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Abstract. Mutual Information Analysis is a generic side-channel distinguisher that
has been introduced at CHES 2008. It aims to allow successful attacks requiring min-
imum assumptions and knowledge of the target device by the adversary. In this paper,
we compile recent contributions and applications of MIA in a comprehensive study.
From a theoretical point of view, we carefully discuss its statistical properties and re-
lationship with probability density estimation tools. From a practical point of view, we
apply MIA in two of the most investigated contexts for side-channel attacks. Namely,
we consider first-order attacks against an unprotected implementation of the DES in a
full custom IC and second-order attacks against a masked implementation of the DES
in an 8-bit microcontroller. These experiments allow to put forward the strengths and
weaknesses of this new distinguisher and to compare it with standard power analysis
attacks using the correlation coefficient.
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1. Introduction

Embedded devices such as smart cards, mobile phones, PDAs and more recently RFID
tags or sensor networks are now closely integrated in our everyday lives. These devices
typically operate in hostile environments and hence, the data they contain might be rel-
atively easily compromised. For example, their physical accessibility sometimes allows
a number of very powerful attacks against cryptographic implementations. Contrary to
classical cryptanalyses, which target the mathematical algorithms, such physical attacks
take advantage of the peculiarities of the devices on which the algorithms are running.
One of the most famous (and devastating) examples of physical attack is Differential
Power Analysis (DPA), introduced by Kocher et al. in 1998 [15]. It demonstrates that
by monitoring the power consumption of a smart card, the cryptographic keys can be
rather efficiently extracted if no special countermeasures are taken. In the last decade,
many other side-channels were exhibited, including timing [14] and electromagnetic ra-
diation [7,23]. Both the theory and practice have been improved, leading to advanced
attacks such as correlation attacks [2], template attacks [3] and higher-order attacks [18].
In addition, various types of countermeasures, such as masking [10], or hiding [34], as
well as better tools to analyze and evaluate these attacks and countermeasures [28], have
been proposed. A state-of-the-art view of power analysis attacks can be found in [17].

The core idea of differential side-channel attacks is to compare some key-dependent
predictions of the physical leakages with actual measurements, in order to identify
which prediction (or key) is the most likely to have given rise to the measurements.
In practice, it requires both to be able to model the leakages with a sufficient precision,
in order to build the predictions, and to have a good comparison tool (also called dis-
tinguisher) to efficiently extract the keys. At CHES 2008, a side-channel distinguisher
called Mutual Information Analysis (MIA) was introduced [8]. This distinguisher aims
at generality in the sense that it is expected to lead to successful attacks without requir-
ing specific knowledge of, or restrictive assumptions about the device it targets. In other
words, it can cope with less precise leakage predictions than other types of side-channel
attacks. This generality comes at the price of a limited decrease of the attack efficiency
(i.e. an increase in the number of measurements required to perform a successful key re-
covery) when the leakage model fits well enough to the physics. For example, standard
attacks using a correlation coefficient may work better if the physical leakages linearly
depend on the Hamming weight of the data processed in a device, in the presence of a
close to Gaussian noise distribution.

From a theoretical point of view, MIA can be seen as the non-profiled (or unsuper-
vised) counterpart of the information theoretic metric that has been established in [28]
as a measure of side-channel leakage. Hence, its main advantage is that it can detect
any (e.g. not only linear or monotonic) kind of data dependency in the physical mea-
surements. As a consequence, MIA is a useful tool when evaluating the security of an
implementation, in order to demonstrate its side-channel attack resistance. By contrast,
a less general distinguisher may give a false sense of security, just because it cannot
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capture the data dependencies at hand. In general, MIA is well suited for “difficult” at-
tack scenarios where standard assumptions about the leakage behavior of a device may
not hold.

Following the original work of Gierlichs et al. [8], various recent publications inves-
tigated theoretical and practical issues related to MIA. For example, [19,20,33] discuss
the statistical properties of the original distinguisher; [9,20,22,30] consider its appli-
cation to implementations protected by masking or other countermeasures; and [29]
performs exhaustive empirical comparisons of various side-channel distinguishers, in-
cluding MIA. In this paper, we compile these recent results into a single comprehensive
treatment. The rest of the paper is organized as follows. In Sect. 2, we recall the diverse
information theoretic definitions that are the theoretical background of MIA. We also
describe our model for side-channel attacks, inspired by [8,28]. In Sect. 3, we carefully
investigate the properties of MIA when applied in a univariate attack scenario. In par-
ticular, we detail the impact of a good probability density estimation when performing
the attacks. Section 4 addresses the advanced context of implementations protected with
a masking countermeasure. Finally, Sect. 5 gives our conclusions and lists some open
problems. All our analyses are backed up with experimental results. This allows us to
put forward the interesting features of MIA compared to other techniques used to attack
leaking devices.

2. Preliminaries

2.1. Information Theoretic Definitions

Entropy Let X be a random variable on a (discrete) space X , and x an element
from X . For every positive integer d , we denote by X a d-dimensional random vec-
tor (X1, . . . ,Xd) ∈ X d , and by the letter x an element from X d .

The (Shannon) entropy [4] of a random variable X on a discrete space X is a measure
of its uncertainty during an experiment. It is defined as

H[X] = −
∑

x∈X
Pr[X = x] · log

(
Pr[X = x]).

