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Abstract. In this paper we combine two powerful methods of symmetric crypt-
analysis: rotational cryptanalysis and the rebound attack. Rotational cryptanalysis was
designed for the analysis of bit-oriented designs like ARX (Addition-Rotation-XOR)
schemes. It has been applied to several hash functions and block ciphers, including
the new standard SHA-3 (Keccak). The rebound attack is a start-from-the-middle ap-
proach for finding differential paths and conforming pairs in byte-oriented designs like
Substitution-Permutation networks and AES.

We apply our new compositional attack to the reduced version of the hash func-
tion Skein, a finalist of the SHA-3 competition. Our attack penetrates more than two
thirds of the Skein core—the cipher Threefish, and made the designers to change the
submission in order to prevent it.

The rebound part of our attack has been significantly enhanced to deliver results on
the largest number of rounds. We also use neutral bits and message modification meth-
ods from the practice of collision search in MD5 and SHA-1 hash functions. These
methods push the rotational property through more rounds than previous analysis sug-
gested, and eventually establish a distinguishing property for the reduced Threefish
cipher. We formally prove that such a property cannot be found for an ideal cipher
within the complexity limits of our attack. The complexity estimates are supported by
extensive experiments.

Key words. Skein, SHA-3, Hash function, Compression function, Cipher, Rotational
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1. Introduction

Block ciphers and hash functions are cornerstones of symmetric cryptography, where
privacy and authenticity of communication are established by efficient schemes. Design
and analysis of these primitives was pushed by the competitions for new standards:
most notably AES for block ciphers (1998–2001) and SHA-3 for hash functions (2008–
2012). Not only new designs, but also new types of attacks emerged from these two
competitions.

The SHA-3 competition emerged from the concerns among the cryptographic com-
munity of the new attacks on hash functions that had appeared by 2005 [6,39,44,45].
The standard SHA-2 followed the same design strategies as broken SHA-0 and SHA-1,
and it was largely unknown if the new attacks could be carried out to SHA-2 within the
next years. The American standardization organization NIST after a series of workshops
decided to run a public competition for a new standard, hoping to come up with a re-
placement earlier than SHA-2 would be under attack as well. Whereas attacks on SHA-2
progressed slowly since 2006 [16,24,31,33,37], NIST eventually chose Keccak [4] out
of 64 submissions.

Among the methods proposed for analysis of the SHA-3 candidates, rotational crypt-
analysis and the rebound attack are notably universal and effective. Rotational analysis
is well suited for bit-oriented designs, in particular for those based on modular addition,
rotation, and XOR (so-called ARX schemes). The reduced versions of SHA-3 candi-
dates Skein [22], Shabal [1], BMW [38], and eventually the SHA-3 winner Keccak [11]
are affected by this type of attack, despite their relative resistance to the well-studied
differential cryptanalysis.

The rebound attack, first presented in [34], was initially and mostly aimed at byte-
oriented primitives with an SPN structure. It produces conforming pairs for differential
paths in a meet-in-the-middle fashion, essentially shaving off the most “expensive” part
of a differential path. The method gives the best results so far on reduced variants of the
SHA-3 candidates Grøstl [17] and ECHO [18], LANE [30], Luffa [21], Cheetah [46]
and the hash function Whirlpool [26], among others. It also yields a differential distin-
guisher for the largest number of rounds of SHA-3 (Keccak) [11].

Our Results In this paper we combine the rotational and the rebound attacks with the
application to the compression function of the SHA-3 candidate Skein and its underly-
ing cipher Threefish in the version 1.2 [14]. We carefully use the degrees of freedom
in the inbound phase of the rebound attack, so that we attack many more rounds com-
pared to all other results on Skein/Threefish. We introduce a new type of distinguishing
property, called a rotational collision, and prove formally that in the black-box model
the complexity of finding such collisions is significantly higher than the complexity of
producing rotational collisions for the Skein-256 compression function reduced up to
53 (out of 72) rounds, and for the Skein-512 compression function reduced up to 55
(out of 72) rounds. Our approach is aimed for the largest number of rounds at the cost
of complexity, but similar results with almost practical complexity can be drawn for the
reduced number of rounds (out of this paper’s scope). We also provide a more accurate
estimation of rotational probabilities compared to [22].



454 D. Khovratovich, I. Nikolić, and C. Rechberger

Our results demonstrate weaknesses both in the reduced Threefish cipher (in the ideal
cipher model) and in the Skein compression function as of version 1.2. Our models re-
quire that the key, the message, and the tweak can be freely chosen by an attacker, which
is certainly not the case for a hash function or block cipher. Nevertheless, our attacks
show that reduced Threefish should not instantiate an ideal cipher in any indifferentia-
bility proof using it, like the one used for the Skein hash function [13]. The designers
eventually responded to our attack by changing Skein so that its components are much
less vulnerable to the rotational analysis [15].

Details on Our Rotational-Rebound Attack We start our research with a more detailed
and careful analysis of the rotational property and its propagation. We represent it an-
alytically, and derive necessary conditions on the key bits to increase the rotational
probability and thus reduce the complexity of our attacks. We also correct [22] in terms
of the independence assumptions, and find the best values of the key bits with an op-
timized computer search. Although we attack the second version of Skein (v1.2 [14]),
we would like to stress out that our attack approach is applicable to the first version of
Skein as well, but does not apply to the latest version of Skein-v1.3.

This preliminary rotational analysis gives us a rotational distinguisher for the com-
pression function of Skein on up to 40 rounds. We advance further and show how to put
the rotational property into the outbound phase of the rebound attack. The inner part of
the rebound attack, which is the inbound phase, is accelerated with the method of the
auxiliary path [19] and neutral bits [5]. In contrast to the first attacks on Skein, where
these paths were used in differential attacks, we demonstrate their use in the rotational
attack. As a result, we get a rotational distinguisher for the reduced Skein compres-
sion function. We attack 53 rounds of Skein-256 and 55 rounds of Skein-512 (Sect. 5),
whereas the full versions have 72 rounds.

2. Preliminaries

2.1. Short History of Skein

Skein is a family of hash functions designed by Ferguson et al. [12]. Since its submission
to the SHA-3 competition in 2008, Skein underwent a series of revisions. The first
revision, yielding the version 1.1, appeared quickly after the submission and corrected
typos. The second revision (version 1.2) appeared in September 2009 and allegedly
improved the diffusion properties with a new set of rotation constants [14]. Our analysis,
as well as the first conceptual paper on the rotational cryptanalysis [22], was published
in the first half of 2010 and is devoted to this version.

As soon as the next phase of the SHA-3 competition again allowed changes, the de-
signers of Skein responded to the rotational attacks and tweaked it to the version 1.3 in
October 2010 [15]. The tweak solely changed the constant in the key schedule, which
efficiently prohibits rotational cryptanalysis. Though Skein was considered a favorite in
the competition till its end, NIST eventually declared Keccak as the winner on Octo-
ber 2, 2012.
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Table 1. Summary of the attacks on Skein and Threefish.

