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Abstract. In this paper we show a relation between the notions of verifiable random
functions (VRFs) and identity-based key encapsulation mechanisms (IB-KEMs). In
particular, we propose a class of IB-KEMs that we call VRF-suitable, and we propose
a direct construction of VRFs from VRF-suitable IB-KEMs. Informally, an IB-KEM is
VRF-suitable if it provides what we call unique decapsulation (i.e., given a ciphertext
C produced with respect to an identity ID, all the secret keys corresponding to iden-
tity ID′, decapsulate to the same value, even if ID �= ID′), and it satisfies an additional
property that we call pseudo-random decapsulation. In a nutshell, pseudo-random de-
capsulation means that if one decapsulates a ciphertext C, produced with respect to
an identity ID, using the decryption key corresponding to any other identity ID′, the
resulting value looks random to a polynomially bounded observer. Our construction is
of interest both from a theoretical and a practical perspective. Indeed, apart from estab-
lishing a connection between two seemingly unrelated primitives, our methodology is
direct in the sense that, in contrast to most previous constructions, it avoids the ineffi-
cient Goldreich–Levin hardcore bit transformation. As an additional contribution, we
propose a new VRF-suitable IB-KEM based on the decisional �-weak Bilinear Diffie–
Hellman Inversion assumption. Interestingly, when applying our transformation to this
scheme, we obtain a new VRF construction that is secure under the same assumption,
and it efficiently supports a large input space.
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1. Introduction

Verifiable Random Functions (VRFs for short) were introduced by Micali, Rabin and
Vadhan [41]. Informally, a VRF behaves like a pseudo-random function but also allows
for efficient verification. More precisely, this means that there is a public key pk and a
function F associated with a secret key sk (the seed) such that the following properties
are satisfied. First, the function is efficiently computable, given sk, on any input. Second,
having only pk and oracle access to the function, the value Fpk(x) = y looks random to
any polynomially bounded observer who did not query Fpk(x) explicitly. Third, a proof
πpk(x) that Fpk(x) = y is efficiently computable knowing sk and efficiently verifiable
knowing only pk.

VRFs turn out to be very useful in a variety of applications essentially because they
can be seen as a compact commitment to an exponential number of (pseudo)random
bits. To give a few examples, Micali and Reyzin [39] showed how to use VRFs to reduce
to 3 the number of rounds of resettable zero-knowledge proofs in the bare model. Micali
and Rivest [40] described a very simple non-interactive lottery system used in micro-
payment schemes, based on VRFs. Jarecki and Shmatikov [34] employed VRFs to build
a verifiable transaction escrow scheme that preserves users’ anonymity while enabling
automatic de-escrow. Liskov [36] used VRFs to construct updatable zero-knowledge
databases.

However, in spite of their popularity, VRFs are not very well understood objects.
In fact, only four constructions were known, in the standard model [20,22,38,41]. The
schemes proposed by Micali, Rabin and Kilian [41] and by Lysyanskaya [38] build
VRFs in two steps. First they focus on constructing a Verifiable Unpredictable Function
(VUF), and then they show how to convert a VUF into a VRF using the Goldreich–
Levin [28] theorem to “extract” random bits. Informally, a VUF is a function that is
hard to compute but whose produced outputs do not necessarily look random. Unfortu-
nately, the VRF resulting from this transformation is very inefficient and, furthermore,
it loses a quite large factor in its exact security reduction. This is because the transfor-
mation involves several steps, all rather inefficient. First, one uses the Goldreich–Levin
theorem [28] to construct a VRF with very small (i.e., slightly super polynomial in the
security parameter) input space and output size 1. Next, one iterates the previous step in
order to amplify the output size to (roughly) that of the input. Then, using a tree based
construction, one iterates the resulting function in order to get a VRF with unrestricted
input size and finally one evaluates the so obtained VRF several times in order to get an
output size of the required length.

The constructions proposed by Dodis [20] and by Dodis and Yampolskiy [22], on the
other hand, are direct, i.e., they manage to construct VRFs without having to resort to
the Goldreich–Levin transform. The VRF presented in [20] is based on a “DDH-like”
assumption that the author calls sum-free decisional Diffie–Hellman (sf-DDH). This as-
sumption is similar to the one employed by Naor–Reingold [42] to construct PRFs, with
the difference that it applies an error correcting code C to the input elements in order to
compute the function. The specific properties of the employed encoding allow for pro-
ducing additional values that can be used as proofs. This construction is more efficient
than [38,41] in the sense that it does not need the expensive Goldreich–Levin transform.
Still, it has some efficiency issues as the size of the produced proofs and keys is linear
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in the input size. Dodis [20] also adapts this construction to provide a distributed VRF,
that is a standard VRF which can be computed in a distributed manner. The scheme
proposed by Dodis and Yampolskiy [22], on the other hand, is more attractive, at least
from a practical point of view, as it provides a simple implementation of VRFs with
short (i.e., constant-size) proofs and keys. It is interesting to note that, even though the
latter construction is far more efficient than previous work, it builds upon a similar ap-
proach: first, they consider a simple VUF (which is basically the Boneh–Boyen weakly
secure signature scheme [6]) that is secure for slightly superpolynomially sized input
spaces, and then, rather than resorting to the Godreich-Levin [28] hardcore bit theorem
to convert it into a VRF, they show how to modify the original VUF in order to make it
a VRF, under an appropriate decisional assumption.

From the discussion above it seems clear that, with the possible exception of [20],
all known constructions of verifiable random functions follow similar design criteria.
First one builds a suitable VUF and then one transforms it into a VRF by either using
the Goldreich–Levin transform or via some direct, ad hoc, modifications of the original
VUF. The main drawback of this approach is that, once a good enough VUF is found,
one has to either be able to convert it into a VRF directly or accept the fact that the VRF
obtained via the Goldreich–Levin transform is not going to be a practical one.

The main motivating question of our work is whether there are alternative (and po-
tentially more efficient) ways for constructing VRFs directly, without the need to resort
to the two-step methodology sketched above.

1.1. Our Contribution

In this paper we show how to construct VRFs from a class of identity-based encryption
(IBE) schemes [44] that we call VRF-suitable. In particular, we deal with the related
notion of identity-based key encapsulation mechanisms (IB-KEM). Roughly speaking,
an identity-based key encapsulation mechanism is an asymmetric encryption scheme
where the public key can be an arbitrary string. Such schemes consist of four algo-
rithms: a Setup algorithm that generates the system common parameters as well as a
master key msk; a key derivation algorithm that uses the master secret key to generate
a private key dsk corresponding to an arbitrary public key string ID (the identity); an
encapsulation algorithm that creates a ciphertext and a session key using the public key
ID, and a decapsulation algorithm that recovers the session key from a ciphertext using
the corresponding private key.

Informally, an IB-KEM is said to be VRF-suitable if the following conditions are
met. First, the scheme has to provide unique decapsulation. This means that, given
a ciphertext C produced with respect to some arbitrary identity ID, all the secret keys
corresponding to any other identity ID′ decapsulate to the same value (i.e., even if ID′ �=
ID). Second, the IB-KEM has to provide what we call pseudo-random decapsulation.
Very informally, pseudo-random decapsulation means that if C is a ciphertext produced
using some identity ID, then the “decapsulated” key should look random even if the
decapsulation algorithm is executed using the secret key corresponding to any other
identity ID∗ �= ID. Having a scheme that achieves pseudo-random decapsulation may
seem like a strong requirement at first. We argue that this is not the case by showing that
several existing IBE schemes already provide pseudo-random decapsulation.
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Our generic construction is of interest both from a theoretical and a practical point
of view. Indeed, apart from establishing a connection between two seemingly unrelated
primitives, our method is direct, in the sense that it allows to build a VRF from a VRF-
suitable IB-KEM without having to resort to the inefficient Goldreich–Levin transform.
Moreover, our reduction is tight. This means that, once an efficient VRF-suitable IB-
KEM is available, this leads to an equally efficient VRF, with no additional security
loss. Furthermore, our construction immediately allows for efficient distributed VRFs
as long as a distributed version of the underlying encryption scheme is available (which
is the case for most schemes used in practice).

Realizing VRF-Suitable IB-KEMs As a second contribution of this paper, we investi-
gate on the possibility of realizing VRF-suitable IB-KEMs. Toward this goal, we first
describe a general, but limited, construction from a class of standard public key en-
cryption schemes. The proposed implementation (that we call q-bounded VRF-suitable
IB-KEM) is limited in the sense that the pseudo-random decapsulation property is guar-
anteed to hold only if a restricted number of key derivations is allowed. This results in
a VRF where the number of proofs that can be produced is bounded by q . Implement-
ing the underlying public key encryption scheme using specific cryptosystems (such
as ElGamal [24] or the Linear encryption scheme of Boneh, Boyen and Shacham [8])
we obtain efficient constructions of q-bounded VRFs from various number-theoretic
assumptions.

Next, we show how to construct a fully fledged VRF-suitable IB-KEM from the
Sakai–Kasahara IB-KEM [43]. Interestingly, the resulting VRF turns out to be very
similar to the Dodis–Yampolskiy VRF [22]. Finally, we propose a new implementation
of a VRF-suitable IB-KEM inspired (but more efficient) by Lysyanskaya’s VRF [38]
(which in turn builds from the Naor–Reingold’s PRF [42]). Unlike Lysyanskaya’s con-
struction, whose security relies on the interactive Many-DH assumption [38], our new
scheme can be proven secure based on the intractability, in bilinear groups, of the (non-
interactive) decisional �-weak Bilinear Diffie–Hellman Inversion problem (decisional
�-wBDHI∗ for short) introduced by Boneh, Boyen and Goh [9]. Our scheme enjoys
several interesting properties. First, even though the decisional �-wBDHI∗ assumption
is asymptotic in nature, the � parameter does not need to be too large in order for our
security proof to go through. This is because � is only related to the size of the identities,
but it is not related to the number of adversarial queries allowed in the security reduc-
tion (as opposed to most known proofs using asymptotic assumptions). More precisely,
� grows logarithmically with respect to the size of the identity space. This means that
in practice it is enough to assume the decisional �-wBDHI∗ assumption to hold only
for reasonably small values of � (such as � = 160 or � = 256). Second, if one is inter-
ested only in selective-security,1 then our scheme can efficiently support an unbounded
input space. Finally, we prove our VRF-suitable IB-KEM to be fully-secure so that the
resulting VRF can efficiently support large input spaces. To this end, we show two dif-
ferent proofs. The first one uses the notion of admissible hash functions introduced by
Boneh and Boyen [5], and it requires to slightly change the scheme in the sense that

1 A VRF-suitable IB-KEM is selective-secure if it satisfies a relaxed pseudo-random decapsulation prop-
erty where the adversary declares at the beginning the identity on which it wishes to be challenged.
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identities have to first be hashed using an admissible hash function. The second proof,
instead, works for the same scheme that we prove selective-secure, and it obtains full
security by using a slightly different computational assumption (n-Decisional Diffie–
Hellman Exponent [10]) and the artificial abort technique [46]. Having constructions
for large input spaces was an important open problem in the context of VRFs that was
first solved in the recent works of Hohenberger and Waters [33], and Boneh et al. [11].

IBEs and Digital Signatures Naor [7] pointed out that a fully-secure identity-based
encryption scheme can be transformed into a secure signature scheme as follows. One
sets the message space as the set I of valid identities of the IBE. To sign m ∈ I , one
executes the key derivation algorithm on input m, and outputs dsk as the signature.
A signature on m is verified by encrypting a random M with respect to the identity m,
and then by checking that decrypting the resulting ciphertext one gets back M . Thus
if one considers an IBE with unique key derivation (i.e., where for each identity a sin-
gle corresponding decryption key can be computed), the methodology sketched above
leads to a unique signature (i.e., a digital signature scheme for which each message ad-
mits one single valid signature). Since unique signatures are, by definition, verifiable
unpredictable functions, at first glance our construction might seem to (somewhat) fol-
low from Naor’s remark. We argue that this is not the case for two reasons. First, our
construction does not require the underlying IB-KEM to have unique key derivation,
but only to provide unique decapsulation. Clearly, the former property implies the lat-
ter, but there is no reason to exclude the possibility of constructing a scheme realizing
unique decapsulation using a randomized key derivation procedure. Second, a crucial
requirement for Naor’s transformation to work is that the original IBE is fully-secure.
A VRF-suitable IB-KEM, on the other hand, is required to be secure only in a much
weaker sense (that we call weak selective ID security).

1.2. Other Related Work

As pointed out above, the notion of VRF is related to the notion of unique signatures.
Unique signatures were introduced by Goldwasser and Ostrovsky [29] (they called them
invariant signatures). The only known constructions of unique signatures in the plain
model (i.e., without common parameters or random oracles) are due to Micali, Rabin
and Vadhan [41], to Lysyanskaya [38] and to Boneh and Boyen [6]. In the common
reference string model, Goldwasser and Ostrovsky [29] also showed that unique sig-
natures require the same kind of assumptions needed to construct non-interactive zero-
knowledge.

Dodis and Puniya in [21] addressed the problem of constructing Verifiable Random
Permutations (VRPs) from Verifiable Random Functions. They defined VRPs as the ver-
ifiable analogy of pseudo-random permutations. In particular, they pointed out that the
technique of Luby–Rackoff [37] (for constructing PRPs from PRFs) cannot be applied
in this case. This is due to the fact that VRP proofs must reveal the VRF outputs and
proofs of the intermediate rounds. In their paper they showed a construction in which a
super-logarithmic number of executions of the Feistel transformation suffices to build a
VRP.

Chase and Lysyanskaya [16] introduced the notion of simulatable VRF. Informally, a
simulatable VRF is a VRF with the additional property that proofs can be simulated, i.e.,
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a simulator can fake proofs showing that the value of Fsk(x) is y for any y of its choice.
Simulatable VRFs work in the common reference string model, and they can be used to
provide a direct transformation from single-theorem non-interactive zero-knowledge to
multi-theorem NIZK.

Two works [12,26] have recently investigated the possibility of realizing VRFs from
general assumptions. Brakerski et al. [12] introduced the notion of Weak Verifiable
Random Functions (wVRFs) that are defined like standard VRFs except that the pseudo-
randomness property holds only for randomly selected inputs. Brakerski et al. proposed
constructions of wVRFs from trapdoor permutations and number-theoretic assumptions
(Bilinear Diffie–Hellman), and they showed that weak VRFs are essentially equivalent
to efficient prover non-interactive zero-knowledge proof systems. They also showed a
black-box separation between VRFs (both weak and standard) and one-way permuta-
tions. In a recent work, Fiore and Schröder [26] further investigated the minimal crypto-
graphic assumptions needed to realize VRFs, and showed that VRFs cannot be reduced
in a black-box way to the existence of trapdoor permutations.

1.3. Publication Note and Organization

An abridged version of this paper appeared in the proceedings of EUROCRYPT 2009
[1]. In this version, we give more precise and formal definitions of VRF-suitable IB-
KEMs, we include complete proofs of security, and we provide additional results. Most
notably, this version contains the construction of a VRF scheme which is proven fully-
secure for large input spaces. Moreover, we define q-bounded VRFs and we propose
constructions based on standard public key encryption schemes such as ElGamal and
Linear Encryption.

Organization The paper is organized as follows. Section 2 introduces some basic no-
tation, defines the relevant computational assumptions used in our constructions, and
gives the definitions of IB-KEM and VRF-suitable IB-KEM. Section 3 describes our
generic construction of verifiable random functions from VRF-suitable IB-KEMs. Sec-
tion 4 introduces the notion of q-bounded VRFs and proposes a realization based on
public-key encryption schemes. Section 5 presents two constructions of VRF-suitable
IB-KEMs, one based on the Sakai–Kasahara IB-KEM [43] and a new one for which we
prove selective- and full-security for large identity spaces. Section 6 recalls our contri-
butions and discusses future directions. The Appendix contains a few more results of
independent interest. In particular, Appendix A motivates the notion of pseudo-random
decapsulation by showing that the IB-KEMs of Waters [46] and Boneh–Franklin [7] sat-
isfy this notion; and Appendix C shows an alternative proof of full security for the new
VRF-suitable IB-KEM in Section 5 based on the security proof for the Hohenberger–
Waters VRF [33].

2. Preliminaries

Before presenting our results, we briefly recall some basic definitions. In what follows
we will denote by k the security parameter. An algorithm A is called PPT if it is a
probabilistic Turing machine whose running time is bounded by some polynomial in k.
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Denote by N the set of natural numbers and by R
+ the set of positive real numbers. We

say that a function ε : N → R
+ is negligible if and only if for every polynomial P(k)

there exists a k0 ∈ N such that for all k > k0, ε(k) < 1/P (k). If A is a set, then a
$← A

indicates the process of selecting a at random and uniformly over A (which in particular

assumes that A can be sampled efficiently). If A(·) is a PPT algorithm, then y
$← A(x)

indicates the process of running A on input x and assigning its output to y.

2.1. Assumptions

In this section we recall some number-theoretic hardness assumptions that will be used
in our work. In the following assume G to be a cyclic multiplicative group of prime
order p, where p is a k-bit long prime and g is a generator of G.