The joint entropy of a pair of random variables (X,Y ) expresses the uncertainty one
has about the combination of these variables:

H[X,Y ] = −
∑

x∈X ,y∈Y
Pr[X = x,Y = y] · log

(
Pr[X = x,Y = y]).

The joint entropy is always greater than or equal to that of either variable, with equal-
ity if and only if (iff) Y is a deterministic function of X. It is also sub-additive, and
equality occurs iff the two variables are independent:

max
(
H[X],H[Y ]) ≤ H[X,Y ] ≤ H[X] + H[Y ].
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Fig. 1. Information diagram.

Finally, the conditional entropy of a random variable X given another variable Y

expresses the uncertainty on X which remains once Y is known:

H[X|Y ] = −
∑

x∈X ,y∈Y
Pr[X = x,Y = y] · log

(
Pr[X = x|Y = y]).

The conditional entropy is always greater than or equal to zero, with equality iff X is
a deterministic function of Y . It is also at most equal to the entropy of X, and equality
occurs iff the two variables are independent:

0 ≤ H[X|Y ] ≤ H[X].
All these relations are depicted in Fig. 1. They can be straightforwardly extended to

continuous spaces by turning the previous sums into integrals. For example, in this case
the differential entropy is defined as

H[X] = −
∫

X
Pr[X = x] · log

(
Pr[X = x])dx.

The differential entropy can be negative, contrary to the discrete one. In order to eas-
ily deal with hybrid situations combining discrete and continuous variables, we denote
by Pr[X = x] the value in x of the probability density function (pdf for short) of the
continuous variable X (generally denoted as fX(x)).

Mutual Information The mutual information is a general measure of the dependence
between two random variables. It expresses the quantity of information one has obtained
on X by observing Y . On a discrete domain, the mutual information of two random
variables X and Y is defined as:

I(X;Y) =
∑

x∈X ,y∈Y
Pr[X = x,Y = y] · log

(
Pr[X = x,Y = y]

Pr[X = x] · Pr[Y = y]
)

.

It can be seen as the Kullback–Leibler divergence [4] between the joint distribution
Pr[X = x,Y = y] and the product distribution Pr[X = x] · Pr[Y = y]. The mutual in-
formation can similarly be expressed as the expected value over X of the divergence
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between the conditional probability Pr[Y = y|X = x] and the marginal probability
Pr[Y = y]:

I(X;Y) =
∑

x∈X
Pr[X = x]

∑

y∈Y
Pr[Y = y|X = x] · log

(
Pr[Y = y|X = x]

Pr[Y = y]
)

.

It is directly related to Shannon’s entropy through the following equations:

I(X;Y) = H[X] − H[X|Y ]
= H[X] + H[Y ] − H[X,Y ]
= H[X,Y ] − H[X|Y ] − H[Y |X].

The mutual information is always greater than or equal to zero, with equality iff X

and Y are independent. It is lower than the entropy of either variable, and equality only
occurs iff one variable is a deterministic function of the other. The higher the mutual
information, the stronger the dependency between X and Y :

0 ≤ I(X;Y) ≤ min
(
H[X],H[Y ]).

It can again be straightforwardly extended to the continuous case:

I(X;Y) =
∫

X

∫

Y
Pr[X = x,Y = y] · log

(
Pr[X = x,Y = y]

Pr[X = x] · Pr[Y = y]
)

dx dy.

Eventually, the mutual information between a discrete random variable X and a con-
tinuous random variable Y is defined as

I(X;Y) =
∑

x∈X
Pr[X = x]

∫

Y
Pr[Y = y|X = x] · log

(
Pr[Y = y|X = x]

Pr[Y = y]
)

dy,

or equivalently:

I(X;Y) =
∑

x∈X

∫

Y
Pr[X = x,Y = y] · log

(
Pr[X = x,Y = y]

Pr[X = x] · Pr[Y = y]
)

dy.

2.2. Pearson’s Correlation Coefficient

Pearson’s correlation coefficient is a simple measure of dependence between two ran-
dom variables X and Y . Computing it does not require to know the probability density
functions of X and Y , but it can express only the linear dependence between these
variables (whereas mutual information is able to detect any kind of dependence). It is
defined as follows:

ρ(X,Y ) = cov(X,Y )

σX · σY

= E[XY ] − E[X] · E[Y ]
σX · σY

. (1)

In this equation, cov(X,Y ) is the covariance between X and Y , E[X] denotes the
expected value of X and σX the standard deviation of X. The correlation coefficient
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satisfies the following inequality:

0 ≤ ∣∣ρ(X,Y )
∣∣ ≤ 1,

with the upper bound achieved iff Y is an affine function of X. The lower bound is
achieved if X and Y are independent but the opposite does not hold: X and Y can be
dependent and have their correlation equal to zero.

2.3. Side-Channel Cryptanalysis

In a side-channel attack, an adversary tries to recover secret information from a leak-
ing implementation, e.g. a software program or an IC computing a cryptographic al-
gorithm. As most cryptanalytic techniques, side-channel attacks are based on a divide-
and-conquer strategy. For example, in the context of a block cipher implementation, one
typically targets small pieces of the master key or a round key—called subkeys in the
following—one by one. The core idea is to compare subkey-dependent models of the
leakages with actual measurements. That is, for each subkey candidate, the adversary
builds models that correspond to the leakage generated by the encryption of different
plaintexts. Then, he evaluates which model (i.e. which subkey) gives rise to the best
prediction of the physical leakages, measured for the same set of plaintexts. As a matter
of fact and assuming that the models can be represented by a random variable X and the
leakages can be represented by a random variable Y , side-channel analysis can be seen
as the problem of detecting a dependence between these two variables.

