
J. Cryptol. (2010) 23: 187–223
DOI: 10.1007/s00145-009-9052-3

The TLS Handshake Protocol: A Modular Analysis∗

P. Morrissey, N.P. Smart, and B. Warinschi
Department Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road,

Bristol BS8 1UB, UK
paulm@cs.bris.ac.uk; nigel@cs.bris.ac.uk; bogdan@cs.bris.ac.uk

Communicated by Okamoto

Received 12 December 2008 and revised 30 September 2009
Online publication 29 October 2009

Abstract. We study the security of the widely deployed Secure Session Layer/
Transport Layer Security (TLS) key agreement protocol. Our analysis identifies, justi-
fies, and exploits the modularity present in the design of the protocol: the application
keys offered to higher-level applications are obtained from a master key, which in turn
is derived through interaction from a pre-master key.

We define models (following well-established paradigms) that clarify the security
level enjoyed by each of these types of keys. We capture the realistic setting where only
one of the two parties involved in the execution of the protocol (namely the server) has
a certified public key, and where the same master key is used to generate multiple
application keys.

The main contribution of the paper is a modular and generic proof of security for a
slightly modified version of TLS. Our proofs shows that the protocol is secure even if
the pre-master and the master keys only satisfy only weak security requirements. Our
proofs make crucial use of modelling the key derivation function of TLS as a random
oracle.

Key words. Provable security, TLS, SSL.

1. Introduction

The SSL key agreement protocol, developed by Netscape, was made publicly available
in 1994 [28] and after various improvements [23] has formed the basis for the TLS pro-
tocol [20,21] which is nowadays ubiquitously present in secure communications over
the Internet. Despite its practical importance, this protocol had never been analysed in
detail using the rigorous methods of modern cryptography. In this paper we offer one
such analysis. Before describing our results and discussing their implications we recall
the structure of the TLS protocol (Fig. 1). In the presentation and in our analysis we
depart slightly from the actual protocol in ways that we specify precisely. The protocol

∗ This paper was solicited by the Editors-in-Chief as one of the best papers from ASIACRYPT 2008, based
on the recommendation of the program committee.

© International Association for Cryptologic Research 2009

mailto:paulm@cs.bris.ac.uk
mailto:nigel@cs.bris.ac.uk
mailto:bogdan@cs.bris.ac.uk

188 P. Morrissey, N.P. Smart, and B. Warinschi

client (Alice) server (Bob)

1. Client Hello Hello �

2. Certificate Transfer IDB ,PKB�
sigCA(PKB)�

3. Pre-master Secret � �
Creation s s . . . s

�

4. Generate and Confirm rA ← {0,1}t rA �
Master Secret m

rB� rB ← {0,1}t
m ← G(s, rA, rB) m ← G(s, rA, rB)

σA ← MACm(0 || τ) where σB ← MACm(1 || τ)

τ is the transcript of all

previous messages.
σA �
σB�

if σB �= MACm(1 || τ) if σA �= MACm(0 || τ)

then abort then abort

5. Generate Application nA ← {0,1}t nA �
Keys k′ || k′′ nB� nB ← {0,1}t

k = k′ || k′′ ← H(m,nA,nB) k = k′ || k′′ ← H(m,nA,nB)

Fig. 1. A TLS-like protocol: in the actual TLS specification (1) nonces rA, rB are exchanged in the first
phase of the protocol, (2) the master key m is derived via m ← Fs(rA, rB) where F is a pseudorandom
function, (3) the MACs σA,σB are sent encrypted under k′ and k′′ respectively, and (4) a FINISHED message
is sent authenticated and encrypted under the derived keys.

proceeds in six phases. Through phases (1) and (2) parties confirm their willingness to
engage in the protocol, exchange, and verify the validity of their identities and public
keys. In our analysis we assume that the server possess a long-term public/private key
pair (PKB,SKB) and a corresponding certificate sigCA(PKB) issued by some certifica-
tion authority CA. We do not consider clients with public keys since this is the case that
occurs most often in practice. Our analysis can be easily extended to this scenario. The
next four phases of the protocol form the focus of this paper and are as follows.

(3) A pre-master secret s ∈ SPMS is obtained using one of a number of protocols
that include RSA based key transport and signed Diffie–Hellman key exchange
(which we describe and analyse later in the paper).

(4) The pre-master secret key s is used to derive a master secret m ∈ SMS, with
m = G(s, rA, rB). Here rA, rB are random nonces that the two parties exchange,
and G is a key derivation function. The master secret key is confirmed by using
it to compute two MACs of the transcript of the conversation which are then
exchanged. This is a departure from the actual TLS where nonces rA and rB are
exchanged in the first phase of the protocol and the MACs are sent encrypted
with application key derived from m in later steps of the protocol.

(5) In the next phase the master key m is used to obtain one or more application
keys: for each application key, the parties exchange random nonces nA and nB

The TLS Handshake Protocol: A Modular Analysis 189

and compute the shared application key via k = k′ || k′′ ← H(m,nA,nB). Here,
H is a key derivation function. Notice, that each application key is actually two
keys: one for securing communication from the client to the server, and one from
the server to the client. This is important to prevent reflection attacks.

The resulting keys can then be used by further applications. The proper use of keys
in this last stage had been the object of previous studies [4,30] and is not part of our
analysis.

An interesting aspect of TLS is that the protocols used to obtain the pre-master secret
in Step (3) are very simplistic and on their own insecure in the terms of modern crypto-
graphy. It is the combination of Step (3) with the steps in phases (4) and (5) which leads
(as we show in this paper) to a key agreement protocol secure in the standard sense.
Broadly speaking, our goal is to derive sufficient security conditions on the pre-master
key agreement protocol which would ensure that the above combination indeed yields
a secure key agreement protocol in a standard cryptographic sense.

We caution that in our analysis we disregard Steps (1) and (2), and therefore assume
an existing PKI which authenticates all public keys in use in the system. In particular
we do not take into account any so-called PKI attacks [35].

Models. Much of the previous work on key agreement protocols in the provable se-
curity community has focused on defining security models and then creating protocols
which meet the security goals of the models. In some sense, we are taking the opposite
approach: we focus on a particular existing protocol, namely TLS, and develop security
models that capture the security levels that the various keys derived in one execution
of the protocol enjoy. The models that we develop are in the spirit of existing ones and
offer a reasonable level of security. It should be noted however that the path we take is
mainly motivated by the lack of models that capture precisely the security of these keys.
A similar route was followed by Canetti and Krawczyk, who modify an existing security
model to accommodate a setting where peer identities are not known a priorily [17].

A key aspect of our approach is that unlike in prior work on key agreement protocols,
we do not regard the protocol as a monolithic structure. Instead, we identify the structure
described above and give security models for each type of keys that are derived in the
protocol. A benefit that follows from this modular approach is that we split the analysis
of the overall protocol into the analysis of its components, thus making the task of
proving security more manageable. In addition, unlike in prior work, we model the
realistic setting where only one of the parties involved in the protocol is required to
possess a certified public key.

We first provide a model for pre-master key agreement protocols. The model is a
weakened version of the Blake–Wilson, Johnson and Menezes (BJM) model [11]. We
require from pre-master keys rather weak security guarantees: a man-in-the-middle ad-
versary should not be able to obtain the entire pre-master key (one-wayness).

For master-key agreement protocols, we strengthen the above requirement in that
the adversary should not be able to mount an unknown-key-share attack (where par-
ties share a key without being aware of the identity of each other). Secrecy for master
keys is still in the one-wayness sense. In addition, we introduce key-confirmation as a
requirement for master keys.

190 P. Morrissey, N.P. Smart, and B. Warinschi

Finally, via a further extension, we obtain a model for the security of application
key agreement protocols. Our model for application key security is rather standard and
resembles the BJM model: we require for the established key to be indistinguishable
from a randomly chosen one, and we give the adversary complete control over the net-
work, and various corruption capabilities. Furthermore, the model captures explicitly
the possibility that the same master key is used to derive multiple application keys.

Security Analysis of the TLS Handshake Protocol. Based on the models that we de-
veloped, we give a security proof for the TLS handshake protocol. We emphasise that
we analyse a version where the MAC sent in Step (4) is passed in the clear (and not en-
crypted under the application keys as in full TLS). It is intuitively clear that the security
of the full TLS protocol follows from our analysis (encrypting the MAC should only of-
fer more security to the protocol). While a direct analysis of the latter may be desirable,
we choose to trade immediate applicability of our results to full TLS for the modularity
afforded by our abstraction: assuming that the MAC is sent in the clear decouples the
master-key agreement stage from that of application-key derivation stage.

Our proof is modular and generic. Specifically, we show that the protocol (�;
MKDTLS(Mac,G)), obtained by appending to an arbitrary pre-master key agreement
protocol � the flows in phase (4) of TLS, is a secure master-key agreement protocol in
the sense that we define in this paper. The result holds provided that the message authen-
tication code used in the transformation is secure and the hash function in the construc-
tion is modelled as a random oracle. Similarly, we show that starting from an arbitrary
secure master-key agreement protocol �, the protocol (�;AKTLS(H)), obtained by ap-
pending the flows in phase (5) of TLS, is a secure application-key agreement protocol
(provided that H is modelled as a random oracle).

An important benefit of the modular approach that we employ surfaces at this stage:
to conclude the security of the overall protocol it is sufficient to show that the individual
pre-master key agreement protocols of TLS are indeed secure (in the weak sense that we
put forth in this paper). The analysis is thus more manageable, and avoids duplicating
and rehashing proof ideas, which would be the case if one was to analyse TLS in its
entirety for each distinct method for establishing pre-master keys.

We analyse two methods for establishing pre-master keys withing TLS. Encryption-
based key transport allows one party to select the pre-master key and to send it en-
crypted with the public key of the intended recipient. Here we show that deterministic
encryption that is either one-way (i.e. trapdoor-permutation) or probabilistic OW-CCA
encryption suffice to guarantee security. The second option uses Diffie–Hellman keys
with authentication implemented via digital signatures. In this case we demonstrate that
sufficient conditions for security are the gap-DH assumption and standard security for
the signature schemes. We comment on some practical implications of our results next.

Impact on Practice. An implication of practical consequence of our analysis concerns
the use of encryption for implementing the pre-master key agreement protocol of TLS.
Currently, key-transport in TLS is implemented via RSA PKCS-v1.5, a randomised
padding-based encryption used to avoid known problems with vanilla RSA. The exact
choice of padding scheme is historic, since the creation of a semantically secure encryp-
tion scheme was known to require a probabilistic encryption method. Thus the designers

The TLS Handshake Protocol: A Modular Analysis 191

considered using a completely deterministic encryption scheme would introduce secu-
rity problems. It turns out that the encryption scheme from PKCS-v1.5 is not in fact
IND-CCA secure. This was exploited in the famous reaction attack by Bleichenbacher
[13] on SSL, where invalid ciphertext messages were used to obtain pre-master secret
keys.

As explained above, our results imply that either textbook RSA (thus completely
dropping the padding mechanism) or an OW-CCA scheme ensures secure pre-master
key agreement. We wish to emphasise that the overall security of the protocol is then
guaranteed, provided that one accepts modelling the key-derivation used by TLS as a
random oracle. Indeed, our proofs makes crucial use of this assumption, and it is unclear
what are the guarantees when key-derivation is implemented via a PRF (as called for
by the specification). Since an IND-CCA scheme is also OW-CCA, our results do imply
that in the random oracle model TLS where key-transport is implemented with RSA-
OAEP [7] (or any other IND-CCA secure scheme in the RO model) is a good application
key protocol.

Importantly, since RSA-PKCS-v1.5 implemented in TLS is neither deterministic nor
IND-CCA, our analysis does not shed light on its use as a key transport mechanism. Clar-
ifying what are the security guarantees in this case is an interesting research problem of
clear practical interest.

We comment that we do not address the security of the protocol when the pre-master
key is agreed using password, or other shared key techniques. Also, we focus on the
case of one-way authentication (as opposed to mutual authentication), as this is the most
common setting in which the protocol is used nowadays. Our definition and analysis can
be adapted to the case of mutual authentication.

Our model does not require that the application keys satisfy a notion of key-
confirmation (as we require for the master-keys). Indeed, the TLS protocol does not
ensure this property. However, one may obtain implicit key confirmation through the
use of such keys in further applications. In some sense, this loss is a by-product of the
way we have broken up the protocol. One of our goals was to show what security prop-
erties each of the stages provides, and therefore we modelled and analysed the security
of the application keys. However, if one considers Stages 1–4 as the key agreement pro-
tocol and stages 5–6 as the application where the keys are used, then one does obtain
an explicit notion of key confirmation. Hence, the loss of explicit key confirmation in
Stage 5 should not be considered a design flaw in TLS.

On the Use of the Random Oracle Model. In our proofs we assume that the key deriva-
tion function is a random oracle, i.e. an idealised randomness extractor. This assumption
is crucial for our proofs, and it is unclear what are the security guarantees that our re-
sults imply for the standard model where the key derivation function used is a PRF (as
required by the TLS specification).

