in our
variant KI1,3 = K ′

5, KI2,1 = K ′
1, and KI3,3 = K ′

7.
Since our change affects only the subkeys used in KIi,1 and KIi,3 in each round, the

differentials used in our distinguisher on KASUMI remain exactly the same for the new
variant (with the same input/output differences, the same key differences and the same
probabilities). However, we claim that in this case,

r = Pr
[
(Xc ⊕ Xd = β) | (Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ ) ∧ (Yb ⊕ Yd = γ )

] = 0, (24)

and thus the probability of the distinguisher is zero. In all the computations below, the
notations are the same as in the original distinguisher above. The impossible transition
is depicted in Fig. 7.
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Fig. 7. The development of differences in FO4 and in FI4,1 in the modified KASUMI.

Since the differentials are the same as in the original distinguisher, we have
(
XL

a = XL
d

) ∧ (
XL

b = XL
c

)
(25)

and

XLR
a = XLR

b = XLR
c = XLR

d . (26)

Also, since the second round of FO4 is unchanged, we have
(
I 2
a = I 2

b

) ∧ (
I 2
c = I 2

d

)
. (27)

Therefore,

X3L
a ⊕ X3L

b ⊕ X3L
c ⊕ X3L

d = I 1
a ⊕ I 1

b ⊕ I 1
c ⊕ I 1

d . (28)

In the first round of FO4 we have a difference between the modified variant and the
original KASUMI, as in the modified variant there is a subkey difference in the pairs
corresponding to (Pa,Pb) and to (Pc,Pd), in the MSB of the subkey KI4,1,1. Let us
analyze the function FI4,1.

By the structure of the differential, the inputs of FI4,1 are of the form
(
XLL

a ⊕ KO4,1,X
LL
b ⊕ KO4,1,X

LL
c ⊕ KO4,1,X

LL
d ⊕ KO4,1

)

= (t, t ⊕ 0010x, t ⊕ 0010x, t),
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for some 16-bit value t . After the application of the first S9 of FI4,1 the values remain in
the form (t ′, t ′ ⊕ 0010x, t

′ ⊕ 0010x, t
′), for some 16-bit value t ′, since all four inputs to

the S-box S9 are equal. After the XOR and the swap, the values are of the form (t ′′, t ′′ ⊕
2010x, t

′′ ⊕ 2010x, t
′′). Hence, the inputs to the first S7 are of the form (x, y, y, x), and

the outputs of that S7 after the XOR with the truncated 9 bits, are of the form (u, v, v,u)

(for some 7-bit values v,u). We claim that u 	= v and u ⊕ v 	= 40x . Indeed, if we had
u⊕v = 40x , then the 7-bit outputs of the S-box S7 had to be of the form (u′, u′ ⊕40x ⊕
10x, u

′ ⊕ 40x ⊕ 10x, u
′). However, the differential (10x → 50x) is impossible for S7,

and thus this event cannot occur. Similarly, u = v cannot occur since the differential
(10x → 10x) is impossible for S7.

We now claim that the four 7-bit intermediate values after the XOR with the subkey
KI4,1,1 are different. Indeed, these values are of the form (u⊕ k, v ⊕ k ⊕40x, v ⊕ k,u⊕
k ⊕ 40x), and these are all different since u 	= v and u 	= v ⊕ 40x .

Finally, we consider the S-box S7 in the fourth round of FI4,1. Its four inputs are all
different, and can be divided into two pairs (u⊕k, v⊕k⊕40x) and (v⊕k,u⊕k⊕40x)

with the same difference. Since S7 is an almost perfect nonlinear permutation,4 this
implies that the two corresponding pairs of outputs have distinct differences, and thus,
the XOR of the four output values is necessarily non-zero. Since the XOR of the output
values in the right half is zero, we have

I 1
a ⊕ I 1

b ⊕ I 1
c ⊕ I 1

d 	= 0,

and hence,

X3L
a ⊕ X3L

b ⊕ X3L
c ⊕ X3L

d 	= 0.