In the rest of this paper, we consider that X is a discrete random variable and that Y

is a continuous random variable that is sampled with a sufficient resolution (e.g. using
an oscilloscope). A consequence is that we also considered pdf estimation techniques
designed for continuous distributions (in Sects. 3.2, 4.4).

The next sections of the paper analyze the attack depicted in Fig. 2, following the
models in [8] and [28]. That is, we consider a device performing several cryptographic
computations Ek(p) on different plaintexts p drawn uniformly from the text space P ,
using some fixed key k drawn from the key space K. While computing Ek(P ) (where P

is a random variable over P ), the device will handle some intermediate values (defined
as sensitive variables in [24]) that depend on the known input P and the unknown key k.
In practice, the interesting sensitive variables in a DPA attack are the ones that only
depend on an enumerable subkey s: we denote them as Vs,P . Anytime such a sensitive

Fig. 2. Schematic illustration of a side-channel key recovery attack.
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intermediate value is computed, the device generates some physical leakage, denoted as
Yk,P (that potentially depends on all the key k, including the subkey s).

In order to perform a key recovery, an adversary first has to select a sensitive value.
Given that this value only depends on a subkey s, he can then evaluate its result for
the same plaintexts that have been used to generate Yk,P and all the possible subkey
candidates j ∈ S . It gives rise to different hypothetical values Vj,P . Afterwards, the ad-
versary uses a leakage model to map these values from their original space V toward a
hypothetical leakage space X . For example, a usual model (that has been experimen-
tally confirmed in numerous works, e.g. see [17]) is to take the Hamming weight of the
values Vj,P . As a result, he obtains |S| different models denoted as Xj,P , again cor-
responding to the different subkey candidates. Eventually, he uses a distinguisher D to
compare the different models Xj,P with the actual leakages Yk,P . If the attack is suc-
cessful, the best comparison result (i.e. the highest value of the distinguisher) should be
obtained for the correct subkey candidate j = s. This procedure can then be repeated
for different subkeys in order to eventually recover the full key.

We mention that [8] uses the terms hypothetical leakages for Xj,P and observations
for Yk,P while [28] uses the terms models for Xj,P and leakages for Yk,P . We use the
latter terminology in the following, but both are equivalent.

3. Univariate MIA

3.1. Basic Principle

Following the previous informal description, the goal of a distinguisher is to detect the
dependencies between two random variables. For example, in the case of a correlation
attack [2], one simply needs to compute:

dj = ρ̂(Xj,P ,Yk,P ),

where the hat sign indicates that we use an estimator. In practice, a usual choice is
the Pearson coefficient where the expected values and standard deviations of (1) are
replaced by sample means and standard deviations. Similarly, the distinguisher used in
a mutual information analysis can be written as:

dj = Î(Xj,P ;Yk,P ).

For simplicity, we will omit the different subscripts of X and Y in the remainder of
the paper. The idea behind this latter procedure is that a meaningful partition of Y ,
where each subset corresponds to a particular model value, will relate to a side-channel
sample distribution P̂r[Y |X = x] distinguishable from the global distribution of P̂r[Y ].
The estimated mutual information will then be larger than zero. By contrast, if the key
guess is incorrect, the false predictions will form a partition corresponding to a random
sampling of Y and therefore simply give scaled images of the global side-channel pdf.
Hence, the estimated mutual information will be equal (or close) to zero in this case.

Example. Let us consider a target implementation in which the adversary receives
leakages of the form y = Hw(S(p ⊕ s))+n where Hw is the Hamming weight function,
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Fig. 3. Joint probability densities Pr[Y = y,X = x] for different model values X = x and marginal leakage
probability Pr[Y = y] densities for the correct (left) and a wrong (right) subkey hypothesis in the case of a
4-bit DPA attack.

S the 4-bit S-box of the block cipher Serpent, p a known plaintext, s the target subkey
of the attack and n is a Gaussian noise. Let us also assume that the model X corresponds
to Hw(S(p ⊕ j)). Figure 3 illustrates what happens asymptotically for the correct and
a wrong subkey hypothesis in the case of this attack. It shows the higher dependence
for the correct subkey (i.e. in the left part of the figure) than for an incorrect one, as
expected in a successful attack.

In theory, MIA tests a null hypothesis stating that the predicted leakages and the mea-
sured ones are independent if the subkey hypothesis is false. When this hypothesis is
not verified, the adversary assumes that he found the correct subkey. However, in prac-
tice there may exist certain dependencies between a wrong subkey candidate and the
actual leakages (e.g. the ghost peaks as defined in [2]). Hence, the adversary generally
selects the subkey that leads to the highest distinguisher value. The efficiency of a dis-
tinguisher can be measured with a success rate. As discussed in [28], a success can be
strictly defined as a situation in which the distinguisher reaches its maximum for the
correct subkey (as we will consider in the following), or softly defined as a situation in
which the correct subkey is highly rated by the distinguisher. Alternative metrics like the
guessing entropy can also be used to quantify how much a side-channel attack reduces
the average workload required to complete a key recovery.

