
J. Cryptol. (2010) 23: 546–579
DOI: 10.1007/s00145-010-9067-9

A Verifiable Secret Shuffle of Homomorphic Encryptions

Jens Groth∗
Dept. of Computer Science, University College London, London, UK

j.groth@ucl.ac.uk

Communicated by Kazue Sako

Received 21 August 2005
Online publication 14 May 2010

Abstract. A shuffle consists of a permutation and re-encryption of a set of input ci-
phertexts. One application of shuffles is to build mix-nets. We suggest an honest verifier
zero-knowledge argument for the correctness of a shuffle of homomorphic encryptions.

Our scheme is more efficient than previous schemes both in terms of communica-
tion and computation. The honest verifier zero-knowledge argument has a size that is
independent of the actual cryptosystem being used and will typically be smaller than
the size of the shuffle itself. Moreover, our scheme is well suited for the use of multi-
exponentiation and batch-verification techniques.

Additionally, we suggest a more efficient honest verifier zero-knowledge argument
for a commitment containing a permutation of a set of publicly known messages. We
also suggest an honest verifier zero-knowledge argument for the correctness of a com-
bined shuffle-and-decrypt operation that can be used in connection with decrypting
mix-nets based on ElGamal encryption.

All our honest verifier zero-knowledge arguments can be turned into honest veri-
fier zero-knowledge proofs. We use homomorphic commitments as an essential part of
our schemes. When the commitment scheme is statistically hiding we obtain statistical
honest verifier zero-knowledge arguments; when the commitment scheme is statisti-
cally binding, we obtain computational honest verifier zero-knowledge proofs.

Key words. Shuffle, Honest verifier zero-knowledge argument, Homomorphic en-
cryption, Mix-net.

1. Introduction

Shuffle A shuffle of ciphertexts e1, . . . , en is a new set of ciphertexts E1, . . . ,En with
the same plaintexts in permuted order. We will consider homomorphic public-key cryp-
tosystems in this paper. Informally,1 we have for public key pk, messages m1,m2 and
randomizers r1, r2 that the encryption function satisfies

Epk(m1m2; r1 + r2) = Epk(m1; r1)Epk(m2; r2).

1 See Sect. 2.2 for a formal definition of homomorphic encryption and a description of a few more required
properties.

∗ Part of the work done while at University of Aarhus, Cryptomathic and UCLA.

© International Association for Cryptologic Research 2010

mailto:j.groth@ucl.ac.uk

A Verifiable Secret Shuffle of Homomorphic Encryptions 547

If the cryptosystem is homomorphic, we may shuffle e1, . . . , en by selecting a permuta-
tion π ∈ Σn and randomizers R1, . . . ,Rn and setting

E1 = eπ(1)Epk(1;R1), . . . ,En = eπ(n)Epk(1;Rn).

If the cryptosystem is semantically secure, publishing E1, . . . ,En reveals nothing about
the permutation. On the other hand, this also means that nobody else can verify di-
rectly whether the shuffle is correct or incorrect. It could for instance be the case that
some ciphertexts had been substituted for other ciphertexts. Our goal is to construct effi-
cient honest verifier zero-knowledge (HVZK) arguments for the correctness of a shuffle.
These arguments will make it possible to verify that a shuffle is correct (soundness) but
will not reveal the permutation or the randomizers used in the re-encryption step (honest
verifier zero-knowledge).

Applications Shuffling is the key building block in most mix-nets. A mix-net [8] is a
multi-party protocol run by a group of mix-servers to shuffle elements so that nobody
knows the permutation linking the input and output. To mix ciphertexts we may let the
mix-servers one after another make a shuffle with a randomly chosen permutation. If
at least one mix-server is honest and chooses a random permutation, it is impossible to
link the input and output. In this role, shuffling constitutes an important building block
in anonymization protocols and voting schemes.

In a mix-net it is problematic if a mix-server does not shuffle correctly. In a voting
scheme it would for instance be disastrous if a mix-server could substitute some input
votes for other votes of its own choosing. HVZK arguments for correctness of a shuf-
fle are therefore useful to ensure that mix-servers follow the protocol. Each mix-server
can, after making a shuffle, prove to the other mix-servers or any independent verifiers
that the shuffle is correct. The soundness of the HVZK argument guarantees that the
shuffle is correct. The honest verifier zero-knowledge property ensures that the HVZK
argument does not leak the permutation, the randomizers or any other information per-
taining to the shuffle.

Shuffle arguments have also found use as sub-protocols in more complex protocols
or zero-knowledge arguments [7,26,32].

Related Work Chaum invented mix-nets in [8]. While his mix-net was based on shuf-
fling, he did not suggest any method to guarantee correctness of the shuffles. Subsequent
papers on mix-nets [6,15,22,28–31,42,46,48,52] have tried in many ways to guarantee
correctness of a shuffle, most of which have been partially or fully broken [3,39,49,53].
Remaining are suggestions [15,31,48,52], of which the first three have various draw-
backs. Desmedt and Kurosawa [15] require that at most a small fraction of the mix-
servers is corrupt. Peng et al. [48] require that a fraction of the senders producing the
input to the mix-net is honest and restrict the class of possible permutations. Jakobsson,
Juels and Rivest [31] allow mix-servers to compromise the privacy of a few senders
and/or modify a few messages although they risk being caught. Mix-nets based on shuf-
fling and zero-knowledge arguments of correctness of a shuffle do not have these draw-
backs and achieve better efficiency than [52].

Several papers have suggested zero-knowledge arguments for correctness of a shuffle,
usually shuffling ElGamal ciphertexts [16]. Sako and Kilian [50] use cut-and-choose

548 J. Groth

methods that are not very efficient. Abe [1] (corrected by Abe and Hoshino [2]) uses
permutation networks and obtains reasonable efficiency.

Currently there are two main paradigms that yield practical HVZK arguments for cor-
rectness of a shuffle. Furukawa and Sako [20] suggest a paradigm based on permutation
matrices in the common reference string model. In this type of construction, we make
a commitment to a permutation matrix, argue that we have committed to a permutation
matrix and argue that the ciphertexts have been shuffled according to this permutation.
It turns out that their protocol is not honest verifier zero-knowledge [19], but it does hide
the permutation [40]. Furukawa [17] develops the permutation matrix idea further and
obtains a practical HVZK argument for correctness of a shuffle. A couple of other works
[40,44] also use the permutation matrix idea to obtain HVZK arguments for correctness
of a shuffle of Paillier ciphertexts [45]. Following this paradigm, we also have Furukawa
et al. [17,19] suggesting arguments for correctness of a combined shuffle-and-decrypt
operation, an operation that is used in some decrypting mix-nets.

The other paradigm for verifying correctness of shuffles is due to Neff [36] and is
based on polynomials being identical under permutation of their roots. Subsequent ver-
sions of that work [37,38] correct some flaws and at the same time obtain higher effi-
ciency. Unlike the Furukawa–Sako paradigm based arguments, Neff obtains an HVZK
proof, i.e., soundness is unconditional, but the zero-knowledge property is computa-
tional. Neff’s proof does not require a common reference string, which gives an effi-
ciency advantage in the setup. For the zero-knowledge property to hold, Neff’s proof
relies on the public key of the cryptosystem specifying a group where the decision
Diffie–Hellman (DDH) assumption holds.

Our Contribution We suggest a 7-move public coin HVZK argument for the correct-
ness of a shuffle of homomorphic encryptions. We follow the Neff paradigm, basing
the shuffle on invariance of polynomials under permutation of their roots. Our HVZK
argument has a common reference string, which contains a public key for a homomor-
phic commitment scheme. If instantiated with a statistically hiding commitment, we
obtain a statistical HVZK argument for correctness of a shuffle, where soundness holds
computationally. On the other hand, if instantiated with a statistically binding commit-
ment scheme, we obtain an HVZK proof of correctness of a shuffle with unconditional
soundness but computational honest verifier zero-knowledge.

The resulting HVZK argument is the most efficient HVZK argument for correctness
of a shuffle that we know of both in terms of computation and communication. The
scheme is well suited for multi-exponentiation techniques and for randomized batch-
verification giving us even higher efficiency. Unlike the permutation-matrix based ap-
proach, it is possible to work with a short public key for the commitment scheme,
whereas key generation can be a significant cost in the permutation matrix paradigm.
The only disadvantage of our scheme is the round-complexity. We use seven rounds,
and the Furukawa–Sako paradigm can be used to obtain three-round HVZK arguments
for correctness of a shuffle.

Improving on the early version of the paper [23], we enable shuffling of most known
homomorphic cryptosystems. The size of the argument is almost independent of the
cryptosystem that is being shuffled. Furthermore, the commitment scheme we use does
not have to be based on a group of the same order as the cryptosystem.

A Verifiable Secret Shuffle of Homomorphic Encryptions 549

In Sect. 7, we give a more detailed comparison of our scheme and the other efficient
HVZK arguments for correctness of a shuffle suggested in the literature.

As a building block, we use a shuffle of known contents and a corresponding ar-
gument of correctness of a shuffle of known contents. That is, given public mes-
sages m1, . . . ,mn, we can form a commitment to a permutation of these messages
c ← comck(mπ(1), . . . ,mπ(n)). We present an argument of knowledge for c contain-
ing a permutation of these messages. This has independent interest, for instance [26]
uses an argument of correctness of a shuffle of known contents; it is not necessary to
use a full-blown argument of correctness of a shuffle.

We also show how to modify our scheme into an HVZK argument of correctness of
a shuffle-and-decrypt operation. This operation can be useful in decrypting mix-nets,
it can save computational effort to combine the shuffle and decryption operations in-
stead of performing each one of them by itself. Furukawa et al. [17,19] already suggest
arguments for the correctness of a shuffle-and-decrypt operation; however, while their
arguments hide the permutation, they are not HVZK. We obtain a more efficient argu-
ment that at the same time is HVZK.

2. Preliminaries

In this section, we define the three key concepts of this paper. We define homomor-
phic cryptosystems, since we will be shuffling homomorphic ciphertexts. We define
homomorphic commitments, since they constitute an important building block in our
schemes. Finally, we define honest verifier zero-knowledge (HVZK) arguments, since
this paper is about HVZK arguments for the correctness of a shuffle.

2.1. Notation

All algorithms in protocols in this paper are envisioned as interactive probabilistic
polynomial-time uniform Turing machines. Adversaries are modeled as interactive
nonuniform polynomial-time or unbounded Turing machines. The different parties and
algorithms get a security parameter κ as input; sometimes we omit writing this secu-
rity parameter explicitly. For an algorithm A, we write y ← A(x) for the process of
selecting randomness r and making the assignment y = A(x; r).

A function ν : N → [0;1] is negligible if for all constants δ > 0, we have for all
sufficiently large κ that ν(κ) < κ−δ . For two functions f1, f2, we write f1(κ) ≈ f2(κ)

if |f1(κ)−f2(κ)| is negligible. We define security in terms of probabilities that become
negligible as functions of a security parameter κ .

2.2. Homomorphic Encryption

We use a probabilistic polynomial-time key generation algorithm to generate a public
key and a secret key. The public key belongs to a key space Kenc and specifies a message
space Mpk , a randomizer space Rpk and a ciphertext space Cpk . It also specifies an ef-
ficiently computable encryption algorithm E : Mpk × Rpk → Cpk . The secret key spec-
ifies an efficiently computable decryption algorithm D : Cpk → Mpk ∪ {invalid}.

550 J. Groth

We require that the cryptosystem has perfect decryption such that for all (pk, sk)

output by the key generation algorithm and for all m ∈ Mpk and all r ∈ Rpk , we have

Dsk

(
Epk(m; r)) = m.

We require the message, randomizer and ciphertext spaces to be finite abelian groups
(Mpk, ·,1), (Rpk,+,0) and (Cpk, ·,1), where it is easy to compute group operations
and decide membership. The encryption function must be homomorphic:

∀pk ∈ Kenc ∀(m0, r0), (m1, r2) ∈ Mpk × Rpk :
Epk(m0m1; r0 + r1) = Epk(m0; r0)Epk(m1; r1).

In this paper, we also demand that the order of the message space is divisible only by
large prime-factors. More precisely, it must be the case that |Mpk| has no prime factors
smaller than 2�e , where �e is a security parameter specified in Sect. 2.6.

We need a root extraction property, which says that if a ciphertext raised to a non-
trivial exponent encrypts 1, then the ciphertext itself encrypts 1. More precisely, we as-
sume that there is a root extraction algorithm RootExt that given input pk ∈ Kenc,R ∈
Rpk,E ∈ Cpk, e ∈ Z such that gcd(e, |Mpk|) = 1 and Ee = Epk(1;R) outputs r ∈ Rpk

such that E = Epk(1; r). This property suffices for proving soundness, however, for
proving witness-extended emulation, we further require that the root extraction algo-
rithm runs in polynomial time.

Various cryptosystems [9,13,14,16,41,43,45] have the properties mentioned in this
section or can be tweaked into cryptosystems with these properties. In particular, Paillier
encryption [45] and ElGamal encryption [16] have the properties mentioned above and
have polynomial-time root extraction.