Rounds Version Attack Method Reference

Skein/Threefish-256-256 (72 rounds)

24 1.1 Key recovery Related-key differential Design document, 2008
24 1.2 Near collision Differential characteristic Su et al. [43], 2010
39 1.2 Key recovery Related-key rotational Khovratovich–Nikolić,

[22], 2010

53 1.2 Rotational collision Chosen-key-tweak
Rotational rebound

This paper

12 1.3 Collisions (hash) Biclique Khovratovich [20], 2012
24 1.3 Near-collision Differential characteristic Leurent [27], 2012
32 1.3 Diff. distinguisher Known-related-key boomerang Leurent–Roy, [28], 2012
32 1.3 Partial collision Differential characteristic Leurent [27], 2012,

Yu et al. [47], 2013

Skein/Threefish-512-512 (72 rounds)

25 1.1 Key recovery Related-key differential Design document, 2008
32 1.1 Key recovery Related-key boomerang Aumasson et al. [2], 2009
35 1.1 Diff. distinguisher Known-related-key boomerang Aumasson et al. [2], 2009
24 1.2 Near collision Differential characteristic Su et al. [43], 2010
34 1.2 Key recovery Related-key boomerang Chen-Jia [9], 2010
42 1.2 Key recovery Related-key rotational Khovratovich–Nikolić,

[22], 2010

55 1.2 Rotational collision Chosen-key-tweak
Rotational rebound

This paper

14 1.3 Collisions (hash) Biclique Khovratovich [20], 2012
22 1.3 Preimage (hash) Biclique Savelieva et al. [24], 2012
37 1.3 Free-start collision Biclique Li et al. [29], 2012
37 1.3 Preimage (compression) Biclique Savelieva et al. [24], 2012

2.1.1. Third-Party Cryptanalysis of Skein

The first third-party cryptanalysis [2] targeted various properties of the Skein v1.1 com-
pression function and Threefish up to 35 rounds. Near-collisions up to 24 rounds were
investigated in [43]. The first rotational attack demonstrated distinguishers on the un-
derlying Threefish cipher [22], and was able to penetrate 39 rounds of Skein-256 v1.2
and 42 rounds of Skein-512 v1.2 (see Table 1).

After a preliminary version of this paper has been published [23], two more results
have been announced. Biclique preimage attacks [24] cryptanalyze 22 rounds of the
Skein-512 v1.3 hash function and 37 rounds of the Skein-512 compression function.
Advanced boomerang distinguishers were applied on up to 32 rounds of Threefish
v1.3 [28], and new differential near-collision attacks on the Skein v 1.3 compression
function for up to 32 steps were proposed in [27,47].

2.2. Description of Skein v1.2

Skein is a family of hash functions, which are based on the different versions of the
block cipher Threefish. It has three incarnations: with 256-, 512-, and 1024-bit block
and the same key sizes. The 1024-bit version was not intended for the SHA-3 output
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Fig. 1. Two rounds of Threefish-512.

sizes (224, 256, 384, 512 bits), and later it was explicitly stated that only Threefish-512
would be used for all output sizes of the purposes of SHA-3 competition. In this work,
we analyze Threefish-256 and Threefish-512.

Threefish is a tweakable block cipher, where the tweak value T is a public 128-bit
input, and could be used to further parametrize the cipher and to break the similarity
between the compression function calls when used in Skein. By EK,T (P ) we denote
Threefish with input key K , a tweak T , and a plaintext P . The compression function F

of Skein uses Threefish in the Matyas–Meyer–Oseas (MMO) mode:

FT (CV,M) = ECV,T (M) ⊕ M, (1)

where CV is the chaining value, and M is the message block of the same size. The hash
function of Skein produces the output after a sequence of compression function calls.
As our analysis does not go beyond the compression function, and as the full description
of the hash function is rather complicated, we omit it and refer to [15].

The definition of the cipher is as follow. The internal state I undergoes a sequence
of 72 similar rounds, and after each fourth round a subkey is modularly added to the
state. An additional subkey addition (key whitening) is done at the beginning of the first
round.

Internal Round Each round has a simple structure (cf. also Fig. 1). The internal state
is partitioned into Nw (Nw = 4,8 for Threefish-256,-512, respectively) 64-bit words
I0, I1, . . . , INw−1. Then two distinct operations are applied to all the state words. The
first is a pairwise non-linear MIX operation, while the second is a simple word permu-
tation π :

Round r, 0 ≤ r < 72:

1. For 0 ≤ j < Nw/2 set

• (I2j , I2j+1) ← MIX((I2j , I2j+1));

2. For 0 ≤ j < Nw set

• I new
j ← Iπ(j).
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The operation π depends on the round number r , while MIX depends as well on the
index j , and the output (Y1, Y2) = MIX(X1,X2) is defined as follows:

Y1 = X1 + X2,

Y2 = (X2 ≪R(r mod 8),j
) ⊕ Y1.

The rotation constants Rr,j and the permutation π are defined in Appendix A.

Key Schedule and Subkeys Let K0,K1, . . . ,KNw−1 be the 64-bit words of the master
key K . An additional word KNw , acting as a checksum, is computed as

KNw = 0x55 . . .5⊕
Nw−1⊕

j=0

Kj .

Here we would like to point out that the word rotation (either to the left or to the right)
by an even amount of bits does not change the constant 0x55 . . .5—this is a crucial
property exploited in our subsequent rotational attack. In the final version of Threefish,
i.e. v1.3, the constant was changed to 0x1BD11BDAA9FC1A22.

Similarly, a checksum tweak word T2 is computed from the 64-bit tweaks words
T0, T1, i.e. T2 = T0 ⊕T1. Let K0,K1, . . . ,K18 be the subkeys, and Ks

0,Ks
1, . . . ,Ks

Nw−1
be 64-bit words of the subkey Ks, s = 0, . . . ,18. These words are computed as follows:

Ks
j = K(s+j) mod (Nw+1), 0 ≤ j ≤ Nw − 4;

Ks
Nw−3 = K(s+Nw−2) mod (Nw+1) + Ts mod 3;

Ks
Nw−2 = K(s+Nw−1) mod (Nw+1) + T(s+1) mod 3;

Ks
Nw−1 = K(s+Nw) mod (Nw+1) + s.

Note the counter s added to the last subkey word.

3. Rotational and Rebound Attacks

3.1. Rotational Cryptanalysis

It has been known for a while that if one vector is a rotation of the other, then the
bitwise operations such as XOR or AND keep this property. Some designers used this
fact in the initial analysis of their own cryptosystems [3,41], whereas Daum explored
the propagation of this property through the modular addition operation [10]. The term
rotational cryptanalysis was introduced by Khovratovich and Nikolić in the analysis of
Skein [22].

The pair (X,
←−
X ) is called a rotational pair (with a rotation amount r), where

←−
X the

rotation of X by r bits to the left. A rotational pair is preserved by any bitwise trans-
formation, particularly by the bitwise XOR and by any rotation. The probability that a
rotational pair is kept by the modular addition is given by the following formula [10]:

P
(←−−−
x + y = ←−

x + ←−
y

) = 1

4

(
1 + 2r−n + 2−r + 2−n

)
. (2)
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For large n and small r we get the following table:

r pr log2(pr)

1 0.375 −1.415
2 0.313 −1.676
3 0.281 −1.831

For r = n/2 the probability is the lowest and it is close to 1/4. The same holds for
rotations to the right. When an addition of rotational inputs does not produce rotational
outputs then we say that the addition produces a rotational error.