3.2. PDF Estimation Tools

In order to perform a mutual information analysis, one first has to estimate the proba-
bility density function of the joint distribution Pr[X = x,Y = y] (or alternatively, the
conditional distribution Pr[Y = y|X = x] and the marginal distribution Pr[Y = y]) from
a limited number of samples. In other words, one needs to estimate the distribution of
the leakages Y for different model values X = x. The problem of modeling a probability
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density function from random samples is a well studied problem in statistics, referred to
as density estimation. Several solutions exist, ranging from simple histograms to kernel
density estimation, data clustering [35] and vector quantization [31]. The authors of [8]
used histograms for density estimation as a proof of concept for MIA. But in certain
contexts, an attack’s efficiency (regarding the number of traces needed to recover the
key) can be improved by using more advanced techniques, possibly at the cost of a
higher computation load and memory requirement.

For example, some density estimation tools have been initially suggested in [37] as
relevant to side-channel attacks and then applied to MIA in [20,33]. In this section, we
present two common ways of approximating densities, namely histograms and kernels.
We mention that these are two non-parametric methods. Since one interesting feature
of MIA is that it does not rely on particular assumptions on the leakage distributions,
it seems a reasonable starting point. However, parametric tools making more specific
assumptions (e.g. that the pdf of the leakages is a Gaussian mixture) could improve
the efficiency of the attacks in certain practically meaningful implementation contexts
[16,20].

Histograms Histogram estimation performs a partition of the samples by grouping
them into bins, as illustrated in the upper part of Fig. 4. More precisely, each bin contains
the samples of which the value falls into a certain range. The respective ranges of the
bins have equal width and form a partition of the range between the extreme values of
the samples. Using this method, one approximates a probability by dividing the number
of samples that fall within a bin by the total number of samples. For n bins denoted as
b(i), the probability is estimated as:

P̂r
[
y ∈ b(i)

] = #b(i)

q
,

where #b(i) is the number of samples in bin b(i) and q = ∑n
i=1 #b(i) is the total num-

ber of samples. The optimal choice for the bin width h is an issue in statistical theory,
as different bin sizes can have great impact on the estimation. For simple Gaussian
distributions, reasonable choices are Scott’s rule [25] (h = 3.49 × σ̂ (Y ) × q−1/3) and
Freedman–Diaconis rule [6] (h = 2 × IQR(Y ) × q−1/3, IQR = interquartile range). In
side-channel attacks, and in particular for wrong key hypotheses, one has to estimate
leakage distributions which comprise multiple source distributions (or components),
e.g. Gaussian mixtures. While the above mentioned methods can yield acceptable re-
sults in practice, their theoretical foundation is not necessarily provided [13], in par-
ticular since in general, the best pdf estimation does not necessarily give rise to the
best subkey discrimination. In [8] Gierlichs et al. suggest a different and simpler rule:
namely to choose the number of bins equal to the number of expected components in
the distribution, which is equal to the number of distinct model values.

Kernels Kernel density estimation is a generalization of histograms. Instead of
bundling samples together in bins, it adds (for each observed sample) a small kernel
centered on the value of the leakage to the estimated pdf, as illustrated in the lower part
of Fig. 4. The resulting estimation is a sum of small “bumps” that is much smoother



278 l. Batina et al.

Fig. 4. Histogram (top) and kernel-based (bottom) density estimations (thick line) resulting from sample
set {0,1,3,5,6,6.5}, using bin width h = 1 or Gaussian kernels (dashed lines) with bandwidth h = 0.5,
respectively.

than the corresponding histogram, which can be desirable when estimating a continu-
ous distribution. In such cases it usually provides faster convergence toward the true
distribution. Note that although this solution requires to select a kernel and a band-
width, it does not assume anything more about the estimated pdf than histograms. The
probability is estimated as:

P̂r[Y = y] = 1

qh

q∑

i=1

K

(
y − yi

h

)
,

where yi denote the leakage samples and the kernel function K is a real-valued inte-
grable function satisfying

∫ ∞
−∞ K(u)du = 1 and K(u) = −K(u) for all u.

Some kernel functions are represented in Table 1. Similarly to histograms, the most
important parameter is the bandwidth h. Its optimal value is the one minimizing the
AMISE (Asymptotic Mean Integrated Squared Error), which itself usually depends on
the true density. A number of approximation methods have been developed, see [32] for
an extensive review. In our case, we used the modified rule of thumb estimator [12,27]:

h = 1.06 × min

(
σ̂ (Y ),

IQR(Y )

1.34

)
× q− 1

5 .

3.3. Experiments

The previous subsections discussed the theoretical ideas behind univariate MIA. Quite
naturally, it is also interesting to evaluate the extent up to which different pdf estima-
tions affect the efficiency of the distinguisher in practice, and how this distinguisher
relates to standard attacks using the correlation coefficient. For this purpose, we carried
out attacks based on the traces that are publicly available in the DPA Contest [5]. We
computed the first-order success rate as function of the number of traces available to
the adversary (i.e. encrypted messages), over 1000 independent experiments, using a
Hamming distance leakage model.
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Table 1. Some kernel functions. i is defined as i(u) = 1 if |u| ≤ 1, 0 otherwise.