2.3. Homomorphic Commitment

We use a probabilistic polynomial-time key generation algorithm to generate a public
commitment key ck belonging to a key space Kcom. The commitment key specifies a
message space Mck , a randomizer space Rck and a commitment space Cck as well as
an efficiently computable commitment function comck : Mck × Rck → Cck . There is
also a probability distribution on Rck , and we write c ← comck(m) for the operation
r ← Rck ; c = comck(m; r).

We say the commitment scheme is hiding if a commitment does not reveal which
message is inside. We define this by demanding that for all nonuniform polynomial-
time adversaries A, we have

Pr
[
ck ← Kcom

(
1κ

); (m0,m1) ← A(ck); c ← comck(m0) : A(c) = 1
]

≈ Pr
[
ck ← Kcom

(
1κ

); (m0,m1) ← A(ck); c ← comck(m1) : A(c) = 1
]
,

where A outputs m0,m1 ∈ Mck . If this also holds for unbounded A, we call the com-
mitment statistically hiding.

A Verifiable Secret Shuffle of Homomorphic Encryptions 551

We say the commitment scheme is binding if a commitment can be opened in one
way only. For all nonuniform polynomial-time adversaries A, we have

Pr
[
ck ← Kcom

(
1κ

); (m0, r0,m1, r1) ← A(ck) : (m0, r0), (m1, r1) ∈ Mck × Rck

and m0 	= m1 and comck(m0, r0) = comck(m1; r1)
] ≈ 0.

If this also holds for unbounded A, we call the commitment statistically binding.
We will use commitment schemes where the message, randomizer and commitment

spaces are abelian groups (Mck,+,0), (Rck,+,0), (Cck, ·,1). We require that we can
efficiently compute group operations and decide membership. The choice of additive or
multiplicative notation is not important, what matters is just that they are abelian groups.
The commitment function must be homomorphic, i.e.,

∀ck ∈ Kcom ∀(m0, r0), (m1, r1) ∈ Mck × Rck :
comck(m0 + m1; r0 + r1) = comck(m0; r0)comck(m1; r1).

For our purposes, we use a homomorphic commitment scheme with message space
Z

n
q , where q is a prime. Other choices are possible, for instance letting q be a composite

or using homomorphic integer commitments [12,18,25] with message space Z
n. The

reason we choose q to be prime is that it simplifies the presentation slightly and is the
most realistic choice in practice. In particular, with q being prime we know that any
nontrivial degree n polynomial P(X) ∈ Zq [X] has at most n roots, which will be useful
later on.

We need a root extraction property, which says that it is infeasible to create an open-
ing of a commitment raised to a nontrivial exponent without being able to open the
commitment itself. More precisely, we assume that there is a polynomial-time root ex-
traction algorithm RootExt that given ck ∈ Kcom,M ∈ Mck,R ∈ Rck, c ∈ Cck, e ∈ Z

∗
q

so ce = comck(M;R) outputs a valid opening (m, r) of c.

Examples. As an example of a statistically hiding commitment scheme with these
properties, we offer the following variation of Pedersen’s commitment scheme [47].
The key generator selects primes q,p so p = kq + 1 and k, q are coprime. The com-
mitment key is (q,p,g1, . . . , gn,h), where g1, . . . , gn,h are randomly chosen elements
of order q . Let Gk be the multiplicative group of elements u such that uk ≡ 1 mod p.
We have Mck = Z

n
q, Rck = Gk ×Zq, Cck = Z

∗
p . To commit to (m1, . . . ,mn) ∈ Z

n
q using

randomness (u, r) ∈ Gk × Zq the committer computes c = ug
m1
1 · · ·gmn

n hr mod p. For
the statistical hiding property to hold, the committer may choose to always use u = 1
and simply pick r ← Zq at random. The binding property holds computationally as-
suming that the discrete logarithm problem is hard in the order q subgroup of Z

∗
p . The

commitment scheme is homomorphic and has the root extraction property. Our little
twist of the Pedersen commitment scheme, adding the u-factor from Gk , ensures we
do not have to worry about what happens in the order k subgroup of Z

∗
p and makes it

extremely efficient to test membership of Cck ; we just have to verify 0 < c < p.
As an example of a statistically binding commitment scheme, consider selecting

the commitment key (q,p,g1, . . . , gn,h) as described above. The message space

552 J. Groth

is Mck = Z
n
q , the randomizer space is G

n+1
k × Zq , and the commitment space is

Cck = (Z∗
p)n+1. The committer commits to (m1, . . . ,mn) ∈ Z

n
q using randomizer

(u1, . . . , un,u, r) ∈ G
n+1
k × Zq by computing the commitment c = (u1g

r+m1
1 , . . . ,

ung
r+mn
n ,uhr). The committer may choose to always use u1 = · · · = un = u = 1 and

picking r ← Zq at random when making the commitments; the hiding property then
holds computationally if the DDH problem is hard in the order q subgroup of Z

∗
p .

2.4. Special Honest Verifier Zero-Knowledge Arguments of Knowledge

Consider a pair of probabilistic polynomial-time interactive algorithms (P,V) called
the prover and the verifier. They may have access to a common reference string σ

generated by a probabilistic polynomial-time key generation algorithm K . We con-
sider a polynomial-time decidable relation R, which may depend on the common ref-
erence string σ . For a statement x, we call w a witness if (σ, x,w) ∈ R. We define
a corresponding language Lσ consisting of statements that have a witness. We write
tr ← 〈P(x),V (y)〉 for the public transcript produced by P and V when interacting on
inputs x and y. This transcript ends with V either accepting or rejecting. We some-
times shorten the notation by saying 〈P(x),V (y)〉 = b if V ends by accepting, b = 1,
or rejecting, b = 0.

Definition 1 (Argument). The triple (K,P,V) is called an argument for relation R if
for all nonuniform polynomial-time interactive adversaries A, we have

Completeness:

Pr
[
σ ← K

(
1κ

); (x,w) ← A(σ) : (σ, x,w) /∈ R or
〈
P(σ, x,w),V (σ, x)

〉 = 1
] ≈ 1.

Soundness:

Pr
[
σ ← K

(
1κ

);x ← A(σ) : x /∈ Lσ and
〈

A,V (σ, x)
〉 = 1

] ≈ 0.

We call (K,P,V) a proof if soundness holds for unbounded adversaries.

It will sometimes be convenient to restrict the class of adversaries for which we have
soundness. In that case, we say that we have soundness for a class of adversaries A D V
if the definition above holds for all A ∈ A D V .

Definition 2 (Public coin). An argument (K,P,V) is said to be public coin if the
verifier’s messages are chosen uniformly at random independently of the messages sent
by the prover.

We define special honest verifier zero-knowledge (SHVZK) [10] for a public coin
argument as the ability to simulate the transcript for any set of challenges without access
to the witness.

Definition 3 (Special honest verifier zero-knowledge). The public coin argument
(K,P,V) is called a special honest verifier zero-knowledge argument for R if there

A Verifiable Secret Shuffle of Homomorphic Encryptions 553

exists a simulator S such that for all nonuniform polynomial time adversaries A, we
have

Pr
[
σ ← K

(
1κ

); (x,w,ρ) ← A(σ);
tr ← 〈

P(σ, x,w),V (σ, x;ρ)
〉 : (σ, x,w) ∈ R and A(tr) = 1

]

≈ Pr
[
σ ← K

(
1κ

); (x,w,ρ) ← A(σ);
tr ← S(σ, x,ρ) : (σ, x,w) ∈ R and A(tr) = 1

]
.

We say that (K,P,V) has statistical SHVZK if the SHVZK property holds for un-
bounded adversaries.

We remark that a weaker definition of SHVZK arguments, where ρ is chosen uni-
formly at random instead of chosen by the adversary is common in the literature.
We also remark that there are efficient techniques to convert SHVZK arguments into
zero-knowledge arguments for arbitrary verifiers in the common reference string model
[11,21,24].

Witness-Extended Emulation The standard definition of a system for proof of knowl-
edge by Bellare and Goldreich [4] does not work in our setting since the adversary may
have nonzero probability of computing some trapdoor pertaining to the common refer-
ence string and use that information in the argument [12]. In this case, it is possible that
there exists a prover with 100% probability of making a convincing argument, where
we nonetheless cannot extract a witness.

We shall define an argument of knowledge through witness-extended emulation, the
name taken from Lindell [35]. Lindell’s definition pertains to proofs of knowledge in
the plain model, we will adapt his definition to the setting of public coin arguments in
the common reference string model. Informally, our definition says: given an adversary
that produces an acceptable argument with probability ε, there exists an emulator that
produces a similar argument with probability ε but at the same time provides a witness.

Definition 4 (Witness-extended emulation). We say that the public coin argument
(K,P,V) has witness-extended emulation if for all deterministic polynomial-time P ∗,
there exists an expected polynomial-time emulator E such that for all nonuniform
polynomial-time adversaries A, we have

Pr
[
σ ← K

(
1κ

); (x, s) ← A(σ); tr ← 〈
P ∗(σ, x, s),V (σ, x)

〉 : A(tr) = 1
]

≈ Pr
[
σ ← K

(
1κ

); (x, s) ← A(σ); (tr,w) ← E〈P ∗(σ,x,s),V (σ,x)〉(σ, x) :
A(tr) = 1 and if tr is accepting then (σ, x,w) ∈ R

]
,

where E has access to a transcript oracle 〈P ∗(σ, x, s),V (σ, x)〉 that can be rewound to
a particular round and run again with the verifier choosing fresh random coins.

We think of s as being the state of P ∗, including the randomness. Then we have
an argument of knowledge in the sense that the emulator can extract a witness when-
ever P ∗ is able to make a convincing argument. This shows that the definition implies

554 J. Groth

soundness. We remark that the verifier’s coins are part of the transcript and the prover
is deterministic. So combining the emulated transcript with σ,x, s gives us the view of
both prover and verifier and at the same time gives us the witness.

Our definition of witness-extended emulation treats both prover and verifier in a
black-box manner. The emulator therefore only has access to an oracle that gives it tran-
scripts with a deterministic prover and an honest probabilistic verifier. Treating not only
the prover but also the verifier in a black-box manner makes the Fiat–Shamir heuristic
described in the end of the section more convincing; we avoid the emulator querying
the prover on eschewed challenges or challenges with implanted trapdoors.

In the paper it will sometimes be necessary to restrict the class of adversaries for
which we have witness-extended emulation. In that case, we will say that we have
witness-extended emulation for a class of adversaries A D V if the definition above holds
for all A ∈ A D V .

Damgård and Fujisaki [12] have suggested an alternative definition of an argument of
knowledge in the presence of a common reference string. Witness-extended emulation
as defined above implies knowledge soundness as defined by them [24].

The Fiat–Shamir Heuristic The Fiat–Shamir heuristic can be used to make public coin
SHVZK arguments noninteractive. In the Fiat–Shamir heuristic the verifier’s challenges
are computed by applying a cryptographic hash-function to the transcript of the proto-
col.

Security can be argued heuristically in the random oracle model by Bellare and Rog-
away [5]. In the random oracle model, the hash-function is modeled as a random oracle
that returns a random string on each input it has not been queried before.

2.5. Setup

We will construct a 7-round public coin SHVZK argument for the relation

R = {
σ, (pk, e1, . . . , en,E1, . . . ,En), (π,R1, . . . ,Rn)

∣∣

π ∈ Σn ∧ R1, . . . ,Rn ∈ Rpk ∧ ∀i : Ei = eπ(i)Epk(1;Ri)
}
.

The relation ignores σ , so this is a standard NP-relation. For soundness and witness-
extended emulation, we restrict ourselves to the class of adversaries that produce valid
pk ∈ Kenc. For some cryptosystems, it is straightforward to check whether pk ∈ Kenc.
For ElGamal encryption, validity of a key can be decided in polynomial time. For Pail-
lier encryption, all we need to verify is that there are no small prime factors in the
modulus, which can be checked in heuristic polynomial time using Lenstra’s [33] el-
liptic curve factorization method. For other homomorphic cryptosystems, it may not be
easy to decide whether the key is correct, however, we may be working in a scenario,
where it is correctly setup. For instance, in a mix-net it may be the case that the mix-
servers use a multi-party computation protocol to generate the encryption key, and if a
majority is honest, then we are guaranteed that the key is correct.

In the SHVZK argument we will suggest, the common reference string will be gen-
erated as a public key for a homomorphic commitment scheme for n elements as de-
scribed in Sect. 2.3. Depending on the applications, there are many possible choices for

A Verifiable Secret Shuffle of Homomorphic Encryptions 555

who generates the commitment key and how they do it. For use in a mix-net, we could
for instance imagine that there is a setup phase, where the mix-servers run a multi-party
computation protocol to generate the commitment key.

It is possible to let the generation of the common reference string happen in the
protocol itself. An unconditionally binding commitment scheme will give us statistical
soundness. If we use a commitment scheme, where it is possible to verify that it is
unconditionally binding, we can let the prover generate the commitment key and obtain
an SHVZK proof. A statistically hiding commitment scheme will give us statistical
SHVZK. If it is possible to verify whether a commitment key is statistically hiding,
we can let the verifier pick the common reference string. This will give us a statistical
SHVZK argument. The statistical SHVZK argument will be public coin if a random
string can be used to specify a statistically hiding commitment key.