2.1.1. Decisional Diffie–Hellman Assumption

The Decisional Diffie–Hellman assumption (DDH) is the decisional version of the Com-
putational Diffie–Hellman problem (CDH) informally defined in [19]. Informally, the

DDH problem in a group G of prime order p is defined as follows. Let a, b
$← Zp be

chosen at random. An adversary for the DDH problem is given as input (g, ga, gb, gc)

and it must output 0 if it believes that c = ab, or 1 if c is random and independent in Zp .
More formally, we define the advantage of an adversary A into deciding DDH in G

as

AdvDDH
A (k) = ∣

∣Pr
[

A
(

g,ga, gb, gab
)= 0

]− Pr
[

A
(

g,ga, gb, gc
)= 0

]∣
∣,

where the probability is taken over the random choices of a, b, c ∈ Zp and the coin
tosses of A.

Definition 1 (DDH). The Decisional Diffie–Hellman (DDH) assumption holds in G

if, for any PPT adversary A, its advantage, AdvDDH
A (k), is negligible in k.

2.1.2. Decision Linear Assumption

The Decision Linear assumption (DLin) was first proposed by Boneh et al. in [8]. The
Decision Linear problem in a group G of prime order p can be defined as follows.

Let u,v,h
$← G and a, b

$← Zp be chosen at random. An adversary for the Decision
Linear problem in G is given as input (u, v,h,ua, vb,hc) ∈ G

6 and it must output 0
if it believes that c = a + b and 1 if c is random in Zp . More formally, we define the
advantage of an adversary A into deciding the Decision Linear problem in G as

AdvDLin
A (k) = ∣

∣Pr
[

A
(

u,v,h,ua, vb,ha+b
)= 0

]− Pr
[

A
(

u,v,h,ua, vb,hc
)= 0

]∣
∣.

Definition 2 (DLin). The Decision Linear assumption holds in G if, for any PPT ad-
versary A, its advantage, AdvDLin

A (k), is negligible in k.
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2.1.3. Decisional Bilinear Diffie–Hellman Assumption

The Bilinear Diffie–Hellman assumption (BDH for short) was first introduced by Boneh
and Franklin in [7]. Here we present its decisional version (DBDH) that was used in
several other works (e.g. [46]).

The Decisional Bilinear Diffie–Hellman problem is defined as follows. Let G,GT be
two groups of prime order p equipped with a bilinear map e : G × G → GT , and let g

be a generator of G. Let a, b, c
$← Zp be randomly chosen. Let (g, ga, gb, gc,Z) be the

input of an adversary whose goal it to decide whether Z = e(g, g)abc or Z = e(g, g)z

for a random independent z
$← Zp . More formally, we define the advantage of A into

solving the DBDH problem as

AdvDBDH
A (k) = ∣

∣Pr
[

A
(

g,ga, gb, gc, e(g, g)abc
)= 0

]

− Pr
[

A
(

g,ga, gb, gc, e(g, g)z
)= 0

]∣
∣.

Definition 3 (DBDH). The Decisional Bilinear Diffie–Hellman assumption holds in
bilinear groups G,GT if, for any PPT adversary A, its advantage, AdvDBDH

A (k), is at
most negligible in k.

2.1.4. Decisional Bilinear Diffie–Hellman Inversion Assumption

The q-decisional Bilinear Diffie–Hellman Inversion assumption (DBDHI for short) was
first introduced by Boneh and Boyen in [4].

Let G,GT be two groups of prime order p equipped with a bilinear map e : G ×
G → GT , and let g be a generator of G. In the DBDHI problem the adversary is given
a tuple (g, gx, g(x2), . . . , g(xq )) together with a value Z, and it must decide whether
Z = e(g, g)1/x or Z = e(g, g)z, for randomly chosen x, z ∈ Zp . More formally, we
define the advantage of an algorithm A into solving the DBDHI problem as

AdvDBDHI
A (k) = ∣

∣Pr
[

A
(

g,gx, g(x2), . . . , g(xq), e(g, g)1/x
)= 0

]

− Pr
[

A
(

g,gx, g(x2), . . . , g(xq), e(g, g)z
)= 0

]∣
∣.

Definition 4 (DBDHI). The DBDHI assumption holds in bilinear groups G,GT if, for
any PPT adversary A and for any q polynomial in k, we have that AdvDBDHI

A is at most
negligible in k.

2.1.5. Decisional Weak �-Bilinear Diffie–Hellman Inversion Assumption

The Decisional weak �-Bilinear Diffie–Hellman Inversion (�-wBDHI∗) assumption was
introduced by Boneh, Boyen and Goh in [9].

Let G,GT be two groups of prime order p equipped with a bilinear map e : G×G →
GT , and let g be a generator of G. In the �-wBDHI∗ problem the adversary is given as
input a tuple (gc, gb, gb2

, . . . , gb�
) together with a value Z, and it must decide whether

Z = e(g, g)b
�+1c or Z = e(g, g)z for randomly chosen b, c, z ∈ Z

∗
p . Formally, we define
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the advantage of an algorithm A into solving the decisional �-wBDHI∗ as

AdvwBDHI∗
A (k) = ∣

∣Pr
[

A
(

gc, gb, gb2
, . . . , gb�

, e(g, g)b
�+1c

)= 0
]

− Pr
[

A
(

gc, gb, gb2
, . . . , gb�

, e(g, g)z
)= 0

]∣
∣,

where the probability is taken over the random choices of b, c, z ∈ Z
∗
p .

Definition 5 (�-wBDHI∗). We say that the decisional �-wBDHI∗ assumption holds in
bilinear groups G,GT if, for any � polynomial in k, and for any PPT adversary A, its
advantage, AdvwBDHI∗

A (k), is negligible in k.

Remark 1. Cheon showed in [17] an attack against the Strong Diffie–Hellman assump-
tion and its related problems (among which the DBDHI used to prove the security of the
Dodis–Yampolskiy VRF). This attack reduces the security of a factor

√
q , and it applies

to �-wBDHI∗ as well (with a factor
√

�). However, as we will see in Sect. 5.2, for the
sake of our construction we need to assume that the �-wBDHI∗ assumption holds only
for rather small values of � (e.g., � = 160 or � = 256). This means that in our case the
security loss is not as significant as in Dodis–Yampolskiy’s.

Finally, we notice that the assumptions DBDHI and wBDHI are related in the sense
that the former implies the latter, but the converse is not known (we defer the interested
reader to [9] for further discussions on these assumptions).

2.2. Verifiable Random Functions

Verifiable Random Functions (VRFs for short) were introduced by Micali, Rabin and
Vadhan [41]. Intuitively, a VRF behaves like a pseudo-random function, but also allows
for proofs of correctness of its outputs. More formally, a VRF is a triplet of algorithms
VRF = (Gen,Func,V) providing the following functionalities. The key generation algo-
rithm Gen is a probabilistic algorithm that takes as input the security parameter and pro-
duces a couple of matching public and private keys (vpk, vsk). The deterministic algo-
rithm Func, on input the secret key vsk and the input x, computes (Fvsk(x),Provevsk(x)),
where v = Fvsk(x) is the value of the VRF, and π = Provevsk(x) is its proof of correct-
ness. The verification algorithm V takes as input a tuple (vpk, x, v,π) and outputs a bit
indicating whether or not π is a valid proof that Fvsk(x) = v.

Let a : N → N ∪ {∗} and b : N → N be functions computable in polynomial time
(in k). Moreover, we assume that a(k) and b(k) are bounded by a polynomial in k,
except if a takes the value ∗ (in this case we simply assume that the VRF can take
inputs of arbitrary length). Let D and R be two sets of size 2a(k) and 2b(k) respectively.
Formally, we say that VRF = (Gen,Func,V) is a VRF with input space D and output
space R, if the following conditions are met.

Domain Range Correctness: For all x ∈ D it has to be the case that Fvsk(x) ∈ R. We
require this condition to hold with overwhelming probability (over the choices of
(vpk, vsk)).

Provability: For all x ∈ D if Provevsk(x) = π and Fvsk(x) = v then V(vpk, x, v,π) = 1.
We require this condition to hold with overwhelming probability (over the choices of
(vpk, vsk) and the coin tosses of V).
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Uniqueness: No values (vpk, x, v1, v2,π1,π2), such that v1 �= v2, can satisfy (un-
less with negligible probability over the coin tosses of V) V(vpk, x, v1,π1) =
V(vpk, x, v2,π2) = 1.

Pseudo-randomness: For all probabilistic polynomial time adversaries A = (A1, A2)

we require that
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

b′ = b

∣
∣
∣
∣
∣
∣
∣
∣

(vpk, vsk)
$← Gen(1k); (x,ω) ← AFunc(·)

1 (vpk)

b
$← {0,1};v0 ← Fvsk(x);v1

$← R
b′ ← AFunc(·)

2 (ω, vb)

⎤

⎥
⎥
⎦

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣

≤ ε(k)

where ε(k) is a negligible function. In the above experiment, the notation AFunc(·)
indicates that A has oracle access to the algorithm Func. Also, in order to make this
definition sensible, we impose that A cannot query the oracle on input x.
Roughly speaking, pseudo-randomness guarantees that the output of the function at
any given point x, for which a proof has not been issued, looks random to any poly-
nomially bounded observer.

Selective-Secure Verifiable Random Functions We introduce a new notion of VRF
that we call selective-secure VRF. Informally speaking, a selective-secure VRF is a
VRF with a relaxed pseudo-randomness property in which the adversary is required
to commit ahead of time (i.e., before seeing the public key) to the input value it intends
to attack. Sometimes, to point out the opposition with this selective notion, we will refer
to VRFs that are secure in the usual sense as fully-secure VRFs.

More formally, a VRF is selective-secure if it satisfies the VRF definition given be-
fore except that the pseudo-randomness property is replaced by the following selective
variant:

Selective Pseudo-randomness: For all PPT adversaries A = (A1, A2) we require that
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

b′ = b

∣
∣
∣
∣
∣
∣
∣
∣

(x,ω) ← A1(); (vpk, vsk)
$← Gen(1k)

b
$← {0,1};v0 ← Fvsk(x);v1

$← R
b′ ← A

Func(·)
2 (ω, vb)

⎤

⎥
⎥
⎦

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣

≤ ε(k)

where ε(k) is a negligible function, and the adversary cannot query x to the oracle
Func(·).
A straightforward reduction shows that any selective-VRF is also fully-secure at the

price of a (significant) loss in the resulting security.

Proposition 1. Let VRF be a VRF scheme with input space D of size 2a(k), which
is selective-secure with security ε(k). Then, the same scheme is also fully-secure with
security ε(k)/2a(k).

Proof. The proof of this proposition can be obtained by considering the following re-
duction. Let A be an adversary that breaks the pseudo-randomness of VRF with advan-
tage at least ε(k). Then, one can build an adversary B that simulates A while playing
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the selective pseudo-randomness experiment. At the beginning, B chooses a random

point x∗ $← D as its challenge value and gives it to its challenger. Observe that B can
perfectly simulate A, as long as A does not query the oracle on x∗ and it does ask its
challenge on x∗. Otherwise B aborts and outputs a random bit. Since B’s guess on x∗
is correct with probability 1/2a(k), B will have advantage ε(k)/2a(k) of winning in the
selective pseudo-randomness experiment. �

Remark 2. According to the definition given above, the output of a VRF is in a specific
set R. However, in some applications one may need a VRF whose output is a binary
string. To this end, we note that any VRF with output space R can be turned into one
that outputs a binary string by applying a suitable universal hash function to the output.
More precisely, let VRF = (Gen,Func,V) be a VRF with output space R, and let H =
{H : R → {0,1}b}H be a family of universal hash functions (for a suitable b). Then we
define another VRF scheme VRF′ = (Gen′,Func′,V′) whose output space is {0,1}b and

that works as follows. The key generation Gen′ runs (vpk, vsk)
$← Gen(1k), chooses a

function H from the family H uniformly at random, and outputs vpk′ = (vpk,H) and
vsk′ = vsk. The algorithm Func′ first obtains the output y and the proof π by running
Func, and then it returns y′ = H(y) as the VRF’s output, while it includes y in the
proof, i.e., π ′ = (π, y). Finally, the verification algorithm V′ checks that y′ = H(y),
and that π is a correct proof for y (by running V). It is easy to see that, since H is a
deterministic function and the scheme VRF has uniqueness, VRF′ satisfies uniqueness
as well. Moreover, by the leftover hash lemma [2,30], if H is a universal hash and
VRF satisfies pseudo-randomness over R, then VRF′ satisfies pseudo-randomness over
{0,1}b. For the sake of precision, we notice that the secure re-use of the same universal
hash H (which is randomly generated once and then fixed in the public key) is justified
by a variant of the leftover hash lemma proven by Shoup in [45].

2.3. Identity-Based Encryption and Identity-Based Key Encapsulation

An identity-based encryption scheme IBE consists of a tuple of algorithms (Setup,

KeyDer,Enc,Dec) providing the following functionality. The trusted authority runs
Setup, on input the security parameter 1k , to generate a master key pair (mpk,msk).
Without loss of generality, we assume that the public key mpk specifies a message space
M and a value n (polynomial in the security parameter) indicating the length of each
identity. The trusted authority publishes the master public key mpk, and keeps the mas-
ter secret key msk private. When a user with identity ID wishes to become part of the

system, the trusted authority generates a user decryption key skID
$← KeyDer(msk, ID)

and sends this key over a secure and authenticated channel to the user. To send an
encrypted message m to the user with identity ID, the sender computes a ciphertext

C
$← Enc(mpk, ID,m), which can be decrypted by the user as m ← Dec(mpk,dID,C).

Boneh and Franklin [7] formally defined the notion of security for identity-based
encryption schemes. In particular, they defined the notion of chosen plaintext security
against adaptive chosen identity attacks. Intuitively, such a notion captures the require-
ment that security should be preserved even when facing an adversary who is allowed
to choose the identity it wishes to attack and to collude with (i.e., to obtain the secret
keys of) other identities of the system. Later, Canetti, Halevi, and Katz [13] introduced
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a weaker notion of security in which the adversary has to commit ahead of time (i.e.,
before the parameters of the scheme are made public) to the identity it intends to attack.
A scheme meeting such a weaker security requirement is called selective-ID chosen
plaintext secure IBE (IND-sID-CPA, for short).

Identity-Based Key Encapsulation In our work we will not use directly the notion
of IBE, but we will rather consider the closely related notion of identity-based key
encapsulation (IB-KEM). Therefore, we will provide formal definitions only for IB-
KEMs.

An identity-based key encapsulation mechanism (IB-KEM) scheme enables a sender
and a receiver to agree on a session key K in such a way that the sender can create
K from public parameters and receiver’s identity while the receiver can recover K us-
ing his secret key. This notion, in the context of identity-based encryption, was first
formalized by Bentahar et al. [3].

More formally, an IB-KEM scheme is defined by the following four algorithms:

– Setup(1k) is a probabilistic algorithm that takes as input a security parameter k,
and outputs a master public key mpk and a master secret key msk. The master
public key implicitly defines the identity space I D and the session key space K.

– KeyDer(msk, ID) is the key derivation algorithm that uses the master secret key to
compute a secret key skID for an identity ID ∈ I D.

– Encap(mpk, ID) is the encapsulation algorithm that computes a random session
key K and a corresponding ciphertext C encrypted under the identity ID.

– Decap(mpk, ID, skID,C) is the decapsulation algorithm that allows the possessor
of a secret key skID for the identity ID to decapsulate a ciphertext C to get back a
session key K .

For correctness, it is required that ∀k ∈ N, for all possible (mpk,msk)
$← Setup(1k),

∀ID ∈ I D, (C,K)
$← Encap(mpk, ID) the following probability holds:

Pr
[

Decap
(

mpk, ID,KeyDer(msk, ID),C
)= K

]= 1.

Security The standard notion of security for IB-KEM is semantic security against
adaptive chosen-ID attacks (IB-KEM-CPA) and is recalled below.

Let I B K E M be an IB-KEM scheme, and A = (A1, A2) be a PPT algorithm. Then
consider the following experiment between a challenger and an adversary A:

Setup: The challenger runs the Setup algorithm, keeps the master secret key msk for
himself, and runs A1(mpk) on input the master public key.

Phase 1: The adversary A1 is allowed to ask an arbitrary (but polynomially limited)
number of key derivation queries. In each of these queries the adversary specifies
an identity ID of its choice, and gets back the corresponding private key (which is
generated by the challenger by running the algorithm KeyDer(msk, ID)). The queries
may be asked adaptively, i.e., each query can depend on previously issued ones.

Challenge: When Phase 1 is over, the adversary A1 outputs a state information st and
an identity ID∗ such that ID∗ was not queried during Phase 1. The challenger then

computes (C,K0)
$← Enc(mpk, ID∗) and chooses a random session key K1

$← K.
Next, it picks a random bit b and runs the adversary A2 on input (st,C,Kb).
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Phase 2: This phase goes exactly as Phase 1 with the additional restriction that A2
cannot issue a key derivation query for identity ID∗.

