
J. Cryptol. (2009) 22: 139–160
DOI: 10.1007/s00145-008-9031-0

Learning a Parallelepiped: Cryptanalysis of GGH
and NTRU Signatures

Phong Q. Nguyen and Oded Regev
INRIA & École Normale Supérieure, DI, 45 rue d’Ulm, 75005, Paris, France

url: http://www.di.ens.fr/~pnguyen/
and

School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
url: http://www.cs.tau.ac.il/~odedr/

Online publication 11 November 2008

Abstract. Lattice-based signature schemes following the Goldreich–
Goldwasser–Halevi (GGH) design have the unusual property that each signature leaks
information on the signer’s secret key, but this does not necessarily imply that such
schemes are insecure. At Eurocrypt ’03, Szydlo proposed a potential attack by show-
ing that the leakage reduces the key-recovery problem to that of distinguishing integral
quadratic forms. He proposed a heuristic method to solve the latter problem, but it was
unclear whether his method could attack real-life parameters of GGH and NTRUSIGN.
Here, we propose an alternative method to attack signature schemes à la GGH by study-
ing the following learning problem: given many random points uniformly distributed
over an unknown n-dimensional parallelepiped, recover the parallelepiped or an ap-
proximation thereof. We transform this problem into a multivariate optimization prob-
lem that can provably be solved by a gradient descent. Our approach is very effective in
practice: we present the first successful key-recovery experiments on NTRUSIGN-251
without perturbation, as proposed in half of the parameter choices in NTRU standards
under consideration by IEEE P1363.1. Experimentally, 400 signatures are sufficient
to recover the NTRUSIGN-251 secret key, thanks to symmetries in NTRU lattices.
We are also able to recover the secret key in the signature analogue of all the GGH
encryption challenges.

Key words. GGH, NTRUSIGN, Lattices, Moment, Gradient descent, Public-key
cryptanalysis.

1. Introduction

Inspired by the seminal work of Ajtai [1], Goldreich, Goldwasser, and Halevi (GGH)
proposed at Crypto ’97 [9] a lattice analogue of the coding-theory-based public-key

P.Q. Nguyen part of this work is supported by the Commission of the European Communities through the
IST program under contract IST-2002-507932 ECRYPT and by the French government through the X-Crypt
RNRT project.

O. Regev supported by the Binational Science Foundation, by the Israel Science Foundation, by the Eu-
ropean Commission under the Integrated Project QAP funded by the IST directorate as Contract Number
015848, and by a European Research Council (ERC) Starting Grant.

© International Association for Cryptologic Research 2008

http://www.di.ens.fr/~pnguyen/
http://www.cs.tau.ac.il/~odedr/

140 P.Q. Nguyen, O. Regev

cryptosystem of McEliece [22]. The security of GGH is related to the hardness of ap-
proximating the closest vector problem (CVP) in a lattice. The GGH article [9] focused
on encryption, and five encryption challenges were issued on the Internet [10]. Two
years later, Nguyen [29] found a flaw in the original GGH encryption scheme, which al-
lowed one to solve four out of the five GGH challenges and obtain partial information on
the last one. Although GGH might still be secure with an appropriate choice of the pa-
rameters, its efficiency compared to traditional public-key cryptosystems is perhaps de-
batable: it seems that a very high lattice dimension is required, while the keysize grows
roughly quadratically in the dimension (even when using the improvement suggested
by Micciancio [23]). The only lattice-based scheme known that can cope with very high
dimension is NTRU [12] (see the survey [31]), which can be viewed as a very spe-
cial instantiation of GGH with a “compact” lattice and different encryption/decryption
procedures (see [23,25]).