Therefore, the XOR of the four outputs of FO4 is non-zero with probability 1, and
since FL is linear and invertible, this implies that the XOR of the four outputs of FL is
non-zero with probability 1. This proves that

Pr
[
(Xc ⊕ Xd = β) | (Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ ) ∧ (Yb ⊕ Yd = γ )

] = 0,

and thus the distinguisher fails in this variant of KASUMI, as asserted.
For the sake of completeness, we implemented this variant of KASUMI, and verified

experimentally that the number of right quartets with the desired sandwich property was
always zero.5

4 An almost perfect nonlinear permutation, introduced in [22], is a permutation f : GF(2n) → GF(2n)

such that for any a 	= 0, the function g(x, a) = f (x) ⊕ f (x ⊕ a) assumes exactly 2n−1 different values. In
an almost perfect nonlinear permutation, for any two pairs of distinct input values with the same difference,
the corresponding output pairs cannot have the same difference. The S-boxes S7 and S9 used in KASUMI
were designed as almost perfect nonlinear permutations, in order to obtain maximal security with respect to
differential and linear cryptanalysis (see [23]).

5 We used 100 keys, and for each of them we generated 224 quartets. We first verified using the official
key schedule that many right quartets are encountered, and then we modified the key schedule in the way
described above. None of the experiments yielded a right quartet.
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4.3.2. A Slight Change in the Differential

In this example we do not alter the original key schedule of KASUMI, but rather slightly
change one of the differentials. Since the considerations we use are similar to the previ-
ous example, we present them briefly.

The differential for E0 remains

α = (0x,0010 0000x) → (0010 0000x,0x) = β,

with key difference �Kab = (0,0,8000x,0,0,0,0,0). The differential we use for E1
is slightly changed to

γ = (0x,0100 0000x) → (0100 0000x,0x) = δ,

with key difference �Kac = (0,0,0,0,0,0,0008x,0). It is easy to see that the proba-
bilities of the differentials in E0 and E1 remain 2−2, like for the original differentials.
Also, Eqs. (26), (27), and (28) hold as in the previous example, and hence, in order to
show that the probability of the distinguisher is zero, it is sufficient to show that

I 1
a ⊕ I 1

b ⊕ I 1
c ⊕ I 1

d 	= 0. (29)

Consider the function FI4,1. By the structure of the differentials, its inputs are of the
form

(t, t ⊕ 0010x, t ⊕ 0100x, t ⊕ 0110x).

(Note that unlike the previous example, the four inputs are distinct.) It follows that the
inputs to the S-box S9 in the first round of FI4,1 are of the form (x, x, y, y) (where
x ⊕ y = 2x ) and the inputs to the S-box S7 in the second round of FI4,1 are of the
form (z,w, z,w) (where z ⊕ w = 10x ). Hence, the corresponding outputs are of the
forms (x′, x′, y′, y′) and (z′,w′, z′,w′), respectively. Since both these quadruples are
balanced (i.e., sum up to zero), and there is no key difference in FI4,1 (again, unlike the
previous example), this implies that in both halves of the intermediate value after the key
addition, the quadruples are balanced. Therefore, due to the 4-round Feistel structure,
if we show that the outputs of the S-box S9 in the third round of FI4,1 are unbalanced,
this will imply that the right half of the output of FI4,1 is unbalanced, thus proving that
inequality (29) holds.

Consider the four inputs to the S-box S9 in the third round of FI4,1. By the Feistel
structure, they are of the form (x′, x′, y′, y′) ⊕ (z,w, z,w) ⊕ (KI4,1,2,KI4,1,2,KI4,1,2,

KI4,1,2), and hence, they are balanced. Furthermore, they are distinct, since z⊕w = 10x ,
while x′ ⊕y′ 	= 10x (since the differential 0000000102 → 0000100002 is impossible for
the S-box S9). Since S9 is an almost perfect nonlinear permutation, this implies that
the four outputs are necessarily unbalanced, concluding the proof.