2.6. Parameters

The verifier will select public coin challenges from {0,1}�e . �e will be a sufficiently
large security parameter, so the risk of breaking soundness is negligible. In practice a
choice of �e = 80 suffices for interactive protocols. If we make the SHVZK argument
noninteractive using the Fiat–Shamir heuristic, �e = 160 is low but may be sufficient
for some applications. Another security parameter is �s . Here we require that for any
a of length �a , we have that d and a + d are statistically indistinguishable when d is
chosen at random from {0,1}�a+�s . This only leaks information about a in the unlikely
situation that a + d < 2�a or 2�a+�d ≤ a + d . In practice �s = 80 will be sufficient.

We set up the commitment scheme with message space Z
n
q . We demand that

2�e+�s < q . The reason for this choice is to make q large enough to avoid overflows
that require a modular reduction in Sects. 4 and 5. When the cryptosystem has a mes-
sage space where mq = 1 for all messages, this requirement can be waived, see Sect. 6
for details. For notational convenience, we assume that the randomizer space of the
commitment scheme is Zq , but other choices are possible.

3. SHVZK Argument for Shuffle of Known Contents

Before looking into the question of shuffling ciphertexts, we investigate a simpler prob-
lem that will be used as a building block. We have messages m1, . . . ,mn and a com-
mitment c. The problem is to prove knowledge of a permutation π and a randomizer r

such that c = comck(mπ(1), . . . ,mπ(n); r).
In this section, we present an SHVZK argument for a commitment containing a per-

mutation of a set of known messages. The main idea is from Neff [36], namely that a
polynomial p(X) = ∏n

i=1(mi − X) is stable under permutation of the roots, i.e., for
any permutation π , we have p(X) = ∏n

i=1(mπ(i) − X). We will prove knowledge of
μ1, . . . ,μn, r , so c = comck(μ1, . . . ,μn; r), and prove that

n∏

i=1

(mi − X) =
n∏

i=1

(μi − X).

Since we are working over a field Zq , this equality implies the existence of a permuta-
tion π , so μi = mπ(i).

556 J. Groth

To prove that the two polynomials are identical, we will let the verifier choose x ∈ Zq

at random and demonstrate that
∏n

i=1(mi −x) = ∏n
i=1(μi −x). A degree n polynomial

in Zq [X] can have at most n roots, so there is overwhelming probability of failing the
test unless indeed

∏n
i=1(mi − X) = ∏n

i=1(μi − X).
Using this idea, we formulate the following plan for arguing knowledge of c contain-

ing a permutation of the messages m1, . . . ,mn.

1. Use a standard SHVZK argument with randomly chosen challenge e to argue
knowledge of an opening μ1, . . . ,μn, r of c. In this SHVZK argument of knowl-
edge we get values fi = eμi + di , where di is committed to by the prover before
receiving the random e from the verifier.

2. In the first round of the argument, the verifier will choose an evaluation point
x ∈ Zq at random. Once the prover sends out the values f1, . . . , fn, it is straight-
forward to compute fi − ex = e(μi − x) + di .

3. We have
∏n

i=1(fi − ex) = en
∏n

i=1(μi − x) + pn−1(e), where pn−1(·) is a poly-
nomial of degree n − 1. We will argue that

∏n
i=1(fi − ex) = en

∏n
i=1(mi − x) +

pn−1(e). Since e is chosen at random, this means
∏n

i=1(μi − x) = ∏n
i=1(mi − x)

as we wanted.
4. To argue that

∏n
i=1(fi − ex) = en

∏n
i=1(mi − x) + pn−1(e) the prover will

send F1, . . . ,Fn of the form Fj = e
∏j

i=1(μi − x) + Δj to the verifier, where
Δ2, . . . ,Δn−1 are chosen by the prover before receiving the random challenge e.
We use Δ1 = d1, so F1 = f1 − ex. We also use Δn = 0, so Fn = e

∏n
i=1(mi − x),

which can be tested directly by the verifier. We will have the equalities eFi+1 =
Fi(fi+1 − ex) + fΔi

, where the fΔi
’s are linear in e. From the verifier’s point of

view these equalities imply that

en
n∏

i=1

(mi − x) = en−1Fn =
n∏

i=1

(fi − ex) − pn−1(e),

where pn−1 is a degree n − 1 polynomial in e. With overwhelming probability
over e this implies

∏n
i=1(mi − x) = ∏n

i=1(μi − x).

Theorem 1. The protocol in Fig. 1 is a 4-move public coin special honest verifier
zero-knowledge argument with witness-extended emulation for c being a commitment
to a permutation of the messages m1, . . . ,mn. If the commitment scheme is statistically
hiding, then the argument is statistical honest verifier zero-knowledge. If the commit-
ment scheme is statistically binding, then we have unconditional soundness, i.e., the
protocol is an SHVZK proof.

Proof. It is obvious that we are dealing with a 4-move public coin protocol. Perfect
completeness is straightforward to verify. Remaining is to prove special honest verifier
zero-knowledge and witness-extended emulation.

Special Honest Verifier Zero-Knowledge. Figure 2 describes how the simulator acts
given challenges x, e. The simulator does not use any knowledge of π, r . It first selects
f1, . . . , fn, z,F2, . . . ,Fn−1, zΔ and ca ← comck(0, . . . ,0) at random and then adjusts
all other parts of the argument to fit these values. In the same figure, we describe a hybrid

A Verifiable Secret Shuffle of Homomorphic Encryptions 557

Shuffle of Known Content Argument

Prover Common input Verifier
ck

c,m1, . . . ,mn

Prover’s input
π, r so c = comck(mπ(1), . . . ,mπ(n); r)

x x ← {0,1}�e�

d1, . . . , dn ← Zq, rd , rΔ ← Zq

Δ1 = d1,Δ2, . . . ,Δn−1 ← Zq,Δn = 0
ai = ∏i

j=1(mπ(j) − x), ra ← Zq

cd = comck(d1, . . . , dn; rd)

cΔ = comck(−Δ1d2, . . . ,−Δn−1dn; rΔ)

ca = comck(Δ2 − (mπ(2) − x)Δ1 − a1d2, . . . ,

Δn − (mπ(n) − x)Δn−1 − an−1dn; ra) cd, cΔ, ca �

e e ← {0,1}�e�

fi = emπ(i) + di, z = er + rd
fΔi

= e(Δi+1 − (mπ(i+1) − x)Δi − aidi+1) f1, . . . , fn, z

− Δidi+1, zΔ = era + rΔ fΔ1 , . . . , fΔn−1 , zΔ �

Check cd, ca, cΔ ∈ Cck

Check f1, . . . , fn, z, fΔ1 , . . . , fΔn−1 , zΔ ∈ Zq

Check cecd = comck(f1, . . . , fn; z)
Check ce

acΔ = comck(fΔ1, . . . , fΔn−1; zΔ)

Define F1, . . . ,Fn so
F1 = f1 − ex, eF2 = F1(f2 − ex) + fΔ1, . . . ,

eFn = Fn−1(fn − ex) + fΔn−1

Check Fn = e
∏n

i=1(mi − x)

Fig. 1. Argument of knowledge of shuffle of known content.

simulator that acts just as the simulator except when generating ca . In the generation
of ca , the hybrid simulator does use knowledge of π to compute di, ai,Δi values. It
then produces ca in the same manner as a real prover would do it using those values.
Finally, for comparison, we have the real prover’s protocol in an unordered fashion.

The simulated argument and the hybrid argument differ only in the content of ca .
The hiding property of the commitment scheme therefore gives us indistinguishabil-
ity between hybrid arguments and simulated arguments. If the commitment scheme is
statistically hiding, then the arguments are statistically indistinguishable.

A hybrid argument is statistically indistinguishable from a real argument. The only
difference is that a real prover starts out by picking di,Δi, rd , rΔ at random; how-
ever, in both protocols this gives us fi, fΔi

, z, zΔ randomly distributed over Zq .

558 J. Groth

Simulator Hybrid Prover

fi ← Zq , z ← Zq fi = emπ(i) + di , z = er + rd
Fi ← Zq , zΔ ← Zq Fi = eai + Δi , zΔ = era + rΔ
F1 = f1 − ex, Fn = e

∏n
i=1(mi − x)

fΔi
= eFi+1 − Fi(fi+1 − ex)

di = fi − emπ(i) di ← Zq , rd ← Zq

ai = ∏i
j=1(mπ(j) − x),ra ← Zq

Δi = Fi − eai Δi ← Zq , rΔ ← Zq

ca ← comck(0, . . . ,0) ca ← comck(Δ2 − (mπ(2) − x)Δ1 − a1d2, . . . ,

Δn − (mπ(n) − x)Δn−1 − an−1dn; ra)
cd = comck(f1, . . . , fn; z)c−e cd = comck(d1, . . . , dn; rd)

cΔ = comck(fΔ1 , . . . , fΔn−1; zΔ)c−e
a cΔ = comck(−Δ1d2, . . . ; rΔ)

Fig. 2. Simulation of known shuffle argument.

Given these values, the commitment ca is computed in the same way by both pro-
tocols. Moreover, in both protocols we get cd = comck(d1, . . . , dn; rd) and cΔ =
comck(−Δ1d2, . . . ,−Δn−1dn; rΔ).

Witness-Extended Emulation. The emulator E first runs 〈P ∗,V 〉 to get a transcript tr.
This is the transcript E will output, and by construction it is perfectly indistinguishable
from a real SHVZK argument. If the transcript is rejecting, then E halts with (tr,⊥).
However, if the transcript is accepting, then E must try to find a witness w = (π, r).

To extract a witness E rewinds and runs 〈P ∗,V 〉 again on the same challenge x until it
gets another acceptable argument. Call the two arguments (x, cd, cΔ, ca, e, f1, . . . , fn,

z, fΔ1 , . . . , fΔn−1 , zΔ) and (x, cd, cΔ, ca, e
′, f ′

1, . . . , f
′
n, z

′, f ′
Δ1

, . . . , f ′
Δn−1

, z′
Δ). We

have cecd = comck(f1, . . . , fn; z) and ce′
cd = comck(f

′
1, . . . , f

′
n; z′). This gives us

ce−e′ = comck(f1 − f ′
1, . . . , fn − f ′

n; z − z′). If e 	= e′, E can run the root extraction
algorithm to get an opening μ1, . . . ,μn, r of c.

Let us at this point argue that E runs in expected polynomial time. If P ∗ is in a
situation where it has probability ε > 0 of making the verifier accept on challenge x,
then the expected number of runs to get an acceptable transcript is 1

ε
. Of course, if P ∗

fails, then we do not need to sample a second run. We therefore get a total expectation
of two queries to 〈P ∗,V 〉. A consequence of E using an expected polynomial number
of queries to 〈P ∗,V 〉 is that there is only negligible probability of ending in a run where
e′ = e or any other event with negligible probability occurs, e.g., breaking the binding
property of the commitment scheme. Therefore, with overwhelming probability, either
we do not need a witness or we have found an opening μ1, . . . ,μn, r of c.

We need to argue that the probability for extracting an opening of c such that
μ1, . . . ,μn is not a permutation of m1, . . . ,mn is negligible. Assume that there is a
constant δ > 0 such that P ∗ has more than κ−δ chance of producing a convincing
argument. In that case we can run it with a random challenge x and rewind to get
three random challenges e, e′, e′′. With probability at least κ−3δ , P ∗ manages to cre-
ate accepting arguments on all three of these challenges. Call the first two arguments
(x, cd, cΔ, ca, e, f1, . . . , fn, z, fΔ1 , . . . , fΔn−1 , zΔ) and (x, cd, cΔ, ca, e

′, f ′
1, . . . , f

′
n,

z′, f ′
Δ1

, . . . , f ′
Δn−1

, z′
Δ). We have ce

acΔ = comck(fΔ1 , . . . , fΔn−1; zΔ) and ce′
a cΔ =

A Verifiable Secret Shuffle of Homomorphic Encryptions 559

comck(f
′
Δ1

, . . . , f ′
Δn−1

; z′
Δ), so ce−e′

a = comck(fΔ1 −f ′
Δ1

, . . . , fΔn−1 −f ′
Δn−1

; zΔ −z′
Δ).