In [9], Goldreich et al. described how the underlying principle of their encryption
scheme could also provide a signature scheme. The resulting GGH signature scheme
did not attract much interest in the research literature until the company NTRU CRYP-
TOSYSTEMS proposed a relatively efficient signature scheme called NTRUSIGN [15],
based exactly on the GGH design but using the compact NTRU lattices. NTRUSIGN

had a predecessor NSS [13] less connected to the GGH design, and which was broken
in [6,8]. Gentry and Szydlo [6] observed that the GGH signature scheme has an unusual
property (compared to traditional signature schemes): each signature released leaks in-
formation on the secret key, and once sufficiently many signatures have been obtained,
a certain Gram matrix related to the secret key can be approximated. The fact that GGH
signatures are not zero-knowledge can be explained intuitively as follows: for a given
message, many valid signatures are possible, and the one selected by the secret key says
something about the secret key itself.

This information leakage does not necessarily prove that such schemes are insecure.
Szydlo [35] proposed a potential attack on GGH based on this leakage (provided that
the exact Gram matrix could be obtained) by reducing the key-recovery problem to that
of distinguishing integral quadratic forms. It is however unknown if the latter problem
is easy or not, although Szydlo proposed a heuristic method based on existing lattice
reduction algorithms applied to quadratic forms. As a result, it was unclear if Szydlo’s
approach could actually work on real-life instantiations of GGH and NTRUSIGN. The
paper [14] claims that, for NTRUSIGN without perturbation, significant information
about the secret key is leaked after 10,000 signatures. However, it does not identify
any attack that would require less than 100 million signatures (see [15, Sect. 4.5] and
[14, Sect. 7.2 and Appendix C]).

1.1. Our Results

In this article, we present a new key-recovery attack on lattice-based signature schemes
following the GGH design, including NTRUSIGN. The basic observation is that a list
of known pairs (message, signature) gives rise to the following learning problem, which
we call the hidden parallelepiped problem (HPP): given many random points uniformly
distributed over an unknown n-dimensional parallelepiped, recover the parallelepiped
or an approximation thereof (see Fig. 1). We transform the HPP into a multivariate

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 141

Fig. 1. The Hidden Parallelepiped Problem in dimension two.

optimization problem based on the fourth moment (also known as kurtosis) of one-
dimensional projections. This problem can be solved by a gradient descent. Our ap-
proach is very effective in practice: we present the first successful key-recovery exper-
iments on NTRUSIGN-251 without perturbation, as proposed in half of the parameter
choices in the NTRU standards [4] being considered by IEEE P1363.1 [19]; experi-
mentally, 400 signatures are enough to disclose the NTRUSIGN-251 secret key. We
have also been able to recover the secret key in the signature analogue of all five GGH
encryption challenges; the GGH case requires significantly more signatures because
NTRU lattices have special properties which can be exploited by the attack. When the
number of signatures is sufficiently high, the running time of the attack is only a fraction
of the time required to generate all the signatures.

From the theoretical side, we are able to show that under a natural assumption on the
distribution of signatures, an attacker can recover a good approximation of the secret
key of NTRUSIGN and the GGH challenges in polynomial time, given a polynomial
number of signatures of random messages. Since the secret key in both NTRUSIGN

and the GGH challenges has very small entries, this approximation leads to the exact
secret key by simple rounding.

1.2. Related Work

Interestingly, it turns out that the HPP (as well as related problems) have already been
looked at by people dealing with what is known as Independent Component Analysis
(ICA) (see, e.g., the book by Hyvärinen et al. [18]). ICA is a statistical method whose
goal is to find directions of independent components, which in our case translates to
the n vectors that define the parallelepiped. It has many applications in statistics, signal
processing, and neural network research. To the best of our knowledge, this is the first
time ICA is used in cryptanalysis.

There are several known algorithms for ICA, and most are based on a gradient method
such as the one we use in our algorithm. Our algorithm is closest in nature to the FastICA
algorithm proposed in [17], who also considered the fourth moment as a goal function.
We are not aware of any rigorous analysis of these algorithms; the proofs we have seen
often ignore the effect of errors in approximations. Finally, we remark that the ICA
literature offers other, more general, goal functions that are supposed to offer better
robustness against noise etc. We have not tried to experiment with these other functions,
since the fourth moment seems sufficient for our purposes.