Fig. 5. Success rate of different attacks against the first DES S-box in the DPA Contest.

The results of these experiments are represented in Fig. 5, from which we can extract
two main observations. First, classical attacks using the correlation coefficient are the
most efficient in this simple context, where the models closely fit to the physics. Second,
the choice of a pdf estimation tool has a significant impact on the efficiency of MIA.
In particular, the kernel-based MIA seems to perform better than its counterpart using
histograms (we used 5-bin histograms, following [8]). This can be explained by the
large amount of algorithmic noise that is present in the DPA contest measurements
(i.e. the targeted architecture contains a 64-bit register for the state, while the attack
merely targets four of them). More examples of univariate MIA experiments can be
found in [19,29].

Note that when applying a kernel-based MIA, it is only the distribution of the con-
tinuous random variable Y that is approximated with kernels. For the discrete random
variable X, we directly estimated the probability mass function. In other words, we
estimated one conditional distribution of Y per model value X = x.
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3.4. Discussion

Comparison with Correlation Attacks As originally advertised by Gierlichs et al. [8],
MIA is a generic distinguisher in the sense that it can capture any type of dependency
between an adversary’s models and actual physical leakages. For example, a successful
correlation attack requires that ρ̂(Xs,Y ) > ρ̂(Xj ,Y ), for all subkey candidates j ∈ S
and j �= s. A successful MIA rather requires that Î(Xs;Y) > Î(Xj ;Y). Hence, there
are situations where correlation attacks are unable to exploit the leakage dependencies
while MIA can still succeed. However, the fact that MIA can exploit more general de-
pendencies is not directly related to the efficiency of the distinguisher (i.e. its speed to
discriminate the correct key candidate). As illustrated in Fig. 5, if the models and the
leakages are reasonably related through a linear relation, then the correlation coefficient
can do an excellent job in characterizing this relation quite fast.

In other words, there is a tradeoff between the efficiency of an attack and the amount
of assumptions required to mount it. In this respect, even the application of MIA (that
is clearly designed to work with little assumptions) can take advantage of carefully
selected parameters, as we now detail.

Choice of the Model As for any DPA attack, the good selection of a leakage model
highly influences the efficiency of a distinguisher. The better a model relates to the
actual physics, the easier their relation will be observed through the distinguisher. As
detailed in [33], MIA better resists to model inaccuracies than, e.g. correlation attacks.
But a completely wrong model will not allow any key recovery at all, for any attack.
In fact, the problem of finding a good leakage model is similar for all distinguishers
and mainly relates to the engineering intuition about the target device. In the following,
we simply ensure that different attacks are fed with the same models, when comparing
them.

Note that regardless their connection to the physics, there are certain models that will
not be useful to the MIA distinguisher. For example, as detailed in [8,20], attacking bi-
jective S-boxes such as the AES Rijndael ones, with the identity leakage model X = V ,
will not lead to successful attacks. This is because different subkey candidates merely
lead to different permutations of a certain partition in this context. And this feature has
no effect on the conditional entropy and the corresponding mutual information. This is
in contrast with correlation attacks, which may still be able to detect a (weak) linear
dependence if it exists, but not specific to MIA: most attacks based on leakage parti-
tions suffer from the same limitation [29,33,35]. We note that if an adversary aims to
be perfectly generic and to use an identity leakage model, he can always target inter-
mediate variables that do not bijectively depend on the key for a given plaintext. This
is possible either due to the S-box properties, as in the DES, or because he decides to
leave out some bits of the target values, e.g. predicting six bits out of eight of the AES
S-box output, at the cost of a slightly increased algorithmic noise.

Choice of the Number of Bins/Bandwidth In the same line, pdf estimation tools also
require to fix, e.g. the number of bins or the kernel bandwidth. It implies a similar
tradeoff between efficiency and flexibility. The more bins (or the smaller the bandwidth),
the more precise the pdf estimation and the more dependencies can be estimated. But
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on the other hand, adding bins or reducing the bandwidth also implies the need of more
samples to reach a proper estimate of the leakage pdf, which generally slows down the
key extraction.

Summarizing, one of the main interests of MIA is that it allows running differential
side-channel attacks with minimum assumptions on the underlying hardware. This can
already be an advantage in certain univariate attacks (e.g. if very little is known about
the leakage model of an implementation protected with a dual rail logic style such as
[34], or if the exploitation of the leakage is non trivial [22]). As the next section will
underline, MIA can also be straightforwardly extended toward second- and higher-order
side-channel attacks.

4. Multivariate MIA Against Masked Implementations

Masking is one of the most widely used countermeasures to protect implementations
of block ciphers against side-channel analysis (see, e.g. [1,10]). Efficient side-channel
key recovery in the presence of masking is therefore an important issue for the security
of embedded cryptography. In this section, we explain how MIA can be generalized
to break masked implementations. For this purpose, we briefly recall the principles of
masking and higher-order side-channel attacks first. Then, the rest of the section exactly
follows the structure of the univariate case (i.e. we present the basic principle of the
attack, describe two pdf estimation tools, provide experiments and discuss our results
in Sects. 4.1 to 4.6).