Guess: When Phase 2 is over, A2 outputs a bit b′ denoting its guess for the bit b.

We define the advantage of an adversary A in attacking the scheme I B K E M as

AdvIB-KEM-CPA
I B K E M,A (k) =

∣
∣
∣
∣
Pr
[

b = b′]− 1

2

∣
∣
∣
∣

where the probability is taken over the internal coin tosses of the challenger and the
adversary.

SELECTIVE-ID SECURITY. The notion of selective-identity security for IB-KEMs
is defined similarly to the notion of IB-KEM-CPA security except that A1 is required
to choose the identity ID∗ before seeing the master public key. More precisely, the
corresponding security game works as follows:

Initialize: A1 is run on input the security parameter and outputs an identity ID∗ and a
state information st.

Setup: The challenger runs the Setup algorithm and keeps the master secret key msk for

himself. Next, it computes (C,K0)
$← Enc(mpk, ID∗), and chooses a random session

key K1
$← K. It picks a random bit b and finally runs the adversary A2 on input

(st,mpk,C,Kb).
Key derivation queries: The adversary A2 is allowed to ask an arbitrary (but polyno-

mially limited) number of key derivation queries. In each of these queries the adver-
sary specifies an identity ID of its choice such that ID �= ID∗. A2 receives back the
corresponding private key (which is generated by the challenger by running the al-
gorithm KeyDer(msk, ID)). The queries may be asked adaptively, meaning with this
that each query can depend on previously issued ones.

Guess: At the end of the experiment, A2 outputs a bit b′ denoting its guess for the bit b.

We define the advantage of an adversary A = (A1, A2) against the selective security of
the scheme I B K E M as

AdvsIB-KEM-CPA
I B K E M,A (k) =

∣
∣
∣
∣
Pr
[

b = b′]− 1

2

∣
∣
∣
∣

where the probability is taken over the internal coin tosses of the challenger and the
adversary.

WEAK SELECTIVE-ID SECURITY. In this paper we additionally introduce a new
notion of security for IB-KEM schemes that we call weak selective-ID security. More
precisely, we define this notion as the full fledged selective case with the exception
that here the challenge identity is chosen by the challenger and given as input to the
adversary. Clearly, this notion is weaker with respect to selective-ID security, and it is
easy to see that the latter implies the former.

Formally, let us consider an efficiently samplable distribution DI D over the identity
space,2 and let A be a PPT adversary. We define the notion of weak selective-ID security
(wsIB-KEM-CPA) for IB-KEM schemes by considering the following game:

2 A distribution D is efficiently samplable if there exists a PPT algorithm that can sample elements ac-
cording to D.
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Setup: In this phase the challenger selects a challenge identity ID∗ ← D I D (according
to distribution DI D ), and runs (mpk,msk) ← Setup(1k). Then it computes (C,K0) =
Encap(mpk, ID∗) and chooses a random key K̄

$← K. Finally, it flips a binary coin

b
$← {0,1}, and runs A on input (mpk, ID∗,C,Kb).

Key derivation queries: The adversary is allowed to ask key derivation queries for an
arbitrary (but polynomial) number of adaptively chosen identities different from ID∗.

Guess: In the end of this game A outputs b′ as its guess for b.

We define the advantage of A against I B K E M in the above game w.r.t. distribution
D I D as

AdvwsIB-KEM-CPA
I B K E M,A,D I D

(k) =
∣
∣
∣
∣
Pr
[

b = b′]− 1

2

∣
∣
∣
∣

where the probability is taken over the coin tosses of the challenger and the adversary.

2.4. VRF-Suitable IB-KEMs

Our VRF construction relies on a special class of identity-based key encapsulation
mechanisms that we call VRF-suitable. A VRF-suitable IB-KEM is defined by the fol-
lowing algorithms:

– Setup(1k) is a probabilistic algorithm that takes as input a security parameter k and
outputs a master public key mpk and a master secret key msk. We denote by K the
session key space.

– KeyDer(msk, ID) is the key derivation algorithm that uses the master secret key to
compute a secret key skID for identity ID and some auxiliary information auxID

needed to correctly encapsulate and decapsulate the key.
– Encap(mpk, ID,auxID) is the encapsulation algorithm that computes a ciphertext

C and a session key K using (mpk, ID,auxID). More precisely, in the algorithm
the ciphertext C can be computed using only (mpk, ID), while the computation of
K requires auxID in addition to (mpk, ID).

– Decap(mpk, ID, skID,auxID,C) is the decapsulation algorithm that allows the pos-
sessor of skID and auxID to decapsulate C to get back a session key K .

Remark 3. Note that the description above differs from the one given for basic IB-
KEM in that here we allow the encapsulation and decapsulation mechanisms to use
some auxiliary information auxID, produced by KeyDer, to work correctly. Clearly, if
one sets auxID = ⊥, then one goes back to the original description. Thus, the new
paradigm is slightly more general as it allows to consider encapsulation mechanisms
where everybody can compute the ciphertext but only those knowing the information
auxID can compute the key. Notice however, that auxID does not allow, by itself, to
decapsulate. In some sense, this auxiliary information should be seen as a value that
completes the public key, rather than something that completes the secret key. In fact,
this auxiliary information is not required to be kept secret in our constructions. Specifi-
cally, in all notions of security for VRF-suitable IB-KEMs (e.g., pseudo-random decap-
sulation and weak selective-id security) the adversary is allowed to obtain the auxiliary
information for any identity of its choice, including the challenge identity. Even though
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such a syntax may look useless in the standard public key scenario, it turns out to be
extremely useful (see below) in our context.

In order to be VRF-suitable, an IB-KEM has to satisfy the following properties:

1. Unique Decapsulation. No tuples (mpk,C0, ID, skID,auxID, sk′
ID,aux′

ID), such
that (skID,auxID) �= (sk′

ID,aux′
ID) can satisfy the following checks (unless with

negligible probability over the coin tosses of Encap and Decap):

– (i) Decap(C0, skID,auxID) �= Decap(C0, sk′
ID,aux′

ID) �= ⊥, and

– (ii) both the following checks hold: (C,K)
$← Encap(mpk, ID,auxID) and

K = Decap(C, skID,auxID), (C′,K ′) $← Encap(mpk, ID,aux′
ID) and K ′ =

Decap(C′, sk′
ID,aux′

ID).

We remark that an IB-KEM with a deterministic key derivation algorithm does
not necessarily satisfy unique decapsulation. Intuitively, to see this, think of the
case in which the key derivation algorithm generates the randomness using a PRF
whose seed is part of the master secret key. Then, by fixing the master public
key, one can still have two different seeds that lead to two different secret keys for
the same identity. Therefore, what we require in unique decapsulation is that, even
though an identity may have different secret keys, they all decapsulate a ciphertext
to the same session key.

2. Pseudo-random Decapsulation. Let C be an encapsulation produced using some
identity ID0 ∈ I D. Informally, this property says that the session key obtained by
decapsulating the ciphertext C should look random even if C is decapsulated by
executing the decapsulation algorithm using a secret key corresponding to any
other ID �= ID0.
More formally, let I B K E M be an IB-KEM, A = (A1, A2) be a PPT adversary
and let DI D be an efficiently samplable distribution over the identity space I D.
We define the pseudo-random decapsulation experiment as follows:

Experiment ExpIB-KEM-RDECAP
I B K E M,A,D I D

(k)

Choose ID0 ∈ I D (according to DI D )

(mpk,msk)
$← Setup(1k)

C∗ $← Encap(mpk, ID0)

(ID, st)
$← AKeyDer(·)

1 (mpk,C∗, ID0)

(auxID, skID)
$← KeyDer(msk, ID)

b
$← {0,1}; K0

$← Decap(mpk, ID, skID,auxID,C∗); K1
$← K

b′ ← AKeyDer(·)
2 (st,Kb,auxID)

If b′ = b then return 1, else return 0

With AKeyDer(·) we denote that A has oracle access to the key derivation algorithm.
Let I D denote the identity space, i.e., the space from which the adversary (and ev-
erybody else) is allowed to choose the identities. In order to make the experiment
ExpIB-KEM-RDECAP

I B K E M,A,D I D
non-trivial, we introduce the following restrictions:
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– the identity ID output by A1 should not have been asked to the KeyDer(·)
oracle;

– A2 is not allowed to query the oracle KeyDer(·) on ID.

We define the advantage of A in the experiment IB-KEM-RDECAP for the
distribution DI D as

AdvIB-KEM-RDECAP
I B K E M,A,D I D

(k) =
∣
∣
∣
∣
Pr
[

ExpIB-KEM-RDECAP
I B K E M,A,D I D

(k) = 1
]− 1

2

∣
∣
∣
∣
.

Finally, we say that I B K E M has pseudo-random decapsulation with respect to
DI D if, for any PPT adversary A, its advantage AdvIB-KEM-RDECAP

I B K E M,A,D I D
(k) is a neg-

ligible function in k. Also, we simply say that I B K E M has pseudo-random de-
capsulation if there exists a distribution DI D for which the above holds.

The above definition essentially rules out all those schemes in which the decapsula-
tion algorithm returns ⊥, or any other error message, when the identities associated with
a given secret key and ciphertext do not match. In other words, a necessary condition
for an IBE to be VRF-suitable is that its decapsulation procedure always outputs some
random looking key, even when invoked with an “incorrect” secret key.

We also note that, although requiring an IB-KEM to provide pseudo-random decap-
sulation may seem like a strong requirement, we argue that this is not the case. Indeed,
several existing IB-KEM schemes which are IND-CPA secure (but not IND-CCA se-
cure) already have this property. In Appendix A.1 we prove that the IB-KEM derived
from the Waters’ IBE scheme [46] provides pseudo-random decapsulation, while in
Sect. 5.1 we prove that the same holds for the IB-KEM by Sakai and Kasahara [43]. It
is easy to generalize these two proofs to the case of Boneh–Boyen (BB1) [4] and to the
schemes of Boneh–Boyen (BB2) [4] and Gentry [27], respectively. However, with the
exception of the Sakai–Kasahara’s scheme and our new scheme in Sect. 5.2, all these
schemes do not satisfy the unique decapsulation property.

In the following theorem we show that a necessary condition, in order for an IB-KEM
to be VRF-suitable, is that it is secure in a weak selective sense.

Theorem 1. Let I B K E M be a VRF-suitable IB-KEM satisfying pseudo-random de-
capsulation for a distribution DI D , then it is also a weak selective-ID secure IB-KEM
w.r.t. D I D (in the sense of the definition given in Sect. 2.3).

Proof. Assume, for the sake of contradiction, that there exists an adversary A that
breaks the weak selective-ID security of the given VRF-suitable IB-KEM. We show
how to use this adversary to construct another adversary B = (B1, B2) that refutes the
pseudo-random decapsulation of the scheme. B1 is run on input (mpk, ID0,C) (where
ID0 is chosen according to DI D ) and proceeds as follows. First, B1 outputs ID = ID0
as the challenge identity. Next, B2 receives a session key Kb (which is either the right
decapsulation key corresponding to C or a random one) and an auxiliary information
auxID0 . So, B2 runs A on input (mpk,C,Kb, ID0,auxID0). Whenever A asks for a key
derivation query, B2 uses its own oracle to answer such query, in the obvious way. Fi-
nally, when A outputs a bit b′, B2 outputs the same b′. It is easy to see that the simulation
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is perfect and thus the advantage of B in breaking the pseudo-random decapsulation is
exactly the same as the advantage of A in breaking the weak selective security of the
scheme. �

Selective Pseudo-random Decapsulation In what follows we define a selective variant
of pseudo-random decapsulation in which the adversary commits ahead of time to the
identity on which it wishes to be challenged. Let DI D be an efficiently samplable dis-
tribution over the identity space as defined before. The experiment for selective pseudo-
random decapsulation is defined as follows.

Experiment ExpIB-KEM-selRDECAP
I B K E M,A,D I D

(k)

Choose ID0 ∈ I D (according to DI D )

(ID, st)
$← A1(1k, ID0)

(mpk,msk)
$← Setup(1k)

C∗ $← Encap(mpk, ID0)

(auxID, skID)
$← KeyDer(msk, ID)

b
$← {0,1}; K0

$← Decap(mpk, ID, skID,auxID,C∗); K1
$← K

b′ ← AKeyDer(·)
2 (st,mpk,C∗,Kb,auxID)

If b′ = b then return 1, else return 0

In this experiment the adversary is not allowed to query the oracle on ID. Like in
standard pseudo-random decapsulation, A’s advantage in the experiment IB-KEM-
selRDECAP is defined as

AdvIB-KEM-selRDECAP
I B K E M,A,D I D

(k) =
∣
∣
∣
∣
Pr
[

ExpIB-KEM-selRDECAP
I B K E M,A,D I D

(k) = 1
]− 1

2

∣
∣
∣
∣
.

Finally, we say that I B K E M satisfies selective pseudo-random decapsulation w.r.t.
DI D if, for any PPT adversary A, the advantage AdvIB-KEM-selRDECAP

I B K E M,A,D I D
(k) is a negligi-

ble function in k. We say that a VRF-suitable IB-KEM that satisfies selective pseudo-
random decapsulation is selective-secure. Otherwise, we say that it is fully-secure.

An analogue of Proposition 1, it can also be proved for VRF-suitable IB-KEMs.

Proposition 2. Let I B K E M be a VRF-suitable IB-KEM with identity space I D that
is selective-secure with security ε(k). Then, the same scheme is also fully-secure with
security ε(k)/|I D|.

3. A Generic Construction

In this section we show our construction of Verifiable Random Functions from a VRF-
suitable IB-KEM I B K E M = (Setup,KeyDer,Encap,Decap). Let I D be the identity
space, K the session key space and S K the secret key space. Also, let DI D be the distri-
bution for which I B K E M satisfies pseudo-random decapsulation. Then we construct
a verifiable random function VRF = (Gen,Func,V) with input space I D and output
space K as follows.
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– Gen(1k) runs (mpk,msk) ← Setup(1k), chooses an identity ID0 ← I D according
to the distribution DI D , and computes C0 ← Encap(mpk, ID0). Finally, it returns
vpk = (mpk,C0, ID0) and vsk = msk.

– Funcvsk(x) computes πx = (skx,auxx) = KeyDer(msk, x) and y = Decap(mpk, x,

πx,C0). It returns (y,πx) where y is the output of the function and πx is the proof.
– V(vpk, x, y,πx) first checks if πx is a valid proof for x in the following way. It

computes (C,K) = Encap(mpk, x,auxx) and checks if K = Decap(mpk,πx,C).
Next, it checks the validity of y by testing if Decap(mpk, x,πx,C0) = y. If both
the tests are true, then the algorithm returns 1, otherwise it returns 0.

3.1. Security Proof

Now we prove that the proposed construction actually realizes a secure VRF.

Theorem 2. Assume I B K E M is a VRF-suitable IB-KEM scheme, as described in
Sect. 2, then the construction given above is a verifiable random function.

Proof. According to the definition given in Sect. 2, we prove that VRF = (Gen,

Func,V) is a verifiable random function by showing that it satisfies all the properties.
Domain range correctness and provability trivially follow from the correctness of the
IB-KEM scheme.

To see that the uniqueness property is satisfied, we show that it is implied by
the unique decapsulation of I B K E M. Recall that the latter property says that there
cannot exist a tuple (mpk,C0, ID, skID,auxID, sk′

ID,aux′
ID) such that (skID,auxID) �=

(sk′
ID,aux′

ID), and that satisfies:

(i) Decap(mpk, ID, skID,auxID,C0) �= Decap(mpk, ID, sk′
ID,aux′

ID,C0) �= ⊥, and

(ii) (C,K)
$← Encap(mpk, ID,auxID) and K ← Decap(mpk, ID, skID,auxID,C),

(C′,K ′) $← Encap(mpk, ID,aux′
ID) and K ′ ← Decap(mpk, ID, sk′

ID,aux′
ID,C′).