142 P.Q. Nguyen, O. Regev

Another closely related result is that by Frieze et al. [5], who proposed a polynomial-
time algorithm to solve the HPP (and generalizations thereof). Technically, their algo-
rithm is slightly different from those present in the ICA literature as it involves the
Hessian, in addition to the usual gradient method. They also claim to have a fully rig-
orous analysis of their algorithm, taking into account the effect of errors in approxima-
tions. Unfortunately, most of the analysis is missing from the preliminary version, and
to the best of our knowledge, a full version of the paper has never appeared.

1.3. Open Problem

Our attack does not work against the perturbation techniques proposed in [4,14,16] as
efficient countermeasures: these modify the signature generation process in such a way
that the hidden parallelepiped is replaced by a more complicated set. For instance, the
second half of parameter choices in NTRU standards [4] involves exactly a single per-
turbation. In this case, the attacker has to solve an extension of the hidden parallelepiped
problem in which the parallelepiped is replaced by the Minkowski sum of two hidden
parallelepipeds: the lattice spanned by one of the parallelepipeds is public, but not the
other one. The existence of efficient attacks against perturbation techniques is an open
problem. The drawbacks of perturbations is that they slow down signature generation,
increase both the size of the secret key, and the distance between the signature and the
message.

1.4. Other Schemes

We now mention some other lattice-based signature schemes, all of which come with
an associated security proof, showing that any (asymptotic) attack on the scheme must
necessarily lead to an efficient algorithm for a certain lattice problem that is believed
to be hard. Moreover, their security is established based on worst-case hardness, i.e.,
any asymptotic attack (even with a small probability of success) implies an efficient
solution to any instance of the underlying lattice problem. For more details on provably
secure lattice-based cryptography and on the signature schemes mentioned below, see,
e.g., [24,26,32].

From a theoretical point of view, signature schemes can be constructed from one-way
functions in a black-box way without any further assumptions [28]. Therefore, one can
obtain signature schemes that are provably secure based on the worst-case hardness of
lattice problems by using known constructions of lattice-based one-way functions, such
as those in Ajtai’s seminal work [1] and followup work. These black-box constructions,
however, incur a large overhead and are impractical.

The first construction of efficient lattice-based signature schemes with a support-
ing proof of security (in the random oracle model) was suggested by Micciancio and
Vadhan [27]. More efficient schemes were recently proposed by Gentry, Peikert, and
Vaikuntanathan [7] and by Lyubashevsky and Micciancio [21].

The former scheme can be seen as a theoretically justified variant of the GGH and
NTRUSIGN signature schemes, with worst-case security guarantees based on general
lattices in the random oracle model. Compared to the GGH scheme, their construction
differs in two main aspects. First, it is based on lattices chosen from a distribution that
enjoys a worst-case connection (the lattices in GGH and NTRU are believed to be hard

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 143

but not known to have a worst-case connection). The second and crucial difference
is that their signing algorithm is designed so that it does not reveal any information
about the secret basis. This is achieved by replacing Babai’s round-off procedure with a
“Gaussian sampling procedure,” originally due to Klein [20], whose distinctive feature
is that its output distribution, for the range of parameters considered in [7], is essentially
independent of the secret basis used. The effect of this on our attack is that, instead of
observing points chosen uniformly from the parallelepiped generated by the secret basis,
the attack observes points chosen from a spherically symmetric Gaussian distribution
and therefore learns nothing about the secret basis.

The scheme of Lyubashevsky and Micciancio [21] has worst-case security guarantees
based on a type of lattices known as ideal lattices, and it is the most (asymptotically)
efficient construction known to date, yielding signature generation and verification al-
gorithms that run in almost linear time. Moreover, the security of [21] does not rely on
the random oracle model.

Despite these significant advances, no concrete choice of parameters has been pro-
posed yet, and it is probably fair to say that provably-secure lattice-based signature
schemes are not yet at the level of efficiency and maturity that would allow them to be
used extensively in real-life applications.