We note that a similar argument holds for almost all choices of modified differentials
for E0 and E1 in which for one of the differentials the non-zero difference enters the
S-box S9, and for the other one the non-zero difference enters the S-box S7, and shows
that the distinguisher must fail. The only two exceptions are:

α = (0x,0001 0000x), γ = (0x,0400 0000x),
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and:

α = (0x,0040 0000x), γ = (0x,0080 0000x),

with appropriately chosen key differences. For these exceptions, the probability r of
transition through the middle layer M is close to 2−32 (which is the expected probability
for a “random” single Feistel round with 64-bit block). For a detailed and experimental
analysis of these examples, we refer the reader to [19].

5. Related-Key Attacks on the Full KASUMI

In this section we use the 7-round distinguisher presented in Sect. 4 to devise related-
key attacks on the full 8-round KASUMI. Our first attack is a related-key sandwich
attack, which requires 226 adaptively chosen plaintexts and ciphertexts encrypted un-
der one of four related keys, and has a time complexity of 232 encryptions. This attack
was fully verified experimentally, as described in Sect. 5.1.1. Our second attack is a
related-key rectangle-like sandwich attack, which requires 241 chosen plaintexts en-
crypted under one of four related keys, and has time complexity of 241 encryptions.
Although its complexity is higher than that of the first attack, it has the advantage of
performing in the more conservative chosen plaintext model (rather than the adaptively
chosen plaintext/ciphertext model of the first attack).

5.1. Related-Key Sandwich Attack on the Full KASUMI

Our attack on the full KASUMI applies the distinguisher presented in Sect. 4 to
rounds 1–7 (see Fig. 8), and retrieves subkey material in round 8. Let �Kab =
(0,0,8000x,0,0,0,0,0) and �Kac = (0,0,0,0,0,0,8000x,0), and let Ka , Kb =
Ka ⊕�Kab , Kc = Ka ⊕�Kac, and Kd = Kc ⊕�Kab be the unknown related keys we
wish to retrieve.

The attack algorithm is as follows:

1. Data Collection Phase:
(a) Choose a structure of 224 ciphertexts of the form6 Ca = (Xa,A), where A

is a fixed 32-bit value and Xa assumes 224 arbitrary different 32-bit values.
Ask for the decryption of all the ciphertexts under the key Ka and denote
the plaintext corresponding to Ca by Pa . For each Pa , ask for the encryption
of Pb = Pa ⊕ (0x,0010 0000x) under the key Kb and denote the resulting
ciphertext by Cb. Store the pairs (Ca,Cb) in a hash table indexed by the 32-bit
value CR

b (i.e., the right half of Cb).
(b) Choose a structure of 224 ciphertexts of the form Cc = (Yc,A⊕ 0010 0000x),

where A is the same constant as before, and Yc assumes 224 arbitrary different
values. Ask for the decryption of the ciphertexts under the key Kc and denote
the plaintext corresponding to Cc by Pc . For each Pc , ask for the encryption
of Pd = Pc ⊕ (0x,0010 0000x) under the key Kd and denote the resulting
ciphertext by Cd . Then, access the hash table in the entry corresponding to the
value CR

d ⊕ (0x,0010 0000x), and for each pair (Ca,Cb) found in this entry,
apply Step 2 on the quartet (Ca,Cb,Cc,Cd).

6 We alert the reader that KASUMI employs a swap operation after the last round.
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Fig. 8. The 7-round related-key sandwich distinguisher of KASUMI.

In the first step described above, the (224)2 = 248 possible quartets are filtered ac-
cording to a condition on the 32 difference bits which are known (due to the output
difference δ of the distinguisher), which leaves about 216 quartets with the required
differences.

In Step 2 we can identify the right quartets instantly using an extremely lucky prop-
erty of the KASUMI structure. We note that a pair (Ca,Cc) can be a right quartet only
if

CL
a ⊕ FL8

(
FO8

(
CR

a

)) = CL
c ⊕ FL8

(
FO8

(
CR

c

))
, (30)

since by the Feistel structure, this is the only case in which the difference after round 7
is the output difference of the sandwich distinguisher (i.e., δ = (0010 0000x,0x)). How-
ever, the values CR

a and CR
c are fixed for all the considered ciphertexts, and hence
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Table 3. Possible values of KL8,2 and KL8,1.