A natural and important question is whether a standard model analysis is possible,
ideally, assuming that the key derivation function is pseudo-random (as is the function
based on HMAC used in the current specification of TLS). Unfortunately, indirect ev-
idence indicates that it should be hard to obtain such a result. As observed by Jonsson
and Kaliski in their analysis of the use of RSA in TLS [29], the use of the key derivation
function in TLS is akin to the use of such functions in deriving DEM keys under the

192 P. Morrissey, N.P. Smart, and B. Warinschi

KEM/DEM paradigm [19]. It is thus likely that a proof as above would immediately
imply an efficient RSA-based encryption scheme secure in the standard model, thus
solving a long-standing open question in cryptography. We discuss in the related work
section some recent progress in this direction by Gajek et al. [25]. Furthermore, when
the agreed pre-master key is a Diffie–Hellman key, a generic pseudorandom function is
not sufficient to ensure security. A result that could enable a proof in the standard model
is the recent work of Fouque et al. [24], who show that the particular function used in
TLS is a good randomness extractor.

Related Work

The work which is closest with ours is the analysis of the use of RSA in TLS by Jonsson
and Kaliski [29]. They consider a very simplified security model for the master secret
key, for the particular case where the protocol for pre-master key is based on encryption.
We share the modelling of the key derivation function as a random oracle, and the ob-
servation that deterministic encryption may suffice for a secure pre-master key had also
been made there. However, the present work uses a far more general and modular model
for key-exchange, analyses several pre-master key agreement protocols, including one
based on DH keys which is offered by TLS.

Two recent papers present security results regarding TLS. Bhargavan et al. [9] used
automation to verify the security of various parts of TLS with respect to computational
security properties. They concentrate on the case of encryption-based pre-master key
agreement, and separate the analysis of the different parts. As a result, they do not
obtain security results regarding TLS overall. They do obtain security results for an
actual (functional) implementation of the protocol.

An analysis of the TLS protocol that uses the universal composability framework has
been proposed by Gajek et al. [25]. The main drawback of that analysis is that security
is only considered against adversaries that corrupt parties statically (prior to protocol
execution). Furthermore, here as in other simulation based analysis of key-exchange
protocols, security of keys when corruption occurs adaptively posses serious problems.
A noteworthy aspect of that work is that it does not make direct use of random oracles,
and in particular the key-derivation function used is a PRF. This indicates that should
one be able to deal with adaptive corruption, an analysis of TLS in the standard model
could potentially be done.

Other analyses of the TLS protocol used Dolev–Yao models, where ideal security
of the underlying primitives is postulated, and thus no guarantees are offered for the
more concrete world. Such analyses include the one carried out by Mitchell, Shmatikov,
and Stern [33] using a model checker, and the one of Paulson who used the inductive
method [34]. Wagner and Schneier analyse various security aspects of SSL 3.0 [36], but
their treatment is informal. Finally, Bellare and Namprempre [4] and Krawczyk [30]
study how to correctly use the application keys derived via TLS. Their treatment is
focused exclusively on the use of keys and is not concerned with the security of the
entire key agreement protocol.

The first complexity theoretic model for key agreement was the Bellare–Rogaway
(BR) model [6,8]. The main driving forces of this model were the works of [10,22].
Since the initial work of Bellare and Rogaway there have been a number of other models

The TLS Handshake Protocol: A Modular Analysis 193

proposed for key-exchange in various applications and environments [1,3,5,11,12,14–
16,32,35]. These models can be loosely categorised into two main groups: those that
use simulation based techniques [3,16,35], and those closer to the original BR model
that use an indistinguishability based approach [11,12,15,32].

Some aspects of other indistinguishability-based models relevant to our work are the
following. In [6] entity authentication and authenticated key distribution are considered
in the two-party symmetric key case where users are modelled as message driven ora-
cles. The adversary in this case acts as the communications channel between users. To
define security, the notions of an “error-free history” of [10] and of “matching protocol
runs” from [22] are made formal in [6] using the notion of a matching conversation. We
use this notion in our definitions.

Various security attributes are then included in the definition of security by allowing
the adversary to make corresponding queries such as Reveal queries. In [8] this was
developed to model the three-party symmetric key case for entity authentication and
key distribution. The BJM model of [11] extended the BR model, to authenticated key
agreement (AK) and authenticated key agreement with key confirmation (AKC) in the
public key case. The work of [11] uses the notion of a No-Matching condition [6], to de-
fine a clearer separation between AK and AKC protocols and deals with Diffie–Hellman
(DH) like protocols.

As explained before, our analysis uses a model that falls in the original BR category
which, as argued elsewhere [15], has certain drawbacks but also several important ben-
efits over the simulation-based approach. The particular models most relevant to our
work are the Blake-Wilson, Johnson and Menezes (BJM) based models [11,12,32]. Our
execution models are inspired by the BJM model, but our security definitions differ
according to the particular key within TLS we consider.

Following on from the BJM models [12] deals with the case of key transport using
public key encryption (PKE) and key agreement using Diffie–Hellman key agreement
with digital signatures (DSS). In [32] a modular proof technique was used in a modified
BJM model to prove security of key agreement protocols relative to a gap assumption.
Indeed, the idea of transforming a one-way security definition into an indistinguisha-
bility definition also occurs in the generic transform proposed by Kudla and Paterson
[31,32], and our proof techniques are similar to theirs.

Finally, an important security model that is related to ours is that of Canetti and
Krawczyk (CK) [15]. In addition to the corruption capabilities that we consider, the
CK model allows the adversary to obtain the entire internal state of a session and in
particular the ephemeral secrets used in sessions. As pointed out by Choo et al., this
type of query is the only essential difference between the adversarial capabilities in the
model of Bellare and Rogaway and that of Canetti and Krawczyk (see Table 2 of [18]).
Clearly, our analysis does not offer guarantees in the face of such extremely powerful
types of adversaries, and in fact it can be easily seen that under such attacks the TLS
version that uses the DDH-based pre-master secret key agreement is insecure. It may be
possible to demonstrate security of TLS under such stronger attacks by assuming secure
erasures as done for similar protocols [15,16]. By adopting the style of the BR models
over the style of the CK model we also avoid some of the idiosyncrasies of the latter
related to the use of session identifiers (which need to be unique, and somehow agreed
upon in advance by participating parties) [15,18]. For further discussion on the use of
identifiers in the CK model versus the BR model, see [18].

194 P. Morrissey, N.P. Smart, and B. Warinschi

Our work heavily relies on the modular structure that exists in TLS to offer a man-
ageable analysis. This structure is not particular to TLS, it exists in other key exchange
protocols, and had been used before in those contexts. For example, the particular phases
for exchanging pre-master keys via key transport, and refreshing applications keys (very
similar to those in TLS) existed since as early as SKEME [26]. These have later been
identified, analysed, and used in a modular analysis of key exchange protocols by Can-
neti and Krawczyk [15].

The UC analysis of Gajek et al. [25] also follows this line of research. They analyse
the master key agreement protocol in a UC manner, and then conclude that it can be
composed with arbitrary protocols, in particular with the module for obtaining applica-
tion keys.

Finally, we mention the general framework recently proposed by Herzberg and Yoffe.
A general approach towards systems constructed in a layered manner with lower lay-
ers that provide service to upper ones had recently been put forth by Herzberg and
Yoffe [27]. It seems that the way that we split the protocol does fit well with their
framework and could serve as an interesting test case.

One other aspect of [15] which is somewhat related to our work is a modular frame-
work for designing protocols. In the model of [15] one can first develop a secure pro-
tocol under the powerful assumption that all communication is authenticated. Then, a
secure protocol in the more realistic setting with no authenticated communication is
obtained by applying a generic transformation using an authenticator. Obviously, the
modular structure of TLS that we observe and exploit is of a different nature. In partic-
ular it does not seem possible to regard TLS as the result of applying an authenticator
to some other protocol.

Paper Overview

The structure of the paper is as follows. Section 2 surveys our notation and the basic
cryptographic notions that we use in this paper. In Sect. 3 we recall the main ideas
behind the kind of execution models that we use. We then specialise this model to obtain
our security model for pre-master key agreement protocols (Sect. 4). We prove that
the standard protocols used in SSL/TLS to obtain pre-master keys do indeed meet our
security definition. In Sect. 5 we present the security model for the master key agreement
and show that the TLS transform turns a secure pre-master key agreement protocol into
a secure master key-agreement protocol. Finally, in Sect. 6 we give our model for the
security of application keys and show that the TLS transform does indeed produce a
secure application key.

2. Preliminaries

In this section we recall the security notions and assumptions that we use in this paper.

2.1. Notation

We write {0,1}t for the set of binary strings of length t and {0,1}∗ for the set of binary
strings of arbitrary length. If S is a set, we denote the action of sampling an element

The TLS Handshake Protocol: A Modular Analysis 195

from S uniformly at random and assigning the result to the variable x by x
R← S. If

A is an algorithm, then we denote the action of running A on inputs y1, . . . , yn, with
access to oracles O1(·), O2(·), and then assigning the output to the variable x by x ←
AO1(·),O2(·)(y1, . . . , yn). Finally, a function ε(t) is said to be negligible in the parameter
t if ∀c ≥ N ∃ tc ∈ R>0 such that ∀t > tc, ε(t) < t−c .

2.2. Hard Problems

We let FGps be a family of prime order groups parametrised by t ∈ N. For this family,
we define the function G(·) which on input t ∈ N outputs a tuple (G, q, g) ← G(t)

where G is a description of the group corresponding to the value t , q its order and g a
generator.

We then define the computational Diffie–Hellman advantage of an adversary against
the family FGps as follows.

Definition 2.1 (Computational Diffie–Hellman Advantage). We define the Computa-
tional Diffie–Hellman advantage of an adversary A against a family of groups FGps as
follows:

AdvCDH
A,FGps(t) = Pr

[
(G, q, g) ← G(t); a, b

R← Z
×
q ; gab = A

(
G, q, g, ga, gb

)]
.

We say the CDH assumption holds in the family FGps if the advantage AdvCDH
A,FGps(t)

of any p.p.t. adversary A is negligible in t .
The gap Diffie–Hellman assumption for a group states that the above problem is hard

for a given group even if the adversary has access to a decision Diffie–Hellman (DDH)
oracle OG

DDH for that group. Such an oracle takes as inputs triples of the form ga, gb, gc,
where g generates the group G of order q and a, b, c ∈ Zq , and answers “yes” if c = ab

and “no” otherwise.

Definition 2.2 (The Gap Diffie–Hellman Advantage). The Gap Diffie–Hellman ad-
vantage of an adversary A against the family of groups FGps is defined as follows:

Advgap-DH
B,FGps(t) = Pr

[
(G, q, g) ← G(t); a, b

R← Z
×
q ; gab = A OG

DDH(·)(
G, q, g, ga, gb

)]
.

We say the gap-DH assumption holds in the family FGps if the advantage
Advgap-DH

A,FGps(t) of any p.p.t. adversary A is negligible in t .

2.3. Cryptographic Primitives

Here we recall several cryptographic primitives and the security models associated with
them that we use.

2.3.1. Public Key Encryption

Definition 2.3 (Public Key Encryption Scheme). A public key encryption scheme Enc
is given by a triple of algorithms (G, E , D) such that:

196 P. Morrissey, N.P. Smart, and B. Warinschi

• G is a p.p.t. key generation algorithm: (PK,SK) ← G(t). It also returns a descrip-
tion of the message and ciphertext spaces, M and C .

• E is a p.p.t. or d.p.t. public key encryption algorithm: c ← EPK(m; r), where
m ∈ M and c ∈ C .

• D is a d.p.t. public key decryption algorithm: m ← DSK(c).

For correctness, we require that for all public/private key pairs (PK,SK) ← G(t) and
all m ∈ M that DSK(EPK(m; r)) = m.

If E is a p.p.t., then Enc is called a probabilistic public key encryption scheme, and
if E is a d.p.t., then Enc is called a deterministic public key encryption scheme.

We will be concerned with security of a public key encryption scheme in a one-way
sense under both chosen plaintext attack and chosen ciphertext attack (OW-CPA and
OW-CCA respectively). We define the advantage of adversary B against the OW-CPA
security of a public key encryption scheme Enc = (G, E , D) by

AdvOW-CPA
B,Enc (t)

= Pr
[
(PK,SK) ← G(t); m∗ R← M; c∗ ← EPK(m∗; r∗); B(PK, c∗) = m∗].

We say that a public key encryption scheme Enc is OW-CPA secure if the advantage of
any polynomial-time adversary is a negligible function in t .

If adversary B has access to a decryption oracle OSK
D (c) that returns the decryption

of any valid c �= c∗ under SK, then we define the advantage of B by

AdvOW-CCA
B,Enc (t)

= Pr
[
(PK,SK) ← G(t); m∗ R← M; c∗ ← EPK(m∗; r∗); B OSK

D (·)(PK, c∗) = m∗].

We say that a public key encryption scheme Enc is OW-CCA secure if the above advan-
tage of any polynomial-time adversary is a negligible function in t .