Similarly to differential and linear cryptanalysis, the rotational cryptanalysis requires
the rotational property to hold through a number of rounds of a primitive. Clearly, the
probability of this event depends on the number of operations that may violate the rota-
tional property, e.g., the modular addition.

The simplest rotational attack first establishes that for the primitive F with n-bit
output the rotational property holds with probability P � 2−n:

F
(←−
X

) P= ←−−−
F(X),

for some pre-fixed rotational amount r .
It will be proven in Sect. 4 that this property and its variations yield non-random

behavior for unkeyed primitives like compression and hash functions. In the further
text, we always work with a single rotational amount, an optimal value of which has to
be found. For keyed primitives this property allows for shortcut key recovery attacks, as
it can be used as a distinguisher to verify partial key guesses.

Constant Addition The use of constants is typical countermeasure against slide attacks
and other methods exploiting similarity of rounds. The addition of a constant also vi-
olates the rotational property unless the constant is self-rotational, i.e. if C = ←−

C then←−
X ⊕ C = ←−−−

X ⊕ C. However, if the constant addition follows another operation that may
fail to preserve the rotational pair, then the resulting errors may compensate each other.
The first rotational attack on Skein [22] made the errors introduced by three consecutive
operations to compensate each other (see Fig. 2).

3.2. Rebound Attack

The rebound attack [26,34] was introduced as a variant of differential cryptanalysis
optimized for the cryptanalysis of hash functions. It aims to efficiently produce inputs
conforming to valid differential paths. At the same time, the rebound attack can be seen
as a high-level model for the cryptanalysis of key-less primitives. It was first applied to
AES-like constructions because it is easy to find truncated differential characteristics in
them for a number of rounds. Distinguishers for generic Feistel schemes [40] and meet-
in-the-middle attacks on block ciphers [8] also use elements of the rebound attack.

The rebound attack (Fig. 3) decomposes primitive E—a compression function,
a block cipher, or a permutation—into three parts:

E = E3 ◦ E2 ◦ E1.
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Fig. 2. Dealing with constant addition in Threefish: error is introduced by the modular addition, then is
corrected by the key addition, and is finally compensated by another modular addition.

Fig. 3. Outline of the rebound attack.

The two phases are as follows:

• Inbound phase searches for inputs conforming to some property (usually, to a
differential path) in the meet-in-the-middle fashion in E2. Here the search is effi-
ciently aided by the degrees of freedom available to a cryptanalyst.

• Outbound phase computes the solutions of the inbound phase in both forward-
and backward direction through E1 and E3 and checks whether they are solutions
for the full E. If this is a probabilistic event, an attacker repeats the inbound phase
to obtain more starting points for the outbound phase.

Recent modifications of the rebound approach include the inside-out variant [32], the
linear solving variant [32], or the multiple-inbound variant [26,30].

Our idea is to target the rotational property in the rebound attack, so that the inputs
conforming to the rotational property in the inbound phase can be found with a low
complexity. In the next section we formally prove that our approach produces outputs
which are improbable to find for an ideal primitive with the same complexity.

4. Rotational Distinguishers

In this section we argue that the attack, described in detail in Sect. 5, indeed shows
non-random behavior of the Skein compression function. A typical argument would
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show that an attacker with only a black-box access to an ideal primitive of the same
domain and range is not able to produce the same behavior with the same or better
effort and probability. We follow the approach of [7], where the adversary produces so-
called q-multicollisions for AES significantly faster than for an ideal cipher. Then we
carry over this statement to the compression function.

The Threefish key schedule uses a counter in each subkey Ks . As none of these coun-
ters are rotation-invariant, the subkey injection always violates the rotational property of
a pair of internal states. As indicated in Sect. 3.1, we have to compensate emerging er-
rors by other probabilistic operations around the subkey injection. As will be explained
in details in Sect. 5, adding a constant e to the chaining value CV is sufficient to ob-
tain the rotational property with reasonable probability for a reduced Skein compression
function F :

F←−
T

(←−
CV + e,

←−
M

) P= ←−−−−−−−
FT (CV,M). (3)

Moreover, we can produce q such inputs with average complexity 1/P and the same e:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

←−−−−−−−−−
FT1(CV1,M1) = F←−

T1

(←−−
CV1 + e,

←−
M1

);
←−−−−−−−−−
FT2(CV2,M2) = F←−

T2

(←−−
CV2 + e,

←−
M2

);
...

←−−−−−−−−−
FTq (CVq,Mq) = F←−

Tq

(←−−
CVq + e,

←−
Mq

)
.

(4)

Let us introduce an appropriate definition of the wanted property.

Definition 1. A set

{
e; (CV1,M1, T1), (CV2,M2, T2), . . . , (CVq,Mq,Tq)

}

is called a rotational q-collision set for a compression function FT (CV,M) if (4) holds
for it.

A similar definition can be introduced for the cipher on which the compression func-
tion is based. The MMO mode (1) yields the following conversion:

←−−−−−−−
FT (CV,M) = F←−

T

(←−
CV + e,

←−
M

) ⇐⇒ ←−−−−−−
ECV,T (M) = E←−

CV +e,
←−
T

(←−
M

)
.

Hence we can introduce an appropriate definition for a tweakable cipher.

Definition 2. A set

{
e; (P1,K1, T1), (P2,K2, T2), . . . , (Pq,Kq,Tq)

}
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is called a rotational q-collision set for a tweakable cipher EK,T (P ) if
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

←−−−−−−−
EK1,T1(P1) = E←−

K1+e,
←−
T1

(←−
P1

);
←−−−−−−−
EK2,T2(P2) = E←−

K2+e,
←−
T2

(←−
P2

);
...

←−−−−−−−
EKq,Tq (Pq) = E←−

Kq+e,
←−
Tq

(←−
Pq

)
.

(5)

We follow the line of the first distinguisher for the full AES [7] and compare the
problem of finding a rotational collision set for an ideal cipher with that for reduced
Threefish. By ideal cipher, as usual, we understand a set of randomly chosen permu-
tations of cardinality equal to the size of the key space. Our results demonstrate that
the versions of Threefish that we consider do not behave like an ideal cipher with re-
spect to this rotational property. Afterwards we proceed with the same statement on the
compression function.

The complexity of the generic attack is measured in the number of queries to the
encryption and decryption oracles of an ideal cipher.

Lemma 1. To construct a rotational q-collision set for an ideal (tweakable) cipher
with an n-bit block and key and success rate 1/2, an adversary needs at least min(

q
12 ·

2((q−1)/(q+1))n,2n−1) queries.

Proof. Let A be an adversary attacking the cipher, and assume that A asks its oracles
a total of L queries, where L < 2n−1. Let us compute the probability of the event that a
rotational q-collision set (5) is found. The probability is taken over all possible choices
of permutations for the cipher.

First, we denote the equations in (5) as U1,U2, . . . ,Uq . With each equation we as-
sociate an integer tj such that tj th oracle query computes the chronologically second
element of Uj and hence is able to check whether the equation holds. Without loss of
generality, assume that t1 < t2 < · · · < tq . Finally, define t ′1 as the index of the query
that computes the first element of the equation U1:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 : ←−−−−−−−
EK1,T1(P1)︸ ︷︷ ︸
queried at t ′1

= E←−
K1+e,

←−
T1

(←−
P1

)

︸ ︷︷ ︸
queried at t1

;

U2 : ←−−−−−−−
EK2,T2(P2)︸ ︷︷ ︸

queried before t2

= E←−
K2+e,

←−
T2

(←−
P2

)

︸ ︷︷ ︸
queried at t2

;

...