OR—KL8,2 AND—KL8,1
(X′

ac, Y
′
ac) (X′

bd
,Y ′

bd
) (X′

ac, Y
′
ac) (X′

bd
,Y ′

bd
)

(0, 0) (0, 1) (1, 0) (1, 1) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) {0, 1} – 1 0 (0, 0) {0, 1} – 0 1
(0, 1) – – – – (0, 1) – – – –
(1, 0) 1 – 1 – (1, 0) 0 – 0 –
(1, 1) 0 – – 0 (1, 1) 1 – – 1

The two bits of the differences are denoted by (input difference, output difference): (X′
1, Y ′

1) for one pair and
(X′

2, Y ′
2) for the other pair.

Eq. (30) yields

CL
a ⊕ CL

c = FL8
(
FO8(A)

) ⊕ FL8
(
FO8

(
A ⊕ (0x,0010 0000x)

)) = const. (31)

Thus, the value CL
a ⊕ CL

c is equal for all the right quartets. This allows us to perform
the following simple filtering:

2. Identifying the Right Quartets: Insert the approximately 216 remaining quartets
(Ca,Cb,Cc,Cd) into a hash table indexed by the 32-bit value CL

a ⊕CL
c , and apply

Step 3 only to bins which contain at least three quartets.

Since the probability of a 3-collision in a list of 216 random 32-bit values is
(216

3

) ·
2−64 < 2−18, with very high probability only the right quartets remain after this filtering.
The expected number of such quartets is 216 · 2−14 = 4.

In the following step, we treat all the remaining quartets as right quartets. Under this
assumption, we know not only the actual inputs to the F-function of round 8, but also
the differences between its outputs.

3. Analyzing Right Quartets:
(a) For each remaining quartet (Ca,Cb,Cc,Cd), guess the 32-bit value of KO8,1

and KI8,1. For the two pairs (Ca,Cc) and (Cb,Cd) use the value of the guessed
key to compute the input and output differences of the OR operation in FL8
of both pairs.7 For each bit of this 16-bit OR operation, the possible values
of the corresponding bit of KL8,2 (given the input and output difference of
OR in that bit) are given in Table 3. On average, (8/16)16 = 2−16 values of
KL8,2 are suggested by each quartet and guess of KO8,1 and KI8,1.8 Since
all the right quartets suggest the same key, all the wrong keys are discarded
with overwhelming probability, and the adversary obtains the correct value of
(KO8,1,KI8,1,KL8,2).

(b) Guess the 32-bit value of KO8,3 and KI8,3, and use this information to com-
pute the input and output differences of the AND operation in both pairs of

7 In our case, the guess of KO8,1 and KI8,1 is sufficient for computing the difference in the left half of
the output of FO8, since the right half of the input difference to FO8 is zero. By the structure of FL, this
difference and the output difference of FL8 yield the input and output differences of the OR operation.

8 The simple proof of this claim is given in [7, Sect. 4.3].
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Table 4. The number of identified right quartets in 1,000 tests.

Right Quartets 0/1/2 3 4 5 6 7 8 9 10 11 12

Theory (Poi(4)) 238 195 195 156 104 60 30 13 5 2 0.6
Experiment 247 197 180 167 112 52 30 7 4 3 1

each quartet. For each bit of the 16-bit AND operation of FL8, the possi-
ble values of the corresponding bit of KL8,1 are given in Table 3. On av-
erage, (8/16)16 = 2−16 values of KL8,1 are suggested by each quartet and
guess of KO8,3, KI8,3, and thus the adversary obtains the correct value of
(KO8,3,KI8,3,KL8,1).