2.3.2. Digital Signatures

Definition 2.4 (Public Key Signature Scheme). A public key signature scheme Sig is
given by a triple of algorithms (G, sig,ver) such that:

• G is a p.p.t. key generation algorithm: (PK,SK) ← G(t).
• sig is a p.p.t. public key signature algorithm: σ ← sigSK(m).
• ver is a d.p.t. public key verification algorithm: verPK(m,σ), which returns true if

the pair (m,σ) corresponds to a valid message signature pair and false otherwise.

We require that for all public/private key pairs (PK,SK) ← G(t) and all m that
verPK(m, sigSK(m)) = true.

To define the security of a public key signature scheme under chosen message attack
we allow adversaries access to a signature oracle OSK

sig (m) which returns a valid mes-
sage/signature pair for m under SK. If Sig = (G, sig,ver) is a public key signature and

The TLS Handshake Protocol: A Modular Analysis 197

C an adversary against this scheme in terms of strong existential forgery under adaptive
chosen message attack SEF-CMA, then we define the advantage of C by

AdvSEF-CMA
C,Sig (t) = Pr

[
(PK,SK) ← G(t); verPK

(
(m, s) = C OSK

sig (·)
(PK)

) = true
]
.

We say that the scheme is strongly unforgeable if for any probabilistic polynomial-
time adversary, its advantage is a negligible function. Above, we ask that the mes-
sage/signature pair (m, s) output by the adversary is such that the signature s had not
been output by the signing oracle on query m.

2.3.3. Message Authentication Codes

Definition 2.5 (Message Authentication Code). A message authentication code Mac
is given by a triple of polynomial-time algorithms (K,MAC,ver) such that:

• K is a p.p.t. key generation algorithm K ← K(t).
• MAC is a d.p.t. tag generation algorithm tag ← MACK(m).
• ver is a d.p.t. tag verification algorithm {accept, reject} ← verK(m, tag).

We require that for all K ← K(t) and tag ← MACK(m) that verK(m, tag) = accept.

To define the security of a message authentication code under chosen message attack,
we allow adversaries access to two oracles. The first oracle is a tag generation oracle
OK

MAC(m) which returns a valid tag for the message m. The second oracle is a tag
verification oracle OK

ver(m, tag) which returns accept if tag is a valid tag for the message
m under the key K and reject otherwise.

If Mac = (K,MAC,ver) is a message authentication code and A is an adversary
against Mac in terms of recovering the underlying key using a chosen message attack
(KR-CMA), then we define the advantage of A by

AdvKR-CMA
A,Mac (t) = Pr

[
K ← K(t); K = A OK

MAC(·),OK
ver(·,·)].

The above is a nonstandard security definition for a Mac; however, a more standard
definition is given by an adversary whose goal is to produce an existential forgery under
chosen message attack. Let A denote such a UF-CMA adversary; then we define the
advantage of A by

AdvUF-CMA
A,Mac (t) = Pr

[
K ← K(t); verK

(
(m, tag) = A OK

MAC(·),OK
ver(·,·)) = accept

]
.

3. A Generic Execution Model for Two-Party Protocols

In this section we give a general description of the execution model we use. Later, we
specialise this general model for the different security levels we consider in the paper
according to the various keys agreed within TLS.

198 P. Morrissey, N.P. Smart, and B. Warinschi

Registered and Unregistered Users. We model a setting with two kinds of users: reg-
istered users (with identities in some set U) and nonregistered users (with identities in
some set U ′). Each user U ∈ U has a long-term public key PKU and a corresponding
long-term private key SKU . The set U is intended to model the set of servers in the
standard one-way authentication mode of TLS, the set of identities U ′ models users that
do not have a long-term public/private key pair.

Models for Interactive Protocols Execution. We are concerned with two-party proto-
cols: interactive programs in which an initiator and a responder communicate via some
communication channel. Each of the two parties runs some reactive program: each pro-
gram expects to receive a message from the communication channel, computes a re-
sponse, and sends this back to the channel. We refer to one execution of the program
for the initiator (respectively, responder) as an initiator session (respectively, a respon-
der session). Each party may engage in multiple, concurrent, initiator and responder
sessions.

As standard, we assume an adversary in absolute control of the communication net-
work: the adversary intercepts all messages sent by parties and may respond with
whatever message it wants. This situation is captured by considering an adversary
(an arbitrary probabilistic, polynomial-time algorithm) who has access to oracles that
correspond to some (initiator or responder) sessions of the protocol which the oracle
maintains internally. In particular, each oracle maintains an internal state which consists
of the variables of the session to which it corresponds, and additional meta-variables
used later to define security notions. In our descriptions we typically ignore the details
of the local variables of the sessions, and we omit a precise specification of how these
sessions are executed. Both notions are standard. The typical meta-variables of an or-
acle O include the following. Variable τO ∈ {0,1}∗ ∪ {⊥} that maintains the transcript
of all messages sent and received by the oracle, and occasionally, other data pertaining
to the execution. Variable roleO ∈ {initiator, responder,⊥} records the type of session
to which the oracle corresponds. Variable pidO ∈ U keeps track of the identity of the
intended partner of the session maintained by O. Variable δO indicates whether the ses-
sion had finished successfully, or unsuccessfully. We specify the values that this variable
takes later in the paper. Finally, variable γO ∈ {⊥, corrupted} records whether or not the
session had been corrupted by the adversary.

After an initialisation phase, in which long-term keys for the parties are gener-
ated, the adversary takes control of the execution which he drives forward using
several types of queries. The adversary can create a new session of user U play-
ing the role of the initiator/responder by issuing a query NewSession(U, role), with
role ∈ {initiator, responder}. User U can be either registered or unregistered. We write
�i

U for the ith session of user U . To any oracle O the adversary can send a message msg
using the query Send(O,msg). In return the adversary receives an answer computed ac-
cording to the session maintained by O. The adversary may also corrupt oracles. Later
in the paper, when we specialise the general model, we clarify the different versions of
corruptions that can occur and how are they handled by the oracles. The execution halts
whenever the adversary decides to do so.

To identify sessions that interact with each other we use the notion of matching con-
versations introduced by Bellare and Rogaway (which essentially states that the inputs

The TLS Handshake Protocol: A Modular Analysis 199

to one session are outputs of the other sessions, and the other way around) [6]. Note that,
unlike [11], we do not use the notion of matching conversation with appendix, despite
us working in the public-key model.

Definition 3.1 (Conversation). For a given adversary A and a given oracle �i
U , we

define its conversation, Ci
U , to be a sequence of tuples

Ci
U = (t1, α1, β1), (t2, α2, β2), . . . , (tm,αm,βm),

where tm > tm−1 > · · · > t2 > t1 are time steps. A given tuple (tt , αt , βt) means that at
time tt oracle �i

U was asked αt by the adversary and responded with βt and that after
(tm,αm,βm) the adversary terminated without asking any further queries to that oracle.

Notice that a conversation is taken to mean a list of queries and responses of a com-
plete execution of the protocol for a given oracle. It only exists upon completion of that
particular protocol run. Also note that it is not the same thing as a complete transcript:
it does not contain information such as the decisions reached and session IDs. Also, if a
given oracle �i

U has a conversation prefixed by (t1, λ,β1), then this oracle will have its
role set as the initiator, otherwise its role is set as responder.

We then define a matching conversation for the case of a protocol of R moves, where
R is odd, as follows (a similar definition can be given in the case of a protocol with an
even number of message flows).

Definition 3.2 (Matching Conversation). Let � be an R move pre-master key agree-
ment protocol where R = 2ρ − 1. Let �i

U and �
j
V be two oracles with conversations

Ci
U and C

j
V .

(1) We say that C
j
V is a matching conversation to Ci

U if there exist t0 < t1 < · · · < tR
and α1, β1, . . . , βρ−1, αρ such that Ci

U is prefixed by

(t0, λ,α1), (t2, β1, α2), (t4, β2, α3), . . . , (t2ρ−4, βρ−2, αρ−1), (t2ρ−2, βρ−1, αρ)

and C
j
V is prefixed by

(t1, α1, β1), (t3, α2, β2), (t5, α3, β3), . . . , (t2ρ−3, αρ−1, βρ−1).

(2) We say that Ci
U is a matching conversation to C

j
V if there exist t0 < t1 < · · · < tR

and α1, β1, . . . , βρ−1, αρ such that C
j
V is prefixed by

(t1, α1, β1), (t3, α2, β2), (t5, α3, β3), . . . , (t2ρ−3, αρ−1, βρ−1), (t2ρ−1, αρ,∗)

and Ci
U is prefixed by

(t0, λ,α1), (t2, β1, α2), (t4, β2, α3), . . . , (t2ρ−2, βρ−1, αρ).

We then say that �
j
U has a matching conversation with �i

V if the first oracle has con-

versation C
j
U , the second oracle has conversation Ci

V , and C
j
V matches Ci

U .

200 P. Morrissey, N.P. Smart, and B. Warinschi

4. Pre-Master Key Agreement Protocols

In this section we specialise the general model described above for the case of pre-
master key agreement protocols and analyse the security of the pre-master key agree-
ment protocols used in TLS.

As discussed in the introduction, the design of our models is guided by the security
properties that the various subprotocols of TLS satisfy. In particular, we require ex-
tremely weak security properties for the pre-master secret key. Specifically, we demand
that an adversary is not able to fully recover the key shared between two honest parties.
In its attack the adversary is allowed to adaptively corrupt parties and obtain their long-
term secret key, and is allowed to check if a certain string s equals the pre-master secret
key held by some honest session. The latter capability models an extremely limited form
of reveal queries: our adversary is not allowed to obtain the pre-master secret key of any
of the sessions but can only guess (and then check) their values.

The formal model of security for pre-master key agreement protocols extends the
general model in Sect. 3 and makes only mild assumptions regarding the syntax of such
protocols. Specifically, we assume that the pre-master key belongs to some space SPMS.
This space is often the support set of some mathematical structure such as a group. We
require that if t is the security parameter, then #SPMS ≥ 2t . Furthermore, we assume
that the initiator and responder programs use a variable s ∈ SPMS ∪ {⊥} that stores
the shared pre-master key. The corresponding variable stored by some oracle O is sO .
For pre-master secret key agreement protocols, the internal variable δO stores one of
the following values: ⊥ (the session had not finished its execution), accepted-pmk (the
session had finished its execution successfully (which in particular means that sO holds
some pre-master session key in SPMS) or rejected (the session had finished its execution
unsuccessfully). Unless δO = accepted-pmk, we assume sO =⊥.

The corruption capabilities of the adversary discussed above are modelled using
queries Corrupt and Check formally defined as follows. When the adversary issues a
query Corrupt(U), the following actions take place. If U ∈ U , then SKU is returned to
the adversary, and we say that party U had been corrupted. In all sessions O = �i

U

for some i ∈ N, the value of γO is set to corrupted, and no further interaction be-
tween these oracles and the adversary may take place. Additionally, no further queries
NewSession(U, role) are permitted.

When the adversary issues the query Check(O, s), for O = �i
U , i ∈ N, U some

uncorrupted party, and s ∈ SPMS, then the answer returned to the adversary is true if
δO = accepted-pmk and sO = s, and false otherwise. When a given oracle is initialised,
all values for the internal states are set to ⊥. At the end of a protocol, the role, partner
ID, and oracle state (but not the pre-master key) are recorded in the transcript.

The following definition captures the class of oracles which are valid targets for the
attacker using the notion of “fresh oracles”. These are uncorrupted oracles who have
successfully finished their execution, and have a known intended partner who is also
not corrupted.

Definition 4.1 (Fresh Pre-Master Secret Key Oracle). A pre-master secret oracle O is
said to be fresh if all of the following conditions are satisfied:

The TLS Handshake Protocol: A Modular Analysis 201

1. γO =⊥.
2. δO = accepted-pmk.
3. ∃V ∈ U such that V is uncorrupted and pidO = V .

Security Game for Pre-Master Key Agreement Protocols. We define the security of a
pre-master key agreement protocol � via the following game ExecOW-PMS

A,�
(t) between

an adversary A and a challenger C :

(1) The challenger, C , generates public/secret key pairs for each user U ∈ U (by
running the appropriate key-generation algorithm on the security parameter t)
and returns the public keys to A.

(2) Adversary A is allowed to make as many NewSession, Send, Check, and Corrupt
queries as it likes.

(3) At some point, A outputs a pair (O∗, s∗), where O∗ is some pre-master secret
oracle, and s∗ ∈ SPMS.

We say the adversary A wins if its output (O∗, s∗) is such that O∗ is fresh, and s∗ =
sO∗ . In this case the output of ExecOW-PMS

�,A (t) is set to 1. Otherwise the output of the
experiment is set to 0. We write

AdvOW-PMS
A,� (t) = Pr

[
ExecOW-PMS

A,� (t) = 1
]

for the advantage of A in winning the ExecOW-PMS
A,�

(t) game. The probability is taken
over all the random coins used in the game. We deem a pre-master secret key protocol
secure if the adversary is not able to fully compute the key held by fresh oracles.