With overwhelming probability e 	= e′, so we can extract an opening α1, . . . , αn−1, ra
of ca . This also gives us an opening δ1, . . . , δn−1, rΔ of cΔ, where δi = fΔi

− eαi, rΔ =
zΔ − era . Since we know an opening of c, we also have an opening d1, . . . , dn, rd of cd

with di = fi − eμi, rd = z − er .
Consider now the third challenge e′′. Since we know openings of c, cd , we have

f ′′
i = e′′μi + di , and since we know openings of ca, cΔ, we have f ′′

Δi
= e′′αi + δi . From

the way we build up F ′′
n and from F ′′

n = e′′ ∏n
i=1(mi − x) we deduce

(
e′′)n

n∏

i=1

(mi − x) = (
e′′)n−1

F ′′
n = (

e′′)n
n∏

i=1

(μi − x) − pn−1
(
e′′),

where pn−1(·) is a polynomial of degree n − 1. Since e′′ is chosen at random, this
implies with overwhelming probability that

∏n
i=1(μi − x) = ∏n

i=1(mi − x).
We now have two polynomials evaluating to the same value in a random point x. With

overwhelming probability, they must be identical. This in turn implies that μ1, . . . ,μn

is a permutation of m1, . . . ,mn as we wanted to show.
If the commitment scheme is statistically binding, then even an unbounded adversary

is stuck with the values that have been committed to, without any ability to change them.
With x, e chosen at random by the verifier, even an unbounded adversary has negligible
chance of cheating. �

4. SHVZK Argument for Shuffle of Homomorphic Encryptions

A set of ciphertexts e1, . . . , en can be shuffled by selecting a permutation π , selecting
randomizers R1, . . . ,Rn, and setting E1 = eπ(1)Epk(1;R1), . . . ,En = eπ(n)Epk(1;Rn).
The task for the prover is to argue that some permutation π exists so that the plaintexts
of E1, . . . ,En and eπ(1), . . . , eπ(n) are identical.

As a first step, we think of the following naïve proof system. The prover informs
the verifier of the permutation π . The verifier picks at random t1, . . . , tn and computes∏n

i=1 e
ti
i and

∏n
i=1 E

tπ(1)

i . Finally, the prover proves that the two resulting ciphertexts
have the same plaintext. Unless π really corresponds to a pairing of ciphertexts with
identical plaintexts, the prover will be caught with overwhelming probability.

An obvious problem with this idea is the lack of zero-knowledge. We remedy it in
the following way [20,36]:

1. The prover commits to the permutation π as c ← comck(π(1), . . . , π(n)). He
makes an SHVZK argument of knowledge of c containing a permutation of the
numbers 1, . . . , n. At this step, the prover is bound to some permutation he knows,
but the permutation remains hidden.

2. The prover creates a commitment cd ← comck(−d1, . . . ,−dn) to random di ’s.
The verifier selects at random t1, . . . , tn, and the prover permutes them according
to π . The prover will at some point reveal values fi = tπ(i) + di , but since the di ’s
are random, this does not reveal the permutation π . As part of the argument, we
will argue that the fi ’s have been formed correctly, using the same permutation π

that we used to form c.

560 J. Groth

3. Finally, the prover uses standard SHVZK arguments of knowledge of multiplica-
tive relationship and equivalence to show that the products

∏n
i=1 e

ti
i and

∏n
i=1 E

fi

i

differ only by a factor Ed = ∏n
i=1 E

di

i Epk(1;R) for some randomizer R without
revealing anything else. This last step corresponds to carrying out the naïve proof
system in zero-knowledge using a secret permutation π that was fixed before re-
ceiving the ti ’s.

To carry out this process we need to convince the verifier that c and f1, . . . , fn con-
tain respectively 1, . . . , n and t1, . . . , tn permuted in the same order. It seems like we
have just traded one shuffle problem with another. The difference is that the supposed
contents of the commitments are known to both the prover and the verifier, whereas we
cannot expect either to know the contents of the ciphertexts being shuffled. The SHVZK
argument of knowledge for a shuffle of known content can therefore be used.

To see that the pairs (i, ti) match, we let the verifier pick λ at random and let the
prover demonstrate that cλcdcomck(f1, . . . , fn;0) contains a shuffle of λ + t1, . . . ,

λn+ tn. If a pair (i, ti) does not appear in the same spot in respectively c and f1, . . . , fn,
then with high likelihood over the choice of λ the shuffle argument will fail.

Theorem 2. The protocol in Fig. 3 is a 7-move public coin special honest verifier
zero-knowledge argument for correctness of a shuffle of homomorphic ciphertexts. If
the cryptosystem has polynomial-time root extraction, then the argument has witness-
extended emulation. If the commitment scheme is statistically hiding, then the argument
is statistical SHVZK. If the commitment scheme is statistically binding, then the scheme
is an SHVZK proof of a shuffle.

Proof. Using the 4-move argument of knowledge for shuffle of known contents from
this paper the protocol is a 7-move public coin protocol. With sufficiently large �s , we
have with overwhelming probability that 2�e ≤ tπ(i) + di < 2�e+�s < q when added as
integers. With this in mind, it is straightforward to verify completeness. It remains to
prove that we have special honest verifier zero-knowledge and witness-extended emu-
lation.

Special Honest Verifier Zero-Knowledge. Given challenges t1, . . . , tn, λ and chal-
lenges for the known shuffle, we wish to simulate a transcript that is indistinguish-
able from a real argument. We describe in Fig. 4 a simulator that simulates the ar-
gument without access to the permutation π or the randomizers R1, . . . ,Rn. It picks
c, cd, f1, . . . , fn,Z at random and fits the other parts of the protocol to these values. In
the same figure, we also include a hybrid argument that works like the simulator except
for generating c, cd correctly using knowledge of π . Finally, we include for comparison
the real prover in a somewhat unordered description.

Simulated arguments and hybrid arguments only differ in the content of c and cd .
The hiding property of the commitment scheme therefore implies indistinguishability
between simulated arguments and hybrid arguments. If the commitment scheme is sta-
tistically hiding, then the two types of arguments are statistically indistinguishable.

Since |q| > �e + �s , there is overwhelming probability that we do not need to make
any modular reductions when computing the di ’s and fi ’s and that the fi ’s are at
least 2�e . Under this condition, we have for the prover that

∏n
i=1 E

−di

i Epk(1;Rd) =

A Verifiable Secret Shuffle of Homomorphic Encryptions 561

Shuffle of Homomorphic Ciphertexts

Prover Common input Verifier
ck

pk, e1, . . . , en,E1, . . . ,En

Prover’s input
π,R1, . . . ,Rn so Ei = eπ(i)Epk(1;Ri)

r ← Zq , Rd ← Rpk

d1, . . . , dn ← {0,1}�e+�s , rd ← Zq

c = comck(π(1), . . . , π(n); r)
cd = comck(−d1, . . . ,−dn; rd)

Ed = ∏n
i=1 E

−di

i Epk(1;Rd) c, cd,Ed �

t1, . . . , tn ti ← {0,1}�e�

fi = tπ(i) + di

Z = ∑n
i=1 tπ(i)Ri + Rd f1, . . . , fn,Z �

λ λ ← {0,1}�e�

Arg(π,ρ|cλcdcomck(f1, . . . , fn;0)a

= comck(λπ(1) + tπ(1), . . . ,
� �� �

λπ(n) + tπ(n);ρ))

Check c, cd ∈ Cck,Ed ∈ Cpk

and 2�e ≤ f1, . . . , fn < 2�e+�s ,Z ∈ Rpk

Verify Arg(π,ρ)

Check
∏n

i=1 e
−ti
i

∏n
i=1 E

fi

i Ed = Epk(1;Z)

a Given m1, . . . ,mn, c, we write Arg(π,ρ|c = comck(mπ(1), . . . ,mπ(n);ρ)) as a shorthand for
carrying out the SHVZK argument in Fig. 1 of knowledge of π,ρ such that c =
comck(mπ(1), . . . ,mπ(n);ρ).

Fig. 3. Argument of shuffle of homomorphic ciphertexts.

Epk(1;Z)
∏n

i=1 e
ti
i

∏n
i=1 E

−fi

i , so there is no difference in the way Ed is computed by
respectively the hybrid simulator and the prover. The only remaining difference is that
the hybrid argument contains a simulated argument of knowledge of shuffle of known
content, whereas the prover makes a real proof. The SHVZK property of this argument
gives us indistinguishability between hybrid arguments and real arguments, and statis-
tical SHVZK gives us statistical indistinguishability.

Soundness and Witness-Extended Emulation. The proof of soundness will follow
from the proof of witness-extended emulation, so let us start with describing the emula-
tor. We first run 〈P ∗,V 〉 to give us a transcript tr = (c, cd,Ed, t1, . . . , tn, f1, . . . , fn,Z,

562 J. Groth

Simulator Hybrid Prover

c ← comck(0, . . . ,0) c ← comck(π(1), . . . , π(n))

di = fi − tπ(i) di ← Zq

cd ← comck(0, . . . ,0) cd ← comck(−d1, . . . ,−dn)

fi ← {0,1}�e+�s fi = tπ(i) + di

Z ← Rpk Rd ← Rpk,Z = ∑n
i=1 tπ(i)Ri + Rd

Ed = Epk(1;Z)
∏n

i=1 e
ti
i

∏n
i=1 E

−fi

i Ed = ∏n
i=1 E

−di

i Epk(1;Rd)

Simulate Arg(π,ρ| Arg(π,ρ|
cλcdcomck(f1, . . . , fn;0) cλcdcomck(f1, . . . , fn;0)

= comck(λπ(1) + tπ(1), . . . , = comck(λπ(1) + tπ(1), . . . ,

λπ(n) + tπ(n);ρ) λπ(n) + tπ(n);ρ)

Fig. 4. Simulation of shuffle argument.

λ, trknown), where trknown is the transcript of the 4-move argument for a shuffle of known
contents. If P ∗ fails to produce an acceptable argument, then we output (tr,⊥). On the
other hand, if the argument is acceptable, then we must extract a witness π,R1, . . . ,Rn

for E1, . . . ,En being a shuffle of e1, . . . , en. In the following we let ε be the probability
of P ∗ outputting an acceptable argument.

In order to extract a witness, we rewind 〈P ∗,V 〉 to get more transcripts with randomly
chosen challenges t1, . . . , tn, λ and use the witness-extended emulator for the argument
of shuffle of known contents to get openings of cλcdcomck(f1, . . . , fn,0). We do this
until we have obtained n + 3 acceptable arguments.

If we have probability ε for getting an acceptable transcript on random challenges
t1, . . . , tn, λ, then we expect to use n+2

ε
attempts to sample n+2 extra transcripts. Since

we only need to extract a witness when the transcript is accepting, we have an expected
number of n + 3 runs. One has to be careful when combining expected polynomial-
time algorithms, since the composed algorithm may not be expected polynomial time.
In our case, however, we will run the witness-extended emulator on transcripts that have
the same distribution as real arguments; in particular the inputs to the witness-extended
emulator will always have a size that is polynomial in the security parameter, so we do
really get expected polynomial time for the emulator.

Since the witness-extended emulator uses expected polynomial time, there is over-
whelming probability that either we do not get an acceptable argument; or alternatively,
we do get an acceptable argument, but no event with negligible probability occurs. In
particular, with overwhelming probability, we do not break the binding property of the
commitment scheme or have collisions among the randomly chosen challenges.

From the sampling process we have two acceptable arguments c, cd,Ed, t1, . . . , tn,

f1, . . . , fn,Z,λ and c, cd,Ed, t ′1, . . . , t ′n, f ′
1, . . . , f

′
n,Z

′, λ′ as well as witnesses π,ρ and
π ′, ρ′ for cλcdcomck(f1, . . . , fn;0) and cλ′

cdcomck(f
′
1, . . . , f

′
n;0) containing shuffles

of respectively λi + ti and λ′i + t ′i . This gives us

cλ−λ′ = comck

(
f ′

1 − f1 + λπ(1) + tπ(1) − λ′π ′(1) − t ′π ′(1), . . . ,

f ′
n − fn + λπ(n) + tπ(n) − λ′π ′(n) − t ′π ′(n);ρ − ρ′).

A Verifiable Secret Shuffle of Homomorphic Encryptions 563

We run the root extractor to get an opening s1, . . . , sn, r of c. Given this opening, we can
compute an opening −d1, . . . ,−dn, rd of cd with −di ≡ λπ(i)+ tπ(i) −λsi −fi mod q

and 0 ≤ di < q .
We will now argue that s1, . . . , sn is a permutation of 1, . . . , n. Suppose for some

constant δ > 0 that P ∗ has more than κ−δ chance of producing a valid argument for an
infinite number of κ ∈ N and that we are looking at such a security parameter k. In the
third transcript, we have run P ∗ with randomly chosen challenges t1, . . . , tn, λ, and from
the witness-extended emulator we get a permutation π , so λsi −di +fi = λπ(i)+ tπ(i).
Since fi is sent by the prover before receiving λ, this has negligible chance of happening
unless si = π(i). We conclude that indeed s1, . . . , sn is a permutation of 1, . . . , n. This
in turn tells us that fi ≡ tπ(i) + di mod q for the argument to go through with more than
negligible probability. Since 2�e ≤ fi < 2�+�s < q , the equality fi = tπ(i) + di holds
over the integers as well.

The last n + 1 acceptable transcripts we enumerate j = 1, . . . , n + 1. Call the
t1, . . . , tn used in the j th argument for t

(j)

1 , . . . , t
(j)
n . We have corresponding answers

f
(j)
i = t

(j)

π(i) + di,Z
(j). Consider the integer vectors (t

(j)

1 , . . . , t
(j)
n ,1) and the corre-

sponding matrix T containing these as row vectors. For any prime p dividing |Mpk|,
there is overwhelming probability that the vectors are linearly independent modulo p

since |Mpk| only has large prime divisors. This means that gcd(det(T),p) = 1 for all p

dividing the order of Mpk , and thus gcd(det(T), |Mpk|) = 1. Let A be the transposed
cofactor matrix of T ; then we have

AT = det(T)I.