By construction, this can be restated as requiring that there cannot exist a tuple
(vpk, x,πx,π

′
x) where πx �= π ′

x , and it is such that: (i) y = Decap(mpk, x, skx,auxx,

C0) �= Decap(mpk, x, sk′
x,aux′

x,C0) = y′, and (ii) (C,K)
$← Encap(mpk, x,auxx)

and K ← Decap(mpk, x, skx,auxx,C), (C′,K ′) $← Encap(mpk, x,aux′
x) and K ′ ←

Decap(mpk, x, sk′
x,aux′

x,C′). Observe that all the checks can be equivalently rewrit-

ten as: y �= y′, y = Decap(mpk, x, skx,auxx,C0), (C,K)
$← Encap(mpk, x,auxx)

and K ← Decap(mpk, x, skx,auxx,C), y′ = Decap(mpk, x, sk′
x,aux′

x,C0), (C′,K ′) $←
Encap(mpk, x,aux′

x) and K ′ ← Decap(mpk, x, sk′
x,aux′

x,C′). Again, by our defini-
tion of the verification algorithm, this is in turn equivalent to saying that y �= y′ and
V(vpk, x, y,πx) = V(vpk, x, y′,π ′

x) = 1, that is the uniqueness of VRFs.
To prove pseudo-randomness, we assume by contradiction that there exists a PPT

adversary A = (A1, A2) that is able to break the pseudo-randomness of VRF with non-
negligible advantage ε(k). Then we show how to build a PPT adversary B = (B1, B2)

which uses A to obtain non-negligible advantage ε(k) in the IB-KEM-RDECAP exper-
iment for distribution DI D .
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B1 receives from its challenger a public key mpk, a ciphertext C∗
0 , and an identity ID0

chosen according to D I D . So, B1 sets vpk = (mpk,C∗
0 , ID0) and runs A1(vpk). The ad-

versary A is allowed to make queries to the function oracle Func(·), and B simulates this
oracle as follows. On input a value x ∈ I D, B queries its key derivation oracle on x, it
obtains (skx,auxx) and returns (yx = Decap(mpk, x, skx,auxx,C

∗
0 ),πx = (skx,auxx))

to the adversary. When A1 outputs an element x̄, B1 outputs the same element to
its challenger. Thus the challenger produces K∗, which is either the decapsulation of
C∗

0 with (skx̄ ,auxx̄ ) or a random element of K, and gives K∗ to B2. Finally, B2 runs
b′ ← A2(st,K∗) (simulating all oracle queries as B1) and returns the bit b′ to its chal-
lenger.

It is easy to see that B is perfectly simulating the pseudo-randomness game to A.
Thus, if A has advantage ε(k), then B’s advantage is exactly the same. �

4. q-Bounded VRFs

In the previous section we described a general transformation that allows to construct
verifiable random functions from a class of identity-based key encapsulation mecha-
nisms that we call VRF-suitable. Before showing, in Sect. 5, two VRF-suitable IB-
KEMs that lead to two VRFs, in this section we introduce a slightly weaker notion
of verifiable random functions that we call q-bounded VRFs. A q-bounded VRF is a
standard VRF (as defined in Sect. 2.2) with the limitation that pseudo-randomness is
preserved only if at most q proofs are produced.

4.1. Construction of q-Bounded VRFs from Public Key Encryption Schemes

We show that it is possible to construct a q-bounded VRF from a public key encryption
scheme. This construction consists of two steps. First, a q-resilient IB-KEM (which
is defined below) is constructed from any IND-CPA secure encryption scheme. Later
we can apply our generic transformation to build a q-bounded VRF from a q-resilient
IB-KEM that is VRF-suitable.

Building Blocks Before describing the construction in detail, we discuss some prelim-
inary building blocks.

4.1.1. Key Encapsulation Mechanism

We briefly describe the notion of public key encryption schemes with key encapsulation
mechanism (KEM for short) and its related definition of security.

A KEM is defined by three algorithms:

– Kg(1k) is the key generation algorithm that takes as input the security parameter k

and outputs a pair of keys (pk, sk) where pk is made public and sk is kept secret.
– Encap(pk) is a probabilistic algorithm that takes as input the public key pk and

outputs (C,K), where C is the ciphertext and K ∈ K is a session key.
– Decap(pk, sk,C) is a deterministic algorithm that takes as input the public key pk,

the secret key sk, and a ciphertext C, and it outputs either a key K or an error
symbol ⊥.
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We note that, given any standard public key encryption scheme, it is always possible
to construct a KEM. We define the notion of indistinguishability under chosen-plaintext
attacks (KEM-IND-CPA) for KEMs. Essentially, it is the usual IND-CPA security no-
tion for public key encryption, adapted to the KEM setting. Consider the following
experiment:

Experiment ExpKEM-IND-CPA
KEM,A (k)

(pk, sk)
$← Kg(1k)

(C0,K0)
$← Encap(pk), K1

$← K
b

$← {0,1}
b′ ← A(pk,C0,Kb)

If b′ = b then return 1, else return 0

The advantage of A in the experiment above is defined as

AdvKEM-IND-CPA
KEM, A (k) = ∣

∣Pr
[

ExpKEM-IND-CPA
KEM,A (k) = 1

]− 1/2
∣
∣.

We say that a KEM is KEM-IND-CPA-secure if any PPT adversary A has at most
negligible advantage in the experiment ExpKEM-IND-CPA

KEM,A .

Unique decapsulation for KEM: We define the notion of unique decapsulation for
KEMs. A KEM satisfies unique decapsulation if there are no tuples (pk, sk, sk′,C0)

such that sk �= sk′ and Decap(pk, sk,C) �= Decap(pk, sk′,C) �= ⊥.
Pseudo-random decapsulation for KEM: Here we introduce the notion of pseudo-

random decapsulation for public key encryption schemes with key encapsulation.
Consider the following experiment:

Experiment ExpKEM-RDECAP
KEM,A (k)

(pk0, sk0)
$← Kg(1k)

(pk1, sk1)
$← Kg(1k)

(C∗,K∗) $← Encap(pk0)

b
$← {0,1}

K0
$← Decap(pk1, sk1,C

∗)
K1

$← K
b′ ← A(pk0, sk0,pk1,C

∗,Kb)

If b′ = b then return 1, else return 0

The advantage of A in the experiment above is defined as

AdvKEM-RDECAP
KEM, A (k) = ∣

∣Pr
[

ExpKEM-RDECAP
KEM,A (k) = 1

]− 1/2
∣
∣.

We say that a KEM satisfies pseudo-random decapsulation if any PPT adversary A
has at most negligible advantage in the experiment ExpKEM-RDECAP

KEM,A .
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q-Resilient IB-KEMs In [31] Heng and Kurosawa introduced the notion of q-resilient
security in the context of identity-based encryption [31]. Informally, an IB-KEM is said
to be q-resilient if it is secure only when facing adversaries that are allowed to issue
at most q key derivation queries. Later, Cramer et al. [18] pointed out that, this notion,
was implicitly given by Dodis, Katz, Xu, and Yung in [23], when introducing the notion
of key-insulated public-key cryptosystems.

Cover-Free Families If S,T are sets, we say that S does not cover T if S �⊇ T . Let
d, q, s be positive integers, and let F = (Fi)1≤i≤s be a family of subsets of {1, . . . , d}.
We say that family F is q-cover-free over {1, . . . , d}, if for each subset Fi ∈ F and
each S that is the union of at most q sets in (F1, . . . ,Fi−1,Fi+1, . . . ,Fs), it is the case
that S does not cover Fi . Furthermore, we say that F is l-uniform if all subsets in the
family have size l. We use the following fact [25,35]: there is a deterministic polynomial
time algorithm that on input integers s, q returns l, d,F where F = (Fi)1≤i≤s is an l-
uniform q-cover-free family over {1, . . . , d}, for l = d/4q and d ≤ 16q2 log(s). In the
following we let SUB denote the resulting deterministic polynomial-time algorithm that
on input s, q, i returns Fi . We call Fi = SUB(s(k), q(k), i) the subset associated with
index i ∈ {1, . . . , s(k)}.

For our construction we will need a cover-free family with parameters

s(k) = 2k, d(k) = 16kq2(k), l(k) = 4kq(k). (1)

4.1.2. q-Resilient IB-KEM from KEM

Here we show how to construct a q-resilient IB-KEM from a KEM. Such construction
is given in [18,31]. Here we adapt it to encompass the KEM case.

Let q(k), d(k), s(k), l(k) : N → N be (efficiently computable) functions. For ease
of exposition we simply refer to them as q, d, s, l. Let K E M = (Kg,Encap,Decap)

be a public key encryption scheme with key encapsulation and let F be an l-uniform
q-cover-free family over {1, . . . , d(k)}. We denote by FID = SUB(s(k), l(k), ID) =
{r1, . . . , rl} the subset associated with an identity ID. We assume identities are integers
in {1, . . . , s(k)}.

We construct the IB-KEM I B K E M = (Setup,KeyDer,Encap,Decap) in the follow-
ing way:

– Setup(1k, q): For i = 1, . . . , d compute (pki , ski ) ← Kg(1k). Set mpk = (pk1, . . . ,

pkd) and msk = (sk1, . . . , skd).
– KeyDer(msk, ID): Given FID = {r1, . . . , rl} (recall that FID = SUB(s(k), l(k), ID)

= {r1, . . . , rl}), set SKID = (skr1, . . . , skrl ).
– Encap(mpk, ID): Let FID = {r1, . . . , rl} and compute (ci,Ki) = Encap(pki ) for

i = r1, . . . , rl . Set C = (cr1, . . . , crl ) and K = Kr1⊕· · ·⊕Krl .
– Decap(mpk, ID,SKID,C): Let SKID = (skr1, . . . , skrl ). Compute Ki =

Decap(pki , ski , ci) for i = r1, . . . , rl and set K = Kr1⊕· · ·⊕Krl .

Theorem 3. If K E M is a KEM-IND-CPA-secure key encapsulation mechanism and
F is a q-cover-free family over {1, . . . , d}, then the scheme I B K E M described above
is (q-resilient) IB-KEM-CPA-secure.



Verifiable Random Functions: Relations to Identity-Based Key Encapsulation 565

Proof. For the sake of contradiction, assume there exists an efficient adversary A
that is able to break the IB-KEM-CPA security of I B K E M with non-negligible prob-
ability ε(k). Then we show how to build an efficient algorithm B that can break
the KEM-IND-CPA security of the underlying KEM scheme with advantage at least
ε(k)/d(k), where d(k) is the parameter for the cover-free family as described above.

First observe that there exists an index j ∈ {1, . . . , d} such that j belongs to the subset
FID associated with the challenge identity ID but not to any subset associated with the
identities queried to the key derivation oracle. As long as the number of key derivation
queries is at most q , we know such an index must exist. Moreover, as d is of polynomial
size, such index j can be guessed by our algorithm B with non-negligible probability
1/d .

B takes as input a public key pk and constructs the master public key of the IB-KEM

as follows. It generates (pki , ski )
$← Kg(1k) ∀i = 1, . . . , j − 1, j + 1, . . . , d , sets pkj =

pk and gives mpk = (pk1, . . . ,pkd) to A. Now observe that if the guess of j is right,
then B is able to answer all key derivation queries made by A (as B knows all the secret
keys but skj ). At some point the adversary supplies a challenge identity ID such that

FID = {r1, . . . , r�} contains j and B answers as follows. It computes ki
$← Encappki

()

∀i ∈ FID \ {j}, then queries its encapsulation oracle, gets back k̄ and sets kj = k̄. B sets
K = kr1⊕· · ·⊕krl and gives it to A. When A outputs its decision bit b, the algorithm B
outputs the same bit as its guess about the distribution of k̄.

It is easy to see that when the guess of j is right the simulation provided by B is
perfect. Indeed if B is given a random k̄ then K is also random, otherwise K is a
correctly distributed session key. Thus B wins with probability at least ε/d . �

q-Bounded VRFs from q-Resilient IB-KEMs Recall that our final goal is a construction
of q-bounded VRFs from public key encryption schemes (with specific properties). The
first step is to show how to construct a q-bounded VRF from a q-resilient IB-KEM.
However, this can be obtained very easily by applying our generic transformation given
in Sect. 3 to a q-resilient VRF-suitable IB-KEM.

Therefore, to obtain the final result the only thing we have to ensure is that the q-
resilient IB-KEM obtained through the construction given in the previous section is
VRF-suitable, that is it satisfies pseudo-random decapsulation and unique decapsula-
tion.

First, to see that the q-resilient IB-KEM has unique decapsulation, we observe
that this holds if the underlying KEM satisfies the analogous unique decapsula-
tion (for KEMs). Indeed, assume for the sake of contradiction there is a tuple
(mpk,C0, ID, skID, sk′

ID) such that skID �= sk′
ID and both conditions (i) and (ii) hold.

Since the choice of the public/secret keys related to ID is a deterministic and pub-
lic process, notice that condition (i) already implies that there is (at least) a tuple
(pk, sk, sk′, c0) such that sk �= sk′ and Decap(pk, sk, c0) �= Decap(pk, sk′, c0) �= ⊥.
Hence, if the q-resilient IB-KEM does not have unique decapsulation, so is for the
underlying KEM.

Second, we formally prove in the following theorem that the resulting scheme has
pseudo-random decapsulation if the original KEM, on top of being KEM-IND-CPA se-
cure, satisfies the analogous (for KEM) pseudo-random decapsulation property defined
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before. As for the case of IBEs, this might seem a quite strong requirement at first.
However, as we will show in Sect. 4.2, it is not too hard to find examples of public key
encryption schemes whose KEM version already achieves pseudo-random decapsula-
tion.

Theorem 4. If a KEM satisfies pseudo-random decapsulation then the resulting q-
resilient IB-KEM obtained via the transformation given in Sect. 4.1.2 has pseudo-
random decapsulation as well.

Proof. In particular, our theorem shows that our q-resilient IB-KEM satisfies pseudo-
random decapsulation for any arbitrary distribution DI D .

Let A = (A1, A2) be an adversary for the pseudo-random decapsulation of the q-
resilient IB-KEM and, for the sake of contradiction, assume that A has non negligible
advantage AdvIB-KEM-RDECAP

A, I B K E M (k) = ε(k). Then we show how to build a simulator B
that can break either the KEM-IND-CPA security or the pseudo-random decapsulation
of the underlying KEM with non negligible advantage.

Let ID0 be an identity chosen by the simulator according to DI D , and let ID be the
challenge identity returned by the adversary. We distinguish two cases:

1. ID = ID0
2. ID �= ID0

A will output a challenge identity either of type 1 or type 2 with probability at least 1/2.
We will show a simulator B that in the first case breaks the KEM-IND-CPA security of
the KEM, whereas in the second case it breaks the pseudo-random decapsulation of the
KEM.

At the beginning, B flips a binary coin β
$← {0,1} and runs Simulation β as described

below. Basically, if β = 0 B guesses that A will output a challenge identity of type 1,
whereas, if β = 1, B guesses that A will output a challenge identity ID �= ID0. We stress
that these simulations are perfectly indistinguishable from the adversary’s point of view.

SIMULATION 0. In this case B acts as an adversary for the KEM-IND-CPA secu-
rity of the KEM. It receives in input (pk,C∗,K∗). Since B is guessing that ID =
ID0, this proof is the same as that one for the wsIB-KEM-CPA security of the
IB-KEM. Let FID0 = {r1, . . . , rl} be the subset associated with the identity ID0. B
picks a random index j

$← FID0 and sets pkrj
= pk. Then it generates the remain-

ing d − 1 pairs of keys (pki , ski ) = Kg() ∀i = 1, . . . , d and i �= j and sets mpk =
(pk1, . . . ,pkd). It computes (Ci,Ki) = Encap(pki )∀i �= j and sets the ciphertext as
C0 = (C1, . . . ,Cj−1,C

∗,Cj+1, . . . ,Cl). It runs A1(mpk,C0). A1 issues key derivation
queries until it outputs the challenge identity ID. For every key derivation query ID
asked by the adversary, let FID be its associated subset. If j ∈ FID, then B aborts and
outputs a random bit b ∈ {0,1}. Otherwise, it uses the secret keys to compute the key of
the identity ID.

Let ID be the challenge identity returned by A1. If ID �= ID0 B aborts. Otherwise,
let FID0 = {s1, . . . , sl} be the subset associated with identity ID0. B sets Ksj = K∗,
K = Ks1⊕· · ·⊕Ksl and runs b′ ← A2(K). Finally, B outputs the same bit b′.

We observe that if K∗ is a random session key, so is K . Otherwise if K∗ =
Decap(pki∗ , ski∗ ,C∗) then K is properly distributed. In this case let us consider the
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probability that the simulator wins when A wins and A outputs ID = ID0 as challenge
identity. This is equal to the probability that A wins and B does not abort in the key
derivation phase. Since the adversary issues at most q queries, we know that there ex-
ists at least an index j such that j is not in any of the subsets associated with the queried
identities and j ∈ FID. Since ID = ID0, B does not abort in the key derivation phase with
probability at least 1/l (independent of A’s view).

SIMULATION 1. In this case B acts as an adversary for the pseudo-random decapsula-
tion of the KEM. It receives in input (pk, sk,pk′,C∗,K∗). Let FID0 = {r1, . . . , rl} be the

subset associated with the identity ID0. B picks a random index j
$← {1, . . . , l} and sets

pkrj
= pk and skrj = sk. Then it picks another index i∗ $← {1, . . . , d} and sets pki∗ =

pk′. Later it generates the remaining d − 2 pairs of keys (pki , ski ) = Kg() ∀i = 1, . . . , d

and i �= rj , i
∗ and sets mpk = (pk1, . . . ,pkd). It computes (Ci,Ki) = Encap(pki ) ∀i �= j

and constructs the ciphertext as C0 = (C1, . . . ,Cj−1,C
∗,Cj+1, . . . ,Cl). It runs

A1(mpk,C0). A1 issues key derivation queries until it outputs the challenge identity
ID. Let ID be a queried identity and let FID be its associated subset. If ID = ID0 or
i∗ ∈ FID then B aborts and outputs a random bit b ∈ {0,1}. Otherwise it uses the known
secret keys to compute the key of the identity ID.