Definition 4.2 (Pre-Master Key Agreement Security). A pre-master key agreement
protocol is secure if it satisfies the following requirements:

• Correctness: If at the end of the execution of a benign adversary, who correctly
relays messages, any two oracles which have had a matching conversation hold the
same pre-master key, and the key should be distributed uniformly on the pre-master
key space SPMS.

• Key Secrecy: A pre-master key agreement protocol � satisfies OW-PMS key se-
crecy if for any p.p.t. adversary A, its advantage AdvOW-PMS

A,�
(t) is a negligible

function.

Before proceeding, we discuss the strength of our model for the security of pre-master
secret keys, and several authentication issues.

Remark 4.1. Our security requirements for pre-master secret key agreement are sig-
nificantly weaker than the standard requirements for key exchange [6,8]. In particular,
we only require secrecy in the sense of one-wayness (not in the sense of indistinguisha-
bility from a random key). Furthermore, the corruption abilities of the adversary are
severely limited: the adversary cannot obtain (or “reveal”) pre-master secrets estab-
lished by honest parties (even if these parties are not those under the attack).

202 P. Morrissey, N.P. Smart, and B. Warinschi

Remark 4.2. As a consequence of our security requirements, our model may deem
protocols that succumb to unknown-key-share attacks [22] secure. In such attacks, two
sessions belonging to honest users U and V locally establish the same pre-master secret
key, without intentional interaction with each other.

Remark 4.3. Security under our notion guarantees security against man-in-the-middle
attacks: a situation where honest parties U and V believe they interact with each other
but their pre-master key(s) is in fact shared with the adversary is a security break in our
model.

Remark 4.4. Although the resulting security notion is very weak, it turns out that it
suffices to obtain good master-key agreement protocols by appropriately designed pro-
tocols to derive such keys (e.g. the protocol in Step 4 of the TLS protocol—Fig. 1). More
importantly, the weak notion also allows for many simple protocols to be proved secure.
For example, in the next section we prove that deterministic encryption is sufficient to
construct such protocols.

Remark 4.5. Our model is not concerned with secure establishment of pre-master se-
cret keys between two unauthenticated parties (the oracle that is under attack always
has pidO �= ⊥). While treating this case is possible using the concept of matching con-
versations to pair sessions, the resulting definition would be heavier and not particularly
illuminating. Instead, we concentrate on the situation more relevant to practice where at
least one of the parties that take part in the protocol (the server) has a certified public
key.

Remark 4.6. As usual, our security model can be easily adapted to the random oracle
model by providing the adversary with access to the random oracle (whenever some
hash function is modelled as an RO). The same holds true for the rest of the models that
we develop in this paper.

We now discuss the security of the two most widely used pre-master secret key agree-
ment protocols used in TLS.

4.1. Protocols Based on Public-Key Encryption

A natural, intuitively appealing, construction for pre-master key agreement protocols is
based on the following use of an arbitrary public-key encryption scheme Enc. A user
selects a pre-master secret key s from an appropriate space and sends to the server the
encryption of s under the server’s public-key. The server then obtains s as the decryption
of the ciphertext that it receives. The resulting protocol, which we denote by PMK(Enc),
is sketched in Fig. 2. Notice that TLS specifies the behaviour of the receiving party for
the case where the decryption does not succeed. This is important to ensure that attacks
that use information about the result of decryption do not succeed.

The weak security properties that we define for pre-master key agreement protocols
enable us to show security of PMK(Enc) based on weak security requirements for Enc.
Indeed, the one-wayness type secrecy for pre-master keys translates to the one-wayness

The TLS Handshake Protocol: A Modular Analysis 203

Alice Bob

s ← SPMS; c = EPKB
(s; r)

c �

If DSKB
(c) �∈ SPMS then s

R← SPMS
Else s ← DSKB

(c)

Fig. 2. Public key encryption based pre-master key agreement.

of the encryption function of Enc. This result of our analysis implies, perhaps surpris-
ingly, that one can avoid the use of full-fledged IND-CCA encryption schemes in favour
of the much simpler deterministic OW-CPA schemes (e.g. textbook RSA). Of course,
probabilistic encryption can also be used, but in this case we show security of the asso-
ciated pre-master secret key protocol based on OW-CCA security. More generally our
results hold under the assumption that the encryption scheme is secure against an at-
tacker with access to a plaintext checking oracle. It is therefore not paradoxical that a
deterministic scheme suffices but an IND-CPA scheme does not.

The following theorem states that a simple deterministic OW-CPA suffices to obtain
a secure pre-master key agreement protocol.

Theorem 4.3. If Enc is an OW-CPA secure deterministic encryption scheme, then the
pre-master secret key agreement protocol � = PMK(Enc) defined above is secure.

Proof. Correctness follows by inspection.
We next prove that for any adversary A against � = PMK(Enc), there exists an ad-

versary B against OW-CPA security of Enc such that

AdvOW-PMS
A,PMK(Enc)(t) ≤ (

nP · nS · (nP + n′
P

)) · AdvOW-CPA
B,Enc (t),

where nP (resp. n′
P) is a bound on the number of participants in U (resp. U ′), and nS is

a bound on the number of sessions each participant can engage in.
Let A be an adversary against the OW-PMS security of the pre-master key transport

protocol � of Fig. 2, where the encryption scheme is OW-CPA secure. The algorithm B
against the OW-CPA security of Enc = (G, E , D) is then constructed as follows.

The algorithm B is given as input a public key PK† and a target ciphertext, c† as part
of the OW-CPA game against Enc. Next B acts as a challenger to A in an ExecOW-PMS

A,�
(t)

game. To do this B generates nP identities U and n′
P identities U ′. Then B selects an

element V † ∈ U , an element U† ∈ U ∪ U ′ and an integer i† ∈ Z
×
nS

. The public key of
V † is set to be PK†. Then B runs the key generation algorithm of the public key scheme
to obtain public/private key pairs of all elements in U \ {V †}. To finish the setup of
ExecOW-PMS

A,�
(t), algorithm B calls algorithm A using this data.

Algorithm A will then start to make NewSession, Send, Corrupt and Check queries
which B answers as follows:

• If a Corrupt(U) query is made where U = U † or U = V †, then B terminates. Oth-
erwise B responds with the private key value (if U ∈ U), and A no longer can make
queries to oracles belonging to participant U .

204 P. Morrissey, N.P. Smart, and B. Warinschi

• If the adversary makes a Send(O,msg) query and O = �i†

U† , and this oracle is not
the initiator, then algorithm B terminates, otherwise B responds to the Send query
with the message c†.

• If the adversary makes a Send(O, c) query for O = �i
U �= �i†

U† and roleO �=
initiator, then B first checks that DSKU

(c) ∈ SPMS. If this is not the case, then
B selects sO at random from SPMS and sets δO = accepted-pmk. Otherwise B sets
sO ← DSKU

(c) and sets δO = accepted-pmk.
• The Check(O, s) queries which A makes can always be answered by B since the

encryption function is deterministic.

If B does not terminate, then eventually A will terminate and output a pair (O∗, s∗) =
(�i∗

U∗ , s∗). Since U † ∈ U ∪ U ′, with probability 1/((nP + n′
P) · nS) we have that U∗ =

U† and i∗ = i†. Furthermore, we have that pidO∗ = V † with probability 1/nP . Due to
the way B inserts c† into the message flows of ExecOW-PMS

A,�
(t), the adversary A will be

attempting to find the message behind the ciphertext c† if and only if all three of these
conditions hold. This happens with probability 1/(nP · (nP + n′

P) · nS). If, in addition
to this, ExecOW-PMS

A,�
(t) = 1, then s∗ will actually be the corresponding message behind

the ciphertext c†. The algorithm B then outputs s∗ as part of the OW-CPA security game
against Enc.

Since the simulation provided for A by B is perfect if B does not terminate, the choice
of the oracle output by A is independent of the choices of B, and this provides the stated
advantage. �

The next theorem captures that PMK(Enc) is secure when the encryption algorithm
of Enc is a randomised. In this case we demand that the encryption scheme be OW-CCA
secure.

Theorem 4.4. If Enc is an OW-CCA secure randomised encryption scheme, then
PMK(Enc) is a secure pre-master key transport protocol.

Proof. Correctness is immediate.
We prove that for any adversary A against PMK(Enc), there exists an adversary B

against the OW-CCA security of Enc such that

AdvOW-PMS
A,PMK(Enc)(t) ≤ (

nP · nS · (nP + n′
P

)) · AdvOW-CCA
B,Enc (t),

where, as before, nP (resp. n′
P) is a bound on the number of participants in U (resp. U ′),

and nS is a bound on the number of sessions each participant can engage in.
The proof is essentially the same as for the previous theorem. The only difference is

that the Check(O, s) queries to a given oracle are simulated either by performing a valid
decryption using the public/private key pair held by the algorithm B (in the case where
the recipient is not equal to V †), or are performed using the supplied decryption oracle
(when the identity of the recipient is equal to V †). �

Notice that since IND-CCA implies OW-CCA, our security analysis does apply to
the (correct) use of an IND-CCA secure public key encryption scheme within the TLS

The TLS Handshake Protocol: A Modular Analysis 205

protocol. In particular, when Enc is RSA-OAEP, the pre-master secret key protocol
PMK(Enc) is secure.

4.2. Signed Diffie–Hellman Pre-Master Key Agreement

Let FGps be a family of prime-order groups, and let Sig = (G, sig,ver) be a public
key signature scheme. If t is a security parameter, then for (G, q, g) ← G(t), the pre-
master secret key in TLS can be produced by exchanging a Diffie–Hellman key gxy , for
x, y ∈ Z

×
q randomly chosen by the two participants, who also sign the relevant message

flow (either gx or gy) with their long-term signing keys. The set of pre-master keys is set
to G. The resulting protocol, for which we write PMK(Sig,FGps), is sketched in Fig. 3.
Notice that we give the protocol for the case of only one party having a public/private
key pair.

It is known that this protocol does not meet the requirements of an authenticated key
agreement protocol; for example, see [22] for a discussion of this protocol and various
attacks on it. We prove however that the protocol does satisfy the security requirements
that we put forth for pre-master key agreement protocols.

Theorem 4.5. Let FGps be a family of groups of prime order for which the gap-
Diffie–Hellman assumption holds, and let Sig be a secure digital signature scheme.
Then � = PMK(Sig,FGps) is a secure pre-master key agreement protocol.

Proof. Correctness follows by inspection.
We prove that for any adversary A against � = PMK(Sig,FGps), there exists an

algorithm B for the gap-Diffie–Hellman problem in FGps and an adversary C against
Sig such that

AdvOW-PMS
A,PMK(Sig,FGps)(t) < Advgap-DH

B,FGps(t) + nP · AdvSEF-CMA
C,Sig (t),

where nP denotes a bound on the number of participants in the set U .
Let A be an adversary against the OW-PMS security of the signed Diffie–Hellman

pre-master key agreement protocol � of Fig. 3. We define E to be the event that at the
end of ExecOW-PMS

A,�
(t) the oracle O∗ that A outputs has on its transcript an incoming

message (ga, sig(ga)) that was not output by any other honest oracle in the game. We

Alice Bob

a
R← {1, . . . , q − 1}; A ← ga b

R← {1, . . . , q − 1}; B ← gb

σ ← sigSKB
(B)

A �
B, σ�

s = Ba s = Ab

if verPKB
(B,σ) = false

then abort

Fig. 3. Signed Diffie–Hellman based pre-master key agreement.

206 P. Morrissey, N.P. Smart, and B. Warinschi

then note the following:

Pr
[
ExecOW-PMS

A,� = 1
] = Pr

[
ExecOW-PMS

A,� = 1 ∩ E
] + Pr

[
ExecOW-PMS

A,� = 1 ∩ ¬E
]

= Pr
[
ExecOW-PMS

A,� = 1 | E] · Pr[E]
+ Pr

[
ExecOW-PMS

A,� = 1 | ¬E
] · Pr[¬E]

< Pr
[
ExecOW-PMS

A,� = 1 | E] + Pr
[
ExecOW-PMS

A,� = 1 | ¬E
]
.

We next construct the two algorithms, B against the gap-DH problem in the family
FGps and C against the SEF-CMA of the underlying signature scheme Sig, according to
whether the event E occurs or not.

First assume that the event E does not occur. Then we construct the algorithm B
against the gap-DH problem in FGps as follows. Algorithm B is given as input a security
parameter t , a decisional Diffie–Hellman oracle OG

DDH and an instance of the Diffie–
Hellman problem (G, q, g, ga, gb) in the group (G, q, g) ← G(t). Next B acts as a
challenger to A in an ExecOW-PMS

A,�
(t) game. To do this B generates nP identities U and

n′
P identities U ′. Then B runs the key generation algorithm of the public key signature

scheme Sig with security parameter t to obtain public/private key pairs of all elements
in U . To finish the setup of ExecOW-PMS

A,�
algorithm B calls A using this data.