Calling the entries of A for akj , we have

n+1∑

j=1

akj

(
t
(j)

1 , . . . , t
(j)
n ,1

) = (
0, . . . ,0,det(T),0, . . . ,0

)
,

where det(T) is placed in position k. For all j , the verification gives us

n∏

i=1

e
−t

(j)
i

i

n∏

i=1

E
t
(j)

π(i)

i

(
n∏

i=1

E
di

i Ed

)1

=
n∏

i=1

e
−t

(j)
i

i

n∏

i=1

E
f

(j)
i

i Ed = Epk

(
1;Z(j)

)
.

For all k = 1, . . . , n, we have

(
e−1
k Eπ−1(k)

)det(T) =
n∏

i=1

(
e−1
i Eπ−1(i)

)∑n+1
j=1 akj t

(j)
i

(
n∏

i=1

E
di

i Ed

)∑n+1
j=1 akj 1

=
n∏

i=1

e
−∑n+1

j=1 akj t
(j)
i

i

n∏

i=1

E

∑n+1
j=1 akj t

(j)

π(i)

i

(
n∏

i=1

E
di

i Ed

)∑n+1
j=1 akj 1

=
n+1∏

j=1

(
n∏

i=1

e
−t

(j)
i

i

n∏

i=1

E
t
(j)

π(i)

i

(
n∏

i=1

E
di

i Ed

)1)akj

564 J. Groth

=
n+1∏

j=1

Epk

(
1;Z(j)

)akj = Epk

(

1;
n+1∑

j=1

akjZ
(j)

)

.

We now know from the root extraction property that there exists an Rπ−1(k), so

e−1
k Eπ−1(k) = Epk(1;Rπ−1(k)), which shows that the argument is sound. If the com-

mitment scheme is statistically binding, we get statistical soundness; where we recall
that the SHVZK argument for shuffle of known content has statistical soundness when
the commitment is statistically binding. If the cryptosystem has polynomial-time root
extraction, we can run the root extractor to find the randomizers R1, . . . ,Rn, so we have
witness-extended emulation. �

We remark that the proof of soundness shows that the SHVZK argument for cor-
rectness of a shuffle is an argument of knowledge of π . However, we may not
have full witness-extended emulation where we also learn the rerandomization factors
R1, . . . ,Rn, unless the cryptosystem has polynomial-time root extraction.

5. Combining Shuffling and Decryption

For efficiency reasons, it may be desirable to combine shuffling and decryption into
one operation. Consider for instance the case where we are using ElGamal encryption
and share the secret key additively between the mix-servers. Instead of first mixing
and then threshold decrypting, it makes sense to combine the shuffle operations and
the decryption operations. This saves computation, and each mix-server only has to be
activated once instead of twice. While restricting the choice of parameters, namely we
must use an ElGamal like cryptosystem, and we must share the secret key additively
between all the mix-servers, this is a realistic real-life scenario.

The public key is of the form (g, y1, . . . , yN), where yj = gxj , and xj is the secret key
of server j . Inputs to the mix-net are ElGamal encryptions under the key (g,

∏N
j=1 yj)

of the form (gr , (
∏N

j=1 yj)
rm). The first server shuffles and decrypts with respect to its

own key. This leaves us with encryptions under the key (g,
∏N

j=2 yj) that the second
server can shuffle and decrypt, etc. Once the last server shuffles and decrypts, we get
the plaintexts out.

Server s gets input ciphertexts of the form (u1, v1), . . . , (un, vn) under the key
(g,

∏N
j=s yj). It selects a permutation π at random, as well as randomizers R1, . . . ,Rn.

The output is (U1,V1), . . . , (Un,Vn) under the key (g,Y = ∏N
j=s+1 yj), where

Ui = gRi uπ(i) and Vi = YRi vπ(i)u
−xs

π(i).

What we need is an SHVZK argument of knowledge for correctness of such a shuffle-
and-decrypt operation.

A couple of papers have already investigated this problem [17,19], but their argu-
ments are not SHVZK. Instead, they use a weaker security notion saying that an adver-
sary does not learn anything about the permutation. We will suggest an argument that

A Verifiable Secret Shuffle of Homomorphic Encryptions 565

is SHVZK and at the same time is more efficient in terms of computation and commu-
nication but has worse round-complexity. Neff [38] has independently of this work also
investigated the combination of shuffle and decryption operations.

The argument is essentially the same as the SHVZK argument for correctness of a
shuffle of ciphertexts; we have written out everything using the ElGamal notation in
this section. The only difference from the shuffle argument is that we add some extras
to also argue correctness of the partial decryption. We prove knowledge of the secret
key xs and argue that it has been used to make partial decryptions. For this purpose, the
prover sends an initial message D = gdx in the first round. Later, the prover will receive
a challenge e and respond with f = exs + dx . We use the hidden xs in f to ensure
that u

xs

i is removed as intended from the output ciphertexts. The e-factor in f and the
dx -part that is used to hide xs forces us to add some extra elements to the protocol.

The full argument can be seen in Fig. 5. The cryptosystem is ElGamal encryption
over a group of prime order Q. We include in the common reference string a public key
CK for an additional homomorphic commitment scheme COMCK , which has ZQ as
message space. For notational convenience, we assume that the randomizers for these
commitments are chosen at random from ZQ. The commitment key CK includes a
generator g for the group GQ of order Q over which we do the ElGamal encryption.
The ElGamal encryption key contains ys and Y from GQ.

Theorem 3. The protocol in Fig. 5 is a 7-move public coin special honest verifier zero-
knowledge argument for correctness of a shuffle and partial decryption of ElGamal ci-
phertexts with witness-extended emulation. If the commitment schemes are statistically
hiding, then the entire argument is statistical SHVZK. If the commitment schemes are
statistically binding, then the entire argument is an SHVZK proof.

Sketch of proof. Obviously, we have a 7-move public coin protocol. Completeness is
straightforward to verify.

Special Honest Verifier Zero-Knowledge. To argue special honest verifier zero-
knowledge we describe a simulator that runs without knowledge of π,R1, . . . ,Rn, xs

and also a hybrid simulator that does use knowledge of these secret values.
The simulator gets the challenges t1, . . . , tn, λ, e and challenges for the argu-

ment of knowledge of a shuffle of known contents as input. It selects at ran-
dom f1, . . . , fn ← {0,1}�e+�s ,Z,f,fV , zV ← ZQ,c, cd ← comck(0, . . . ,0),

C1 ← COMCK(0) and Vd ← GQ. It computes Ud = gZ
∏n

i=1 u
ti
i

∏n
i=1 U

−fi

i ,

U = Y eZgfV (
∏n

i=1 u
−ti
i)f (

∏n
i=1 v

−ti
i

∏n
i=1 V

fi

i Vd)−e, D = gf y−e
s and C2 =

COMCK(fV ; zV)C−e
1 . It also simulates the argument of knowledge of shuffle of known

contents.
The hybrid simulator chooses f1, . . . , fn ← {0,1}�e+�s ,Z,f,fV , zV ← ZQ. It

sets c ← comck(π(1), . . . , π(n)), di ← fi − tπ(i), cd ← comck(−d1, . . . ,−dn).
It selects rV ← ZQ and C1 ← COMCK(rV). It sets Vd = YZ(

∏n
i=1 u

−ti
i)xs ×

∏n
i=1 v

ti
i

∏n
i=1 V

−fi

i grV . As the simulator, it computes U = Y eZgfV (
∏n

i=1 u
−ti
i)f ×

(
∏n

i=1 v
−ti
i

∏n
i=1 V

fi

i Vd)−e , Ud = gZ
∏n

i=1 u
ti
i

∏n
i=1 U

−fi

i , D = gf y−e
s and C2 =

COMCK(fV ; zV)C−e
1 and simulates the argument of knowledge of shuffle of known

contents.

566 J. Groth

Shuffle and Decryption of ElGamal Ciphertexts

Prover Common input Verifier
ck,CK

pk = (Q,GQ,g, ys, Y)

(u1, v1), . . . , (un, vn)

(U1,V1), . . . , (Un,Vn)

Prover’s input
π,xs,R1, . . . ,Rn so ys = gxs and
(Ui,Vi) = (gRi uπ(i), Y

Ri vπ(i)u
−xs

π(i))

r ← Zq , Rd ← Rpk

d1, . . . , dn ← Zq, rd ← Zq

c = comck(π(1), . . . , π(n); r)
cd = comck(−d1, . . . ,−dn; rd)

Ud = ∏n
i=1 U

−di

i gRd

Vd = ∏n
i=1 V

−di

i YRd grV

dx, rV , dV , r1, r2 ← ZQ,D = gdx

C1 = COMCK(rV ; r1),C2 = COMCK(dV ; r2)c, cd,Ud,Vd,D,C1,C2�

t1, . . . , tn ti ← {0,1}�e�

fi = tπ(i) + di,Z = ∑n
i=1 tπ(i)Ri + Rd

U = gdV (
∏n

i=1 u
−ti
i)dx f1, . . . , fn,Z,U �

λ, e λ, e ← {0,1}�e�

Arg(π,ρ|cλcdcomck(f1, . . . , fn;0)

= comck(λπ(1) + tπ(1), . . . ,
� �� �

λπ(n) + tπ(n);ρ))a

f = exs + dx, fV = erV + dV , zV = er1 + r2 f,fV , zV �

Check c, cd ∈ Cck,Ud,Vd,D,U ∈ GQ and C1,C2 ∈ CCK

and 2�e ≤ f1, . . . , fn < 2�e+�s ,Z,f,fV , zV ∈ ZQ

Verify Arg(π,ρ)

Check
∏n

i=1 u
−ti
i

∏n
i=1 U

fi

i Ud = gZ

Check (
∏n

i=1 u
−ti
i)−f (

∏n
i=1 v

−ti
i

∏n
i=1 V

fi

i Vd)eU = Y eZgfV

Check ye
s D = gf and Ce

1C2 = COMCK(fV ; zV)

a Given m1, . . . ,mn, c, we write Arg(π,ρ|c = comck(mπ(1), . . . ,mπ(n);ρ)) as a shorthand for
carrying out the SHVZK argument in Fig. 1 of knowledge of π,ρ such that c =
comck(mπ(1), . . . ,mπ(n);ρ).

Fig. 5. Argument of shuffle and decryption of ElGamal ciphertexts.

A Verifiable Secret Shuffle of Homomorphic Encryptions 567

Let us argue that simulated arguments and hybrid arguments are indistinguishable. In
both distributions, Vd is random. In the simulation it is random because Vd is selected
at random; in the hybrid argument it is random because of the grV factor. The only dif-
ference between the two types of arguments is the way we compute the commitments
c, cd,C1. In the simulated argument we compute c, cd,C1 as commitments to 0, while in
the hybrid argument we compute them as commitments to respectively π(1), . . . , π(n),
−d1, . . . ,−dn and rV . The hiding properties of the two commitment schemes give us
indistinguishability between simulated arguments and hybrid arguments. Furthermore,
if both commitment schemes are statistically hiding, then we have statistical indistin-
guishability between simulated arguments and hybrid arguments.

Next, we argue that hybrid arguments and real arguments are indistinguishable. First,
we note that f1, . . . , fn,Z,f,fV , zV have the same distribution in the two arguments.
Let r1 be the randomness used in forming C1. In the hybrid argument we can compute
di = fi − tπ(i), dV = fV − erV , r2 = zV − er1,Rd = Z − ∑n

i=1 tπ(i)Ri, dx = f − exs .
These values have the same distribution as they would have if chosen by a real prover.
Furthermore, it is straightforward to verify that c, cd,Ud,Vd,D,U,C1,C2 attain the
same values as computed by a real prover. The only difference between hybrid argu-
ments and real arguments is therefore in the simulation of the argument of knowledge
of a shuffle of known contents. The SHVZK property of this argument of shuffle of
known contents implies indistinguishability between hybrid arguments and real argu-
ments. Moreover, if the argument of shuffle of known contents is statistical SHVZK,
then hybrid arguments and real arguments are statistically indistinguishable.

Witness-Extended Emulation. As in the proof of Theorem 2, we use an emulator that
runs 〈P ∗,V 〉 and outputs the transcript. In case the argument is acceptable the emulator
rewinds and runs 〈P ∗,V 〉 until it has n + 3 acceptable arguments. As in the proof of
Theorem 2, we can prove that this emulator runs in expected polynomial time.

As in the proof of Theorem 2, we can extract openings of c and cd . As argued there,
we can find a permutation π , so c contains π(1), . . . , π(n). We call the opening of cd

for −d1, . . . ,−dn. This gives us f1, . . . , fn of the form fi = tπ(i) + di .
From the equations ye

s D = gf and ye′
s D = gf ′

we get ye−e′
s = gf −f ′

. If e 	= e′, we
then have ys = gxs , where xs = (f −f ′)(e − e′)−1. This also means that D = gf y−e

s =
gf −exs , so D = gdx , where dx = f −exs . We now have π and xs but still need to extract
the randomizers R1, . . . ,Rn.