Uq : ←−−−−−−−
EKq,Tq (Pq)
︸ ︷︷ ︸

queried before tq

= E←−
Kq+e,

←−
Tq

(←−
Pq

)

︸ ︷︷ ︸
queried at tq

.

(6)

Now compute for every tuple (t ′1, t1, t2, t3, . . . , tq) the probability that it leads
to a differential q-multicollision. Before submitting ti th query, i > 1, equations
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U1,U2, . . . ,Ui−1 hold, where terms of U1,U2, . . . ,Ui−1 are completely determined
by a tuple (t ′1, t1, t2, t3, . . . , ti−1). Indeed, from t ′1 and t1 we define K1, e, P1, T1, the
rotation amount; from tj we define Kj , Tj , and Pj .

Just before the moment ti only one term of Ui is computed—w.l.o.g. let it be
EKi,Ti

(Pi). Thus the following equation should hold:

←−−−−−−
EKi,Ti

(Pi) = E←−
Ki+e,

←−
Ti

(←−
Pi

)

︸ ︷︷ ︸
queried at ti

.

By our definition, ti is the first moment when E←−
Ki+e,

←−
Ti

(
←−
Pi ) is queried. Then either the

decryption or the encryption oracle is called. In the first case the decryption oracle is
called with a ciphertext C and a key K , which for some i should be equal to

←−
Ki + e.

By the definition of ti , the value C is chosen from the set where E←−
Ki+e,,

←−
Ti

(·) is unde-
fined. To become a part of a rotational q-collision set, there should exist Pi such that

C = ←−−−−−−
EKi,Ti

(Pi). On the other hand, after the decryption oracle is called, the following
equation should hold:

E−1←−
Ki+e,

←−
Ti

(C) = ←−
Pi . (7)

Since L < 2n−1, not more than 2n−1 texts were encrypted or decrypted with the key←−
Ki + e. So the probability that (7) holds does not exceed 1/2n−1.

In the second case, let the encryption oracle be queried with a plaintext P , tweak T ,
and a key K , which for some i should be equal to

←−
Ki + e. For an answer C, a similar

equation should hold:

C = ←−−−−−−
EKi,Ti

(Pi). (8)

The same probability argument holds for this equation. Therefore, for every ti , i ≥ 2, we
get a multiplier 21−n to the probability that a tuple (t ′1, t1, t2, t3, . . . , tq) defines a rota-
tional q-collision set. There are

(
L

q+1

)
such tuples, each defining a rotational q-collision

set with probability at max 2(q−1)(1−n). We get the following equation for the number
of queries required to get a q-collision set with probability 1/2:

(
L

q + 1

)
≥ 2(q−1)(n−1)−1. (9)

Let us simplify the left part:

(
L

q + 1

)
= L!

(L − q − 1)!(q + 1)! = L(L − 1) · · · (L − q)

(q + 1)!

≤ Lq+1

(q + 1)! ≤ Lq+1

(q+1)q+1

eq+1

=
(

eL

q + 1

)q+1

. (10)
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Substitute the result to (9):

(
eL

q + 1

)q+1

≥ 2(q−1)(n−1)−1 =⇒ L ≥ q + 1

e
2((q−1)/(q+1))(n−1)−1

≥ q

12
2((q−1)/(q+1))n. (11)

This concludes the proof. �

Let us consider compression functions now. An ideal compression function is intro-
duced similarly to the ideal cipher and is an equivalent of a random PRF. So, an ideal
compression function over a particular domain with a given range is a set of randomly
chosen transformations with the same domain and range.

Theorem 1. To construct a rotational q-collision set for an ideal compression func-
tion with an n-bit output and success rate 1/2, an adversary needs at least min(

q
12 ·

2((q−1)/(q+1))n,2n−1) queries.

Proof. The proof is almost identical to the proof of lemma 1. However, we are
equipped with a single-compression oracle, and do not perform any sort of decryp-
tion. Hence we merely omit from the proof the “first case” where the decryption oracle
is called. Given the bound of 2n−1 queries, we find that for every tuple of query indices
of size q + 1 the probability that it defines a rotational q-collision set does not exceed
2(q−1)(1−n). The rest of the proof remains the same. �

In the next section we show how to obtain a rotational q-collision set for reduced
Threefish and the Skein compression function.

5. Rotational Rebound Attack on the Skein Compression Function

5.1. Overview

Our goal in this section is to construct a rotational q-collision set for the cipher Three-
fish, which immediately converts to a rotational q-collision set for the Skein compres-
sion function. We proceed as follows:

• Fix the optimal rotation amount;
• Find and fix the optimal key values Ki ;
• Calculate the transition probabilities and demonstrate that there exist inputs for

which the rotational property holds throughout reduced Threefish (details in
Sect. 5.3);

• Identify the rounds for the inbound phase, where states conforming to the rotational
property can be generated efficiently, and show the procedure;

• Identify neutral bits that help to ensure the rotational property beyond the inbound
phase;

• Identify remaining degrees of freedom and estimate the total complexity of the
attack including the outbound phase;

• Demonstrate that for some q the attack outputs rotational q-collisions faster than
what the lower bound for the ideal case instructs.
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Fig. 4. The complete rotational rebound attack on Threefish-256, -512. Arrows indicate the direction of the
computation.

Table 2. Structure of the rebound attack on Skein.

Outbound Acceleration I Inbound Acceleration II

Rounds Probability Rounds Rounds Rounds

Skein-256 (53 rounds)

2–40 2−239 41–42 43–52 53–54

Skein-512 (55 rounds)

0–40 2−480 41–42 43–52 53–54

Having all these details elaborated, the attack would proceed as follows:

1. Produce internal states that conform to the rotational property through the inbound
phase;

2. Filter out those for which the rotational property does not hold in the rounds of
the acceleration phase;

3. Generate more solutions for the rounds covered in the acceleration phase;
4. Filter out those that do not conform to the rotational property through the outbound

phase.

An illustration of the attack proposal is given Fig. 4, while also given in Table 2.
Eventually for the fixed correction e and rotational amount r we produce tuples

(P,K,T ) such that

E←−
K +e,

←−
T

(
←−
P ) = ←−−−−−

EK,T (P ),

where E is the Threefish-256 reduced to rounds 2–54 (0–50 for the 512-bit version),
without the encompassing key addition. For the Skein compression function, this yields
tuples (CV,T ,M) such that

F←−
T

(←−
IV + e,

←−
M

) = ←−−−−−−−
FT (IV,M)

for the same e. The total complexity is about 2239 per tuple in Skein-256, and 2480 per
tuple in Skein-512. Here and further the complexity unit is one evaluation of the com-
pression function. The memory consumption is about 230 Skein states. Having fixed
q = 26 for both variants, we are able to construct a rotational q-collision set for the
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Skein compression function with complexity lower than for an ideal compression func-
tion. Also, we can construct a rotational q-collision set for the cipher Threefish with
complexity lower than for an ideal cipher. This proves the distinguishing nature of our
attack.