1.5. Road Map

The paper is organized as follows. In Sect. 2, we provide notation and necessary back-
ground on lattices, GGH and NTRUSIGN. In Sect. 3, we introduce the hidden par-
allelepiped problem and explain its relationship to GGH-type signature schemes. In
Sect. 4, we present a method to solve the hidden parallelepiped problem. In Sect. 5, we
present experimental results obtained with the attack on real-life instantiations of GGH
and NTRUSIGN. In Sect. 6, we provide a theoretical analysis of the main parts of our
attack.

2. Background and Notation

Vectors of R
n will be row vectors denoted by bold lowercase letters such as b. The ma-

trix whose rows are b1, . . . ,bn is denoted by [b1, . . . ,bn]. We denote the ring of n × n

integer matrices by Mn(Z). The group of n × n invertible matrices with real coeffi-
cients will be denoted by GLn(R), and On(R) will denote the subgroup of orthogonal
matrices. The transpose of a matrix M will be denoted by Mt , and M−t will mean the
inverse of the transpose. The notation �x� denotes a closest integer to x. Naturally, �b�
will denote the operation applied to all the coordinates of b. If X is a random variable,
we will denote by Exp[X] its expectation. The gradient of a function f from R

n to R

will be denoted by ∇f = (
∂f
∂x1

, . . . ,
∂f
∂xn

).

2.1. Lattices

Let ‖·‖ and 〈·, ·〉 be the Euclidean norm and inner product of R
n. We refer to the sur-

vey [31] for a bibliography on lattices. In this paper, by the term lattice, we mean a
full-rank discrete subgroup of R

n. The simplest lattice is Z
n. It turns out that in any

144 P.Q. Nguyen, O. Regev

lattice L, not just Z
n, there must exist linearly independent vectors b1, . . . ,bn ∈ L such

that

L =
{

n∑
i=1

nibi

∣∣∣ ni ∈ Z

}
.

Any such n-tuple of vectors [b1, . . . ,bn] is called a basis of L: an n-dimensional lattice
can be represented by a basis, that is, a matrix of GLn(R). Reciprocally, any matrix
B ∈ GLn(R) spans a lattice: the set of all integer linear combinations of its rows, that
is, mB where m ∈ Z

n. The closest vector problem (CVP) is the following: given a
basis of L ⊆ Z

n and a target t ∈ Q
n, find a lattice vector v ∈ L minimizing the distance

‖v − t‖. If we denote by d that minimal distance, then approximating CVP to a factor k

means finding v ∈ L such that ‖v − t‖ ≤ kd . A measurable part D of R
n is said to be a

fundamental domain of a lattice L ⊆ R
n if the sets b + D, where b runs over L, cover

R
n and have pairwise disjoint interiors. If B is a basis of L, then the parallelepiped

P1/2(B) = {xB : x ∈ [−1/2,1/2]n} is a fundamental domain of L. All fundamental
domains of L have the same measure: the volume vol(L) of the lattice L.

2.2. The GGH Signature Scheme

The GGH scheme [9] works with a lattice L in Z
n. The secret key is a nonsingular

matrix R ∈ Mn(Z), with very short row vectors (their entries are polynomial in n). In
the GGH challenges [10], R was chosen as a perturbation of a multiple of the identity
matrix, so that its vectors were almost orthogonal: more precisely, R = kIn + E, where
k = 4�√n+1�+1, and each entry of the n×n matrix E is chosen uniformly at random
in {−4, . . . ,+3}. Micciancio [23] noticed that this distribution has the weakness that it
discloses the rough directions of the secret vectors. The lattice L is the lattice in Z

n

spanned by the rows of R: the knowledge of R enables the signer to approximate CVP
rather well in L. The basis R is then transformed to a nonreduced basis B , which will
be public. In the original scheme [9], B is the multiplication of R by sufficiently many
small unimodular matrices. Micciancio [23] suggested to use the Hermite normal form
(HNF) of L instead. As shown in [23], the HNF gives an attacker the least advantage
(in a certain precise sense), and it is therefore a good choice for the public basis. The
messages are hashed onto a “large enough” subset of Z

n, for instance, a large hypercube.
Let m ∈ Z

n be the hash of the message to be signed. The signer applies Babai’s round-
off CVP approximation algorithm [3] to get a lattice vector close to m:

s = ⌊
mR−1⌉R,

so that s − m ∈ P1/2(R) = {xR : x ∈ [−1/2,1/2]n}. Of course, any other CVP approx-
imation algorithm could alternatively be applied, for instance, Babai’s nearest plane
algorithm [3]. To verify the signature s of m, one would first check that s ∈ L using the
public basis B and compute the distance ‖s − m‖ to check that it is sufficiently small.