Let FID = {s1, . . . , sl} be the subset associated with the challenge identity ID. If i∗ /∈
FID B aborts and outputs a random bit. Otherwise let j ′ be the index such that sj ′ = i∗. If
j ′ �= j B aborts. Otherwise it sets Ksj = K∗, K = Ks1⊕· · ·⊕Ksl and runs b′ ← A2(K).
Then B outputs the same b′.

We observe that if K∗ is a random session key, so is K . Otherwise if K∗ =
Decap(pki∗ , ski∗ ,C∗) then K is properly distributed. In this simulation we have two
abort conditions:

1. i∗ /∈ FID or i∗ is in a subset associated with one of the identities queried to the key
derivation oracle;

2. j �= j ′.
The first abort condition does not happen with probability at least 1/d , since we know
that, as long as at most q queries are asked, there exists an index i ∈ {1, . . . , d} such that
i belongs to FID and not to any of the subsets associated with the identities queried to
the key derivation oracle. The second abort condition does not happen with probability
1/l. Thus B does not abort with probability at least 1/dl (independent of A’s view). In
this case B wins when A wins and A outputs ID �= ID0, and B does not abort.

Let we denote by fail the event that the simulator fails. Thus in both the simula-
tions B wins with advantage ε(k) · Pr[fail]. In conclusion, we have that the simulator
breaks either the KEM-IND-CPA security of the KEM with advantage at least ε(k)/2l,
or it breaks the pseudo-random decapsulation of the KEM with advantage at least
ε(k)/(2dl). �

4.2. Practical Examples

In this section we show two examples of PKE schemes that satisfy the pseudo-random
decapsulation and unique decapsulation properties (and thus they can be used to con-
struct q-bounded VRFs). The first is the well known ElGamal encryption scheme
[24], while the second one is the Linear Encryption scheme by Boneh, Boyen and
Shacham [8].
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q-Bounded VRFs from ElGamal Here we prove that the KEM version of the ElGamal
encryption scheme satisfies the unique decapsulation and pseudo-random decapsulation
properties defined in Sect. 4.1.1. First we recall the scheme:

– Kg(1k): Let G be a group of order p, and g ∈ G be a generator. The key generation

algorithm picks a random x
$← Zp . It sets the public key pk = (G, g,X = gx) and

the secret key sk = x.

– Encap(pk): The encapsulation algorithm picks a random y
$← Zp and produces a

ciphertext C = gy and a session key K = Xy .
– Decap(pk, sk,C): The decapsulation algorithm first checks that X = gsk. If this

does not hold, output ⊥. Otherwise, it uses the secret key to “extract” a session key
from a given ciphertext C by computing K = Cx .

It is easy to see that the scheme satisfies unique decapsulation because of the check in
the Decap algorithm and the fact that for each public key, there is only one secret key
(moreover, this is efficiently checkable).

So, we are left with proving pseudo-random decapsulation in the following theorem.

Theorem 5. The KEM version of the ElGamal encryption scheme satisfies pseudo-
random decapsulation under the Decisional Diffie–Hellman assumption.

Proof. Let A be an adversary for the pseudo-random decapsulation of the scheme
above. Then we show how to construct a simulator B that exploits A to break the Deci-
sional Diffie–Hellman (DDH) assumption (see Sect. 2.1.1).

B receives in input a DDH tuple (g, ga, gb,Z). It picks random x0
$← Zp and sets

pk0 = (G, g, gx0), sk0 = x0, pk1 = (G, g, ga), C∗ = gb , K = Z. Then it runs A on input
(pk0, sk0,pk1,C

∗,K) and gets back a bit b′. In the end the simulator outputs b′.
If Z is gab then K is correctly distributed. Indeed we have K = (C∗)sk1 =

Decap(pk1, sk1,C
∗). Otherwise if Z is random K is random too. Thus the simulation

is perfect and B achieves the same advantage of A. �

q-Bounded VRFs from Linear Encryption With an argument similar to that of ElGa-
mal, it can be easily proved that also the Linear Encryption scheme described in [8]
by Boneh, Boyen and Shacham has pseudo-random decapsulation under the so-called
Decision Linear Assumption (see Sect. 2.1.2).

First, we recall the scheme. Let G be a group of prime order p.

– Kg(1k): The key generation algorithm selects three elements u,v,h
$← G uni-

formly at random and computes x, y ∈ Zp such that ux = vy = h. The public key
is pk = (u, v,h) while the secret key is sk = (x, y).

– Encap(pk): The encapsulation algorithm picks random a, b
$← Zp and returns the

ciphertext C = (ua, vb) and the session key K = ha+b .
– Decap(pk, sk,C): The decapsulation algorithm first checks that h = ux = vy . If

this does not hold, then it returns ⊥. Otherwise, it uses the secret key sk to compute
the session key associated with a given ciphertext C = (C1,C2) by computing
K = Cx

1 C
y

2 .
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Similarly to the case of ElGamal, the scheme has unique decapsulation because of the
check in the Decap algorithm and the fact that for each public key there is only one
secret key, and this is efficiently checkable.

Theorem 6. The KEM version of the Linear Encryption scheme satisfies pseudo-
random decapsulation under the Decision Linear assumption.

Proof. Let A be an adversary that has non-negligible advantage into breaking the
pseudo-random decapsulation of the Linear Encryption scheme given above. Then we
show how to build an efficient simulator B that solves the Decision Linear problem with
non-negligible probability.

B receives in input a tuple (u, v,h,ua, vb,Z). It picks random h0
$← G, x0, y0

$←
Zp and sets u0 = h

1/x0
0 , v0 = h

1/y0
0 . It sets pk0 = (u0, v0, h0), sk0 = (x0, y0), pk1 =

(u, v,h), C∗ = (ua, vb) and K = Z. Since there exist x, y ∈ Zp such that ux = vy =
h, B is implicitly setting sk1 = (x, y). Then the simulator runs b ← A(pk0, sk0,pk1,

C∗,K) and outputs the same b.
We show that the simulation is perfect and thus B wins with the same probability A

wins.
First of all, observe that there exist τu, τv ∈ Zp such that u0 = uτu and v0 = vτv . Thus

C∗ is a valid ciphertext for pk0, i.e. it can be written as C∗ = (ua′
0 , vb′

0 ) where a′ = a/τu

and b′ = b/τv . Second, if Z = ha+b , then we clearly have a correctly distributed K =
Decap(pk1, sk1,C

∗) = (ua)x(vb)y . Otherwise, if Z is random, so is K . �

5. VRF-Suitable IB-KEMs

In this section we describe our constructions of Verifiable Random functions from VRF-
suitable IB-KEMs. In particular, in light of the results presented in Sect. 3, we focus on
constructing VRF-suitable IB-KEM schemes.

We start by describing, in Sect. 5.1, a VRF from the Sakai–Kasahara IB-KEM [43].
Interestingly, the proposed VRF closely resembles the VRF proposed by Dodis and
Yampolskiy [22].

Next, in Sect. 5.2, we present a new construction of VRF-suitable IB-KEM from
the decisional �-weak Bilinear Diffie–Hellman Inversion assumption (decisional �-
wBDHI∗, following the acronym used in [9]), recalled in Sect. 2.1, that given
g,gb, gc, gb2

, . . . , gb�
, the quantity e(g, g)b

�+1c should remain indistinguishable from
random to any polynomially bounded adversary. Interestingly, in order for our construc-
tion to work, the � parameter does not need to be too large. This is because it only limits
to 2� the size of the space of valid identities but it does not affect in any other way the
number of adversarial queries allowed in the security proof (as in most known proofs
using q-type assumptions). This means that it is enough to assume that the �-wBDHI∗
assumption holds only for rather small values of � (i.e. � = 160 or � = 256).

As a final note, we mention that, in principle, one could construct a VRF from Boneh–
Franklin’s IBE. Indeed, we prove in Appendix A.2, that the KEM version of the scheme
is actually a VRF-suitable IB-KEM, under the decisional Bilinear Diffi–Hellman as-
sumption. However, for the sake of building a VRF, this construction is of very limited
interest as its proof holds in the random oracle model.
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5.1. Sakai–Kasahara VRF

We briefly recall the KEM version of the Sakai–Kasahara IBE scheme (SKfor short)
[43]. This scheme relies on the q-decisional Bilinear Diffie–Hellman Inversion assump-
tion (DBDHI for short), which is defined in Sect. 2.1.4.

– Setup(1k): The setup algorithm runs G(1k) to obtain the description of the groups
G,GT and of a bilinear map e : G × G → GT . The description of G contains a

generator g ∈ G. Then the algorithm picks a random s
$← Zp and sets h = gs ,

mpk = (g,h),msk = s. For security reasons, the identity space I D is the subset
of Zp limited to the first q elements of Zp , where q is some polynomial in the
security parameter.

– KeyDer(msk, ID): Let ID ∈ I D. The key derivation algorithm constructs the secret
key skID = g1/s+ID. In the unlikely case that ID = −s, we define skID to be 1 ∈ G.

– Encap(mpk, ID): The encapsulation algorithm picks a random t
$← Z

�
p and com-

putes a random session key K = e(g, g)t and a corresponding ciphertext C =
(gsgID)t .

– Decap(mpk, ID, skID,C): The decapsulation algorithm uses the secret key skID to
compute a session key K from a ciphertext C as follows: K = e(C, skID).

First, notice that by assuming auxID = ⊥ for all identities ID, the above description
fits our syntax of VRF-suitable IB-KEMs. In the following theorem we prove that the
Sakai–Kasahara IB-KEM scheme can be used to construct a VRF (i.e., that it actually
provides unique decapsulation and pseudo-random decapsulation). Precisely, we first
show that the scheme is selective-secure. Then its full-security follows by applying the
result of Proposition 2.

Theorem 7. Assuming that the q-DBDHI assumption holds in a bilinear group G,
then the Sakai–Kasahara IB-KEM [43] is a selective-secure VRF-suitable IB-KEM.

Proof. We prove the theorem by showing that the IB-KEM scheme presented above
has unique decapsulation and satisfies the selective pseudo-random decapsulation prop-
erty.

First, we observe that unique decapsulation follows by construction. Indeed, if we
fix a specific (mpk,msk) pair, then one can obtain only one key for each identity
(i.e., no random choices are possible). More formally, consider the second condition
of the unique decapsulation property, where one checks that both the keys skID and
sk′

ID decrypt correctly. Let C = g(s+ID)t and K = e(g, g)t be honestly generated ci-
phertext and session key. By the definition of the decapsulation algorithm, the equation
e(g(s+ID)t , skID) = e(g, g)t holds if and only if skID = g1/s+ID. Hence, if this check
holds for both skID and sk′

ID (even for different t’s), then it must be skID = sk′
ID.

Now, let us focus on proving that SKsatisfies selective pseudo-random decapsulation
under the DBDHI assumption. Let I D = {ID0, . . . , IDq−1} ⊆ Zp be the sets of all pos-
sible identities (i.e. the first q elements of Zp), and let ID0 be the zero-identity, i.e.,
0 ∈ Zp . Here we prove that SKsatisfies pseudo-random decapsulation w.r.t. the distribu-
tion DI D that always outputs ID0 = 0. We stress that even such a restricted distribution
is sufficient for instantiating our generic construction and building a VRF.
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So, for the sake of contradiction, suppose there exists an adversary A = (A1, A2)

that has non-negligible advantage ε(k) into breaking the selective pseudo-random de-
capsulation of SK IB-KEM w.r.t. ID0. Then we show how to build a simulator B which
is able to break the DBDHI assumption with non-negligible advantage ε(k).

B receives in input a tuple (g, gx, g(x2), . . . , g(xq),Z) ∈ G
q+1 × GT and must out-

put 0 if it believes that Z = e(g, g)1/x , or 1 otherwise. First, B runs A1 to obtain the
challenge identity IDk ∈ I D. Let s be implicitly defined as x − IDk . Using the bi-
nomial theorem B computes (g, gs, g(s2), . . . , g(sq )). Then B defines the polynomial
f (z) = ∏q−1

i=0,i �=k(z + IDi ) = ∑q−1
i=0 ziβi , and computes g′ = ∏q−1

i=0 gsiβi = gf (s) and

h′ =∏q−1
i=1 gsiβi−1 = gsf (s) = (g′)s . It picks a random t

$← Zp and sets C0 = (g′)t . We
observe that C0 is a valid ciphertext under identity ID0 and randomness t/s.

At this point it is worth noting that with all but negligible probability the values
g′, h′,C0 perfectly simulate the real values. The only unlucky cases are when g′ = 1
(i.e., f (s) = 0 mod p) or when g′ �= 1 and h′ = 1 (i.e., s = 0). However, in both cases,
it is easy to see that B can directly recover x and break the DBDHI assumption.

To complete the first part of the simulation, B computes a session key K̄ as follows.
Let f ′(z) = f (z)

z+IDk
− γ

z+IDk
=∑q−2

i=0 ziγi , where γ �= 0 is the remainder of the division

of f (z) by z + ID. First B computes

Z0 =
(

q−1
∏

i=0

q−2
∏

j=0

e
(

gsi

, gsj )βiγj

)(
q−2
∏

m=0

e
(

g,gsm)γ γm

)

= e(g, g)
f (s)2−γ 2

x .

B sets K̄ = (Z0 · Zγ 2
)t .Then B gives mpk = (g′, h′), C0 and K̄ to the adversary.

When A asks for the private key of an identity IDj �= IDk B computes the secret key

in the following way. First it defines the polynomial fj (z) = f (z)
z+IDj

=∏q−1
i=0,i �=j,k(z +

IDi ) = ∑q−2
i=0 ziδi . Then it computes skIDj

= (g′)1/s+IDj = gf (s)/s+IDj = gfj (s) =
∏q−2

i=0 gsiδi and returns skIDj
to A.

At the end of the experiment A is supposed to output its guess b′. B outputs the same
b′ as its guess for Z. Observe that if Z = e(g, g)1/x , then B computed a session key of

the correct form: K̄ = e(g′, g′)
t

s+IDk . Otherwise, if Z is a random element of GT , then
K̄ will be random too.

In conclusion, B succeeds with the same probability as A. However, due to the way
the public parameters are generated, if A has a running time T , then B’s running time
is O(T + q) where q is the size of the identity space. �

By applying the result of Proposition 2 to the previous theorem and to our transfor-
mation, we obtain the following Corollary.

Corollary 1. Assuming that the q-DBDHI assumption holds in a bilinear group G,
then the VRF obtained from the Sakai–Kasahara VRF-suitable IB-KEM [43] is a fully-
secure VRF for domains of polynomial size.

We notice that the resulting VRF can only support an input space that is polynomially-
sized (in the security parameter). This depends on two reasons. First, if we want a fully-
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secure VRF, then the reduction of Proposition 2 has a security loss which is linear in the
size of the input space. Second, even if we restrict only to selective-security, observe
that the running time of the simulator in the security reduction of Theorem 7 is linear in
the size of the input space.

We remark that all previously known constructions of VRFs [20,22,38,41] made the
same restriction on the size of the input space.

Similarity with the Dodis–Yampolskiy VRF Here we show that the Dodis–Yampolskiy
VRF [22] (that we briefly recall in Appendix B) closely resembles the construction
obtained from our transformation. Indeed, Theorem 7 leads to the following VRF.

– Gen(1k): The key generation algorithm runs G(1k) to obtain the description of
the groups G,GT and of a bilinear map e : G × G → GT . The description of G

contains a generator g ∈ G. Then the algorithm picks random s, t
$← Zp and sets

h = gs , C0 = ht , vpk = (g,h,C0), vsk = s.
– Funcvsk(x): Let Funcvsk(x)=(Fvsk(x),πvsk(x)). One sets Funcvsk(x) = e(C0, skx) =

e(g, g)(st)/(s+x) as the VRF output and πvsk(x) = KeyDer(x) = g1/(s+x) as the
proof of correctness.

– V(vpk, x, y,πx): To verify whether y was computed correctly, one starts by

running the Encap algorithm on input (vpk, x). Encap chooses ω
$← Zp and

then computes K ← e(g, g)ω and C = (hgx)ω. Then one checks that K =
Decap(mpk, x,πx,C) = e((gx · h)ω,πx) and y = Decap(mpk, x,πx,C0) =
e(ht ,πx).

By setting t = s−1 mod p and ω = 1, the construction above can be optimized to
get exactly the Dodis–Yampolskiy VRF. It is worth noting, however, that our security
analysis does not directly work with the optimized scheme.

5.2. Our New Construction

In this section we propose a new construction of a VRF-suitable IB-KEM from the (con-
jectured) computational intractability of the decisional weak �-Bilinear Diffie–Hellman
Inversion problem (see Sect. 2.1.5 for a formal description). The new scheme is inspired
by Lysyanskaya’s VRF [38] in that the validity of each new auxiliary information auxID
(required to compute the session key) is verified by exploiting the DDH-CDH separa-
tion in bilinear groups. Our new scheme, however, is more efficient as it leads to a VRF
directly (i.e., rather than having to construct a unique signature scheme first), and it does
not require error correcting codes. The proposed scheme follows.