5.2. Selecting Parameters for the Attack

Rotation Amount We recalled in Sect. 3.1 that the rotation by 1 bit delivers the highest
probability for the modular addition. However, the constant 0x55 . . .5 is invariant to
the rotation by 2 bits. Since the other constants used in Threefish—round counters—are
not rotation-invariant for any amount, we select the rotation amount as two bits to the
left.

Corrections Our experiments showed that the counter in the key schedule quite often
prohibits the rotational property to hold for several consecutive rounds. If there were no
corrections, the probability for the rotational property to hold through rounds 4s − 1,4s

(i.e. with the key addition in between) would be zero for quite many s. To avoid that, we
fix some of the key bits and introduce corrections. As a result, the errors introduced by
counters, corrections, and modular additions compensate each other, and we want this
property to hold as long as possible.

Optimal key bit and the resulting correction values were the subject of our exper-
iments and were found with an optimized computer search. The optimal values are
given in Tables 3 and 4. Hence the inbound phase of the rebound attack starts with as-
signing the 24 bits (for Threefish-256) or 48 bits (for Threefish-512) of the key K and
its counterpart

←−
K + e with actual values.

5.3. Rotational Probabilities

This section gives an outline of the search for optimal key values. More details are given
in Appendix B.

We follow the idea of [22], and introduce corrections in the Threefish key pair. How-
ever, unlike [22], we consider modular corrections, i.e. we define the related-key pair
as (K,

←−
K + e), where e is a low-weight correction and + is a modular addition. The

rotation amount is fixed to 2 in order make the constant used in the key schedule, and
thus the checksum master key word KNW

, susceptible to rotational analysis, and also to
maximize the rotational probability of modular additions.1

To obtain the highest number of rounds in the outbound phase, we find optimal values
for the corrections and well as values of several bits of the key pair. These values are
found with an exhaustive search on a computer. However, due to the large size of the
search space, a simple brute force would be infeasible, and thus first we have to sig-
nificantly reduce the amount of possible candidates by performing a detailed analysis.
Further we explain how to optimize the search in Skein-256 (see Fig. B.1, the rotational
pairs are presented one atop of another).

1 A rotation amount of 4 (or any other larger even amount) would also make the checksum words suscep-
tible to rotational analysis, but would reduce the rotational probability of modular additions, see (2).
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Table 3. Pre-fixed values of key bits for the rotational pair and the decimal value of the correction in Skein-
256. The middle 58 bits of Ki coincide (regarding rotation) in K and its rotated counterpart.

K0 K1 K2 K3 K4

K 0111..10 0100..11 0011..10 0000..11 0101..01←−
K + e 11..0011 00..1010 11..0110 00..1001 01..0011

First we divide the cipher into pairs of consecutive rounds. There are two types of
such pairs. The first type is composed of pairs that do not have a subkey addition in be-
tween the rounds, e.g. rounds 5 and 6, rounds 9 and 10, etc. As such double rounds have
no operations involving counters (there is no subkey addition), we assume all the input
and output pairs of these rounds to be fully rotational. Thus their rotational probability
is fixed to 2−8.5 for Skein-256 and 2−17 for Skein-512. These number were obtained
empirically with computer experiments and in fact differ from the theoretical values of
2−6.7 (4 modular additions in the two rounds, each with rotational probability 2−1.67)
and 2−13.4 used in [22]. The second type of double rounds consists of pairs of consecu-
tive rounds of Skein-256 that have a subkey addition in between (such as rounds 3 and
4, 7 and 8, etc.). Only such pairs could be used to efficiently prune and optimize the
search, and to find the optimal values for the corrections and the key bits. The details of
our search are quite technical, and we describe them in Appendix B.

We assigned optimal values to 6 × 4 = 24 bits of the first master key, i.e. 4 MSBs and
2 LSBs of each 64-bit word, and 24 bits of the second key. The values of these bits are
given in Table 3. Once we had the optimal values of the keys and the optimal differences,
we found the probability for four consecutive rounds. We start with a random rotational
input pair of states and go through three rounds. Then we add the subkeys (with the
particular counters) and then we go for an additional round. The outcome of this testing
is given at Table C.2 of Appendix C. Thus, in Skein-256 the probability to pass rounds
2–41 (i.e. 10 key additions) is about 2−239.

Skein-512 Optimal values for the differences and some key bits can be obtained for
Skein-512 as well. A property of the double subkey rounds of Skein-512 that helps to
run the optimal search is that these two double subkey rounds can be split into two
non-overlapping halves (see Fig. C.1 in Appendix C), and then for each half the opti-
mal differences can be found independently. Note that this simply speeds up the search
for optimal differences and values, and has no impact on the actual probability of the
rotational property. Unlike Skein-256, in Skein-512 we could not find empirically the
probabilities for four consecutive rounds because they were too low. Instead, we con-
sidered each four rounds as double round + double subkey round and simply multiplied
the probabilities of these two. The values for the optimal 6 bits of each key word in
Skein-512 are given in Table 4. In Skein-512 the probability to pass rounds 0–41 is
about 2−480 (details in Table C.3).

5.3.1. Probabilities in the Khovratovich–Nikolić Analysis

The paper [22] provided the rotational analysis of Threefish on up to 42 rounds. The
probability estimates were based on several independence assumptions, which must be
corrected as follows:
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Table 4. Pre-fixed values of key bits and correction in Skein-512.

K0 K1 K2 K3 K4 K5 K6 K7 K8

K 0111..10 0100..01 0011..10 0000..10 0111..01 0000..01 0011..10 0000..10 0001..10←−
K + e 11..0011 00..0010 11..0010 00..0001 11..0011 00..0010 11..0010 00..0001 01..0101

Fig. 5. Probabilities in the inbound phase for Skein-256.

• The probability of the rotational pair propagation through double rounds without
key addition (2–3, 6–7, etc.) is not a multiplication of probabilities for a single
round. The problem is that two consecutive modular additions ((a � b) � c) have
lower rotational probability than expected. For example, the rotational probability
of one round in Skein-256 is 2−3.35 for the rotation by 2, but the probability of two
rounds is 2−8.52 instead of 22·(−3.35) = 2−6.7.

• The rotational inputs to the round before the key addition (4, 8, etc.) are not uni-
formly distributed, and this partly compensates the negative effect of the depen-
dency (see above). We note that the non-uniformity of inputs is best approximated
with restricting the two most significant bits to the value {00}.

• The propagation of the rotational inputs through the double round with the key
addition in Threefish-256, with the appearance and the correction of errors, can
not be considered as two independent events (i.e., as getting rotational pairs in the
further MIX operations independently). As a result, the probability of this event can
not be computed as a multiplication of other probabilities, and must be computed
as a single value.

5.4. Inbound Phase

We are going to produce a pair of states, keys, and tweaks, that follow the rotational
trail in rounds 43–52. The rotational probability for Skein-256 is equal to 2−79.5. We
show how to produce a conforming input with negligible amortized cost. Please refer to
Fig. 5 for more details. These rounds are chosen as the most expensive for the rotational
property, which makes the forward direction of the outbound phase very short. Never-
theless, our attack could be equally well run with the inbound phase in the middle at the
cost of a slightly increased complexity.