4. Finding the Right Key: For each value of the 96 bits of (KO8,1, KI8,1, KO8,3,
KI8,3, KL8,1, KL8,2) suggested in Step 3, guess the remaining 32 bits of the key,
and perform a trial encryption.

The data complexity of the attack is 225 chosen ciphertexts and 225 adaptively chosen
plaintexts encrypted/decrypted under one of four keys. The time complexity is domi-
nated by the trial encryptions performed in step 4 to find the last 32 bits of the key,
and thus it is approximately equal to 232 encryptions. The probability of success is ap-
proximately 76 % (this is the probability of having at least three right pairs in the data
pool).

The memory complexity of the attack is also very moderate. We just need to store
226 plaintext/ciphertext pairs, where each pair takes 16 bytes. Hence, the total amount
of memory used in the attack is 230 bytes, i.e., 1 GByte of memory.

5.1.1. Experimental Verification

We performed two types of experiments to verify our attack. In the first experiment, we
just generated the required data, and located the right quartets (thus verifying the cor-
rectness of our randomness assumptions). The second experiment was the application
of the full attack (both with and without the final exhaustive search over the remain-
ing 32 key bits). All our experiments were carried out on an Intel Core Duo 2 machine
with a T7200 CPU (2 GHz, 4 MB L2 Cache, 2 GBytes RAM, Linux-2.6.27 kernel,
with gcc 4.3.2 and standard optimization flags (-O3, -fomit-frame-pointers,
-funroll-loops), single core, single thread). We recall the fact that the experiment
used the official reference implementation of KASUMI from [25], which is not opti-
mized for performance (and thus for exhaustive search).

The first experiment was conducted 1000 times. In each test, we generated the data
and found candidate quartets according to Steps 1 and 2 of the attack algorithm. Once
these were found, we partially decrypted the quartets, and checked how many quartets
were right ones. Table 4 details the outcome of these experiments, which follows the
expected distribution.

The second experiment simulated the full attack. We repeated it 100 times, and
counted in each case how many times the final exhaustive search over 232 possible
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Table 5. The number of exhaustive searches as a function of the number of right quartets (100 experiments).

Right quartets 3 4 5 6 7 8 9 10 Total

Ex. Searches
2 – 2 8 6 7 3 – 1 27
4 1 6 7 3 2 – – – 19
8 1 9 2 – – – – – 12

16 2 2 4 – – – – – 8
32 1 2 – – – – – – 3
48 1 – – – – – – – 1
64 4 1 – – – – – – 5
96 1 – – – – – – – 1

256 1 – – – – – – – 1
512 1 – – – – – – – 1

Total 13 22 21 9 9 3 0 1 78

keys would have been invoked.9 In 78 out of these 100 experiments, 3 or more quartets
were identified to be right ones (the expected number was 76.1), and then the key was
found.

About 50 % of the tests were able to identify the right key by invoking either 2 or 4
exhaustive searches. As the first part of the attack (which identifies candidate quartets)
takes about 8 minutes, and each exhaustive search (using the official KASUMI source
code) takes about 26 minutes, we could find the full 128-bit key in about 50 % of
our tests in less than 112 minutes (using a single core). It is important to note that by
increasing the running time, one can increase the success rate of the attack without
increasing its data requirements. The full distribution of the experiments is given in
Table 5.

5.2. Related-Key Rectangle-Like Sandwich Attack on the Full KASUMI

The related-key sandwich distinguisher of 7-round KASUMI presented in Sect. 4 can
be transformed in a standard way to a related-key rectangle-like sandwich distinguisher
in which the probability of a quartet to be a right quartet is (1/4)2 · (1/4)2 · 2−64 ·
2−6 = 2−78. It is worth noting that in a chosen plaintext manner, one can ensure that the
first round of the differential characteristic for E0 is followed with probability 1 rather
than 1/2, and hence the overall probability can be increased to 2−76. This distinguisher
can be used to mount a related-key rectangle-like sandwich attack on the full KASUMI.
The attack is very similar to the attack presented in detail in [7], and hence we omit the
full description here, and just mention the changes.