– Setup(1k): The setup algorithm runs G(1k) to obtain the description of the groups
G,GT and of a bilinear map e : G × G → GT . The description of G contains a
generator g ∈ G. Let {0,1}� be the space of valid identities. Then the algorithm

picks (at random) a,α1, β1, . . . , α�,β�
$← Zp , sets g1 = ga , and for i = 1, . . . , �

sets g0i = gβi and g1i = gαi . The public parameters are

mpk = (

g,g1, {gij }i=0,1;j=1..�

)

.

The master secret key is msk = (a, {αi,βi}i=1,..,�).
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– KeyDer(msk, ID): We assume ID = ID1 · · · ID� where each IDi ∈ {0,1}. The key
derivation algorithm constructs the secret key skID and the auxiliary information
auxID as follows. Let h0 = g, for i = 1 to � one computes

hi = (hi−1)
α

IDi
i β

(1−IDi )

i

and sets auxID = (h1, . . . , h�) and skID = ha
� .

– Encap(mpk, ID,auxID): Let auxID = (h1, . . . , h�) computed as above. The encap-

sulation algorithm picks a random t
$← Z

�
p and computes a random session key

K = e(g1, h�)
t and a corresponding ciphertext C = gt .

– Decap(mpk, ID, skID,auxID,C): The decapsulation algorithm uses the secret key
skID and the auxiliary information auxID to compute a session key K from a cipher-
text C. This is done as follows. First, in order to guarantee the unique decapsulation
property, a check on the validity of the auxiliary information has to be performed.
This is done as follows. Let h0 = g, for i = 1, . . . , �

if IDi = 1 check e(g,hi)
?= e(g1i , hi−1)

else check e(g,hi)
?= e(g0i , hi−1)

If any of the above checks fails output reject. Second, the key K is computed as
K = e(C, skID) = e(g1, h�)

t . Note that the validity of skID can be verified by first
encrypting some random message m with respect to the public key (g, g1, h�) and
then by checking if one can decrypt it correctly using skID.

Security The following theorem states the security of our new scheme.

Theorem 8. Suppose the decisional �-wBDHI∗ assumption holds in G, then the
scheme given above is a selective-secure VRF-suitable IB-KEM scheme.

Proof. Let I D = {0,1}� the identity space. First note that the scheme fits the syntax
of VRF-suitable IB-KEMs. We prove the theorem by showing that the scheme satisfies
the unique decapsulation property and meets the selective pseudo-random decapsulation
requirement.

Unique Decapsulation. We prove this by showing that for a given identity ID the
corresponding h� is uniquely determined as

h� = g
∏�

i=1 α
IDi
i β

1−IDi
i .

The proof is by induction on i. First note that it must be the case h1 = gα
ID1
1 β

1−ID1
1 , as

otherwise the check e(g,h1)
?= e(gID11, h0) = e(gα

ID1
1 β

1−ID1
1 , g) would fail. Now assume

that the statement holds true for any index j − 1 < �, i.e. that hj−1 = g
∏j−1

i=1 α
IDi
i β

1−IDi
i .

We prove that the same holds for j .

hj = h
α

IDj
j β

1−IDj
j

j−1 = (

g
∏j−1

i=1 α
IDi
i β

1−IDi
i

)α
IDj
j β

1−IDj
j = g

∏j
i=1 α

IDi
i β

1−IDi
i .
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SELECTIVE PSEUDO-RANDOM DECAPSULATION. We prove the selective pseudo-
random decapsulation w.r.t. to any arbitrary distribution DI D over the identity space.
Namely, our proof works for any ID0 in the identity space I D.

Assume that there is an adversary A that breaks the selective pseudo-random de-
capsulation of the proposed scheme with advantage ε, then we show how to build an
adversary B that solves the decisional �-wBDHI∗ problem with advantage ε and runs
in time comparable to that needed by A. B starts by receiving, from some challenging
oracle, the values (C = gc,B1 = gb,B2 = gb2

, . . .B� = gb�
) and a value Z that can be

either of the form e(g, g)b
�+1c or of the form e(g, g)z, for random z ∈ Z

∗
p , depending

on some random (and hidden) bit d that B is supposed to guess. First, note that in the
proposed scheme the ciphertext C is independent of specific identities, thus B can pro-
duce it without having to commit to any ID0. B gets the challenge identity ID as input

from A. Next, it sets g1 = B1, it chooses random αi,βi
$← Z

∗
p , for i = 1, . . . , �, and for

i = 1, . . . , � it computes the following values:

g0i =
{

B
βi

1 if IDi = 0

gβi if IDi = 1
g1i =

{

gαi if IDi = 0

B
αi

1 if IDi = 1

Note that the public parameters mpk = (g, g1, {gij }i=0,1;j=1..�) are distributed ex-
actly as those produced by the setup algorithm. The master secret key is implicitly set
to msk = (b, {αib

IDi , βib
1−IDi }i=1,..,�). Next, B computes C∗ as follows C∗ ← C = gc.

Thus, C∗ is also correctly distributed. B constructs the challenge key KID by comput-

ing ZωID , where ωID =∏�
i=1 α

IDi

i β
1−IDi

i . The value auxID is computed as follows: h�

is B
ωID
� and hi is B

ωID,i

i where ωID,i = ∏i
j=1 α

IDj

j β
1−IDj

j . Note that B is not able to

explicitly compute skID = B
ωID
�+1. However, this is not a problem as B is not required

to do so. B runs A on input (mpk,C∗, ID0,KID,auxID), for some identity ID0 chosen
according to DI D .

Now, we show how B can answer key derivation queries for identities ID �= ID. Since
ID �= ID, there exists (at least) an index j such that IDj �= IDj . For such index we have
that either g0j = gβj (if IDj = 0) or g1j = gαj (otherwise). This means that the h�

corresponding to identity ID will contain the (unknown) b with exponent �−1, at most.
Let n < � denote the number of positions i such that IDi = IDi . B computes the hi as
follows.

h1 =
⎧

⎨

⎩

gα
ID1
1 β

1−ID1
1 if ID1 �= ID1

B
α

ID1
1 β

1−ID1
1

1 if ID1 = ID1

h2 =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h
α

ID2
2 β

1−ID2
2

1 if ID2 �= ID2

B
α

ID2
2 β

1−ID2
2 α

ID1
1 β

1−ID1
1

1 if ID2 = ID2 ∧ ID1 �= ID1

B
α

ID2
2 β

1−ID2
2 α

ID1
1 β

1−ID1
1

2 if ID2 = ID2 ∧ ID1 = ID1

. . .

Finally, letting ωI D =∏�
i=1 α

IDi

i β
1−IDi

i , h� is computed as B
ωID
n .
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The secret key skID is computed as B
ωID
n+1. Recall that, since n < �, B can do this

operation using the values received by the challenger. It is easy to check that both the
auxID = (h1, . . . , h�) and skID are distributed as in the real key derivation algorithm.

At the end of the game, A returns a bit d ′ (d ′ = 0 means real, d ′ = 1 means random),
and B outputs the same d ′. This completes the description of the simulator.

Now notice that if Z = e(g, g)b
�+1c , KID is a valid key for the identity ID. This is

because KID = e(g1, hID)c , where hID is the h� corresponding to identity ID. Thus,

hID = gb�ωID .

KID = e(g1, hID)c = e
(

gb, gb�ωID
)c = ZωID .

If, on the other hand, Z is a random value so is KID. Thus, by standard calculations one
gets that, if A has advantage ε in breaking the (selective) pseudo-random decapsulation
property of the scheme, B breaks the decisional �-wBDHI∗ with advantage ε. �

Remark 4. It is interesting to note that the above theorem shows that our scheme sat-
isfies the selective-notion without any restriction on the size of the input space. This
does not hold for the Dodis–Yampolskiy VRF because in the security proof (even for
selective security) the running time of the simulator is linear in the size of the input
space.

The Resulting VRF We briefly show the VRF construction that results from applying
our transformation to the VRF-suitable IB-KEM scheme described above.

– Gen(1k): The key generation algorithm runs G(1k) to obtain the description of
the groups G,GT and of a bilinear map e : G × G → GT . The description of G

contains a generator g ∈ G. Let {0,1}� be the input space. The algorithm picks

t, a,α1, β1, . . . , α�,β�
$← Zp , uniformly at random and it sets g1 = ga , C = gt .

Next, for i = 1, . . . , � it computes g0i = gβi and g1i = gαi . The public key is

vpk = (

g,g1,C, {gij }i=0,1;j=1..�

)

whereas the secret key is vsk = (a, {αi,βi}i=1,..,�).
– Func(vsk, x): Let (y,πx) be its output, and assume x = x1 · · ·x� where each xi ∈

{0,1}. The proof is constructed as follows. Let h0 = g, for i = 1 to � compute

hi = (hi−1)
α

xi
i β

(1−xi )

i .

Set πx = (h1, . . . , h�, h
a
�).

Instead, the VRF output is computed as y = e(C,ha
�).

– V(vpk, x, y,πx): To verify whether y was computed correctly, proceed as follows:
Let πx = (h1, . . . , h�, h

a
�). Let h0 = g, for i = 1, . . . , �.

if xi = 1 check e(g,hi)
?= e(g1i , hi−1)

else check e(g,hi)
?= e(g0i , hi−1)

Check that y = e(C,ha
�). If any of the above checks fails output reject.
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Efficiency and Security Considerations In terms of efficiency, we note that the result-
ing VRF scheme has public keys and proofs whose sizes are linear in the bit-length � of
the VRF’s input. Likewise, the time needed to compute and verify a proof is also linear
in �. Clearly, these parameters are worse than those achieved by the Dodis–Yampolskiy
VRF scheme, which enjoys constant-size proofs and public keys.

In terms of security, our new construction enjoys a tight reduction to the �-wBDHI∗
assumption and is proven to be selective-secure for large input spaces. This is not the
case for the Dodis–Yampolskiy VRF scheme, as its security reduction is based on the
�-BDHI assumption, where � is linear in the size of the input space. Finally, as we point
out in the following section, our new construction can also be proven fully-secure for
large input spaces.

5.3. A Scheme Secure for Large Identity Spaces

Given the result of Theorem 8, if one wants to obtain a fully-secure VRF, one should
apply Proposition 2 at the cost of losing a factor 2� in the final security (where 2� repre-
sents the size of the identity space). This means that the previous scheme is fully-secure
only when the identity space is small (i.e., 2� is polynomial in the security parameter),
or when the security parameter used to instantiate the bilinear groups is made large
enough to have a significant reduction. However, the last solution unfortunately leads to
parameters that are quite inefficient in practice.

In this section, we show that our scheme described in Sect. 5.2 can be proven se-
cure without any exponential loss, even when the identity space is exponentially large,
meaning that we can efficiently support large identity spaces. In the following sections,
we show how to achieve this result using two different techniques: one is based on
the notion of admissible hash functions [5], and the other uses the artificial abort tech-
nique introduced by Waters [46]. More precisely, in the first case we need to make a
small modification in our scheme: we assume that each identity is a binary string of w

bits, and that the scheme (originally working with �-bits long identities) first hashes the
identities using an admissible hash function H : {0,1}w → {0,1}�. On the other hand,
in order to use the artificial abort technique, we do not have to make any changes in our
scheme of Sect. 5.2, but the security will hold under a slightly different assumption.

Full Security via Admissible Hash Functions The notion of admissible hash functions
was first introduced by Boneh and Boyen in [5] as a tool for proving the full security of
their identity-based encryption scheme. These functions have been shown to be useful
in order to secretly partition the identity space in two subsets, the blue set and the red
set, so that there is a noticeable probability that all the adversary’s secret key queries fall
in the blue set and the challenge identity is in the red set. This fact is particularly useful
in those reductions where the simulator can be programmed so that it is able to answer
secret key queries for blue identities, while it can generate a challenge ciphertext for any
red identities. Boneh and Boyen showed a construction of admissible hash functions
exist based on collision-resistance and error correcting codes.

In our work, we use admissible hash functions in a similar way. In particular, we
choose to follow the definition by Cash et al. [14,15] as it looks easier to use.

Let k ∈ N be the security parameter, w and � be two values polynomial in k. Let
H = {H : {0,1}w → {0,1}�} be a family of functions. For H ∈ H, V ∈ {0,1,⊥}� and



Verifiable Random Functions: Relations to Identity-Based Key Encapsulation 577

any x ∈ {0,1}w we define:

FV,H (x) =
{

B if ∃i ∈ {1, . . . , �} : H(x)i = Vi

R if ∀i ∈ {1, . . . , �} : H(x)i �= Vi

For m ∈ {0, . . . , �}, we denote by V (�,m) the uniform distribution over {0,1,⊥}� such
that exactly m components are in {0,1}.

Definition 6. H = {H : {0,1}w → {0,1}�} is a family of Δ-admissible hash func-
tions if, for every polynomial Q = Q(k), there exists an efficiently computable function
m = m(k) and efficiently recognizable sets badH ⊆ ({0,1}w)∗ such that the following
properties hold:

1. For every PPT algorithm A that, on input H ∈ H, outputs x ∈ ({0,1}w)Q+1, the
following advantage is a negligible function in k:

Advadm
H,A(k) = Pr

[

x ∈ badH : H ← H,x ← A(H)
]

.

2. For every H ∈ H, V ← V (�,m), and every vector x ∈ ({0,1}w)Q+1 \badH we have

Pr
[

FV,H (x0) = R∧ FV,H (x1) = B∧ FV,H (x2) = B∧ · · · ∧ FV,H (xQ) = B
]

≥ Δ(k,Q).

H is said admissible if it is Δ-admissible for some Δ such that Δ(k,Q) is significant
for every Q = Q(k).

Once we have defined the notion of admissible hash functions, we consider the
scheme given in Sect. 5.2 modified as follows. We let the identities be strings I ∈
{0,1}w , and we use our scheme of Sect. 5.2 by hashing every identity I to ID =
H(I) ∈ {0,1}� using a function H taken from an admissible family H = {H : {0,1}w →
{0,1}�}. To concretely instantiate this scheme, one can use the construction of admis-
sible hash functions proposed by Boneh and Boyen in [5], whose security relies on
collision-resistant hash functions. We defer the interested reader to [5, Sect. 5.3] and
[15, Sect. 5.4.4] for a more precise description of the construction and the possible
choices of parameters.

We now prove the following theorem.

Theorem 9. Suppose the decisional �-wBDHI∗ assumption holds in G and H is a
family of admissible hash functions, then the scheme of Sect. 5.2 with the above modifi-
cations is a secure VRF-suitable IB-KEM.

Proof. First of all, observe that the unique decapsulation property holds for the same
reasons given in Theorem 8. Therefore, it only remains to prove the pseudo-random
decapsulation property. As in the proof of Theorem 8, we prove pseudo-random decap-
sulation w.r.t. to any arbitrary distribution DI D over the identity space (i.e., our proof
works for any ID0 ∈ I D).
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We prove the theorem by describing a series of games. Let
−→
ID ∈ ({0,1}w)Q+1 be the

set of identities queried by the adversary such that the first element of this vector is the
challenge identity ID∗. For any i, we denote by Gi the output of Game i.

Game 0 is the real pseudo-random decapsulation experiment ExpIB-KEM-RDECAP
I B K E M,A (k).

By definition we know that:

AdvIB-KEM-RDECAP
I B K E M,A (k) =

∣
∣
∣
∣
Pr[G0 = 1] − 1

2

∣
∣
∣
∣
.

Game 1 is the same experiment as Game 0 except that in Game 1 the challenger aborts
and outputs a random bit if

−→
ID ∈ badH . By the first condition of admissible hash

functions, it is easy to show that any adversary distinguishing Game 0 and Game 1
can be reduced to an adversary C against the admissibility of H. Thus we have:

∣
∣Pr[G1 = 1] − Pr[G0 = 1]∣∣≤ Advadm

H,C (k).

Game 2 proceeds as Game 1 except that at the end of the experiment, the challenger
generates an event good2 with probability Δ, and it aborts if good2 does not occur.
Thus we have:

∣
∣
∣
∣
Pr[G2 = 1] − 1

2

∣
∣
∣
∣
= Pr[good2]

∣
∣
∣
∣
Pr[G1 = 1] − 1

2

∣
∣
∣
∣
.

Game 3 proceeds as Game 2 except for the following change at the end of the ex-
periment. Instead of generating the event good2, in Game 3 the challenger chooses
a vector V ← V (�,m) and computes FV,H (ID) for every identity ID queried by the
adversary. Let E be the event

“FV,H

(

ID∗)= R∧ FV,H (ID1) = B∧ FV,H (ID2) = B∧ · · · ∧ FV,H (IDQ) = B”.