First, we produce 230 states that conform to the rotational trail in rounds 45–46, and
do the same for rounds 49–50. This can be done with negligible amortized cost, as we
basically need to fix a handful of bits to ensure the rotational property to propagate
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through modular additions. Then we match those states by determining the value of
subkey K12. We have already estimated that with probability 2−20.2 the resulting subkey
compensates the errors introduced by the counter. Hence we output 230+30−20 solutions
for rounds 45–50 with complexity 260.

The subkey K12 determines the words K2,K3 + T0,K4 + T1,K0. We can freely
choose K1 and K3 in order to pass through rounds 51–52 and 43–44. We note that only
the least significant bits affect the rotational property when computing rounds 51–52 in
the forward direction. Having fixed the least 20 significant bits for K1 and K3, we can
filter out the states not conforming to rounds 51–52. Hence we are left with 219 solutions
for rounds 45–52 and 80 bits of freedom left (note the pre-fixed key bit values). Now
let us note that the knowledge of K2,K3 + T0,K4 + T1,K0 and 20 LSBs of K1 and
K3 determines 20 LSBs of subkey K11. This allows to compute back the rounds 43–44
except for the modular additions in round 43. This allows to filter out almost all internal
states incompatible with the conditions of rounds 43–44, with about 5 filtering bits
left. Hence we produce 219−20+5 = 24 states that conform to all but five bit conditions
in rounds 43–52, and still have 80 bits of freedom left. Hence the amortized cost of
building a solution for the full section of rounds 43–52 is about 25. The solutions for
Skein-512 are built in a similar way. The memory consumption is about 230 Skein states.

In the next section we shall see how to further exploit the degrees of freedom we
apparently have left.

5.5. Acceleration Phase

The acceleration phase of the attack may be seen as part of the inbound phase or part of
the outbound phase. Technically, starting from here computations are done in an inside-
out manner, yet remaining degrees of freedom are used to accelerate the search for right
pairs in the outbound phase.

As soon as we get a right pair of computations for the inbound phase, we produce
many more of them from the given one as follows. We follow the simple idea of neutral
bits as e.g. applied in the analysis of SHA-0 and SHA-1 [5]. We view them as auxil-
iary path [19] (also formalized as tunnels or submarines in [25,36,42]) and apply the
differences specified by the path to the key and the tweak.

The configuration of the auxiliary path for Skein-256 is given in Table 5. We apply the
original path difference to the first execution of the pair, and the rotated path difference
to the second execution.

We consider ⊕-differences here, so we have to take into account the fact that the
tweak and the key are added by the modular addition. Therefore, we choose the differ-
ence so that the probability of observing a carry is low. However, since adjacent bits are
often neutral as well, a carry bit may still preserve the rotational pair.

In Skein-256 we take various δ and apply the resulting auxiliary path Pδ to the right
pair. We choose δ so that the differences in the subkey K12 compensate each other. Then
we check whether the modular additions in rounds 41–42 and 53–54 are not affected by
the modification. If so, we get another rotational pair for rounds 41–54.

In experiments, we found that 44 of the 64 possible individual bits that result in a
local collision of the latter type behave neutral with probability larger than 0.75 for
three rounds in forward direction and simultaneously two rounds in backwards direc-
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Table 5. Configuration of the auxiliary path for Skein-256. Ki is the ith word of the first subkey K0.

Round Subkey Master key words

43–44 K11 K1 K2 K3 K4
0 0 δ δ

Tweak words

T2 T0
0 δ

47–48 K12 K2 K3 K4 K0
0 δ δ 0

T0 T1
δ δ

51–52 K13 K3 K4 K0 K1
δ δ 0 0

T1 T2
δ 0

tion, 37 consecutive bits of those have a probability very close2 to 1. Details for this
phase will be found in Appendix in Table C.1. Overall, the results mean that every time
those four rounds in the outbound phase are computed, and the effort of those is less
than 237, the amortized effort for those computations will be negligible. If the effort for
those five rounds is more, the effect of this acceleration phase, the speed-up, still grows
roughly exponentially with the number of neutral bits used.

5.6. Degrees of Freedom Analysis

Now we discuss the following question: How often can this inbound phase be repeated?
After fixing the differences and the corrections, for Skein-256 we have 256 + 256 +
128 = 640 degrees of freedom available to perform the attack. The outbound phase
fixes 24 of the 256 bits of the key (also 12 bits of the 128-bit tweak), and in addition
may need up to 256 bits to follow the longest possible trail with high probability. What
remains is 640−36−256 = 348 degrees of freedom to be spent by the inbound and the
acceleration phase. In Skein-512 we would have 512 + 512 + 128 = 1152 degrees of
freedom, of which 1152 − 512 − 60 = 580 bits are left. If variants with less rounds are
targeted, this number is higher, as less repetitions are needed for the shorter outbound
phase. Overall, this is enough for our purposes.

5.7. Summary and Complexity Estimates

We experimentally verified the probabilities of the outbound phase, and took various
dependencies into account, and also experimentally verified parts of the acceleration
and inbound phase.

2 The fact that carries have to behave equivalently for round key additions in both forward and backward
direction puts constraints on the inbound phase which are ignored here to keep the exposition simple. This
either results in fewer degrees of freedom available to perform the exhaustive-search part of the attack, or
reduces the number of possible combinations of neutral bits, and has to be taken into account in the overall
estimate of the time complexity.
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Using the Skein-256 compression function as an example, we describe the resulting
attack. As illustrated already in Fig. 4, the 8-round inbound part is performed close to
the output of the cipher/compression function, the 4 round acceleration area (2 rounds in
each direction) surrounding it. The majority of the inside-out computation is then done
in backwards direction, covering 38 rounds for Skein-256 and 40 rounds for Skein-512.
In total this gives about 52/54 rounds. Additionally, early stopping techniques will only
require the computation of a small number of rounds in the outbound part before another
trial is made, saving a factor of the computational complexity that is in the order of the
number of rounds.

We estimate the amortized cost for the rounds covered by inbound and acceleration
phase for both Skein-256 and Skein-512 by a computation that is equivalent to a single
computation of the compression function, as there are plenty of neutral bits that cover
up costs in solving the right pairs in those inner rounds. In Skein-256, we will spend
2239 computations in the outbound+acceleration phases to find 2239 starting pairs for the
outbound phase. One such pair will pass this phase with probability close to one. There-
fore with an effort that is roughly equivalent to 2239 calls to the compression function
of Skein-256 we can find one rotational pair of messages and chaining values (with cor-
rections) that produces a rotational pair of updated chaining values. To produce 26 such
pairs, i.e. to find 26-rotational collisions in Skein-256, we only need 26+239 = 2245 calls.

On the other hand, in an ideal function one has to make at least 22.5 · 2
64−1
64+1 256 ≈ 2250

calls (see Lemma 1).
Similarly, for the compression function of Skein-512, we can create 26-rotational

collision set with 26+480 = 2486 compression function calls, while an ideal function

would require 22.5 · 2
63
65 512 ≈ 2499 calls.