Algorithm A will then start to make NewSession, Send, Check and Corrupt queries
which B answers in the following way:

• If a Corrupt(U) query is made, then B returns SKU , and A may make no further
queries of oracles belonging to participant U .

• When A makes a Send(O,msg) query to an oracle O = �i
U , then B generates

a random value rO ∈ {1, . . . , q − 1}. If U is an initiator, then B sets h = (ga)rO ,
otherwise B sets h = (gb)rO .

Then if U ∈ U ′ and this is the first message received by that oracle, then B
replies with h. If this is not the first message, then B responds with ⊥.

Otherwise, U ∈ U , and B replies with (h, sigSKU
(h)).

• If the adversary makes a Check(O, s) query, then B obtains the Diffie–Hellman
exchanges transmitted to and from the oracle from the transcript and submits these,
along with the value to be checked, to the oracle OG

DDH. Algorithm B then relays
the response of this to A.

In this way B can always answer all of the queries that A makes and will hence perfectly
simulate the environment of A. As a result, eventually A will terminate and output a
pair (O∗, s∗) = (�i∗

U∗ , s∗).
Since we have assumed that the event E does not occur, then there will be an entry of

the form (gαrO† , sigSK
V †

(gαrO†)), where α ∈ {a, b}, on the transcript of O∗ produced

by some oracle O† = �i†

V † . Furthermore, if we have ExecOW-PMS
A,�

(t) = 1, then s∗ =
(gab)rO∗ rO† . Therefore algorithm B can construct the solution to the Diffie–Hellman
problem for security parameter t as (s∗)1/(rO∗ rO†). Hence,

Advgap-DH
B,FGps(t) = Pr

[
ExecOW-PMS

A,� = 1 | ¬E
]
.

The TLS Handshake Protocol: A Modular Analysis 207

Next we consider the case in which the event E does occur. Here we construct the
algorithm C against the SEF-CMA of the signature scheme used as follows. The algo-
rithm C is given as input a security parameter t , a public verification key PK and a
corresponding signature oracle OSK

sig .

Algorithm C acts as a challenger for A in an ExecOW-PMS
A,�

(t) game. To do this C
generates nP identities U and n′

P identities U ′, and it selects an oracle U† ∈ U and sets
PKU† = PK and SKU† =⊥. Then C runs the key generation algorithm of the public
key signature scheme with security parameter t to obtain public/private key pairs of all
elements U ∈ U \ {U†}. To finish the setup of ExecOW-PMS

A,�
(t) the set of identities and

public keys are passed to algorithm A.
Algorithm A will then start to make NewSession, Send, Check and Corrupt queries

which C answers in the following way:

• If a Corrupt(U) query is made and U �= U†, then C returns SKU , and A can no
longer query any oracle belonging to participant U . If U = U†, then C aborts.

• When A makes a Send(O,msg) query to an oracle with identity not equal to U†,
then C responds as in the correct execution of the protocol.

Otherwise C and selects a random x ∈ Z
×
q , computes gx , and obtains a signature

on gx using its signature oracle. The reply to the adversary is (gx, OSK
sig (gx)).

• If the adversary makes a Check(O, s) query, then C knows the ephemeral Diffie–
Hellman secret of the queried oracle and so can compute the associated Diffie–
Hellman secret and therefore is able to answer the Check queries honestly.

If C does not abort, then the environment of A is perfectly simulated and as a result
eventually A will terminate and output a pair (�i∗

U∗ , s∗).
If pidO∗ = U† and ExecOW-PMS

A,�
(t) = 1, then there is an entry (h, sigSK

U†
(h)) on

the transcript τO∗ of O∗ that has correctly verified under PKU† . Furthermore, since
the event E has occurred, the entry did not come from U† (i.e. it was not a mes-
sage/signature pair that was output by OSK

sig). As a result, the pair (h, sigSK
U†

(h)) is
a valid forgery. Algorithm C scans τO∗ to find this pair and then uses the pair as its
output in the game against the SEF-CMA of the signature scheme. Since the choice of
U∗ is outside the view of the adversary, we obtain that

AdvSEF-CMA
C (t) ≥ 1

nP

· Pr
[
ExecOW-PMS

A,� = 1 | E
]
,

from which the desired result follows. �

4.3. Pre-Master Key Agreement from Signcryption Schemes

In the TLS standard, when used with RSA-based key transport, the mechanism used to
provide mutual authentication is for the client to sign its encryption of the pre-master
secret under the server’s public key. In essence this is using the encrypt-then-sign para-
digm of creating a signcryption scheme [2]. By combining techniques of the proofs of
the previous theorems it is easy to show that one can prove a similar security result to
that above for general signcryption-based key transport mechanisms [37], which also
shows security for the mutually authenticated versions of TLS deployed in practice.

208 P. Morrissey, N.P. Smart, and B. Warinschi

Mutual authentication can also be shown when the pre-master key is obtained using
signed Diffie–Hellman, based on the security of the digital signature scheme.

5. Master Key Agreement Protocols

In this section we introduce a security model for master key agreement protocols. We
then show that master key agreement protocols obtained from secure pre-master key
agreement protocols via the transformation used in TLS satisfy our notion of security.

Our security model for master key agreement protocols is similar to that for pre-
master key agreement protocols. We again ask that the adversary is not able to fully
recover the master secret key of the session under attack. Moreover, we ask for a key
confirmation guarantee: if a session of some user U accepts a certain master-key, then
there exists at most one session of its intended partner that has accepted the same key.
In addition to the queries previously defined for the adversary, we also let the adversary
obtain the master keys agreed in different sessions of the protocol, without corrupting
the user to which this session belongs, i.e. we allow so-called Reveal queries.

In the formal model that we give below we make the following assumptions about the
syntax of a master-key agreement protocol. We assume that the master key belongs to
some space SMS for which we require that #SMS ≥ 2t and assume that the programs that
specify a master key agreement protocol use a variable m to store the agreed master key.
For such protocols, the variable δO now takes values in {⊥,accepted-mk, reject} with
the obvious meaning. Furthermore, the variable γO can also take the value revealed to
indicate that the stored master key has been given to the adversary (see below).

In addition to the queries allowed in the experiment for pre-master key security, the
adversary is also allowed to issue queries of the form Reveal(O). This query is handled
as follows: if δO = accepted-mk, then mO is returned to A, and γO is set to revealed,
while if δO �= accepted-mk, then the query acts as a no-op. As before, when a given
oracle is initialised, all values for the internal states are set to ⊥. At the end of a pro-
tocol the role, partner ID and oracle state (but not the master key) are recorded in the
transcript. Unless δO = accepted-mk, we assume mi

U =⊥.
The definition of freshness needs to be adapted to take into account the new adversar-

ial capabilities. We call an oracle O fresh if it is uncorrupted, has successfully finished
its execution, its intended partner V is uncorrupted, and none of the revealed oracles be-
longing to V has had a matching conversation with O. The latter condition essentially
says that the adversary can issue Reveal(Q) for any Q (including those that belong
to the intended partner of O), as long as Q is not the session with which O actually
interacts.

Definition 5.1 (Fresh Master Secret Oracle). A master secret oracle O is said to be
fresh if all of the following conditions hold:

1. γO =⊥.
2. δO = accepted-mk.
3. ∃V ∈ U such that V is uncorrupted and pidO = V .
4. No revealed oracle �i

V has had a matching conversation with O.

The TLS Handshake Protocol: A Modular Analysis 209

Security Game for Master-Key Agreement Protocols. The game, denoted by
ExecOW-MS

A,�
(t), for defining the security of master-key agreement protocol � in the

presence of adversary A is similar to that for pre-master key, with the modification that
A is also allowed to make any number of Reveal queries, in addition to the NewSession,
Send, Corrupt, Reveal and Check queries. Here, check queries are with respect to the
master secret keys only. When the adversary stops, it outputs a pair (O∗,m∗), where
O∗ identifies one of its oracles, and m∗ is some element of SMS. We say that A wins if
its output (O∗,m∗) is such that O∗ is fresh and m∗ = mO∗ . In this case the output of
ExecOW-MS

A,�
(t) is set to 1. Otherwise the output of the experiment is set to 0. We write

AdvOW-MS
A,� (t) = Pr

[
ExecOW-MS

A,� (t) = 1
]

for the advantage of A in winning the ExecOW-MS
A,�

(t) game. The probability is taken
over all random coins used in the execution.

The following definition describes a situation where some party U had engaged in
a session which terminated successfully with some party V , but no session of V has a
matching conversation with U .

Definition 5.2 (No-Matching). Let No-MatchingA,�(t) be the event that at some point
during the execution of ExecOW-MS

A,�
(t) for two uncorrupted parties U ∈ U ∪ U ′ and

V ∈ U , there exists an oracle O = �i
U with pidO = V ∈ U , δO = accepted, and yet

no oracle �i
V has had a matching conversation with O.

The following definition says that a protocol is a secure master-key agreement proto-
col if the key established in an honest session is secret (in the one-wayness sense) and
no honest party can be coaxed into incorrectly accepting.

Definition 5.3 (Master Key Agreement Security). A master key agreement protocol is
secure if it satisfies the following requirements:

• Correctness: At the end of the execution of a benign adversary, who correctly
relays messages, any two oracles which have had a matching conversation hold the
same master key, which is distributed uniformly over the master key space SMS.

• Key Secrecy: A master key agreement protocol � satisfies OW-MS key secrecy if
for any p.p.t. adversary A, its advantage AdvOW-MS

A,�
(t) is a negligible function.

• No Matching: For any p.p.t. adversary A, the probability of event
No-MatchingA,�(t) is negligible.

Remark 5.1. Our security requirements for master secret keys are still significantly
weaker than the more standard requirements for key exchange [6,8]. Although the ad-
versarial powers are similar to those in existing models (e.g. [11]), we still require the
adversary to recover the entire key. The weaker requirement is motivated by our use of
TLS as guide in designing the security model. In this protocol, as well as in others, the
master secret key is not indistinguishable from a random one since it is used to accom-
plish additional tasks (e.g. key-confirmation, or various versions of authentication).

210 P. Morrissey, N.P. Smart, and B. Warinschi

Remark 5.2. The No Matching property we require is essentially the one based on
matching conversations introduced by Bellare and Rogaway [6], adapted to our setting
where only one of the parties involved in the execution is required to hold a certified
key (and thus have a verifiable identity). One could potentially replace matching con-
versations with weaker versions of partnering, but only at the expense of making the
definitions and results less clear. Bellare and Rogaway also show that if the No Match-
ing property is satisfied, then agreement is injective. In our terms, with overwhelming
probability it holds that if O = �i

U had accepted and has pidO = V ∈ U , then there
exist precisely one session of V with which O has a matching conversation.

Remark 5.3. Notice that, together, the first and third conditions in the above defini-
tions imply a key confirmation guarantee: if one session has accepted a certain key, then
there exists a unique session of the intended partner who has accepted the same key.

Remark 5.4. The addition of Reveal queries implies security against “unknown-key-
share” attacks: if parties U and V share a master-key without being aware that they
interact with each other, the adversary can obtain the key of U by performing a Reveal
query on the appropriate session of V , thus breaking security in the sense defined above.

Remark 5.5. Notice that an adversary against the master-secret key does not have
any query that allows it to obtain information about the pre-master secret key. This is
consistent with the TLS specification which states that the pre-master secret should be
converted to the master secret immediately and that the pre-master secret should be
securely erased from memory. In particular this means that the pre-master secret does
not form part of the state of the master key agreement oracle.

In this section we show that the master-key agreement protocol obtained from a se-
cure pre-master key agreement protocol by using the transformation used in TLS is
secure. Let � be an arbitrary pre-master key agreement protocol, G a hash function,
and Mac = (K,MAC,ver) a message authentication code. We write (�;MKDTLS(Mac,
G)) for the master-key agreement protocol obtained by extending � with the master-
key derivation phase of TLS, i.e. by appending to the message flows of � those in
Step 4 of Fig. 1. Starting from a secure pre-master key agreement protocol, the above
transformation yields a secure master key agreement protocol.

Theorem 5.4. Let � be a secure pre-master agreement protocol, Mac a secure mes-
sage authentication code, and G a random oracle. Then (�;MKDTLS(Mac,G)) is a
secure master-key agreement protocol.

The correctness of the protocol follows by inspection. We only need to prove the
remaining two conditions of Definition 5.3. We prove separately that (�;MKDTLS(Mac,
G)) is secure in the sense of OW-MS (Part 1) and that the probability of the event No-
Matching is negligible for all adversaries (Part 2). For clarity of split, the proof across
two different subsections.

The TLS Handshake Protocol: A Modular Analysis 211

Proof of Theorem 5.4 (One-wayness). Before going into the details of the proof we
give an informal description. An adversary A against a master secret key agreement
protocol can win in one of two ways:

Breaking the PMS: The adversary is able to break the pre-master secret security of
the underlying protocol, and so using a G query is able to break the master-secret
security of the protocol.

Breaking the MAC: The adversary is able to, for a given message authentication code
under an unknown key, compute the key for the message authentication code.