Since
−→
ID /∈ badH , by the second condition of the admissibility of H , we have

Pr[E] ≥ Δ.
Next, the challenger samples �kS2/Δ2� vectors Ṽ , where S = poly(k) is an arbitrary
polynomial, and, for each of these samples, it evaluates the function F

Ṽ ,H
on the

given set of identities
−→
ID. In this way, the challenger computes an approximation p̃E

of pE = Pr[E|−→ID].
Finally, if E does not occur, then the challenger in Game 3 aborts. But even if E

occurs, then it aborts with probability 1 − Δ/p̃E (recall that in the case of abort, the
experiment outputs a random bit). Let good3 be the event that Game 3 does not abort.
Then we have:

Pr[good3] = Δ · pE

p̃E

.

To analyze the difference between Game 2 and Game 3, one may think about directly
replacing the event good2 with the event E. However, as noticed by Cash et al. in
their proof [14], this is not possible as the event E may not be independent of the
adversary’s view. More precisely, E is conditioned on the set of identities

−→
ID asked
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by A. To solve the issue, the game is modified by adding an artificial abort step whose
goal is to make the overall abort probability sufficiently independent of A’s view.
So, to complete this analysis, first notice that by Hoeffding’s inequality, �kS2/Δ2�
samples are sufficient to lower bound p̃E ≥ Δ in such a way that

Pr

[

|pE − p̃E | ≥ Δ

S

]

≤ 1

2k
.

Therefore, we obtain that the difference

∣
∣Pr[good3] − Pr[good2]

∣
∣= Δ ·

∣
∣
∣
∣

p̃E − pE

p̃E

∣
∣
∣
∣
≤ Δ

S

holds with probability 1 − 1/2k , and thus we have

∣
∣Pr[G3] − Pr[G2]

∣
∣≤ Δ

S
+ 1

2k
.

REDUCING GAME 3 TO �-wBDHI∗. The final step of the proof is to show that
|Pr[G3 = 1] − 1/2| ≤ Adv�-wBDHI∗

B (k). For the sake of contradiction, assume there ex-
ists an adversary A who wins in Game 3 with advantage ε, then we show how to build
an adversary B that solves the decisional �-wBDHI∗ problem with the same advantage
and runs in time comparable to that needed by A. B receives (C = gc,B1 = gb,B2 =
gb2

, . . .B� = gb�
) and a value Z that can be either of the form e(g, g)b

�+1c or of the
form e(g, g)z, for random z ∈ Z

∗
p , depending on some random (and hidden) bit d that B

is supposed to guess. B sets g1 = B1, and it chooses V ← V (�,m) and random exponents

αi,βi
$← Z

∗
p , for i = 1, . . . , �, and computes for i = 1, . . . , �

g0i =
{

gβi if Vi = 0

B
βi

1 if Vi = 1 or Vi = ⊥ g1i =
{

B
αi

1 if Vi = 0 or Vi = ⊥
gαi if Vi = 1

Note that the public parameters mpk = (g, g1, {gij }i=0,1;j=1..�) are distributed ex-
actly as those produced by the setup algorithm. Next, B sets C∗ ← C = gc. Thus, C∗
is also correctly distributed. Now B runs A on input (mpk,C∗, ID0), for an identity ID0
chosen according to D I D . In particular, ID0 can be any identity in I D.

The simulation is almost the same as that given in the proof of Theorem 8. The main
difference is that here the simulator might abort. Let us show that a key derivation
query can be answered as long as FV,H (ID) = B, whereas the simulator can generate a
challenge for any identity ID∗ such that FV,H (ID∗) = R.

For key derivation queries, note that when FV,H (ID) = B there always exists an index
i such that H(ID)i = Vi . For such index we have that either g0i = gβi (if H(ID)i = 0)
or g1i = gαi (otherwise). This means that the value h� corresponding to the identity ID
will contain the (unknown) b with exponent � − 1, at most. Thus, it is easy to see that
the secret key and the auxiliary information can be efficiently computed.

On the other hand, observe that when FV,H (ID∗) = R, then ID∗ disagrees with V

in all positions and thus h� contains the unknown b with exponent exactly �. So, the
simulator can plug the value Z into the challenge session key.
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Finally, the simulator runs the artificial abort step like the challenger in Game 3, and,
if no abort condition occurs, then it outputs the same bit returned by A. It is easy to see
that the view obtained by the adversary in the simulation provided by B is distributed
exactly as the view obtained in Game 3, and thus we have that

Adv�-wBDHI∗
B (k) ≥ ∣

∣Pr[G3 = 1] − 1/2
∣
∣.

If we put together all the bounds showed before, then we have shown that for every
PPT adversary A that makes at most a polynomial number Q = Q(k) of key derivation
queries in the IB-KEM-RDECAP experiment against the scheme I B K E M, and for ev-
ery polynomial S = S(k), there exists an algorithm B against the �-wBDHI* assumption
and an algorithm C against the admissibility of H such that:

AdvIB-KEM-RDECAP
I B K E M,A (k) ≤ Advadm

H,C (k) + Adv�-wBDHI∗
B (k)

Δ
+ 1

S
+ 1

2k
. �

Full Security via Artificial Abort In this section we show an alternative proof of secu-
rity for the scheme of Sect. 5.2 that supports large identity spaces. We stress that in this
case we do not make any changes to the original scheme (which is exactly the same as
that shown in Sect. 5.2), but the security is proven under a slightly different assumption:
the n-Decisional Diffie–Hellman Exponent assumption, originally introduced by Boneh
et al. [10] and recalled below.

The n-Decisional Diffie–Hellman Exponent assumption (n-DDHE for short) is de-
fined in bilinear groups G,GT of prime order p where there is a bilinear map e :
G × G → GT . Let g,h ∈ G be two generators and b ∈ Z

∗
p be chosen at random.

We define the advantage AdvnDDHE
A (k) of a PPT algorithm A in solving n-DDHE in

G as

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

c′ = c

∣
∣
∣
∣
∣
∣
∣
∣

g,h
$← G;b $← Z

∗
p;

c
$← {0,1};Z0 ← e(g,h)b

n;Z1
$← GT

c′ ← A(g,h, gb, gb2
, . . . , gbn−1

, gbn+1
, . . . , gb2n

,Zc)

⎤

⎥
⎥
⎦

− 1

2

∣
∣
∣
∣
∣
∣
∣
∣

.

Definition 7 (n-DDHE [10]). We say that the n-DDHE assumption holds in bilin-
ear groups G,GT if, for any n polynomial in k, any PPT algorithm A has advantage
AdvnDDHE

A (k) at most negligible in k.

We can now state the following theorem to prove the full security of our scheme.
Its proof follows very closely the proof of security of the Hohenberger–Waters VRF
[32], and thus we do not give it here. However, for completeness, we provide it in
Appendix C.

Theorem 10. Suppose the n-DDHE assumption holds in G, then the scheme of
Sect. 5.2 is a secure VRF-suitable IB-KEM.
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6. Conclusions

In this paper we introduced a new methodology to construct verifiable random functions
from a class of identity-based key encapsulation schemes that we call VRF-suitable. We
showed the applicability of our methods by providing two concrete realizations of the
new primitive. The first one leads to a VRF that is very similar to the Dodis–Yampolskiy
construction, while the second one leads to a new VRF. Moreover, the VRF resulting
from our second construction enjoys the desired property of being fully-secure while
efficiently supporting exponentially-large (in the security parameter) input spaces.

We observe that all known VRFs supporting large input spaces (ours as well as the
schemes in [11,33]) require proofs containing roughly � group elements where � is
length of the identity string, and their proofs hold all under q-type assumptions. We
therefore believe that a natural and very intriguing question left open by this research
is to find more efficient instantiations of VRFs for large input spaces, possibly ones
provably secure under constant-size assumptions.
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Appendix A. Examples of Schemes with Pseudo-random Decapsulation

A.1. Pseudo-random Decapsulation of the Waters IB-KEM

In this section we prove that the IBE scheme given by Waters in [46] satisfies the
pseudo-random decapsulation property claimed in Sect. 2. More precisely, we focus on
the KEM version of the scheme (W K E M) and we prove that it has pseudo-random
decapsulation assuming the Decisional Bilinear Diffie–Hellman assumption (DBDH
for short) and that the scheme is secure against adaptively-chosen plaintext attacks
(IB-KEM-CPA).

First we describe the Waters IB-KEM scheme (W K E M) [46]. Let G,GT be two
groups of the same order p equipped with a bilinear map e : G × G → GT . We assume
that identities are strings of length n.

– Setup: The setup algorithm picks a random generator g
$← G and a random

α
$← Zp . It sets g1 = gα . Then it picks random elements g2, u

′, u1, . . . , un
$← G.

The master public key is mpk = (g, g1, g2, u
′, {ui}ni=1), while the master secret key

is msk = gα
2 .
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– KeyDermsk(ID): The key derivation algorithm takes as input an identity ID ∈ {0,1}n
and computes its related secret key dID. It picks a random r

$← Zp and sets

dID = (d1, d2) =
(

gα
2

(

u′
n
∏

i=1

u
IDi

i

)r

, gr

)

.

– Encapmpk(ID): The encapsulation algorithm takes as input an identity ID and pro-

duces a session key K together with a ciphertext C. It picks a random t
$← Zp .

Then it sets C = (C1,C2) = (gt , (u′∏n
i=1 u

IDi

i )t ) and K = e(g1, g2)
t .

– Decapmsk(C,dID): The decapsulation algorithm takes as input a ciphertext C and
a secret key dID = KeyDer(msk, ID), and it computes the session key K = e(d1,C1)

e(d2,C2)
.

Now we prove that such scheme has pseudo-random decapsulation w.r.t. the distribu-
tion DI D that always outputs ID0 = 0n.

Theorem 11. If the DBDH assumption holds in G,GT , then the scheme W K E M
satisfies pseudo-random decapsulation.

Proof. Let A = (A1, A2) be an adversary that has advantage AdvIB-KEM-RDECAP
A, W K E M (k) =

ε(k) against the pseudo-random decapsulation of W K E M. We show how to construct a
simulator B that with advantage at least ε(k)/2 breaks either the standard IB-KEM-CPA
security of W K E M, or the DBDH assumption (recalled in Sect. 2.1.3).

Let ID0 = 0n be the zero identity and let ID be the challenge identity chosen by the
adversary A1. We distinguish two cases:

1. ID = ID0;
2. ID �= ID0.

A1 will output a challenge identity of either type 1 or type 2. We describe two different
simulations: in the first case we show how to break the security of the scheme W K E M,
whereas in the second case we show how to break the DBDH assumption.

So, at the beginning of the simulation B flips a binary coin β
$← {0,1} and runs

Simulation β as described below. Basically, if β = 0 B guesses that A will output a
challenge identity of type 1. Otherwise, if β = 1 it guesses that A will output ID �= ID0.
It is easy to verify that the two simulations are perfectly indistinguishable from A’s
perspective.

SIMULATION 0. If β = 0 B acts as an adversary for the IB-KEM-CPA security of
W K E M. B receives mpk from its challenger and returns ID0 as challenge identity. Then
it gets back a ciphertext C0 and a session key K∗ and it runs A1 on input (mpk,C0).
A1 can issue key derivation queries until it outputs a challenge identity ID. B answers
such queries by using its key derivation oracle. If A asks for the private key of identity
ID0 or it outputs ID �= ID0 then the simulator fails and outputs a random bit. Otherwise
if B does not fail (and thus ID = ID0), it runs b ← A2(K

∗) and outputs b. Note that
in this case breaking the pseudo-random decapsulation is equivalent to breaking the
IB-KEM-CPA security.
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Let fail denote the event that the simulator fails. Then the advantage of B against the
security of W K E M is

AdvIB-KEM-CPA
B, W K E M (k) = AdvIB-KEM-RDECAP

A, W K E M (k)Pr[fail].

SIMULATION 1. In this case B acts as an adversary for the Decisional Bilinear Diffie–
Hellman assumption (DBDH). B receives in input a DBDH tuple (g, ga, gb, gc,Z) from
its challenger.

First, B constructs the public key for W K E M as follows. It chooses random values

α,w,w1, . . . ,wn
$← Zp and g2 ∈ G. Then it sets u′ = gw,ui = (gb)wi , g1 = gα . The

public key is mpk = (g, g1, g2, u
′, u1, . . . , un). The master secret key is msk = α. B

also computes the ciphertext C0 = (gc, gcw). Note that C0 is a correctly distributed
ciphertext for the identity ID0 and randomness c.

B runs A1 on input (mpk,C0) and it answers key derivation queries using α until
the adversary outputs the challenge identity ID. If ID = ID0 then B aborts and outputs
a random bit b′ ∈ {0,1}. Otherwise let x =∑n

i=1 wiIDi and let dID = (d1, d2) be the

secret key for the identity ID. More precisely we have d1 = gα
2 gwa

∏n
i=1 gabwi IDi and

d2 = ga . Note that dID is a correctly distributed secret key for the identity ID with
randomness r = a, even if we are not able to compute d1. Then B computes the session
key K̄ = e(gα

2 gaw,gc)Zx/e(ga, gcw) and gives it to A2. In the end of the game A2 will
output a bit b as its guess for K̄ . Then B will output the same b as its guess for Z.

We observe that if Z = e(g, g)abc , K̄ has the right form

K̄ = e(gα
2 gaw,gc)e(gabx, gc)

e(d2,C0,2)
= e(gα

2 gawgabx, gc)

e(d2,C0,2)
= e(d1,C0,1)

e(d2,C0,2)
.

Otherwise, if Z is random, then so is K̄ . Let fail denote the event that the simulator fails.
If B does not fail the simulation is perfect, thus its advantage against DBDH is

AdvDBDH
B (k) = AdvIB-KEM-RDECAP

A, W K E M (k)Pr[fail].

In conclusion, since the two simulations are indistinguishable, the probability that B
guesses correctly the type of the challenge identity output by A is 1/2. Therefore, B
breaks either the security of W K E M or the DBDH problem with advantage at least
ε(k)/2. �

A.2. Pseudo-random Decapsulation of the Boneh–Franklin IB-KEM

Let B F K E M refer to the KEM scheme derived from the BasicIdent IBE scheme by
Boneh and Franklin [7]. Let G be a bilinear group of order p with a bilinear map e :
G × G → GT . Let H1 : {0,1}∗ → G be a hash function. The description of B F K E M
is as follows.

– Setup: The setup algorithm picks a random generator P ∈ G and a random s
$←

Zp . It sets Ppub = P s . The master public key is mpk = (P,Ppub,H1). The master
secret is msk = s.
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– KeyDermsk(ID): The key derivation algorithm takes as input an identity ID ∈ {0,1}∗
and produces its related secret key dID. First it computes QID = H1(ID) and then
it sets dID = Qs

ID.
– Encapmpk(ID): The encapsulation algorithm takes as input an identity ID ∈ {0,1}∗

and returns a session key K together with a ciphertext C. The algorithm picks a

random r
$← Z

∗
p and computes QID = H1(ID). It sets K = e(QID,Ppub)

r ,C =
P r .

– Decapmsk(C,dID): The decapsulation algorithm takes as input a ciphertext C and
a secret key dID = KeyDer(msk, ID), and it returns the session key K = e(dID,C).

In the following theorem we show that the above scheme satisfies the pseudo-random
decapsulation property assuming that the Decisional Bilinear Diffie–Hellman assump-
tion (DBDH) is hard. In particular, for this scheme we prove pseudo-random decapsu-
lation w.r.t. any arbitrary distribution DI D over the identity space (i.e., the proof works
for any ID0 ∈ I D). The proof is inspired to the one given in [7] (Lemma 4.2).

Theorem 12. If the DBDH assumption holds in G,GT and H1 is modeled as a ran-
dom oracle, then the scheme B F K E M satisfies pseudo-random decapsulation.

Proof. More formally, let A be an adversary for the pseudo-random decapsulation
(IB-KEM-RDECAP) of B F K E M with advantage AdvIB-KEM-RDECAP

A, B F K E M (k) = ε(k). Let
H1 : {0,1}∗ → G be a random oracle. Thus, assuming qE to be an upper bound to the
number of key derivations asked to the oracle, we show how to construct a simulator B
that uses A to solve DBDH with advantage at least ε(k)/e(1 + qE).

B receives from its challenger a DBDH tuple (P,P1,P2,P3,Z) = (P,P a,P b,P c,Z)

where P ∈ G is a random generator and a, b, c are taken at random in Zp . The chal-
lenger flips a binary coin ν ∈ {0,1}. If ν = 0 it sets Z = e(P,P )abc , otherwise it picks a

random Z
$← GT . B must output 0 if it believes that Z = e(P,P )abc , and 1 otherwise.

First, B constructs the public key for the B F K E M scheme by setting mpk =
(p,G,GT ,P,Ppub = P1,H1). It also sets C0 = P3 and gives (mpk,C0) to A1.3 The
simulator controls the random oracle H1 as follows. It maintains a list H list

1 of tu-
ples (IDi ,Qi,βi, coini ). When the adversary queries H1 on input ID, B checks if
ID ∈ H list

1 . If this is the case and (ID,Q,β, coin) is the correlated tuple, then it out-
puts H1(ID) = Q. Otherwise B flips a random coin ∈ {0,1} such that Pr[coin = 0] = δ.