4.1. The Masking Countermeasure

The basic principle of masking can be explained as follows: every sensitive variable v

occurring during the computation is randomly split into d shares v1, . . . , vd in such a
way that the following relation is satisfied for a group operation �:

v1 � v2 � · · · � vd = v. (2)

Typically, one can use the bitwise XOR or a modular addition as group operation. The
d − 1 shares v2, . . . , vd (called the masks) are randomly chosen and the last one, v1

(called the masked variable) is processed such that it satisfies (2).
Assuming that the masks are uniformly distributed, masking renders every single

intermediate value during a cryptographic computation non-sensitive. As a result, the
univariate side-channel attacks of the previous section are not possible anymore. But
the vector of leakages y1, . . . , yd resulting from the observation of the d shares is still
dependent on a sensitive variable. Consequently, masking can be overcome by higher-
order side-channel attacks that jointly exploit the leakages of several intermediate vari-
ables. The goal of such attacks is to exhibit a dependency between the d-dimensional
random vector Y associated to the shares’ leakages and the random variable Xj associ-
ated to the attacker’s models for a key guess j ∈ S . In the following, we first limit our-
selves to second-order attacks and denote the random vector Y by the couple of random
variables (Y1, Y2). The generalization to higher-orders will be discussed in Sect. 4.6.
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4.2. Second-Order Differential Power Analysis

Second-order DPA has been initially introduced by Messerges in [18] to defeat masking
in the case d = 2, using the difference-of-means test as distinguisher. It has since been
improved by using Pearson’s correlation coefficient. In order to apply such a distin-
guisher, second-order DPA first applies a combining function C to the pair of leakages
(Y1, Y2). As a result, a univariate signal that can be correlated with the adversary’s
models is obtained. The attack is then similar to the first-order case and just consists in
estimating the coefficient:

dj = ρ̂
(
X,C(Y1, Y2)

)
.

If the combining function C and the model X are well-chosen (which is briefly dis-
cussed in Sect. 4.6), then the maximum correlation should again be observed for the
correct subkey candidate j = s. Several combining functions have been proposed in the
literature. Two of them are commonly used: the product combining [1] which consists in
multiplying the two signals and the absolute difference combining [18] which computes
the absolute value of the difference between two signals. [21] confirmed the hint of [1]
that centering the leakages before combining them by product yields a better combin-
ing function in the context of a second-order DPA with leakages closely following a
Hamming weight model. The resulting normalized product combining is defined as

C(Y1, Y2) = (
Y1 − Ê[Y1]

) · (Y2 − Ê[Y2]
)
.

Although second-order attacks using the correlation coefficient do lead to successful
key recoveries, they are not optimal from an information theoretic point of view. Indeed,
the application of a combining function to the leakages inevitably leads to a loss of
information [1]. This motivates the investigation of alternative distinguishers in this
context. The next subsection details how MIA can be extended to higher-order attacks,
as independently described in [9,20].

4.3. Multivariate MIA: Basic Principle

In general, the mutual information is a multivariate operator that can easily deal with the
dependencies of multiple variables. Taking the example of two-dimensional leakages
Y = (Y1, Y2), the information diagram of Fig. 6 directly suggests that there are different
ways to detect such dependencies, including:

Fig. 6. Information diagram for second-order attacks.
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1. One can simply consider the mutual information between the models X and the
random vector Y = (Y1, Y2), just as in Sect. 2.1, i.e. compute:

I(X;Y) =
∑

x∈X
Pr[X = x]

∫

Y 2
Pr[Y = y|X = x] · log

(
Pr[Y = y|X = x]

Pr[Y = y]
)

dy.

2. Another solution is to estimate the multivariate mutual information which is an
attempt to extend the definition of mutual information to more than two variables.
It is defined as I(X;Y1;Y2) = I(Y1;Y2) − I(Y1;Y2|X), where:

I(Y1;Y2|X) =
∑

x∈X
Pr[X = x][I(Y1;Y2|X = x)

]
.

3. Eventually, it is possible to use the total correlation [36] C(X,Y1, Y2) = H[X] +
H[Y1] + H[Y2] − H[X,Y1, Y2], which can also be written as

C(X,Y1, Y2) =
∑

x∈X

∫

Y 2
Pr[x, y1, y2] · log

(
Pr[x, y1, y2]

Pr[x] · Pr[y1] · Pr[y2]
)

dy.

These definitions can be related by standard information theoretic relations:

I
(
X; (Y1, Y2)

) = I(X;Y1) + I(X;Y2) − I(X;Y1;Y2),

C(X,Y1, Y2) = I(X;Y1) + I(X;Y2) + I(Y1;Y2) − 2 · I(X;Y1;Y2).

Depending on the applications, one or another definition will be preferable. For ex-
ample, if a good masking scheme is used, the variables X and Y1 are independent (and
so are X and Y2). Hence, the contribution of the terms I(X;Y1) and I(X;Y2) will not be
useful in this context. As for the univariate case, these equations all lead to an asymp-
totically successful key recovery. But the convergence toward the correct subkey may
differ in practice, in function of the physical leakages and distinguisher selected by the
adversary. In every case, detecting the multivariate dependencies requires to estimate
one multivariate probability density function for each modeled value. The next section
briefly discusses the adaptation of the histogram and kernel methods for this purpose.