2.3. NTRUSIGN

NTRUSIGN [15] is a special instantiation of GGH with the compact lattices from the
NTRU encryption scheme [12], which we briefly recall: we refer to [4,15] for more

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 145

details. In the NTRU standards [4] being considered by IEEE P1363.1 [19], one selects
N = 251, q = 128. Let R be the ring Z[X]/(XN − 1) whose multiplication is denoted
by ∗. Using resultants, one computes a quadruplet (f, g,F,G) ∈ R4 such that f ∗ G −
g ∗ F = q in R and f is invertible mod q , where f and g have 0–1 coefficients (with
a prescribed number of 1), while F and G have slightly larger coefficients, yet much
smaller than q . This quadruplet is the NTRU secret key. Then the secret basis is the
following (2N) × (2N) matrix:

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0 f1 · · · fN−1 g0 g1 · · · gN−1
fN−1 f0 · · · fN−2 gN−1 g0 · · · gN−2

...
. . .

. . .
...

...
. . .

. . .
...

f1 · · · fN−1 f0 g1 · · · gN−1 g0
F0 F1 · · · FN−1 G0 G1 · · · GN−1

FN−1 F0 · · · FN−2 GN−1 G0 · · · GN−2
...

. . .
. . .

...
...

. . .
. . .

...

F1 · · · FN−1 F0 G1 · · · GN−1 G0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where fi denotes the coefficient of Xi of the polynomial f . Thus, the lattice dimension
is n = 2N . Due to the special structure of R, it turns out that a single row of R is
sufficient to recover the whole secret key. Because f is chosen invertible mod q , the
polynomial h = g/f (mod q) is well defined in R: this is the NTRU public key. Its
fundamental property is that f ∗ h ≡ g (mod q) in R. The polynomial h defines the
following (natural) public basis of the lattice:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 h0 h1 · · · hN−1
0 1 · · · 0 hN−1 h0 · · · hN−2
...

...
. . .

...
...

. . .
. . .

...

0 0 · · · 1 h1 · · · hN−1 h0
0 0 · · · 0 q 0 · · · 0

0 0 · · · 0 0 q
. . .

...
...

...
. . .

...
...

. . .
. . . 0

0 0 · · · 0 0 · · · 0 q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which implies that the lattice volume is qN .
The messages are assumed to be hashed in {0, . . . , q−1}2N . Let m ∈ {0, . . . , q−1}2N

be such a hash. We write m = (m1,m2) with mi ∈ {0, . . . , q − 1}N . It is shown in [15]
that the vector (s, t) ∈ Z

2N which we would obtain by applying Babai’s round-off CVP
approximation algorithm to m using the secret basis R can be alternatively computed
using convolution products involving m1, m2 and the NTRU secret key (f, g,F,G). In
practice, the signature is simply s and not (s, t), as t can be recovered from s thanks to h.
Besides, s might be further reduced mod q , but its initial value can still be recovered
because it is such that s − m1 ranges over a small interval (this is the same trick used
in NTRU decryption). This gives rise for standard parameter choices to a signature
length of 251 × 7 = 1757 bits. While this signature length is much smaller than other

146 P.Q. Nguyen, O. Regev

lattice-based signature schemes such as GGH, it is still significantly larger than more
traditional signature schemes such as DSA.