It picks a random β
$← Z

∗
p . If coin = 0 it sets Q = P β , otherwise it sets Q = P

β

2 .
The adversary is allowed to make key derivation queries to the oracle KeyDer(·).

B answers such queries in the following way. On input IDi it queries H1(IDi ). Let
(IDi ,Qi,βi, coini ) the tuple in H list

1 . If coini = 1 the simulator fails and outputs a ran-

dom guess ν′ ∈ {0,1}. Otherwise B sets dID = P
βi

1 . In the end of this phase A1 outputs
a challenge identity ID. B runs H1(ID) to obtain (ID,Q,β, coin). If coin = 0 B fails
and outputs a random guess. Otherwise it sets K = Zβ and gives K to A2. When the
adversary outputs its guess ν′ for K B outputs the same value to its challenger.

We observe that if Z = e(P,P )abc then K = e(P,P )abcβ = e(dID,C0) is a correct
session key obtained by decapsulating C0 with identity ID. Otherwise if Z is random, K

3 We observe that in this case it is not necessary to explicitly choose an identity ID0.
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will be random as well. Let fail be the event that B aborts during the simulation. Clearly,
if B does not abort the simulation is perfect. Thus we have:

AdvDBDH
B (k) = AdvIB-KEM-RDECAP

A, B F K E M (k)Pr[fail].
If qE is the number of key derivation queries issued to the oracle, then the probability

that B does not abort is δqE (1 − δ). This value is maximized with δopt = 1 − 1
qE+1 for

which we obtain Pr[fail] ≥ 1
e(qE+1)

. �

Appendix B. The VRF by Dodis and Yampolskiy

In this section we recall the VRF by Dodis and Yampolskiy [22].

– Gen(1k): The key generation algorithm runs G(1k) to obtain the description of
the groups G,GT and of a bilinear map e : G × G → GT . The description of G

contains a generator g ∈ G. Then the algorithm picks a random s
$← Zp and sets

h = gs , vpk = (g,h), vsk = s.
– Funcvsk(x): Let Funcvsk(x) = (Fvsk(x),πvsk(x)). One sets Funcvsk(x) = e(g, g)1/(s+x)

as the VRF output and πvsk(x) = g1/(s+x) as the proof of correctness.
– V(vpk, x, y,πx): To verify if y was computed correctly, one checks that e(gx ·

h,πx) = e(g, g) and y = e(g,πx).

Appendix C. Proof of Theorem 10

The unique decapsulation property was already shown in Theorem 8 in Sect. 5.2. Hence,
we only prove that the pseudo-random decapsulation holds under the n-DDHE assump-
tion. As in the selective case, we prove pseudo-random decapsulation w.r.t. any arbitrary
distribution DI D (i.e., the proof works for any ID0 ∈ I D). As stated before, this proof
follows very closely the proof of security of the Hohenberger–Waters VRF [32] and is
only provided here for completeness.

For the sake of contradiction, assume there exists an efficient adversary A that is able
to break the pseudo-random decapsulation property of our scheme with non-negligible
advantage ε. Then we will show that we can build an algorithm B out of A to break the
n-DDHE assumption with advantage at least 3ε

64Q(�+1)
, where Q is the number of secret

key queries made by A during the game and n = 4Q(� + 1) + 1. Recall that � is the
length in bits of the identities in our scheme.

We first give a description of the algorithm B and then we will describe two hybrid
games where we slightly change the original experiment to ease our analysis.

B gets as input a tuple (g,h, gb, gb2
, . . . , gbn−1

, gbn+1
, . . . , gb2n

,Z) and proceeds as
follows.

It sets m = 4Q and then chooses an integer k
$← {0, . . . , �} and other random values

ri,b
$← {0, . . . ,m − 1} for i = 1 to � and b ∈ {0,1}. Then it picks random exponents

a′, α′
i , β

′
i

$← Z
∗
p and an identity ID0 ← D I D , and sets:

C0 = h, g1 = (

gbm(k+1))a′
, g0,i = (

gb
ri,0 )β ′

i g1,i = (

gb
ri,1 )α′

i

for i = 1 to �. Finally, it gives mpk = (g, g1, {g0,i , g1,i}�i=1), C0 and ID0 to A.
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Before describing the rest of the proof, we show that the public key can be com-
puted by B. To do this, we evaluate an upper bound on the exponents of the val-
ues b contained in the public key elements. Note that the secret key is implicitly set
as a = bm(k+1)a′, αi = br1,i α′

i , βi = br0,i β ′
i , and it is easy to check that: m(k + 1) ≤

4Q(� + 1) < n, rb,i ≤ m − 1 < n, for all b ∈ {0,1} and i = 1, . . . , �. Therefore, all the
elements of the public key can be efficiently computed by B. Moreover, it is easy to
observe that mpk is correctly distributed.

Similar bounds will be useful to check when our simulator B will be able to compute
a secret key for an identity ID. To this end, we define the following functions:

C(ID) = m(k + 1) +
�
∑

i=1

ri,IDi
, Ĉ(ID, j) =

j
∑

i=1

ri,IDi
,

J (ID) = a′
�
∏

i=1

(

α′
i

)IDi
(

β ′
i

)(1−IDi ), Ĵ (ID, j) = a′
j
∏

i=1

(

α′
i

)IDi
(

β ′
i

)(1−IDi ).

Then, observe that for any identity ID the following bounds hold:

1. C(ID) ≤ m(� + 1) + (m − 1)� = 2m� + m − � < 2n,
2. ∀j ∈ {1, . . . , �}: Ĉ(ID, j) ≤ (m − 1)� < n.

Now let us go back to the simulation. In order to answer secret key queries, B pro-
ceeds as follows. Let ID be the queried identity. If C(ID) = n, then it aborts and outputs
a random bit. Otherwise, it computes the auxiliary information and the secret key as
follows:

hj = gbĈ(ID,j)Ĵ (ID,j), ∀j = 1, . . . , � and skID = gbC(ID)J (ID).

Given the bounds shown above, one can verify that B is always able to compute the
auxiliary information auxID = (h1, . . . , h�). In contrast, B can compute the secret key
part skID as long as C(ID) �= n.

Finally, when A outputs the challenge identity ID, B checks whether C(ID) = n. If
C(ID) �= n, then it aborts and outputs a random bit. Otherwise, it computes the session
key K = ZJ(ID), and gives it to A. When A outputs a guess c′, B outputs the same bit.

If Z is a random value in GT , then K is a random session key. Otherwise, if Z =
e(g,h)b

n
, then one can verify that K is correctly distributed as a real decapsulation of

C0 under identity ID, namely K = e(skID,C0) = e(gbC(ID)J (ID),C0).

If A returns the correct answer, then B will be successful. However, as one can notice,
the game presented by B to A is slightly different from the real pseudo-random decap-
sulation experiment as it contains several points in which B might stop the simulation.
In particular, the abort condition depends on the set of queries made by A.

Therefore, in order to analyze A’s advantage, we define the following hybrid games
and then show that A’s advantage in these games cannot change too much. We stress
that this analysis is essentially the same as that provided by Hohenberger and Waters
for their scheme [33]. We give it here for completeness.

Game 0 is the same as the real pseudo-random decapsulation experiment.
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Game 1 is the same as Game 0 except that we add an abort condition at the end of
the game. Namely, the adversary A is first run in an experiment identical to pseudo-
random decapsulation. Next, after A returns its output b′, the challenger proceeds as
follows. Let

−→
ID = (ID1, . . . , IDQ, ID) be the set of identities queried by the adversary

and let k be randomly chosen in {0, . . . , �} and −→
r = (r1,0, r1,1, . . . , r�,0, r�,1) be a

vector of values chosen at random in {0, . . . ,m − 1}, where m = 4Q. For
−→
ID,

−→
r and

k, we define the following functions:

K(ID) =
{

0 if
∑�

i=1 ri,IDi
≡ 1 mod m;

1 otherwise,

τ (
−→
ID,

−→
r , k) =

{

1 if
∑�

i=1 ri,ID∗i
�= m(� − k) + 1

∨Q
i=1 K(IDi ) = 0;

0 otherwise.

Given the random choices −→
r and k, the function τ tells whether a set of identities

−→
ID

asked by the adversary causes an abort or not. More precisely, τ evaluates to 0 if
−→
ID

does not cause an abort w.r.t. −→
r and k, and 1 otherwise.

After the adversary A is done the challenger evaluates an approximation p′ for the
probability p(

−→
ID) = Pr[τ(

−→
ID,

−→
r , k) = 0] by repeating O(ε−2 ln(ε−1p−1

min ln(pmin−1)))

times the following task: sample fresh random
−→
r ′ , k′ values and evaluate τ(

−→
ID,

−→
r ′ , k′).

Let pmin = 1
8Q(�+1)

(as established in Claim 1 below). If τ(
−→
ID,

−→
r , k) = 1, then the

challenger outputs a random bit (discarding the bit b′ returned by A). But, even if
τ(

−→
ID,

−→
r , k) = 0, the challenger outputs a random bit with probability 1 − pmin

p′ . Oth-
erwise, it outputs b′.

Game 2 is the same as Game 1 except that the challenger checks the abort condition
at every new query received from A. If the conditioned is satisfied, then the chal-
lenger aborts immediately (without waiting for the termination of A) by returning a
random bit. However, even if no abort condition was satisfied during the run of A,
the challenger executes the final artificial abort phase exactly as in Game 1.

In order to complete the proof, we will show that if A wins in Game 0 with probability
1
2 + ε, then it will have success in Game 2 with probability ≥ 1

2 + 3ε
64Q(�+1)

, from which

it turns out that B gains advantage AdvDDHE
B ≥ 3ε

64Q(�+1)
.

To prove this fact, we show the following claims.

Claim 1. For any set
−→
ID of identities, it holds p(

−→
ID) = Pr[τ(

−→
ID,

−→
r , k) = 0] ≥ pmin =

1
8Q(�+1)

.

Proof. This claim aims at bounding the probability, over the random choices −→
r and k,

that a given set of identities
−→
ID does not cause abort. Assuming that the adversary makes
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at most Q key derivation queries, we obtain that the probability Pr[τ(
−→
ID,

−→
r , k) = 0] is

= Pr

[
Q
∧

i=1

K(IDi ) = 1 ∧
�
∑

i=1

ri,IDi
= m(� − k) + 1

]

(C.1)

=
(

1 − Pr

[
Q
∨

i=1

K(IDi ) = 0

])

Pr

[
�
∑

i=1

ri,IDi
= m(� − k) + 1|

Q
∧

i=1

K(IDi ) = 1

]

(C.2)

≥
(

1 −
Q
∑

i=1

Pr
[

K(IDi ) = 0
]

)

Pr

[
�
∑

i=1

ri,IDi
= m(� − k) + 1|

Q
∧

i=1

K(IDi ) = 1

]

(C.3)

=
(

1 − Q

m

)

Pr

[
�
∑

i=1

ri,IDi
= m(� − k) + 1|

Q
∧

i=1

K(IDi ) = 1

]

(C.4)

=
(

1 − Q

m

)
1

� + 1
Pr

[

K(ID) = 0|
Q
∧

i=1

K(IDi ) = 1

]

(C.5)

=
(

1 − Q

m

)
1

� + 1

Pr[K(ID) = 0]Pr[∧Q
i=1 K(IDi ) = 1|K(ID) = 0]

Pr[∧Q
i=1 K(IDi ) = 1] (C.6)

≥
(

1 − Q

m

)
1

(� + 1)m
Pr

[
Q
∧

i=1

K(IDi ) = 1|K(ID) = 0

]

(C.7)

=
(

1 − Q

m

)
1

(� + 1)m

(

1 − Pr

[
Q
∨

i=1

K(IDi ) = 0|K(ID) = 0

])

(C.8)

≥
(

1 − Q

m

)
1

(� + 1)m

(

1 −
Q
∑

i=1

Pr
[

K(IDi ) = 0|K(ID) = 0
]

)

(C.9)

=
(

1 − Q

m

)2 1

(� + 1)m
(C.10)

≥
(

1 − 2Q

m

)
1

(� + 1)m
(C.11)

= 1

8Q(� + 1)
. (C.12)

To see how some of the above equations are obtained, we make the following obser-
vations. Equations (C.4) and (C.7) derive from the fact that Pr[K(ID) = 0] = 1/m for
any ID. The factor 1

�+1 in Equation (C.5) is the probability that the simulator hits the
right k. Equation (C.10) derives from the pairwise independence of the probability that
K(·) = 0, namely Pr[K(ID) = 0] = Pr[K(ID′) = 0] for all ID �= ID′. Indeed, notice that
if two identities are different, then the sums in K(ID) and K(ID′) will contain at least
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two different values rj,0, rj,1 at the index j where ID and ID′ differ. Finally, the last
equation comes from setting m = 4Q. �

Claim 2. For any set
−→
ID of identities, the probability that Game 1 aborts is at least

1 − pmin − pmin
3
8ε.

Proof. Recall that in Game 1 the probability that the vector
−→
ID provided by

the adversary does not cause an abort is approximated with p′ by taking T =
O(ε−2 ln(ε−1)p−1

min ln(p−1
min)) samples. By Chernoff bound we have that

Pr

[

T · p′ < T · p(
−→
ID)

(

1 − ε

8

)]

< e−(128ε−2 ln((ε/8)−1)p−1
min ln(p−1

min)pmin(ε/8)2/2)

holds for any
−→
ID. This can be simply reduced to

Pr

[

p′ < p(
−→
ID)

(

1 − ε

8

)]

< pmin
ε

8
.

Now, recall that Game 1 artificially aborts with probability 1 − pmin
p′ . Therefore, if we

measure the probability of aborting in Game 1, we obtain that

Pr[abort] = 1 − Pr[¬abort] = 1 − Pr[¬Regular Abort]Pr[¬Arti ficial Abort]
= 1 − p(

−→
ID)Pr[¬Arti ficial Abort]

≥ 1 − p(
−→
ID)

(

pmin
ε

8
+ pmin

p(
−→
ID)(1 − ε/8)

)

≥ 1 −
(

pmin
ε

8
+ pmin

(1 − ε/8)

)

≥ 1 −
(

pminε

8
+ pmin

(

1 + 2ε

8

))

≥ 1 − pmin − pmin
3ε

8
. �

Claim 3. For any set
−→
ID of identities, the probability that Game 1 does not abort is at

least pmin − pmin
1
4ε.

Proof. As in the previous claim, let T = O(ε−2 ln(ε−1)p−1
min ln(p−1

min)) be the num-

ber of samples that are used to estimate the approximation p′ of p(
−→
ID). By Chernoff

bounds, we have that

Pr

[

T · p′ > T · p(
−→
ID)

(

1 + ε

8

)]

< e−(256ε−2 ln((ε/8)−1)p−1
min ln(p−1

min)pmin(ε/8)2/4

holds for any set
−→
ID. This can be reduced to

Pr

[

p′ > p(
−→
ID)

(

1 + ε

8

)]

< pmin
ε

8
.
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Now, recall that the probability that Game 1 does not abort is equal to the probability
that neither a regular abort or an artificial abort occur during the simulation. Given an
estimation p′, an artificial abort does not happen with probability pmin/p

′, therefore the
probability of not aborting in Game 1 is

Pr[¬abort] = Pr[¬Regular Abort]Pr[¬Arti ficial Abort]

≥ p(
−→
ID)

(

1 − pminε

8

)(
pmin

p(
−→
ID)(1 + ε/8)

)

≥ pmin

(

1 − ε

8

)2

≥ pmin

(

1 − 1

4
ε

)

. �

Claim 4. If the adversary A wins in Game 0 with probability 1
2 + ε, then it wins in

Game 1 with probability ≥ 1
2 + 3ε

64Q(�+1)
.

Proof. The probability that an adversary wins Game 1 is equal to the probability that
such experiment outputs 1, which is:

Pr[G1 = 1] = Pr[G1 = 1|abort]Pr[abort] + Pr[G1 = 1|¬abort]Pr[¬abort]

= 1

2
Pr[abort] + Pr

[

b′ = b|¬abort
]

Pr[¬abort]

= 1

2
Pr[abort] + Pr[b′ = b]Pr

[¬abort|b′ = b
]

= 1

2
Pr[abort] +

(
1

2
+ ε

)

Pr
[¬abort|b′ = b

]

≥ 1

2

(

1 − pmin − pmin
3ε

8

)

+
(

1

2
+ ε

)(

pmin − pmin
ε

4

)

≥ 1

2
+ εpmin − pmin

ε

4
− pmin

3ε

8

= 1

2
+ 3

8
εpmin

= 1

2
+ 3ε

64Q(� + 1)
.

The equations above are obtained by standard probability arguments and by using the
results of the previous claims. �

Claim 5. The adversary A has the same success probability in Game 1 and Game 2.

To see the proof of this claim, observe that the only difference between the two games is
the time in which the abort condition is issued and the game terminates. However, it is
easy to see that such a change does not modify the output distribution of the experiment.
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Finally, to complete the proof of Theorem 10, we simply observe that the view of the
adversary A in Game 2 is identical to the view that A obtains in the simulation provided
by our algorithm B.
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