We now formalise the proof. Let A be an adversary against the OW-MS security of the
master key agreement protocol �′ = (�;MKDTLS(Mac,G)).

We define E to be the event that A outputs an oracle �i∗
U∗

′
and that A had, at some

point during the security game ExecOW-MS
A,�′ , made a query to G of the form G(s∗, r∗

a , r∗
b),

where s∗ is the pre-master secret of �i∗
U∗ , and r∗

a , r∗
b are the random strings exchanged

after s∗ was agreed that are on the transcript of �i∗
U∗

′
. We have that

Pr
[
ExecOW-MS

A,�′ = 1
] = Pr

[
ExecOW-MS

A,�′ = 1 ∩ E
] + P

[
ExecOW-MS

A,�′ = 1 ∩ ¬E
]

= Pr
[
ExecOW-MS

A,�′ = 1 | E] · Pr[E]
+ Pr

[
ExecOW-MS

A,�′ = 1 | ¬E
] · Pr[¬E]

< Pr
[
ExecOW-MS

A,�′ = 1 | E] + Pr
[
ExecOW-MS

A,�′ = 1 | ¬E
]
.

The desired result thus follows from the following lemma which captures the intuition
above.

Lemma 5.5. Let � denote a pre-master key agreement protocol, and let the derived
master key agreement protocol be denoted by �′ = (�;MKDTLS(Mac,G)). Let the event
E be as described above. Then if A is an adversary against the OW-MS security of �′,
then

1. There is an adversary B against the OW-PMS security of � such that

Pr
[
ExecOW-MS

A,�′ = 1 | E] = AdvOW-PMS
B,� (t) + nS(nP + n′

P) + nG

2t
.

2. There is an adversary C against the KR-CMA security of the MAC such that

Pr
[
ExecOW-MS

A,�′ = 1 | ¬E
] ≤ ((

nP + n′
P

) · nS

) · AdvKR-CMA
C,Mac (t),

where nP ,n′
P and nS are as before, and nG denotes the maximum number of queries

made by A to the random oracle G.

Proof. We distinguish two cases, depending on whether event E occurs or not.

212 P. Morrissey, N.P. Smart, and B. Warinschi

Event E Occurs. Let D be a challenger in an OW-PMS security game ExecOW-PMS
B,�

(t)

of � against B. We then construct the adversary B against D as follows. For a given
security parameter t , the challenger D generates nP identities U and n′

P identities U ′,
and then obtains public keys for each element in U . Algorithm D then passes U ′ ∪ U
and the set of public keys to B.

Algorithm B acts as a challenger in an ExecOW-MS
A,�′ (t) game against A. In order to

answer the queries of A in a consistent manner, B creates an, initially empty, list G-List.
The entries of G-List are tuples of the form (s, ra, rb,m, O, O′), where s ∈ SPMS ∪{⊥},
ra, rb ∈ {0,1}t ∪ {⊥}, m ∈ SMS, and O, O′ ∈ {�i

U } ∪ {⊥}. The entry O corresponding
to a client, i.e. a party who transmitted rA and received rB , whereas O′ corresponding
to a server, i.e. a party who transmitted rB and received rA. To complete the setup of
ExecOW-MS

A,�′ (t) algorithm B passes U ∪ U ′ and the set of public keys to A.
In the following we assume that the Algorithm B maintains transcripts for each oracle

as part of master secret game ExecOW-MS
A,�′ by using copies of the transcripts from the

pre-master secret game ExecOW-PMS
B,�

(t) and appending any additional messages to this.
We denote τ ′ the transcript formed from the pre-master secret transcript τ with any
additional messages appended.

We define the GetKey algorithm as Algorithm 1. Note that this is only called for
un-corrupted oracles O. We also define an algorithm to answer random oracle queries
to G as in Algorithm 2.

Algorithm 1: GetKey Algorithm.
Input: A tuple (ra, rb, O), with ra and rb being the random strings exchanged

on the transcript of O
Output: A value m ∈ SMS
if O is a client and ∃ (s, ra, rb,m,⊥,∗) ∈ G-List with Check(O, s) = true then1

replace (s, ra, rb,m,⊥,∗) with (s, ra, rb,m, O,∗);2

return m;3

else if O is a server and ∃ (s, ra, rb,m,∗,⊥) ∈ G-List with Check(O, s) = true4

then
replace (s, ra, rb,m,∗,⊥) with (s, ra, rb,m,∗, O);5

return m;6

else if ∃ (s, ra, rb,m,∗,∗) ∈ G-List with Check(O, s) = true then7

return m;8

else9

m
R← SMS;10

if O is a client then11

add (⊥, ra, rb,m, O,⊥) to G-List;12

else13

add (⊥, ra, rb,m,⊥, O) to G-List;14

return m;15

The TLS Handshake Protocol: A Modular Analysis 213

Algorithm 2: G Query Responses.
Input: (s, ra, rb)

Output: A value m ∈ SMS
if s, ra, rb are not such that ra, rb ∈ {0,1}t and s ∈ SPMS then1

return ⊥;2

else if ∃(s, ra, rb,m,∗,∗) ∈ G-List then3

return m;4

else if ∃(⊥, ra, rb,m, O,∗) ∈ G-List and Check(O, s) = true then5

replace (⊥, ra, rb,m, O,∗) with (s, ra, rb,m, O,∗);6

return m;7

else if ∃(⊥, ra, rb,m,∗, O) ∈ G-List and Check(O, s) = true then8

replace (⊥, ra, rb,m,∗, O) with (s, ra, rb,m,∗, O);9

return m;10

else11

m
R← SMS;12

add (s, ra, rb,m,⊥,⊥) to G-List;13

return m;14

It is worth discussing in more detail the subtle differences in how B answers G

queries and how B uses GetKey to compute m values. In particular, notice that GetKey
queries never add a value of s to an entry on G-List. Instead B computes m values ei-
ther using existing entries on G-List (to ensure consistency with earlier GetKey and G

queries) or by selecting them at random and adding a partially completed entry onto
G-List (one without an s value allowing for consistency with later queries). When B
answers G queries, it uses a similar technique; it first ensures consistency with previous
GetKey and G queries and in addition can add s values to entries. It will not however
add new pre-master secret oracles to entries on G-List; these are only added to entries
during GetKey queries, and values of s can be added to existing partially completed en-
tries or new entries with oracle values missing. This ensures that the adversary cannot
tell it is in a simulation based on the order of its queries, yet still allows B to find the
value of s used by A in its G query corresponding to the event E.

If in Algorithm 1 line 1 or line 1 we find two entries in the list which could be
replaced, then we abort. This can only happen if the nonce selected by the oracle O (i.e.
ra or rb) has collided with another nonce chosen by another oracle. This occurs with
probability

nS(nP + n′
P) + nG

2t
.

We shall hence ignore this possibility in the rest of the proof.
Algorithm A also makes NewSession, Send, Corrupt, Check and Reveal queries as

part of the ExecOW-MS
A,�′ (t) game; adversary B answers these queries as follows.

Send(O′,msg) queries: The way B answers these queries depends upon whether the
underlying pre-master key agreement oracle O has finished its execution or not; i.e.

214 P. Morrissey, N.P. Smart, and B. Warinschi

upon the value of δO . If δO =⊥, then O has not finished its pre-master secret key
agreement execution, and so B simply forwards all Send queries to O and replies to
A with the responses. If δO = rejected, then B responds with ⊥. In the case of δO =
accepted-pmk the adversary B has to simulate the master key agreement message flows.
To do this B computes any mO′ values using the GetKey algorithm to simulate any
key derivation computations. Then B uses G to comput the MAC tags using this value
of mO′ .
Query Corrupt(U): B issues a Corrupt(U) query to D to obtain SKU . Then B outputs
SKU to A. Note that the corrupt query made by B ensures that γO is set to corrupted
for each instance i of U .
Query Reveal(O′): If δO′ �= accepted-mk, then B returns ⊥. Else if δO′ = accepted-
mk, then there will be an entry (∗, ra, rb,m, O′,∗) (resp. (∗, ra, rb,m,∗, O′)) on G-List
where (ra, rb) (resp. (rb, ra)) are the random strings on the transcript of O′ that were
exchanged. In this case B responds with m.
Query Check(O′,m): If δO′ �= accepted-mk, then B returns ⊥. Else if δO′ = accepted-
mk, then there will either be an entry (∗, ra, rb,m, O′,∗) (resp. (∗, ra, rb,m,∗, O′)) on
G-List where (ra, rb) (resp. (rb, ra)) are the random strings on the transcript of O′ that
were exchanged. Then if m∗ = m, B responds with true and otherwise with false.

Eventually A will terminate and output a pair (O∗′,m∗). Since the event E has
occurred, there will exist an entry (s∗, r∗

a , r∗
b ,m∗,∗) on G-List where s∗ is the pre-

master secret of O∗. Furthermore, if ExecOW-MS
A,�′ (t) = 1, then O∗ will be a fresh

pre-master secret oracle. To find this entry B scans the G-List and for each entry
(s, ra, rb,m, O,∗) (or (s, ra, rb,m,∗, O)) with O = O∗ makes a query Check(O, s)

to D. If this query returns true, then B outputs (O, s) and terminates. We note that since
E has occurred, there will exist such an entry, and so B will always terminate. Hence, if
ExecOW-MS

A,�′ (t) = 1, then B will win its game against D, i.e. ExecOW-PMS
B,�

(t) = 1. From
this we get

Pr
[
ExecOW-MS

A,�′ = 1 | E] = AdvOW-PMS
B,� (t) + nS(nP + n′

P) + nG

2t
,

as required.
We note that, in the above proof, it may be the case that knowledge of the long-term

secret key SKU of a given user U ∈ U may allow the adversary A to compute any agreed
pre-master secret keys. The adversary B is still able to answer all Send and G queries
that A asks such that A cannot tell that this is a simulation. To see why this occurs we
consider the two main cases below:

• The adversary A may ask a number of Send queries to have some oracle O agree
upon a master key m with some other oracle using random values ra and rb .
In this case there will be an entry (⊥, ra, rb,m, O,∗) or (⊥, ra, rb,m,∗, O) on
G-List resulting from B running GetKey(ra, rb, O). If the adversary then asks
a query G(s, ra, rb), where s is the correct pre-master secret computed using a
Corrupt query, B will scan G-List for entries of the form (⊥, ra, rb,m, O,∗) and
(⊥, ra, rb,m,∗, O) and will use a Check(O, s) query to ensure the correct value
of m is returned.

The TLS Handshake Protocol: A Modular Analysis 215

• The adversary A may ask a G(s, ra, rb) query first, and hence there will be an
entry (s, ra, rb,m,⊥,⊥) on G-List. If A later makes a series of Send queries that
results in O agreeing upon a master secret key using ra and rb , then, as part of the
GetKey algorithm, B will scan G-List for entries of the form (s, ra, rb,m,⊥,∗)

or (s, ra, rb,m,∗,⊥) and use a Check(O, s) query to ensure the correct value of
m is agreed by this oracle. If at any stage the adversary makes a Corrupt query,
the answers that B gives will always be consistent with the value of s computed
by A.

Event E Does Not Occur. In this case we construct the adversary C against the one-way
security of the MAC in a similar way to the adversary B above.

At the start of the KR-CMA game against Mac the algorithm C is given a security
parameter t and access to a tag generation oracle OK

MAC and a tag verification oracle
OK

ver for Mac with an unknown key K . Algorithm C then acts as a challenger in an
ExecOW-MS

A,�′ (t) game against A. To do this C sets up the game exactly as the adversary
B in Part 1 but with the following changes. The algorithm C selects some master secret
oracle O′

U for U ∈ U ∪ U ′ which it “hopes” the adversary A will output as part of

ExecOW-MS
A,�′ (t). We let O′

V denote the session oracle that O′
U agrees a master secret key

with for V ∈ U ∪ U ′. To complete the setup of ExecOW-MS
A,�′ (t) the algorithm C then calls

A using the setup data.
Algorithm A will then start to make NewSession,Send,Corrupt,Check,Reveal and

G queries as part of ExecOW-MS
A,�′ (t) which C answers by simulating the real game except

for the following Send queries:

• If roleO = initiator, msg = rb , and O′ is one of either O′
U or O′

V , then C makes
a query to the tag generation oracle to obtain a MAC tag σa for 0 || τ ′ and returns
σa .

• If roleO = responder, msg = ra , and O′ is one of either O′
U or O′

V , then B assigns

rb
R← {0,1}t , makes a query to the tag generation oracle to obtain a MAC tag σb

for 1 || τ ′ and returns rb .
• If roleO = initiator, msg = σb and O′ is one of either O′

U or O′
V , then the response

is made using the MAC verification oracle available to C .
• Else if roleO = responder, msg = σa and O′ is one of either O′

U or O′
V , then the

response is made using the MAC verification oracle available to C .

Also, algorithm C answers the Reveal(O′) queries of A in the standard way, except if
O′ is one of either O′

U or O′
V , in which case C aborts.