4.4. Multivariate PDF Estimation Tools

Histograms The histogram method is straightforwardly extended by partitioning the
d-dimensional sample space into bins of equal width along a given coordinate (or or-
thotopes). For each bin denoted as b(i1, . . . , id ), the probability is estimated as:

P̂r
[
y ∈ b(i1, . . . , id )

] = #b(i1, . . . , id )

q
,

where (i1, . . . , id ) denotes the index of a bin, #b(i1, . . . , id ) the number of samples in
bin b(i1, . . . , id ) and q the total number of samples available.
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Kernels The kernel density estimation method cannot be directly extended to the mul-
tivariate case in general. But different assumptions allow overcoming this issue. For
example, one can use Gaussian kernels and apply the formula:

P̂r[Y = y] = 1

q(2π)d/2|ΣYY |1/2

q∑

i=1

exp

(
− 1

2h2

(
y − yi

)′
Σ−1

YY

(
y − yi

))
,

where ΣYY is the leakage covariance matrix. Alternatively, if we additionally make the
hypothesis that the coordinates of the multivariate distribution are pairwise independent
(which is the case for masking schemes), it is then possible to use the product of any
kernel defined as:

P̂r[Y = y] = 1

q

q∑

i=1

(
d∏

j=1

K

(yj − yi
j

hj

))
.

Assuming a normal kernel and a normal distribution for the leakages with ΣYY diago-
nal, the rule-of-thumb for the bandwidth of Sect. 3.2 becomes (see [26]):

h∗
j = σ̂j q

−1/(d+4),

with σ̂j denoting the diagonal elements of the leakage covariance matrix. Alternative
bandwidth selection rules include the one of Hall et al. [11].

Example. In order to illustrate the estimation methods described above in the con-
text of MIA against masked implementations, we applied them on simulated leakage
traces corresponding to a masked AES S-box. We generated the distribution of the pairs
(y1, y2) such that y1 = Hw(S(p ⊕ k) ⊕ m) + n1 and y2 = Hw(m) + n2 for S being the
AES S-box, m being a random mask and the ni ’s being (independent) random Gaussian
noises with standard deviation 0.3. We then applied both histogram and kernel density
methods to estimate the probability density functions Pr[Y|X = x] for the Hamming
weight model X = Hw(S(P ⊕ j)) and pairs (x, j) ∈ X × K. Figures 7 and 8 show the
obtained pdfs when X = 1 for the correct subkey guess (upper part of the figure) and
for a wrong subkey guess (lower part of the figure). As expected, we observe that the
densities obtained for the correct key guess are less dissipated than for the wrong key
guess, which seem to randomly sample the leakage space.

4.5. Experiments

In order to confirm the previous theory and compare the various methods to implement
a second-order MIA, we performed different experiments against the Boolean mask-
ing scheme of [10] implemented for the DES. For simplicity, our descriptions focus on
a representative step of the encryption that consists of a single masked S-box lookup
(we targeted the first DES S-box S1). As for Figs. 7 and 8, each measurement trace is
composed of (i.e. reduced to) two leakages samples: Y2 which is generated by the ran-
dom mask, and Y1 which is generated by the masked output of the S-box. This masking
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Fig. 7. Histogram method in the context of a second-order attack against an 8-bit masked S-box, for the
correct (top) and a wrong (bottom) subkey hypothesis.

Fig. 8. Kernel method in the context of a second-order attack against an 8-bit masked S-box, for the correct
(top) and a wrong (bottom) subkey hypothesis.
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scheme ensures that the circuit never processes unmasked intermediate values. Even-
tually, our experimental setup monitors a smart card embedding an 8-bit RISC micro-
controller of which the bus was reset to zero before and after each memory access. The
power measurements represent the voltage drop across a 10Ω resistor inserted in the
circuit ground. We used this setup to analyze the following scenarios.

1. Different distinguishers. We applied the two first multivariate MIA described in
Sect. 4.3. In other words, we computed the mutual information Î(X;Y) and the
multivariate mutual information Î(X;Y1;Y2). In addition and for the reference,
we also applied a second-order attack using the normalized product combining
function described in Sect. 4.2.

2. Different leakage models. We considered both a Hamming weight leakage model
X = Hw(S1(P

′ ⊕ j)) and an identity leakage model making no assumptions at
all on the leakages X = S1(P

′ ⊕ j), where P ′ are the six known plaintext bits
entering S1 in the DES implementation.

3. Different pdf estimation tools. As for the univariate case, we directly estimated
the probability mass function of the discrete predictions X. And the pdfs of the
leakages Y were estimated both with histograms and with kernels. When using
histograms, the number of bins is chosen according to the size of the model space
X . More precisely, we used five bins when assuming a Hamming weight leakage
model and sixteen bins for the identity leakage model. In the case of kernel density
estimation, a Gaussian kernel is used and the bandwidth is selected according to
Hall’s rule.

4. Different noise levels. Eventually, we considered two noise levels. In the first one,
the device simply computes the masked 4-bit S-box outputs, leaving the four re-
maining bits in the bus datapath stuck to zero. This scenario gives rise to mea-
surements with very little noise, as acknowledged by a correlation coefficient of
approximately 0.99 when attacking an unprotected S-box. In the second scenario,
we randomly flip the remaining bits on the bus, giving rise four bits of indepen-
dent, so-called algorithmic, noise on Y1 and Y2.

The results of our experiments for these different contexts are shown in Figs. 9 and
10 from which we can extract the following observations.