We also have Ce
1C2 = COMCK(fV ; zV) and Ce′

1 C2 = COMCK(f ′
V ; z′

V), so Ce−e′
1 =

COMCK(fV − f ′
V ; zV − z′

V). By raising both sides to (e − e′)−1 mod Q we perform
a root extraction and get an opening rV , r1 of C1. From the opening of C1, we can
compute an opening dV , r2 of C2. With overwhelming probability the prover must use
fV = erV + dV when forming acceptable arguments.

As in the proof of Theorem 2, we form the matrix T containing challenge rows of
the form (t

(j)

1 , . . . , t
(j)
n ,1) for j = 1, . . . , n + 1. Calling the entries of the transposed

cofactor matrix akj , we have

n+1∑

j=1

akj

(
t
(j)

1 , . . . , t
(j)
n ,1

) = (
0, . . . ,0,det(T),0, . . . ,0

)
,

where det(T) is placed in position k.

568 J. Groth

For all j , the verification gives us

n∏

i=1

u
−t

(j)
i

i

n∏

i=1

U
t
(j)

π(i)

i

(
n∏

i=1

U
di

i Ud

)1

=
n∏

i=1

u
−t

(j)
i

i

n∏

i=1

U
f

(j)
i

i Ud = gZ(j)

.

For all k = 1, . . . , n, we have

(
u−1

k Uπ−1(k)

)det(T) =
n∏

i=1

(
u−1

i Uπ−1(i)

)∑n+1
j=1 akj t

(j)
i

(
n∏

i=1

U
di

i Ud

)∑n+1
j=1 akj 1

=
n∏

i=1

u
−∑n+1

j=1 akj t
(j)
i

i

n∏

i=1

U

∑n+1
j=1 akj t

(j)

π(i)

i

(
n∏

i=1

U
di

i Ud

)∑n+1
j=1 akj 1

=
n+1∏

j=1

(
n∏

i=1

u
−t

(j)
i

i

n∏

i=1

U
t
(j)

π(i)

i

(
n∏

i=1

U
di

i Ud

)1)akj

=
n+1∏

j=1

gZ(j)akj = g
∑n+1

j=1 akj Z(j)

.

Define Rk = (
∑n+1

j=1 akjZ
(j))det(T)−1. Then we have Uπ−1(k) = g

R
π−1(k)uk .

The final part of the proof is to show that for all i, we have Vi = YRi vπ(i)u
−xs

π(i). From
the equations

(
n∏

i=1

u
−t

(j)
i

i

)−f (j)(
n∏

i=1

v
−t

(j)
i

i

n∏

i=1

V
f

(j)
i

i Vd

)e(j)

U(j) = Y e(j)Z(j)

gf
(j)
V

we get

(
n∏

i=1

(
viu

−xs

i

)−t
(j)
i

n∏

i=1

V
f

(j)
i

i Vdg−rV

)e(j)
n∏

i=1

u
dxt

(j)
i

i U(j)g−dV = Y e(j)Z(j)

.

Given any challenge t
(j)

1 , . . . , t
(j)
n , there is negligible probability over e(j) of producing

an acceptable argument unless

n∏

i=1

(
viu

−xs

i

)−t
(j)
i

n∏

i=1

V
f

(j)
i

i Vdg−rV = YZ(j)

.

Using the same matrix T as before, we get for k = 1, . . . , n,

(
v−1
k u

xs

k Vπ−1(k)

)det(T)

=
n∏

i=1

(
v−1
i u

xs

k Vπ−1(i)

)∑n+1
j=1 akj t

(j)
i

(
n∏

i=1

V
di

i Vdg−rV

)∑n+1
j=1 akj 1

A Verifiable Secret Shuffle of Homomorphic Encryptions 569

=
n∏

i=1

(
viu

−xs

i

)−∑n+1
j=1 akj t

(j)
i

n∏

i=1

V

∑n+1
j=1 akj t

(j)

π(i)

i

(
n∏

i=1

V
di

i Vdg−rV

)∑n+1
j=1 akj 1

=
n+1∏

j=1

(
n∏

i=1

(
viu

−xs

i

)−t
(j)
i

n∏

i=1

V
t
(j)

π(i)

i

(
n∏

i=1

V
di

i Vdg−rV

)1)akj

=
n+1∏

j=1

YZ(j)akj = Y
∑n+1

j=1 akj Z(j)

.

We then have Vπ−1(k) = Y
R

π−1(k)vku
−xs

k .
Finally, if the commitment schemes are statistically binding, then the shuffle of

known content is statistically sound with statistical witness-extended emulation, and
we have an SHVZK proof of a shuffle with statistical witness-extended emulation. �

6. Speed, Space and Tricks

Adjusting the Key Length of the Commitment Scheme We use a homomorphic com-
mitment scheme in the shuffle argument. If we use the Pedersen commitment scheme,
then the public key contains n + 1 elements, and the cost of making a commitment is a
multi-exponentiation of those n + 1 elements. Depending on the group sizes, it may be
costly to compute and distribute such a long key.

It is possible to trade off key length and computational cost when making a commit-
ment. Assume for simplicity in the following that n = kl. Assume furthermore that we
have a homomorphic commitment scheme that allows us to commit to k elements at
once. We can now commit to n elements m1, . . . ,mn by setting

c = (c1, . . . , cl) ← (
comck(m1, . . . ,mk), . . . , comck(mk(l−1)+1, . . . ,mkl)

)
.

Using the Pedersen commitment scheme, this forces us to make l multi-exponentiations
of k + 1 elements when making a commitment but permits a shorter public key.

Batch Verification In the verification phase, the argument of shuffle of known contents
has us checking

cecd = comck(f1, . . . , fn; z) and ce
acd = comck(fΔ1 , . . . , fΔn−1 ,0; zΔ).

Here we have implemented the latter commitment, which is a commitment to n − 1
elements, by using the n-element commitment and adding a dummy zero. We note that
the important thing here is not the fact that z is the randomizer, but rather that we know
some randomizer such that the above equations hold.

If we use one of the commitment schemes suggested in Sect. 2.3, we can verify both
commitments at once using randomization techniques. Namely, pick α ← {0,1}�e at
random and verify

(
cecd

)α
ce
acΔ = comck(αf1 + fΔ1, . . . , αfn + 0;αz + zΔ).

570 J. Groth

Suppose that this equality holds for two different α,α′; then

((
cecd

)−1comck(f1, . . . , fn; z)
)α−α′ = comck(0, . . . ,0;0).

We can now run the root extractor to find u, so

(
cecd

)−1
comck(f1; . . . , fn; z) = comck(0, . . . ,0;u).

In other words, we have an opening f1, . . . , fn, z − u of cecd . We also have an opening
fΔ1, . . . , fΔn−1 ,0, αu+ zΔ of ce

acΔ. This means that with overwhelming probability we
can find openings of cecd and ce

acΔ to respectively f1, . . . , fn and fΔ1, . . . , fΔn−1 .
The randomization method generalizes to the case where we have multiple com-

mitment equations to verify. As the number of commitment equations to be verified in-
creases, the cost for each verification goes down. Moreover, if we use a key with k+1 el-
ements for the commitments, then we have l commitments that we can verify with these
techniques. We have c = (c1, . . . , cl), cd = (cd,1, . . . , cd,l), ca = (ca,1, . . . , ca,l), cΔ =
(cΔ,1, . . . , cΔ,l). We pick α1, . . . , αl, β1, . . . , βl ← {0,1}�e and verify

(
l∏

j=1

c
αj

j c
βj

a,j

)e l∏

j=1

c
αj

d,j c
βj

Δ,j = comck

(
l∑

j=1

(αjfk(j−1)+1 + βjfΔ,k(j−1)+1), . . . ,

l∑

j=1

(αjfkj + βjfΔ,kj);
l∑

j=1

(αj zj + βjzΔ,j)

)

.

This costs 4l + k + 2 exponentiations, mostly to �e-bit exponents. If for instance k ≈√
n, then the price is approximately 5

√
n exponentiations. Using the straightforward

nonrandomized approach, we would end up making 2n + 4l exponentiations.
Randomization can also bring down the cost of ciphertext exponentiation in the ver-

ification process. Suppose for instance that we are using the shuffle in a mix-net; then
the output ciphertexts from one shuffle will be the input ciphertexts of another shuffle.
Calling the output ciphertexts of shuffle j for E1,j , . . . ,En,j , we have to check for all j

that
n∏

i=1

E
−ti,j
i,j−1

n∏

i=1

E
fi,j

i,j Ed,j = Epk(1;Zj).

Assume that the order of the ciphertext space has no prime divisors smaller than
2�e . Suppose that we perform a total of N shuffles. Picking α0 = 0, αN+1 = 0 and
α1, . . . , αN ← {0,1}�e at random, we can check

N∏

j=1

(
n∏

i=1

E
−αj ti,j
i,j−1

n∏

i=1

E
αj fi,j

i,j E
αj

d,j

)

=
N∏

j=0

(
n∏

i=1

E
−αj+1ti,j+1+αj fi,j

i,j E
αj

d,j

)

= Epk

(

1;
N∑

j=1

αjZj

)

.

A Verifiable Secret Shuffle of Homomorphic Encryptions 571

This test has at most probability 2−�e of passing if either of the N equations is false. The
straightforward approach calls for N multi-exponentiations of 2n ciphertexts. With the
randomized method, we only make one multi-exponentiation of N(n + 1) ciphertexts.
Even though the exponents are �e bits longer, this is a significant gain.

Online/Offline Many of the prover’s computations can be precomputed. We can se-
lect R1, . . . ,Rn in advance and compute the rerandomization factors Epk(1;R1), . . . ,

Epk(1;Rn). This way the shuffle itself can be done very quickly.
In the argument of shuffle of known contents we can compute cd, cΔ in advance, and

in the argument of shuffle of homomorphic ciphertexts we can compute c and cd in
advance. This leaves us with the task of computing ca in the argument of correctness of
known contents, and in the shuffle of homomorphic ciphertexts we need to compute Ed .

Multi-Exponentiation Techniques While precomputation and randomization lessens
the burden for respectively the prover and the verifier, there is still something that
remains. The prover has to compute Ed = ∏n

i=1 E
−di

i Epk(1;Rd), containing a multi-
exponentiation of n ciphertexts. Likewise, the verifier will also have to compute a multi-
exponentiation of many ciphertexts. These are typically the most expensive operations
the prover, respectively the verifier, will run into.

While most multi-exponentiation techniques focus on relatively few elements, our
situation is different. First, all the ciphertexts are different and cannot be guessed be-
forehand so precomputation is not that useful. Second, we have a huge number of ci-
phertexts. Lim [34] has suggested a method for precisely this situation that uses rel-
atively few multiplications. Using his methods, the cost of the multi-exponentiation
corresponds to O(n/ logn) single exponentiations of ciphertexts.

Multi-exponentiation techniques can of course also be applied when computing the
commitments and in any precomputation phase.

Reducing the Length of the Exponents The easiest case is when both the commitment
scheme and the cryptosystem have a message space of the same order. Suppose for
instance that we are shuffling ElGamal ciphertexts where the message space has prime
order q . As a commitment scheme, we can then pick the Pedersen commitment scheme
with message space Zq . This allows us to reduce all exponents modulo q .

In some cases, voting for instance, it may be important that the messages be protected
for a long time into the future. For this reason, we may for instance select ElGamal
encryption with a large modulus as the cryptosystem. However, the verification of the
argument may be something that takes place right away, so soundness only has to hold a
short time into the future. Since the Pedersen commitment scheme is statistically hiding,
we get a statistically hiding argument for the correctness of a shuffle and do not need
to worry about the argument itself revealing the messages or the permutation. We can
therefore use a Pedersen commitment scheme with a relatively short modulus. The only
important thing here is that the orders of the message spaces match.

Of course, there may be situations where we have a huge message space for the
cryptosystem. In this case, the cost of a correspondingly large message space for the
commitment scheme may be prohibitive. If we are using the Fiat–Shamir heuristic to
compute the challenges, another trick may bring down the length of the exponents.

572 J. Groth

Recall that we choose �s to be large enough, so d and a + d are statistically indistin-
guishable when d is chosen as a random (|a| + �s)-bit number. A reasonable choice
would be �s = 80. However, in the Fiat–Shamir heuristic we may get by with a much
smaller �s , for instance �s = 20. The idea is to check that we do not create an underflow
or overflow that reveals the number we are trying to hide. Therefore, if we are trying
to hide message a ∈ {0,1}�a , then we choose d as a random (�a + �s)-bit number and
compute a + d . However, if a + d /∈ [2�a ;2�a+�s), we start over again. This distribution
hides a perfectly but does of course increase the risk of having to start over again if at
some point we do not end up within the interval. However, with a suitable choice of �s ,
the gain we get from having shorter exponents outweigh the small risk of having to start
over again.

Picking the Challenges The important part when we pick t1, . . . , tn is that n + 1 ran-
dom vectors of the form (t

(j)

1 , . . . , t
(j)
n ,1) should have overwhelming chance of being

linearly independent. This is the property that makes the proof of witness-extended em-
ulation go through.