Now if C does not abort, then the environment of A is perfectly simulated, and so A
will eventually terminate and output a pair (O∗,m∗). With probability 1/((nP + n′

P) ·
nS) algorithm B will have guessed that the oracle A will output would be O∗ = O′

U .
In this case A will be trying to guess the value for the unknown key used in Mac. Fur-
thermore, if ExecOW-MS

A,�′ (t) = 1, then m∗ = K . In this case C outputs m∗ and otherwise

216 P. Morrissey, N.P. Smart, and B. Warinschi

outputs m
R← SMS. As a result, we have

Pr
[
ExecOW-MS

A,�′ = 1 | ¬E
] ≤ ((

nP + n′
P

) · nS

) · AdvKR-CMA
C,Mac (t, qm, qv),

which proves the lemma.1 �

Proof of Theorem 5.4 (No-Matching). We first give an informal description of the
proof. In order to get an oracle to accept when it has no partner, this means that the
adversary must have, at some point, been able to forge a MAC tag under a given master
secret m (this has to be the case since there does not exist an oracle that has had a
matching conversation, so no other oracle would have produced the MAC signature that
the oracle accepted with). The adversary may have done this by either computing the
master secret key m or by forging the MAC without computing the key. If the adversary
has computed the key m, then it must have done this by first computing the pre-master
secret key s, since m is obtained via the random oracle G. Based on these cases, we
then construct the corresponding adversaries.

We now formalise the proof. We let A be an adversary against the OW-MS security of
�′ = (�;MKDTLS(Mac,G)). Let O∗′ denote the oracle which satisfies the No Matching
condition in the ExecOW-MS

A,�′ (t) game. We define E to be the event that A, at some

point during ExecOW-MS
A,�′ (t), makes a query G(s∗, r∗

a , r∗
b) such that O∗′ has randomness

exchanged on its transcript of r∗
a and r∗

b , and the pre-master secret key of O∗ is s∗.
We then have

Pr
[
No-MatchingA(t)

] = Pr
[
No-MatchingA(t) ∩ E

] + Pr
[
No-MatchingA(t) ∩ ¬E

]

= Pr
[
No-MatchingA(t) | E

] · Pr[E]
+ Pr

[
No-MatchingA(t) | ¬E

] · Pr[¬E]
< Pr

[
No-MatchingA(t) | E

] + Pr
[
No-MatchingA(t) | ¬E

]
.

The theorem then follows from the following lemma which captures the above intuition.

Lemma 5.6. Let � denote a pre-master key agreement protocol, and let the derived
master key agreement protocol be denoted by �′ = (�;MKDTLS(Mac,G)). Let the event
E be as described above. Then if A is an adversary against the OW-MS security of �′,
then

1. There is an adversary B against the OW-PMS security of � such that

Pr
[
No-MatchingA(t) | E

] ≤ AdvOW-PMS
B,� (t) + nS(nP + n′

P) + nG

2t
.

2. There is an adversary C against the UF-CMA security of Mac such that

Pr
[
No-MatchingA(t) | ¬E

] ≤ ((
nP + n′

P

) · nS

) · AdvUF-CMA
C,Mac (t).

1 We note that if the adversary A outputs the oracle O′
V

and ExecOW-MS
A,�′ (t) = 1, then the adversary C can

again win the security game against KR-CMA. We have not included this case in order to keep the analysis
simple.

The TLS Handshake Protocol: A Modular Analysis 217

Event E Occurs. Informally this lemma corresponds to the case where the adversary
A causes the event No-MatchingA(t) to occur by first computing the pre-master secret
s∗ of some fresh oracle O∗ and then, by querying G on s∗, obtains the master secret
key m∗ of O∗′ and uses this to produce a forgery for Mac.

We first assume that the event E does occur. Let D be a challenger in an
ExecOW-PMS

B,�
(t) security game of � against B. We then construct the adversary B against

D as follows. B acts as a challenger in an ExecOW-MS
A,�′ (t) security game for �′ against

the adversary A. Algorithm B simulates the environment for A and answers queries of
A in exactly the same way as in Lemma 5.5, Part 1.

Eventually A will terminate and output an oracle (not necessarily O∗) and some ele-
ment of SMS. Since the event E has occurred there will exist some entry (s∗, r∗

a , r∗
b ,m∗,

O∗,∗) or (s∗, r∗
a , r∗

b ,m∗,∗, O∗) on the G-List, such that Check(O∗, s∗) = true. Further-
more, since No Matching has occurred on O∗′ this means O∗ is fresh. To find this entry
B scans G-List and for each entry (s, ra, rb,m, O,∗) or (s, ra, rb,m,∗, O) and queries
Check(O, s). Algorithm B then outputs (O∗, s∗) for the security game ExecOW-PMS

B,�
(t)

against D. As a result we obtain

Pr
[
No-MatchingA(t) | E

] ≤ AdvOW-PMS
B,� (t) + nS(nP + n′

P) + nG

2t
.

as required.

Event E Does not Occur. Informally, this lemma corresponds to the case where A
causes a No Matching condition to occur on an oracle O∗′ by forging a MAC tag without
computing the underlying key for the Mac scheme in use.

Recall that the event E does not occur. We then construct the adversary C against
the unforgeability security of Mac as follows. At the start of the UF-CMA game against
Mac the algorithm C is given a security parameter t , access to a tag generation oracle
OK

MAC(·), and tag verification oracle OK
ver(·) for Mac with an unknown key K . Algo-

rithm C then acts as a challenger in an ExecOW-MS
A,�′ (t) game against A. To do this C sets

up the game similarly to how this was done by B in Lemma 5.5, Part 2.
Algorithm C selects an oracle at random O∗′ as a guess for the oracle that the

No-MatchingA(t) condition will be satisfied for. Algorithm C then calls A with the
setup data and begins to answer any queries that A makes.

The adversary C then continues to simulate the responses to all queries correctly ex-
cept for those involving O∗′. In this case any Send queries that involve the computation
or verification of MAC tags are answered using the tag generation and verification ora-
cles provided to C . Also if a Reveal(O∗′) query is made by A, then C aborts.

Eventually the adversary A will terminate and output a pair (O,m). If the event
No-MatchingA(t) has occurred on O∗′, then there will be a tag and message pair
(tag,msg) that is on the transcript of O∗′ that is a valid forgery for Mac. To see why
this is true we consider the case where O∗′ is an initiator (the case of a responder is
similar). Here the oracle O∗′ will have at some point received a random string rB as an
incoming message. The adversary C will have then made a query OK

MAC(0 || τ ′), where
τ ′ is the transcript of O∗′, received tag in response and responded to A with this. Next
the oracle will have received from A some other tag′ in response, and C will have made

218 P. Morrissey, N.P. Smart, and B. Warinschi

a query OK
ver(1 || τ ′) and received an answer true. Since No-MatchingA(t) has occurred

on O∗′, there will be some user V ∈ U such that pidO∗′ = V . The only oracles that
possibly could have a matching conversation with O∗′ are those that belong to V , since
V would have to be on the transcript of any oracle that does have a matching conversa-
tion with O∗′. We conclude that the way in which No-MatchingA(t) has occurred is that
there is no oracle (either belonging to V or not) that has had a matching conversation
with O∗′ (rather than some oracle not belonging to V having a matching conversation
with O∗′). This means that the adversary A must have produced tag′ itself: no other or-
acle in the game ExecOW-MS

A,�′ (t) has the same transcript as O∗′, so no other oracle would
have produced it. Since the adversary A has produced this tag (as opposed to it being
obtained from a OK

MAC(·) query) and it verifies correctly with the message (1 || τ ′), it is
a valid forgery of this message.

To find this entry C scans the transcript of O∗′. Then if the role of O∗′ is the initiator,
C outputs (tag,1 || τ ′) and otherwise C outputs (tag,0 || τ ′), where τ ′ is the transcript
of O∗′, as part of the UF-CMA game against Mac. Hence, since the adversary C correctly
guesses that the oracle for which the No-MatchingA(t) condition will be satisfied is O∗′
with probability 1/((nP + n′

P) · nS), we obtain

Pr
[
No-MatchingA(t) | ¬E

] ≤ ((
nP + n′

P

) · nS

) · AdvUF-CMA
C,Mac (t).

6. Application Key Agreement

In this section we extend the model developed so far to deal with application keys ob-
tained from master-secret keys and the analyse the security of the application keys ob-
tained through the TLS protocol.

As discussed in the introduction, we focus on protocols with a particular structure:
first, a master-key is agreed by the parties via some master-key agreement protocol �,
and then this key is used as input to an application key derivation protocol, �. The same
master-key can be used in multiple executions of the application key protocol which can
take place in parallel and concurrently.

We capture this setting by modifying the model for master-key agreement protocols
as follows. We consider two types of oracles: MK-oracles which correspond to sessions
where the master secret key is derived (i.e. sessions of protocol �), and AK-oracles,
which correspond to sessions of the application key derivation protocol (i.e. sessions
of �). The AK-oracles are spawned by MK-oracles that have established a master-
secret key; spawning is done at the request of the adversary. The internal structure and
behaviour of MK-oracles are as defined in the previous section. To describe AK-oracles,
we again impose some syntactic restrictions on the protocols (and thus on the oracles).
We require that AK-oracle Q maintain variables τQ,mQ, roleQ,pidQ with the same
roles as before. In addition, a new variable kQ ∈ SA holds the application key obtained
in the session. (Here #SA ≥ 2t , where t is the security parameter.) The state variable δQ
now assumes values in {⊥,accepted-ak, rejected}, with the obvious semantics. Finally,
the corruption variable γQ is either ⊥ or compromised (we explain below when the
latter value is set).

In addition to the powers previously granted to the adversary, now the adversary can
also create new AK-oracles by issuing queries of the form Spawn(O), with O an MK-
oracle that had successfully finished its execution. As a result, a new oracle Q = �

j

O is

The TLS Handshake Protocol: A Modular Analysis 219

created (where j indicates that Q is the j th oracle spawned by O). Oracle Q inherits the
variables τQ, mQ, roleQ, and pidQ from O in the obvious way. The adversary may also
compromise AK-oracles: when a query Compromise(Q) is issued, if Q has accepted,
then kQ is returned to the adversary, and δQ is set to compromised. Notice that the
Compromise queries are the analogue of Reveal queries for AK-oracles. We chose to
have different names for clarity.

The security of keys is captured via a Test query. When Test(Q) is issued, a bit b ∈
{0,1} is chosen at random. Then if b = 0, then kQ is returned to the adversary, otherwise
a randomly selected element from SA is returned to the adversary (who then has to
guess b; see the game defined below).

An AK-oracle Q is a valid target for the adversary if the parent oracle of Q is fresh,
Q has finished successfully its execution, its intended partner, say V , is not corrupt, and
any session of V with which Q has a matching conversation is not compromised.

Definition 6.1 (Fresh Application Key Oracle). Let O be a master key agreement
oracle, and Q denote one of its children. The oracle Q is said to be fresh if the following
conditions hold:

1. O is a fresh master key agreement oracle.
2. γQ =⊥.
3. δO = accepted-ak.
4. ∃V ∈ U such that pidQ = V .
5. No compromised session �Q′ that belongs to V has had a matching conversation

with Q.

Note that here, we are implicitly assuming that knowing a master key automatically
gives the adversary all derived application keys. Whilst this will not be true of all pro-
tocols one can think of, it is true for all application key derivation protocols that we
consider here and in particular in Stage 5 of the protocol of Fig. 1.

Security Game for Application-Key Agreement Protocols. We define the security of an
application-key protocol �;� via a game ExecIND-AK

A,�;�(t) between an adversary A and a
challenger C .

(1) C generates public-secret key pairs for each user U ∈ U and returns the public
keys to A.

(2) A is allowed to make as many NewSession, Send, Spawn, Compromise, Reveal,
Check and Corrupt queries as it likes throughout the game.

(3) At any point during the game adversary A makes a single Test(Q∗) query.
(4) The adversary outputs a bit b′.

We say that A wins if Q∗ is fresh at the end of the game and its output bit b′ is such
that b = b′ (where b is the bit internally selected during the Test query). In this case the
result of ExecIND-AK

A,�;�(t) is set to 1. Otherwise the output of the experiment is set to 0.
We write

AdvIND-AK
A,(�;�)(t) =

∣∣∣
∣Pr

[
ExecIND-AK

A,�;�(t) = 1
] − 1

2

∣∣∣
∣

for the advantage of A in winning the ExecIND-AK
A,�;�(t) game.

220 P. Morrissey, N.P. Smart, and B. Warinschi

Using this security game, we can now define the security of a application key agree-
ment protocol.

Definition 6.2 (Application Key Agreement Security). An application key agreement
protocol is secure if it satisfies the following conditions:

• Correctness: In the presence of an adversary which faithfully relays messages, two
oracles running the protocol accept holding the same application key and session
ID, and the application key is distributed uniformly at random on the application
key space.

• Key secrecy: An application key agreement protocol �;� satisfies IND-AK key
secrecy if for any p.p.t. adversary A, its advantage AdvIND-AK

A,�;�(t) is negligible in t .