5.8. Probabilities with the New Key Schedule

Skein v1.3 differs from v1.2 in the constant used to generate the subkey word KNw . As
a result, rotated key will not generate rotated subkeys: every fifth word in the subkey
sequence would violate the rotational property. As a result, most of key addition lay-
ers would generate additional rotational errors. We expect those errors to vanish with
probability not higher than 2−32, which subtracts at least 20 rounds from the Skein-
256 attack, and 15 rounds from the Skein-512 attack, ignoring possible troubles in the
inbound phase. As a result, we do not pursue our attacks for the new version of Skein.

6. Conclusion and Future Work

Our results do not threaten the practical use of full-round Skein or Threefish. However,
we show that reduced versions of these constructions behave in a non-random manner
in settings where all or most of the inputs could be chosen, and this holds for many
more rounds than initially expected. We argue that variants of Threefish reduced from
72 to about 52/54 rounds, in the chosen-key-and-tweak model, do not behave like an
ideal cipher with respect to the rotational property we have defined. Remember that the
ideal cipher model implies that the key is freely chosen, and hence nothing is said about
the security of Threefish as a PRP. For the compression function of Skein a similar
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argument is made. Due to the finalization round, our results are unlikely to carry over
to the actual hash function.

To summarize, the following ideas and approaches lead to the improved results:

• The rebound approach as a high-level model for the attack.
• Considering rotational corrections with respect to integer addition instead of XOR.
• Based on analytic reasoning, we find an efficient search method for fixing a subset

of input bits before other phases of attacks.
• Using the degrees of freedom in the internal state to efficiently solve for the inner

8-rounds.
• Using the 8-round local collision as long-range neutral bits in an inside-out manner

to speed up the outbound phase.

It will be interesting to study how rotational properties found in other constructions,
some of which have been reported recently (for SHA-3 e.g. in [35]), can also be ampli-
fied in a way similar to what we demonstrated in this paper for Skein. Our new methods
cannot directly be used to recover key bits in Threefish in a secret-key model—this is
another open problem. The inbound and acceleration techniques we use in our analysis
are to a large extent independent of the statistical property that is meant to be pro-
duced at the inputs and outputs of Skein. Hence, in addition to the rotational attacks
described in this paper, also more traditional differential attacks aiming for collision or
near-collision attacks will be able to take advantage of those techniques.
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Appendix A. Skein Constants

The permutation π is defined as follows:

i 0 1 2 3 4 5 6 7

π(i): Threefish-256 0 3 2 1
π(i): Threefish-512 2 1 4 7 6 5 0 3
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The rotation constants Rr,j are defined as follows:

r \ j Threefish-256 Threefish-512
0 1 0 1 2 3

0 14 16 46 36 19 37
1 52 57 33 27 14 42
2 23 40 17 49 36 39
3 5 37 44 9 54 56
4 25 33 39 30 34 24
5 46 12 13 50 10 17
6 58 22 25 29 39 43
7 32 32 8 35 56 22

Appendix B. Search for Optimal Corrections

Notations Each 64-bit word w used in Skein can be seen as a concatenation of two
words w1,w2, i.e. w = w1||w2 where w1 represent the two most significant bits of w

and w2 the rest 62 bits. Obviously, this representation is chosen to comply with the
rotation amount of 2, i.e. ←−w = w2||w1. Further we use this representation to give a
definition of the words used in the double rounds (refer to Fig. B.1). In fact, the brute
force search could be performed on all possible values of the smaller 2-bit parts, and the
optimized search would even reduce the space of possible values, usually from 22 = 4
to only 2.

Further we introduce notations that follow the one used in Fig. B.1. We denote the
four words of the internal state at the beginning of the double rounds with (A,B,C,D),
and thus the rotational pair of inputs is

(A,B,C,D) = (
a1||a2, b1||b2, s1||s2, t1||t2

);
(←−
A ,

←−
B ,

←−
C ,

←−
D

) = (
a2||a1, b2||b1, s2||s1, t2||t1

)
.

The rotational pair of subkeys added after the first round is denoted as

K = [
k1||k2, k3||k4, k5||k6, k7||k8

]; ←−
K + e = [

k′
2||k′

1, k
′
4||k′

3, k
′
6||k′

5, k
′
8||k′

7

]
.

Then the corrections e = [e0, e1, e2, e3] can be computed as

ei = k′
2i+1||k′

2i+2 − k2i+1||k2i+2.

Here the tweak value is already added to the subkey K . The rotational states are sepa-
rated with a horizontal dashed line (− − − − −).

For r-bit words z1, . . . , zk we define the carry Cz1,...,zk
of the sum z1 + · · · + zk ,

i.e. Cz1,...,zk
= (z1 + · · · + zk) ≫r . We omit specifying the precise value of r (it will

be either 2 or 62), and assume it is clear from the context. Finally, we introduce the
variables r, v, D, U , x, f to maintain the 2 + 62 bit representation of the words, and
with i = i1||i2 we denote the round counter.
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Fig. B.1. Rotational pair through two rounds with key addition of Skein-256.

Reducing the Search Space Since the rotation and XOR preserve the rotational prop-
erty with probability 1, we avoid investigating these operations in the second round of
the double subkey rounds. Thus it is sufficient to obtain rotational pairs just before these
operations. To obtain such pairs for the first output (the left most word in Fig. B.1), the
following conditions have to hold:

a1 + b1 + k1 + x1 + Ca2,b2,k2,x2 = a1 + b1 + x1 + k′
1,

a2 + b2 + x2 + k2 = a2 + b2 + k′
2 + x2 + Ca1,b1,k

′
1,x1

Similarly, for the rest three outputs, we get the following conditions:

w1 + k3 + U2 + Cw2,k4 = w1 + k′
3,

w2 + k4 = w2 + k′
4 + U1 + Cw1,k

′
3
,

s1 + t1 + k5 + f1 + Cs2,t2,k6,f2 = s1 + t1 + k′
5 + f1,

s2 + t2 + k6 + f2 = s2 + t2 + k′
6 + f2 + Cs1,t1,k

′
5,f1

,

e1 + k7 + D2 + Ce2,k8,i = e1 + k′
7 + i2,

e2 + k8 + i = e2 + k′
8 + i1 + D1 + Ce1,k

′
7,i2
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The above eight equations can be reduced to

k′
1 − k1 = Ca2,b2,k2,x2 , (B.1)

k′
2 − k2 = −Ca1,b1,k

′
1,x1

, (B.2)

k′
3 − k3 = Cw2,k4 + U2, (B.3)

k′
4 − k4 = −(Cw1,k

′
3
+ U1), (B.4)

k′
5 − k5 = Cs2,t2,k6,f2 , (B.5)

k′
6 − k6 = −Cs1,t1,k

′
5,f1

, (B.6)

k′
7 − k7 = Ce2,k8,i + D2 − i2, (B.7)

k′
8 − k8 = i − i1 − (Ce1,k

′
7,i2

+ D1). (B.8)

This system gives as a hint how to choose the values of the differences for some
of the subkey bits. First note that for each carry produced from a sum of k terms
Cz1,...,zk

, holds 0 ≤ Cz1,...,zk
< k. However, the probability that a carry will take a spe-

cific value in this range when zi are randomly chosen, is not uniformly distributed.
For the carries produced from sums with four terms, the probability is highest for
the values 1 and 2. Therefore, in our optimized search, we limit the differences
k′

1 − k1, k2 − k′
2, k

′
5 − k5, k

′
6 − k6, to these two values only.