Instead of the verifier picking all of t1, . . . , tn at random, he may instead pick a
seed t for a pseudorandom number generator at random. Then t1, . . . , tn are gener-
ated from this number generator. There is overwhelming probability that n + 1 vectors
(t

(j)

1 , . . . , t
(j)
n ,1) generated from seeds t (j) are linearly independent. Furthermore, now

we only have to pick a random seed and transmit this instead of picking n elements
t1, . . . , tn as the challenge. In cases where the verifier is implemented as a multi-party
computation, this may be a significant simplification of the protocol.

In case the cryptosystem has message space of prime order q and the commitment
scheme uses message space Zq , we just need linear independence over Zq . One way
to obtain this is by picking t at random and setting t1 = t1, . . . , tn = tn. Vectors of the
form (1, (t (j))1, . . . , (t (j))n) correspond to rows in a Vandermonde matrix. The vectors
are independent, since the determinant is nonzero, as long as the seeds t (0), . . . , t (n)

are distinct. If we are using multiparty computation, then we can let each server pick
a random input to a collision-free hash-function. As long as one of them is honest, the
collision-freeness of the hash-function ensures that many such runs would give different
seeds t (0), . . . , t (n), and thus we would obtain the needed linear independence.

We can also use a hash-function to pick x,λ and e, all we need is collision-freeness.
This way we get witness-extended emulation, as long as at least one of the verifiers is
honest. However, we may not have a uniform distribution on the outputs of the hash-
function, so we may need to apply standard techniques [24] to retain the zero-knowledge
property.

Parallel Shuffling As observed by Neff [36], if we have many sets of ciphertext that we
want to shuffle using the same permutation, we can recycle many parts of the protocol.
We only need one set of challenges t1, . . . , tn, λ, x, e, the argument for shuffle of known
contents can be reused and so can c, cd, f1, . . . , fn. The only extra work the prover
needs to do is to compute a separate Ed for each of the sets and correspondingly send
a Z to the verifier for each of the sets. The verifier will then for each of the sets verify∏n

i=1 e
−ti
i

∏n
i=1 E

fi

i Ed = Epk(1;Z). The extra cost for the prover, for each additional
set, is a multi-exponentiation of n ciphertexts when computing Ed . For the verifier, each
additional set costs a multi-exponentiation of 2n ciphertexts.

A Verifiable Secret Shuffle of Homomorphic Encryptions 573

Selecting the Cryptosystem for a Mix-Net Throughout the paper we have assumed
that the input and output ciphertexts were valid ciphertexts. When designing a mix-
net, for instance using the shuffle arguments presented here, it is of course relevant to
verify that indeed the input and output ciphertexts are valid. Attacks exist [53] that will
compromise the privacy of the mix-net if this check is not performed. We will comment
on how an ElGamal cryptosystem can be set up such that this check of the ciphertexts
can be done efficiently and be integrated with the argument of correctness of a shuffle.

Let p = 2qp1 · · ·pk + 1, where q,p1, . . . , pk are distinct primes larger than some
bound 2�. We let g be a randomly chosen generator of the unique subgroup Gq of
order q . We choose the secret key x ← Zq and set y = gx . To encrypt a message
m ∈ Gq we choose (b1, b2, r) ← {−1,1} × {−1,1} × Zq and return the ciphertext
(b1g

r , b2y
rm).

This cryptosystem allows for an efficient batch-verification of membership in Cpk =
±Gq × ±Gq . Assume that we have ElGamal ciphertexts (u1, v1), . . . , (un, vn). We
choose αi ← {0,1}� and check whether (

∏n
i=1 u

αi

i)q = ±1 and (
∏n

i=1 v
αi

i)q = ±1. The
tests have probability 2−� of passing if any of the ciphertexts does not belong to Cpk .

If we use � = �e, we may use t1, . . . , tn as our α1, . . . , αn. We check in the shuffle
argument that

n∏

i=1

u
−ti
i

n∏

i=1

U
fi

i Ud = ±gZ and
n∏

i=1

v
−ti
i

n∏

i=1

V
fi

i Vd = ±yZ.

As a side effect of these computations, we may get out
∏n

i=1 u
ti
i and

∏n
i=1 v

ti
i . It only

costs a couple of exponentiations more to test (
∏n

i=1 u
ti
i)q = ±1 and (

∏n
i=1 v

ti
i)q = ±1.

The test of validity of the ciphertexts therefore comes at a very low cost. Of course the
output ciphertexts can be incorporated into the verification in a similar manner.

7. Comparison of Shuffle Arguments

The literature contains several arguments and proofs for correctness of a shuffle. The
most efficient arguments and proofs generally follow one of two paradigms. In the par-
adigm of Furukawa and Sako [20] we commit to a permutation matrix and subsequently
argue that indeed we committed to a permutation matrix and furthermore that we have
shuffled the ciphertexts using the same permutation. This idea was improved by Fu-
rukawa [17]. The second paradigm, used in this paper, was suggested by Neff [36]. In
this paradigm one uses the fact that polynomials are stable under permutation of the
roots. Both paradigms have their merits; here we will compare them and give a rough
guide to which one to use.

7.1. SHVZK Proof

The schemes based on permutation matrices are arguments, and we see no way to turn
them into SHVZK proofs. If the situation calls for an SHVZK proof, we therefore rec-
ommend following the Neff paradigm. An unfortunate consequence is that this par-
adigm leads to 7-move SHVZK proofs, so if both unconditional soundness and low
round complexity is desirable, then we are in trouble. It is an interesting open problem
to come up with a highly efficient 3-move SHVZK proof for correctness of a shuffle.

574 J. Groth

Our shuffle argument can be used for many different cryptosystems. Neff [36,37] in-
vestigated the case of ElGamal encryption, which we will look a little closer at now.
For SHVZK proofs, it is reasonable to use groups of the same size both for the cryp-
tosystem and for the commitment scheme, since typically they will both be governed
by the same security parameter that is chosen so both the cryptosystem and the SHVZK
proof will keep the permutation secret. Therefore, we do not need to distinguish be-
tween exponentiations for the cryptosystem and exponentiations for the commitments;
their cost is comparable. Neff [37] suggests an SHVZK proof where the prover uses
8n exponentiations and the verifier uses 12n exponentiations, where n is the number
of ciphertexts in the shuffle. This has been improved to using 8n exponentiations for
the prover and 10n exponentiations for the verifier [38]. If we assume a group size of
1024 bits and exponents of 160 bits, Neff’s proof [38] uses 7488n bits of communica-
tion from the prover to the verifier. In comparison, in our scheme using the statistically
binding commitment scheme from Sect. 2.3, the prover uses 7n exponentiations, and
the verifier 9n exponentiations. Further, assuming exponents of size 160 bits and group
elements of size 1024 bits, we use 5600n bits of communication from the prover to the
verifier. However, whereas Neff’s scheme only relies on a DDH group wherein his cryp-
tosystem is set, our scheme needs a common reference string with a commitment key
to get this kind of efficiency. To make the setting completely comparable, we could let
the prover select the unconditionally binding commitment key and send it to the verifier
in the first round. By adjusting the commitment key length to giving a commitment key
for committing to

√
n elements at a time, we still get slightly better performance.

7.2. SHVZK Argument

ElGamal Encryption For ease of comparison with other arguments for correctness
of a shuffle in the literature, we will evaluate our scheme using ElGamal encryption
and Pedersen commitments with primes q,p where q|p − 1, |q| = 160, |p| = 1024.
Whether this choice is reasonable depends on the application of the shuffle. As argued
earlier, when we use statistically hiding commitments and the verification takes place
shortly after the shuffle, we only need from the argument that the soundness holds a
short time into the future. In this case the binding property of the commitment scheme
only needs to be temporarily, so it is reasonable to choose a small security parameter. For
the commitment scheme, |p| = 1024 may therefore be reasonable enough. For higher
efficiency, we might also decide to use elliptic curve groups for the commitment scheme.
On the other hand, in some cases we need strong guarantees that the cryptosystem does
not reveal anything about the messages many years into the future. In such a case it
would be reasonable to choose a larger security parameter for the cryptosystem.

The permutation matrix based approach was suggested by Furukawa and Sako [20].
Their scheme is not SHVZK [19], but it does satisfy a weaker security notion called
indistinguishability under chosen permutation attack, IND-CPA, as defined by Nguyen,
Safavi-Naini and Kurosawa [40].2 In Furukawa and Sako’s argument the prover uses 8n

2 IND-CPA security considers an adversary that does not know the secret key for the cryptosystem. The
adversary chooses two permutations and sees a shuffle under one of the permutations and an argument for
correctness of the shuffle. The argument is IND-CPA secure if the adversary cannot distinguish which permu-
tation was used.

A Verifiable Secret Shuffle of Homomorphic Encryptions 575

Table 1. Comparison of shuffle arguments for ElGamal encryption.

Furukawa–Sako Groth Furukawa Proposed
[20] [23] [17,27]

Prover (single expo.) 8n 6n 7n 6n

Verifier (single expo.) 10n 6n 8n 6n

Prover’s communication (bits) 5120n 1184n 1344n 480n

Rounds 3 7 3 7
Common reference string (bits) 1024n adjustable 1024n adjustable
Privacy IND-CPA SHVZK SHVZK SHVZK

exponentiations, and the verifier 10n exponentiations. Furukawa [17] suggests a 3-move
SHVZK argument where both the prover and the verifier uses 9n exponentiations. He
observes that letting q = 2 mod 3 allows a simplification of the protocol. Groth and Lu
[27] use this simplification to get an SHVZK argument that for ElGamal encryption is
very similar to Furukawa’s scheme. In that scheme the prover uses 7n exponentiations,
and the verifier 8n exponentiations.

In comparison, our scheme uses 6n exponentiations for both the prover and verifier.
In the earlier version [23] the communication complexity was higher, and the scheme
was less fit for multi-exponentiations, so we list both results separately. Table 13,4 sum-
marizes the complexities of the various arguments for correctness of shuffling ElGamal
ciphertexts. Table 1 only counts the cost of proving the correctness of a shuffle, not the
cost of doing the shuffle itself, and does not take into account the optimizations that can
be achieved by using randomization and batching in the verification.

Table 1 should of course be read with care. More important than the number of sin-
gle exponentiations is what happens when we use randomization, batching and multi-
exponentiation techniques. As described in Sect. 6, our scheme is well suited to take
advantage of such techniques, and after applying such techniques to all the schemes
we still have better efficiency than the other schemes and more flexibility in terms of
trading off key length and computational efficiency.

Paillier Encryption Several arguments for correctness of a shuffle of Paillier cipher-
texts have also been suggested. Most of these arguments for correctness of a shuffle
follow the Furukawa–Sako paradigm and yield 3-round arguments. Nguyen, Safavi-
Naini and Kurosawa [40] were the first to suggest a 3-round argument for correctness of
a shuffle for Paillier encryption. They were followed by Onodera and Tanaka [44] that
achieved much better efficiency. Recently Groth and Lu [27] have suggested a shuffle
argument based on homomorphic integer commitments as well as one that uses ideas
from Furukawa [17]; we include the latter scheme in the table.

3 At first glance it might look like the verifier in our scheme should use 7n exponentiations to verify the
shuffle. However, the commitment to f1, . . . , fn in the full SHVZK argument for a shuffle and the com-
mitment to the f ′

1, . . . , f ′
n in the SHVZK shuffle of known content can be combined such that only one

commitment needs to be computed by the verifier. This saves us from making n exponentiations and makes
the verifier’s computational complexity 6n exponentiations.

4 It is possible to reduce the communication complexity of our scheme further to 320n bits [24] by com-
bining parts of the argument of shuffle of known contents and the full shuffle argument.

576 J. Groth

Table 2. Comparison of shuffle arguments for Paillier encryption.

Nguyen et al. Onodera–Tanako Groth–Lu Proposed
[40] [44] [27]

Prover (single expo.) 9n 1.3n 0.7n 0.4n

Verifier (single expo.) 8n 0.7n 0.7n 0.5n

Prover’s communication (bits) 9216n 2413n 1664n 720n

Rounds 3 3 3 7
Common reference string (bits) 2048n 1024n 1024n adjustable
Privacy IND-CPA SHVZK SHVZK SHVZK

In Table 2 we compare the arguments for correctness of a shuffle of Paillier cipher-
texts. The parameters we have chosen are a 1024-bit Paillier modulus, which gives
2048-bit ciphertexts, 160-bit challenges, and for statistical hiding, we use �s = 80. We
base our scheme on Pedersen commitment with primes |p| = 1024, |q| = 241. To mea-
sure the prover’s and the verifier’s computational loads, we count the number of ex-
ponentiations with 1024-bit exponents using a 2048-bit modulus. We assume that the
computational load grows linearly in the length of the exponent and quadratically in
the length of the modulus. As for ElGamal encryption, the table should be read with
care since multi-exponentiation and batch-verification techniques can improve the per-
formance of the schemes.