Fig. 9. Low noise scenario: success rate of attacks against a masked implementation of the first DES S-box,
for Hamming weight (left) and identity (right) leakage models.
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Fig. 10. High noise scenario: success rate of attacks against a masked implementation of the first DES
S-box, for Hamming weight (left) and identity (right) leakage models.

First and quite naturally, a good leakage model helps all the attacks under investiga-
tion. In particular, since the target device of our experiments closely follows a Hamming
weight leakage model, this assumption always improves the success rate when com-
pared to the identity leakage model. Note that the impact of this good leakage model is
weaker in the case of a correlation attack, since the correlation between 4-bit values and
their Hamming weights is high (≈ 0.81).

Second, the pdf estimation tools have a strong impact on MIA’s efficiency, confirming
the univariate experiments of Sect. 3.3. Interestingly, the amount of noise in the leak-
ages can significantly influence which estimation tool is best. For example, histograms
perform well in the low noise scenario with a Hamming weight leakage model. The
reason is that the leakage probability densities then behave like a Dirac comb that is
well approximated by a 5-bin histogram. When moving to an identity leakage model
and increasing the noise, this advantage vanishes, as witnessed by the better efficiency
of the kernel estimation method in this case. In other words, kernel-MIA gains inter-
est compared to histogram-MIA, when the amount of noise in the physical leakages
increases.

In our experiments, the second-order DPA using the correlation coefficient and a
normalized product combining function is the most efficient. This observation can again
be explained by the fact that the investigated leakages have strong linear dependencies
with the Hamming weights of the target intermediated values. It is also well in line with
the corrected simulated experiments in [20] that we give in Appendix. Note that the
efficiency of MIA compared to 2nd-order DPA gets worse when increasing the noise in
our case.

Third, the best methods for applying MIA to two-dimensional leakages depends on
the physical leakages, measurement noise, models and pdf estimation method used by
the adversary. But they do not exhibit strongly different efficiencies. Overall, these
experiments also follow the analysis in [30], which shows that the efficiency of non-
profiled (second-order) side-channel distinguishers is difficult to predict and highly de-
pendent on the implementation context.
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4.6. Discussion

Generalization to Higher-Orders The previous descriptions and experiments were
given for the example of a second-order attack. But the application of MIA naturally
extends to attacks of any order (as the normalized product combining function). A third-
order example is given in [9]. Among the three methods for applying MIA to multivari-
ate contexts in Sect. 4.3, the first and third ones directly generalize to more dimensions.
Computing the multivariate mutual information can also be done, by using the following
recursion:

I(X;Y1;Y2; . . . ;Yd) = I(X;Y1;Y2; . . . ;Yd−1) − I(X;Y1;Y2; . . . ;Yd−1|Yd).

Choice of Parameters Finally, choosing the right leakage model, number of bins or
bandwidth impacts also higher-order MIA, just as discussed in Sect. 3.4 for the uni-
variate case. Additionally, MIA gets rid of the combining function which removes the
need to carefully select it. Directly characterizing the dependencies of the joint leak-
age distributions is also a better choice from an information theoretic point of view. As
a consequence, MIA appears as a promising approach for dealing with any advanced
application in which successfully attacking protected devices requires to process high
dimensional leakages.

5. Conclusion and Open Problems

A comprehensive treatment of MIA was presented. It compiles a theoretical justifica-
tion for this new distinguisher and its application to practically important scenarios.
Namely, we considered both first-order side-channel attacks against an unprotected im-
plementation and second-order side-channel attacks against a masked implementation.
Our results put forward the generic nature of MIA and its potential to apply to a large
range of cryptographic devices. They also raise several open questions, mainly related
to the exploitation of this genericness. Since the application of MIA implies to select
a number of parameters, the best selection of those parameters is an interesting scope
for further research. For example, our results show that histograms are quite efficient to
characterize low noise measurements while kernel density estimation better deals with
noisy situations. But plugging in other efficient probability density estimation tools in
the analysis of side-channel leakages, potentially taking advantage of certain reasonable
assumptions, may lead to an increased efficiency for MIA. Finally, it would be interest-
ing to apply MIA to implementation contexts where its genericness could be fully ex-
ploited, e.g. devices protected with logic styles that do not exhibit a simple (Hamming
weight or distance) leakage model.
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Appendix A. Corrected Results for the 2nd-Order Attacks in [20]

Table A.1. Second-order attack on DES S-box—Number of measurements required to achieve a success
rate of 90% according to the noise standard deviation σ .

Attack \ σ 0.5 1 2 5 7 10

2O-CPA (φ = Hw, abs. difference) 300 800 5000 200000 106+ 106+
2O-CPA (φ = Hw, norm. product) 300 400 3000 70000 300000 106+
2O-MIAH (φ = Id, Scott’s Rule) 1200 7000 75000 106+ 106+ 106+
2O-MIAH (φ = Id, Rule in [8]) 1800 7000 40000 1000000 106+ 106+
2O-MIAK (φ = Id) 600 2500 25000 600000 106+ 106+
2O-MIAH (φ = Hw, Scott’s Rule) 600 2700 34000 106+ 106+ 106+
2O-MIAH (φ = Hw, Rule in [8]) 350 1300 9000 350000 106+ 106+
2O-MIAK (φ = Hw) 300 1300 9000 n.a. n.a. n.a.
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