Based on Fig. B.1. the variables U1, U2, D1, D2, are determined as follows:

U1 = (
(s2 + t2 + Cs1,t1) ⊕ v2

) − (
(s2 + t2) ⊕ v2

)
,

U2 = (
(s1 + t1 + Cs2,t2) ⊕ v2

) − (
(s2 + t2) ⊕ v2

)
,

D1 = (
(a2 + b2 + Ca1,b1) ⊕ r2

) − (
(a2 + b2) ⊕ r2

)
,

D2 = (
(a1 + b1 + Ca2,b2) ⊕ r1

) − (
(a1 + b1) ⊕ r1

)
.

It can be checked with a simple computer experiment that these variables can take only
odd values and a zero. As Cw2,k4 can be only 0 or 1, it follows that U2 can take 0,1, and
therefore k′

3 −k3 (see (B.3)) should be checked on the values 1 or 2. A similar reasoning
is applicable to the difference k4 − k′

4.
The differences k′

7 − k7, k8 − k′
8 that are left, are the only one that actually depend on

the round counter. However, since Ce2,k8,i can take the values 0,1,3 i.e. it is not fixed
but rather flexible, the whole expression Ce2,k8,i + D2 − i2, for any i2 can take the values
1,2 (recall that D2 can be any odd value). Therefore the difference k′

7 − k7 can be 1 or
2 (with probability that depends on the round counter i2). Finally, let us focus on the
difference k′

8 − k8, which is determined by the expression i − i1 − Ce1,k
′
7,i2

− D1. For a
specific counter i, when k′

7 + e2 = 0, the carry Ce1,k
′
7,i2

is fixed. Hence in this case, the
whole expression can take only one value, 1 or 2, but not both. This limits k′

8 − k8 to
only a single value that depends the value of the counter.

3 It can take the value 2 as well, but the probability is low as the counter i is only 4–5 bits.
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The Checksum Subkey Word Recall that ki, k
′
i are the values of the particular subkey

words, and not the key words. Out of the five words of the extended key (four master
key words and one additional checksum word K4), in a single subkey addition, four out
the these words are chosen. Thus if we fix all of the differences in the four the subkey
words of some particular round, then there is only one key differences left to be fixed. If
this difference is for the checksum word, then we have to be careful as K4 is determined
from the other words and therefore we would have to fix as well the values (not only
differences) of k1, k3, k5, k7 and the two least significant bits of k2, k4, k6, k8 so that the
difference in K4 will be as expected. Thus, we fix only two bits because we choose the
initial difference to be 1 or 2.

Optimal Values for Bits and Differences Now we are ready to run our optimized
search. We look for optimal values (with respect to the rotational probability) for some
bits of the first subkey as well as optimal values for the differences between the ro-
tational subkey bits. The set of possible differences has been reduced by the analysis
presented above. We try all possible values for the two most significant and the two
least significant key bits of each subkey word from the first element of the rotational
pair of subkey words, and all the corresponding values of the differences from the re-
duced search set. We keep in mind to comply with the conditions of the checksum word.
Finally, to increase the probability we fix the values of the bits 60,61 (the next two bits
after the 2 most significant bits) of the first. This results in fixing the two most signifi-
cant bits of k2, k4, k6, k8, which in return increases the probability that the carries take
the expected values.

We have tested our approach on a real double subkey rounds of Skein-256. That is, the
values were found and confirmed to be good by taking rotational input pairs of states
and rotational input pair of key words with corrections and testing the probabilities
on double subkey rounds. In some cases the theoretical probabilities did not coincide
with the empirical. This is due to the fact that there are some hidden dependencies. For
example, both U1 and k′

5 − k5 depend on s2, t2.
Initially, each double subkey round was tested independently and the optimal values

found were the best for that particular double subkey round, i.e. we found the local max-
imum. The testing was performed by taking one rotational pair of subkeys with fixed
values and differences as described above and around 220 rotational pairs of input states.
Then the global maximum was found. We would like to stress out that once this max-
imum was known, we ran additional experiments, and used the same pair of rotational
master key words for finding the probability of all of the double subkey rounds—this
ensures to a greater extent that there are no contradictions.

Appendix C. Details on the Acceleration Phase

See tables and figure.
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Table C.1. Neutral bits in the acceleration phase. These are used in an inside-out manner, with those com-
putations being eight rounds apart. A single 64-bit word is used, enumeration is from 0 (LSB) to 63 (MSB).
The probabilities are measured over 100 right pairs over two rounds backwards and three rounds forwards

direction for Skein-256.

bit prob. bit prob. bit prob. bit prob. bit prob. bit prob. bit prob. bit prob.

7–17 1.00 18 0.99 19 1.00 20 0.99 21 1.00 22 0.99 23 1.00 24 0.99
25 0.95 26 0.94 27 0.93 28 0.82 31 0.79 33 0.86 36 0.77 38–45 1.00
46 0.99 47 1.00 48 0.99 49 0.98 50 0.97 51 0.96 52 0.96 53 0.96
54 0.90 55 0.84

Table C.2. Round-by-round rotational probabilities for Skein-256.

Rounds 0–1 2–4 5–8 9–12 13–16 17–20
Prob. log2 – −15.13 −21.97 −21.84 −24.44 −24.69

Rounds 21–24 25–28 29–32 33–36 37–40 41–42s
Prob. log2 −23.83 −26.09 −23.44 −31.75 −27.09 −8.5

Rounds 43–44 45–46 47–48 49–50 51–52 53–54
Prob. log2 −20.77 −8.5 −20.22 −8.5 −21.53 −8.5

Table C.3. Round-by-round rotational probabilities for Skein-512.

Rounds 0 1–2 3–4 5–6 7–8 9–10 11–12 13–14
Prob. log2 −13.4 −17.05 −27.88 −17.05 −31.10 −17.05 −23.45 −17.05

Rounds 15–16 17–18 19–20 21–22 23–24 25–26 27–28 29–30
Prob. log2 −29.15 −17.05 −32.63 −17.05 −30.82 −17.05 −29.73 −17.05

Rounds 31–32 33–34 35–36 37–38 39–40 41–42 43–44 45–46
Prob. log2 −29.66 −17.05 −29.53 −17.05 −32.60 −17.05 −33.77 −17.05

Rounds 47–48 49–50 51–52 53–54
Prob. log2 −30.04 −17.05 −36.76 −17.05

Fig. C.1. Double subkey rounds in Skein-512 divided into two non-overlapping halves.
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[22] D. Khovratovich, I. Nikolić, Rotational cryptanalysis of ARX, in FSE’10. Lecture Notes in Computer
Science, vol. 6147 (Springer, Berlin, 2010), pp. 333–346

http://gva.noekeon.org/papers/ShabalRotation.pdf
http://cr.yp.to/snuffle.html
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://www.skein-hash.info/sites/default/files/skein1.1.pdf
http://www.skein-hash.info/sites/default/files/skein1.1.pdf
http://www.skein-hash.info/sites/default/files/skein-proofs.pdf
http://www.skein-hash.info/sites/default/files/skein-proofs.pdf
http://www.skein-hash.info/sites/default/files/skein1.2.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf


478 D. Khovratovich, I. Nikolić, and C. Rechberger
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