Conclusion For situations where round complexity matters, the permutation matrix
based approach gives us 3-move schemes and seems like the best choice. In cases where
round complexity is of less importance, the scheme we have suggested here is the best
choice. As described in Sect. 6, we can adjust the length of the common reference
string, so the cost of commitment key generation is not too large. Moreover, our scheme
offers the best computational and communicational complexities. In particular, if we are
using the Fiat–Shamir heuristic to make the shuffle argument noninteractive, then round
complexity does not matter much, and the present scheme is the superior choice.

7.3. SHVZK Argument for Shuffle of Known Contents

We have suggested a 4-move SHVZK argument for shuffle of known contents. When
implemented with Pedersen commitments, this argument requires the prover to make
3n exponentiations and the verifier to make 2n exponentiations. The communication
complexity is 320n bits sent from the prover.

If we implement the argument with the statistically binding commitment from
Sect. 2.3, the prover makes 3n exponentiations, and the verifier makes 4n exponenti-
ations.

We do not know of other SHVZK arguments for shuffle of known contents in the
literature. In cases where we only need an SHVZK argument for shuffle of known con-
tents [26], our scheme offers a significant saving in comparison with a full shuffle argu-
ment.

7.4. Combined SHVZK Argument for Shuffle and Decryption

The 7-move SHVZK argument for a shuffle-and-decrypt operation for ElGamal encryp-
tion costs 6n exponentiations for the prover and 7n exponentiations for the verifier. The

A Verifiable Secret Shuffle of Homomorphic Encryptions 577

prover sends 480n bits to the verifier when making the argument if we use the parame-
ters suggested earlier.

In comparison, Furukawa [17] suggests a 5-move argument which is not SHVZK but
instead has a witness hiding property. In his argument the prover uses 6n exponentia-
tions and 1344n bits of communication, and the verifier uses 8n exponentiations.

If we implement our scheme as an SHVZK proof, then the prover uses 8n exponen-
tiations, the verifier uses 10n exponentiations, and the prover’s communication is 5600
bits.

Acknowledgements

We greatly appreciate discussions we have had with Heiko Stamer and would like to
thank him for sharing the insights gained from his implementation of the protocols in
the paper [51]. We would also like to thank C. Andrew Neff for sharing drafts of related
work [38] with us.

References

[1] M. Abe, Universally verifiable mix-net with verification work independent of the number of mix-servers,
in EUROCRYPT. Lecture Notes in Computer Science, vol. 1403 (Springer, Berlin, 1998), pp. 437–447

[2] M. Abe, F. Hoshino, Remarks on mix-network based on permutation networks, in PKC. Lecture Notes
in Computer Science, vol. 1992 (Springer, Berlin, 2001), pp. 317–324

[3] M. Abe, H. Imai, Flaws in some robust optimistic mix-nets, in ACISP. Lecture Notes in Computer
Science, vol. 2727 (Springer, Berlin, 2003), pp. 39–50

[4] M. Bellare, O. Goldreich, On defining proofs of knowledge, in CRYPTO. Lecture Notes in Computer
Science, vol. 740 (Springer, Berlin, 1992), pp. 390–420

[5] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in
ACM CCS (1993), pp. 62–73

[6] D. Boneh, P. Golle, Almost entirely correct mixing with applications to voting, in ACM CCS (2002),
pp. 68–77

[7] F. Brandt, Efficient cryptographic protocol design based on distributed ElGamal encryption, in ICISC.
Lecture Notes in Computer Science, vol. 3935 (Springer, Berlin, 2006), pp. 32–47

[8] D. Chaum, Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM
24(2), 84–88 (1981)

[9] R. Cramer, V. Shoup, Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack, in CRYPTO. Lecture Notes in Computer Science, vol. 1462 (Springer,
Berlin, 1998), pp. 13–25

[10] R. Cramer, I. Damgård, B. Schoenmakers, Proofs of partial knowledge and simplified design of witness
hiding protocols, in CRYPTO. Lecture Notes in Computer Science, vol. 893 (Springer, Berlin, 1994),
pp. 174–187

[11] I. Damgård, Efficient concurrent zero-knowledge in the auxiliary string model, in EUROCRYPT. Lec-
ture Notes in Computer Science, vol. 1807 (Springer, Berlin, 2000), pp. 418–430

[12] I. Damgård, E. Fujisaki, A statistically-hiding integer commitment scheme based on groups with hidden
order, in ASIACRYPT. Lecture Notes in Computer Science, vol. 2501 (Springer, Berlin, 2002), pp. 125–
142

[13] I. Damgård, M.J. Jurik, A generalisation, a simplification and some applications of Paillier’s proba-
bilistic public-key system, in PKC. Lecture Notes in Computer Science, vol. 1992 (Springer, Berlin,
2001)

[14] I. Damgård, M.J. Jurik, A length-flexible threshold cryptosystem with applications, in ACISP. Lecture
Notes in Computer Science, vol. 2727 (Springer, Berlin, 2003), pp. 350–364

578 J. Groth

[15] Y. Desmedt, K. Kurosawa, How to break a practical MIX and design a new one, in EUROCRYPT.
Lecture Notes in Computer Science, vol. 1807 (Springer, Berlin, 2000), pp. 557–572

[16] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Trans. Inf. Theory 31(4), 469–472 (1985)

[17] J. Furukawa, Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 88-A(1), 172–188 (2005)

[18] E. Fujisaki, T. Okamoto, Statistical zero knowledge protocols to prove modular polynomial relations, in
CRYPTO. Lecture Notes in Computer Science, vol. 1294 (Springer, Berlin, 1997), pp. 16–30

[19] J. Furukawa, H. Miyauchi, K. Mori, S. Obana, K. Sako, An implementation of a universally verifiable
electronic voting scheme based on shuffling, in Financial Cryptography. Lecture Notes in Computer
Science, vol. 2357 (Springer, Berlin, 2002), pp. 16–30

[20] J. Furukawa, K. Sako, An efficient scheme for proving a shuffle, in CRYPTO. Lecture Notes in Computer
Science, vol. 2139 (Springer, Berlin, 2001), pp. 368–387

[21] J.A. Garay, P.D. MacKenzie, K. Yang, Strengthening zero-knowledge protocols using signatures.
J. Cryptol. 19(2), 169–209 (2006)

[22] P. Golle, A. Juels, Parallel mixing, in ACM CCS (2004), pp. 220–226,
[23] J. Groth, A verifiable secret shuffle of homomorphic encryptions, in PKC. Lecture Notes in Computer

Science, vol. 2567 (Springer, Berlin, 2003), pp. 145–160
[24] J. Groth, Honest verifier zero-knowledge arguments applied. Dissertation Series DS-04-3, BRICS

(2004). Ph.D. thesis, pp. xii+119
[25] J. Groth, Cryptography in subgroups of Z

∗
n , in TCC. Lecture Notes in Computer Science, vol. 3378

(Springer, Berlin, 2005), pp. 50–65
[26] J. Groth, Non-interactive zero-knowledge arguments for voting, in ACNS. Lecture Notes in Computer

Science, vol. 3531 (Springer, Berlin, 2005)
[27] J. Groth, S. Lu, Verifiable shuffle of large size ciphertexts, in PKC. Lecture Notes in Computer Science,

vol. 4450 (Springer, Berlin, 2007), pp. 377–392
[28] M. Jakobsson, A practical mix, in EUROCRYPT. Lecture Notes in Computer Science, vol. 1403

(Springer, Berlin, 1998), pp. 448–461
[29] M. Jakobsson, Flash mixing, in PODC (1999), pp. 83–89
[30] M. Jakobsson, A. Juels, Millimix: Mixing in small batches (1999)
[31] M. Jakobson, A. Juels, R.L. Rivest, Making mix nets robust for electronic voting by randomized partial

checking, in USENIX Security (Springer, Berlin, 2002), pp. 339–353
[32] A. Kiayias, M. Yung, The vector-ballot e-voting approach, in Financial Cryptography. Lecture Notes in

Computer Science, vol. 3110 (Springer, Berlin, 2004), pp. 74–89
[33] H.W. Lenstra, Factoring integers with elliptic curves. Ann. Math. 126, 649–673 (1987)
[34] C.H. Lim, Efficient multi-exponentiation and application to batch verification of digital signatures. Man-

uscript (2000)
[35] Y. Lindell, Parallel coin-tossing and constant-round secure two-party computation. J. Cryptol. 16(3),

143–184 (2003)
[36] C.A. Neff, A verifiable secret shuffle and its application to e-voting, in ACM CCS (2001), pp. 116–125
[37] C.A. Neff, Verifiable mixing (shuffling) of ElGamal pairs (2003)
[38] C.A. Neff, Personal communication (2005)
[39] L. Nguyen, R. Safavi-Naini, Breaking and mending resilient mix-nets, in PET. Lecture Notes in Com-

puter Science, vol. 2760 (Springer, Berlin, 2003), pp. 66–80
[40] L. Nguyen, R. Safavi-Naini, K. Kurosawa, Verifiable shuffles: a formal model and a Paillier-based three-

round construction with provable security. Int. J. Inf. Secur. 5(4), 241–255 (2006)
[41] J. Manuel González Nieto, C. Boyd, E. Dawson, A public key cryptosystem based on a subgroup mem-

bership problem. Des. Codes and Cryptogr. 36(3), 301–316 (2005)
[42] M. Ohkubo, M. Abe, A length-invariant hybrid mix, in ASIACRYPT. Lecture Notes in Computer Sci-

ence, vol. 1976 (Springer, Berlin, 2000), pp. 178–191
[43] T. Okamoto, S. Uchiyama, A new public-key cryptosystem as secure as factoring, in EUROCRYPT.

Lecture Notes in Computer Science, vol. 1403 (Springer, Berlin, 1998), pp. 308–318
[44] T. Onodera, K. Tanaka, Shufle for Paillier’s encryption scheme. IEICE Trans. Fundam. Electron. Com-

mun. Comput. Sci. E88-A(5), 1241–1248 (2005)
[45] P. Paillier, Public-key cryptosystems based on composite residuosity classes, in EUROCRYPT. Lecture

Notes in Computer Science, vol. 1592 (Springer, Berlin, 1999), pp. 223–239

A Verifiable Secret Shuffle of Homomorphic Encryptions 579

[46] C. Park, K. Itoh, K. Kurosawa, Efficient anonymous channel and all/nothing election scheme, in EU-
ROCRYPT. Lecture Notes in Computer Science, vol. 765 (Springer, Berlin, 1993), pp. 248–259

[47] T.P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing, in CRYPTO.
Lecture Notes in Computer Science, vol. 576 (Springer, Berlin, 1991), pp. 129–140

[48] K. Peng, C. Boyd, E. Dawson, K. Viswanathan, A correct, private, and efficient mix network, in PKC.
Lecture Notes in Computer Science, vol. 2947 (Springer, Berlin, 2004), pp. 439–454

[49] B. Pfitzmann, A. Pfitzmann, How to break the direct RSA-implementation of mixes, in EUROCRYPT.
Lecture Notes in Computer Science, vol. 434 (Springer, Berlin, 1989), pp. 373–381

[50] K. Sako, J. Kilian, Receipt-free mix-type voting scheme—a practical solution to the implementation of
a voting booth, in EUROCRYPT. Lecture Notes in Computer Science, vol. 921 (Springer, Berlin, 1995),
pp. 393–403

[51] H. Stamer, Efficient electronic gambling: an extended implementation of the toolbox for mental card
games, in WEWoRC 2005, ed. by C. Wolf, S. Lucks, P.-W. Yau. Lecture Notes in Informatics, vol. P-74
(Gesellschaft für Informatik e.V., 2005), pp. 1–12

[52] D. Wikström, The security of a mix-center based on a semantically secure cryptosystem, in IN-
DOCRYPT. Lecture Notes in Computer Science, vol. 2551 (Springer, Berlin, 2002), pp. 368–381

[53] D. Wikström, Five practical attacks for optimistic mixing for exit-polls, in SAC. Lecture Notes in Com-
puter Science, vol. 3006 (Springer, Berlin, 2003), pp. 160–175

	A Verifiable Secret Shuffle of Homomorphic Encryptions
	Abstract
	Introduction
	Shuffle
	Applications
	Related Work
	Our Contribution

	Preliminaries
	Notation
	Homomorphic Encryption
	Homomorphic Commitment
	Special Honest Verifier Zero-Knowledge Arguments of Knowledge
	Witness-Extended Emulation
	The Fiat-Shamir Heuristic

	Setup
	Parameters

	SHVZK Argument for Shuffle of Known Contents
	SHVZK Argument for Shuffle of Homomorphic Encryptions
	Combining Shuffling and Decryption
	Speed, Space and Tricks
	Adjusting the Key Length of the Commitment Scheme
	Batch Verification
	Online/Offline
	Multi-Exponentiation Techniques
	Reducing the Length of the Exponents
	Picking the Challenges
	Parallel Shuffling
	Selecting the Cryptosystem for a Mix-Net

	Comparison of Shuffle Arguments
	SHVZK Proof
	SHVZK Argument
	ElGamal Encryption
	Paillier Encryption
	Conclusion

	SHVZK Argument for Shuffle of Known Contents
	Combined SHVZK Argument for Shuffle and Decryption

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