Remark 6.1. The model that we develop ensures strong security guarantees for the ap-
plication keys, in the standard sense of indistinguishability against attackers with pow-
erful corruption capabilities. In this sense our model is close to existing ones but has the
added feature that we explicitly consider the setting where more than one application
key can be derived from the same master key.

Remark 6.2. Notice that at the application key layer we do not require key confirma-
tion anymore. Indeed, a trivial attack on the standard notion of key confirmation can be
mounted against application keys derived using the TLS protocol. However, implicit key
confirmation for application keys may still be achieved, depending how the application
key is actually used.

The loss of this property is in some sense a result of how we chose to break down
the protocol for analysis, since one of our goals was to identify what security properties
each of the stages provides. However, if one considers Stages 1–4 as the key agreement
protocol, and Stages 5–6 as the application, then one does obtain an explicit notion of
key confirmation. Hence, the loss of explicit key confirmation in Stage 5 should not be
considered a design flaw in TLS.

We now show that the application-key agreement protocol obtained by combining
any secure master-key derivation protocol and the application-key derivation protocol
of TLS (Stage 5 of Fig. 1) is secure.

For any master-key agreement protocol � and hash function H , we write (�;
AKTLS(H)) for the application-key agreement protocol obtained by extending � with
the application-key derivation protocol of TLS. Informally, this means that we derive an
application key agreement protocol from a master key agreement protocol using Stage
5 of Fig. 1. We make no assumption as to whether the master key agreement protocol
itself is derived from a pre-master key agreement protocol as in Fig. 1. The following
theorem says that starting with a master-key agreement protocol secure in the sense of
Definition 5.3, the above transformation yields a secure application key protocol.

Theorem 6.3. Let � be a secure master-key agreement protocol, and H a random
oracle. Then (�;AKTLS(H)) is a secure application-key agreement protocol.

The TLS Handshake Protocol: A Modular Analysis 221

Proof. That the protocol is correct in the presence of benign adversaries is clear. We
sketch the rest of the proof, as the details are modifications of the previous proofs.

To prove the statement let A be an IND-AK adversary against � = (�′;AKTLS(H)).
In the proof we shall model H as a random oracle. From this will shall construct an
OW-MS adversary B against the master secret key agreement protocol �′ in a game
ExecOW-MS

B,�′ (t) as follows. The algorithm B acts as a challenger in an ExecIND-AK
A,�

(t)

security game against A. The algorithm B simulates H by maintaining a list, the H -
list, of queries and responses to the oracle H . The input to adversary B as part of the
ExecOW-MS

B,�′ (t) game is used to create the input to adversary A.

At the start of the game the adversary B selects an oracle O∗′ as in our other proofs,
which it “hopes” the Test query will involve a child of O∗′. The algorithm B answers
A’s Check, Reveal and Corrupt queries by passing the queries directly to the challenger
of B and relaying the response back to A. The Spawn and Send queries are handled by
B in the obvious manner.

The Compromise queries, in the case where the query is made of an oracle which is
not a child of O∗′, are handled by B making an appropriate Reveal query and then using
the random oracle H to produce the required answer. In the case where the query is for
a child of O∗′, in which case we are not allowed to use the Reveal query, the adversary
B simulates the output using the H -List and the Check oracle.

At some point A will make a Test query of some oracle �O . If O �= O∗′, then algo-
rithm B aborts, otherwise algorithm B returns a random key from the space SA to the
adversary A.

Eventually A will terminate with its guess for the bit b. If ExecIND-AK
A,�

(t) = 1, then,
since H is modelled as a random oracle, A must have queried the oracle H with the
inputs corresponding to the underlying master secret key, and message flows, of the
application key oracle �O∗′ . In addition the underlying master key oracle O∗′ must be
fresh in the security game ExecOW-MS

B,�′ (t).
Algorithm B then scans the H -list and checks whether the first component of the

input corresponds to the underlying master secret key of O∗′. It does this by calling
Check for the oracle O∗′. When it finds the correct key, it outputs (O∗′,mO∗′) and
terminates.

The theorem then follows. �

Acknowledgements

The authors would like to thank Caroline Belrose for various discussions on key agree-
ment protocols during the writing of this paper and Martin Abadi for interesting insights
into various aspects of TLS. The work described in this paper has been supported in part
by the EU FP6 project eCrypt and an EPSRC grant, and the second author was supported
by a Royal Society Wolfson merit award.

References

[1] M. Abdalla, O. Chevassut, D. Pointcheval, One-time verifier-based encrypted key exchange, in Public
Key Cryptography—PKC 2005. LNCS, vol. 386 (Springer, Berlin, 2005), pp. 47–64

222 P. Morrissey, N.P. Smart, and B. Warinschi

[2] J.H. An, Y. Dodis, T. Rabin, On the security of joint signature and encryption, in Advances in
Cryptology—EUROCRYPT 2002. LNCS, vol. 2332 (Springer, Berlin, 2002), pp. 83–107

[3] M. Bellare, R. Canetti, H. Krawczyk, A modular approach to the design and analysis of authentication
and key exchange protocols, in 30th Symposium on Theory of Computing—STOC 1998 (ACM, New
York, 1998), pp. 419–428

[4] M. Bellare, C. Namprempre, Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm, in Advances in Cryptology—ASIACRYPT 2000. LNCS, vol. 1976
(Springer, Berlin, 2000), pp. 531–545

[5] M. Bellare, D. Pointcheval, P. Rogaway, Authenticated key exchange secure against dictionary attacks,
in Advances in Cryptology—EUROCRYPT 2000. LNCS, vol. 1807 (Springer, Berlin, 2000), pp. 139–
155

[6] M. Bellare, P. Rogaway, Entity authentication and key distribution, in Advances in Cryptology—
CRYPTO ’93. LNCS, vol. 773 (Springer, Berlin, 1994), pp. 232–249

[7] M. Bellare, P. Rogaway, Optimal asymmetric encryption, in Advances in Cryptology—EUROCRYPT
1994 (1994), pp. 92–111

[8] M. Bellare, P. Rogaway, Provably secure session key distribution: The three party case, in 27th Sympo-
sium on Theory of Computing—STOC 1995 (ACM, New York, 1995), pp. 57–66

[9] K. Bhargavan, R. Corin, C. Fournet, E. Zalinescu, Cryptographically verified implementations for
TLS, in Conference on Computer and Communication Security—CCS 2008 (ACM, New York, 2008),
pp. 459–468

[10] R. Bird, I.S. Gopal, A. Herzberg, P.A. Janson, S. Kutten, R. Molva, M. Yung, Systematic design of two-
party authentication protocols, in Advances in Cryptology—CRYPTO ’91. LNCS, vol. 576 (Springer,
Berlin, 1991), pp. 44–61

[11] S. Blake-Wilson, D. Johnson, A.J. Menezes, Key agreement protocols and their security analysis, in
Cryptography and Coding. LNCS, vol. 1355 (Springer, Berlin, 1997), pp. 30–45

[12] S. Blake-Wilson, A.J. Menezes, Entity authentication and authenticated key transport protocols employ-
ing asymmetric techniques, in IWSP. LNCS, vol. 1361 (Springer, Berlin, 1998), pp. 137–158

[13] D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA encryption standard
PKCS #1, in Advances in Cryptology—CRYPTO ’98. LNCS, vol. 1462 (Springer, Berlin, 1998), pp. 1–
12

[14] E. Bresson, O. Chevassut, D. Pointcheval, Provably authenticated group Diffie–Hellman key
exchange—The dynamic case, in Advances in Cryptology—ASIACRYPT 2001. LNCS, vol. 2248
(Springer, Berlin, 2001), pp. 290–309

[15] R. Canetti, H. Krawczyk, Analysis of key-exchange protocols and their use for building secure channels,
in Advances in Cryptology—EUROCRYPT 2001. LNCS, vol. 2045 (Springer, Berlin, 2001), pp. 453–
474

[16] R. Canetti, H. Krawczyk, Universally composable notions of key exchange and secure channels, in
Advances in Cryptology—EUROCRYPT 2002. LNCS, vol. 2332 (Springer, Berlin, 2002), pp. 337–351

[17] R. Canetti, H. Krawczyk, Security analysis of IKE’s signature-based key-exchange protocol, in Ad-
vances in Cryptology—CRYPTO 2002. LNCS, vol. 2442 (Springer, Berlin, 2002), pp. 143–161

[18] K.-K.R. Choo, C. Boyd, Y. Hitchcock, Examining indistinguishability-based proof models for key estab-
lishment protocols, in Advances in Cryptology—ASIACRYPT 2005. LNCS, vol. 3788 (Springer, Berlin,
2005), pp. 585–604

[19] R. Cramer, V. Shoup, Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J. Comput. 33, 167–226 (2003)

[20] T. Dierks, C. Allen, The TLS Protocol Version 1.0. RFC 2246, January 1999
[21] T. Dierks, C. Allen, The TLS Protocol Version 1.2. RFC 4346, April 2006
[22] W. Diffie, P.C. van Oorschot, M.J. Weiner, Authentication and authenticated key exchange. Des. Codes

Cryptogr. 2, 107–125 (1992)
[23] A.O. Freier, P. Karlton, P.C. Kocher, The SSL Protocol Version 3.0. Internet Draft, 1996
[24] P.-A. Fouque, D. Pointcheval, S. Zimmer, HMAC is a randomness extractor and applications to TLS, in

AsiaCCS 2008 (ACM Press, New York, 2008), pp. 21–32
[25] S. Gajek, M. Manulis, O. Pereira, A. Sadeghi, J. Schwenk, Universally composable security analysis of

TLS, in Provable Security—ProvSec 2008. LNCS, vol. 5324 (Springer, Berlin, 2008), pp. 313–327

The TLS Handshake Protocol: A Modular Analysis 223

[26] H. Krawczyk, SKEME: a versatile secure key exchange mechanism for Internet, in Proceedings of the
1996 Symposium of Network and Distributed System Security (SNDSS’96) (IEEE Computer Society,
Los Alamitos, 1996), p. 114

[27] A. Herzberg, I. Yoffe, The layered games framework for specifications and analysis of security, in LNCS,
vol. 4948 (Springer, Berlin, 2008), pp. 125–141

[28] K.E.B. Hickman, The SSL Protocol Version 2.0. Internet Draft, 1994
[29] J. Jonsson, B. Kaliski Jr., On the security of RSA encryption in TLS, in Advances in Cryptology—

CRYPTO 2002. LNCS, vol. 2442 (Springer, Berlin, 2002), pp. 127–142
[30] H. Krawczyk, The order of encryption and authentication for protecting communications (or: How se-

cure is SSL?), in Advances in Cryptology—CRYPTO 2001. LNCS, vol. 2139 (Springer, Berlin, 2001),
pp. 310–331

[31] C. Kudla, Special signature schemes and key agreement protocols. PhD Thesis, Royal Holloway Uni-
versity of London, 2006

[32] C. Kudla, K. Paterson, Modular security proofs for key agreement protocols, in Advances in
Cryptology—ASIACRYPT 2005. LNCS, vol. 3788 (Springer, Berlin, 2005), pp. 549–565

[33] J.C. Mitchell, V. Shmatikov, U. Stern, Finite-state analysis of SSL 3.0, in USENIX Security
Symposium—SSYM 1998, 1998

[34] L. Paulson, Inductive analysis of the Internet protocol TLS. ACM Trans. Inf. Syst. Secur. 2(3), 332–351
(1999)

[35] V. Shoup, On formal models for secure key exchange (version 4). Preprint, 1999
[36] D. Wagner, B. Schneier, Analysis of the SSL 3.0 protocol, in 2nd USENIX Workshop on Electronic

Commerce, 1996
[37] S. Williams, The security of signcryption as a key agreement protocol. BSc Dissertation, University of

Bristol, 2008

	The TLS Handshake Protocol: A Modular Analysist1
	Abstract
	Introduction
	Models.
	Security Analysis of the TLS Handshake Protocol.
	Impact on Practice.
	On the Use of the Random Oracle Model.
	Related Work
	Paper Overview

	Preliminaries
	Notation
	Hard Problems
	Cryptographic Primitives
	Public Key Encryption
	Digital Signatures
	Message Authentication Codes

	A Generic Execution Model for Two-Party Protocols
	Registered and Unregistered Users.
	Models for Interactive Protocols Execution.

	Pre-Master Key Agreement Protocols
	Security Game for Pre-Master Key Agreement Protocols.
	Protocols Based on Public-Key Encryption
	Signed Diffie-Hellman Pre-Master Key Agreement
	Pre-Master Key Agreement from Signcryption Schemes

	Master Key Agreement Protocols
	Security Game for Master-Key Agreement Protocols.
	Proof of Theorem 5.4 (One-wayness).
	Event E Occurs.
	Event E Does Not Occur.
	Proof of Theorem 5.4 (No-Matching).
	Event E Occurs.
	Event E Does not Occur.

	Application Key Agreement
	Security Game for Application-Key Agreement Protocols.

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