Instead of starting with 251 plaintexts in each structure, the adversary can take 239

plaintexts. These plaintexts contain 278 possible quartets, and after the first filtering
step only 214 quartets remain. Then in Step 2(a) of the attack, the adversary gets 230

suggestions for 48 key bits (instead of 254 as in [7]), and thus all the wrong suggestions
can be discarded (since the right pairs suggest the same value). As a result, the time

9 The need to perform the final step several times arises since due to the differential nature of the attack,
a few key candidates cannot be distinguished from the right key until the exhaustive search step. As can be
seen in Table 5, the number of these keys decreases when more right quartets are analyzed.
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complexity of the following steps becomes negligible, and the overall time complexity
is dominated by the time required to encrypt the 241 chosen plaintexts. This is worse
than the 232 time complexity of our sandwich attack but is still practical, and applies in
the more realistic chosen plaintext attack model.

As in the ordinary sandwich attack, the memory used during the rectangle-like sand-
wich attack is dominated by the storage of the plaintexts and the ciphertexts. By first
encrypting the data under keys Ka and Kb , storing it in a sorted table, and then en-
crypting the data under Kc and Kd in a pair-by-pair manner, we have to store only 240

plaintext/ciphertext pairs. Hence, the total memory complexity of the attack is about
16 TBytes (244 bytes). Fortunately, this memory is accessed sequentially and can be
relatively slow, so only a few hard disks are needed to store this data.

6. Summary

In this paper we developed a new sandwich attack on iterated block ciphers, and used
it to reduce the time complexity of the best known attack on the full KASUMI from an
impractical 276 to the very practical 232. However, the new attack uses both related keys
and chosen messages, and thus it is not clear how to apply it in practice to break the
specific way in which KASUMI is used in GSM and UMTS (3G) telephony. Our main
point was to show that contrary to the assurances of its designers, the transition from
MISTY to KASUMI led to a much weaker cryptosystem, which should be avoided in
any application in which related-key attacks can be mounted.

6.1. Future Work

A drawback in the generic sandwich technique presented in this paper is the lack of rig-
orous analysis. While in the specific case of KASUMI, we performed a rigorous analysis
of the transition probability at the middle slice M and further validated our results with
experimental verifications, we were not able to provide such a rigorous analysis for the
general case. In particular, we cannot give necessary and sufficient conditions on the
cipher structure that ensure that the sandwich attack is applicable, neither we can give
explicit conditions under which the independence assumptions the technique relies on
are satisfied.

As for conditions that allow mounting a sandwich attack, formulating the exact con-
ditions seems impossible, since such conditions should depend heavily on the exact
structure of the cipher. What seems possible is to find other generic structures in which
the sandwich attack is applicable (such as the Feistel construction presented in Sect. 2).

As for the independence assumptions, the same problem exists even in the much
simpler case of differential cryptanalysis, where one cannot verify whether the indepen-
dence assumption (known as the hypothesis of stochastic equivalence) holds without a
large computational effort. In the case of (related-key) boomerang attacks, where the
assumptions are close to the assumptions behind the sandwich attack, such conditions
were analyzed in [19,21], and the conclusion was that the assumptions must be checked
in each particular case separately. It is likely that the same holds also for the sandwich
attack, but any further results regarding the correctness of the independence assump-
tions in various cases will be interesting.
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The last direction for further research refers to the specific case of KASUMI. While
the related-key sandwich attack we presented in the paper was accompanied with a full
experimental verification, we did not verify experimentally the rectangle-like sandwich
attack. An experimental verification of this attack will be interesting, as it will be the
first full implementation of a rectangle attack (on any block cipher).

We conclude this paper with a formal statement of the directions for further research
raised above.

Problem 1. Find other generic structures in which the sandwich attack is applicable.

Problem 2. Find necessary and sufficient conditions under which the independence
assumptions used in the sandwich attack are satisfied.

Problem 3. Verify the validity of the rectangle-like sandwich attack on full KASUMI
presented in Sect. 5.2.
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