This is the basic NTRUSIGN scheme [15]. In order to strengthen the security of
NTRUSIGN, perturbation techniques have been proposed in [4,14,16]. Roughly speak-
ing, such techniques perturb the hashed message m before signing with the NTRU
secret basis. However, it is worth noting that there is no perturbation in half of the
parameter choices recommended in NTRU standards [4] under consideration by IEEE
P1363.1. Namely, this is the case for the parameter choices ees251sp2, ees251sp3,
ees251sp4, and ees251sp5 in [4]. For the other half, only a single perturbation is
recommended. But NTRU has stated that the parameter sets presented in [16] are in-
tended to supersede these parameter sets.

3. The Hidden Parallelepiped Problem

Consider the signature generation in the GGH scheme described in Sect. 2. Let R ∈
Mn(Z) be the secret basis used to approximate CVP in the lattice L. Let m ∈ Z

n be
the message digest. Babai’s round-off CVP approximation algorithm [3] computes the
signature s = �mR−1�R, so that s − m belongs to the parallelepiped P1/2(R) = {xR :
x ∈ [−1/2,1/2]n}, which is a fundamental domain of L. In other words, the signature
generation is simply a reduction of the message m modulo the parallelepiped spanned
by the secret basis R. If we were using Babai’s nearest plane CVP approximation algo-
rithm [3], we would have another fundamental parallelepiped (spanned by the Gram–
Schmidt vectors of the secret basis) instead: we will not further discuss this case in
this paper, since it does not create any significant difference and since this is not the
procedure chosen in NTRUSIGN.

GGH [9] suggested to hash messages into a set much bigger than the fundamental
domain of L. This is for instance the case in NTRUSIGN, where the cardinality of
{0, . . . , q − 1}2N is much greater than the lattice volume qN . Whatever the distribution
of the message digest m might be, it would be reasonable to assume that the distribution
s − m is uniform (or very close to uniform) in the secret parallelepiped P1/2(R). More
precisely, it seems reasonable to make the following assumption:

Assumption 1 (The Uniformity Assumption). Let R be the secret basis of the lat-
tice L ⊆ Z

n. When the GGH scheme signs polynomially many “randomly chosen”
message digests m1, . . . ,mk ∈ Z

n using Babai’s round-off algorithm, the signatures
s1, . . . , sk are such that the vectors si − mi are independent and uniformly distributed
over P1/2(R) = {xR : x ∈ [−1/2,1/2]n}.

Note that this is only an idealized assumption: in practice, the signatures and the
message digests are integer vectors, so the distribution of si − mi is discrete rather
than continuous, but this should not be a problem if the lattice volume is sufficiently
large, as is the case in NTRUSIGN. Similar assumptions have been used in previous at-
tacks [6,35] on lattice-based signature schemes. We emphasize that all our experiments
on NTRUSIGN do not use this assumption and work with real-life signatures.

We thus arrive at the following geometric learning problem (see Fig. 1):

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 147

Problem 2 (The Hidden Parallelepiped Problem or HPP). Let V = [v1, . . . ,vn] ∈
GLn(R), and let P (V) = {∑n

i=1 xivi : xi ∈ [−1,1]} be the parallelepiped spanned by
V . The input to the HPP is a sequence of poly(n) independent samples from U(P (V)),
the uniform distribution over P (V). The goal is to find a good approximation of the
rows of ±V .

In the definition of the HPP, we chose [−1,1] rather than [−1/2,1/2] like in As-
sumption 1 to simplify subsequent calculations.

Clearly, if one could solve the HPP, then one would be able to approximate the se-
cret basis in GGH by collecting random pairs (message, signature). To complete the
attack, we need to show how to obtain the actual secret basis given a good enough ap-
proximation of it. One simple way to achieve this is by rounding the coordinates of the
approximation to the closest integer. This approach will work if and only if the error e
in the approximation has max-norm less than 1/2: we will see that this property can be
guaranteed if the entries of the secret basis are small in absolute value, provided that
one is given sufficiently many random pairs (message, signature).

Alternatively, one can use approximate-CVP algorithms to try to recover the secret
basis from the approximation, since one knows a lattice basis from the GGH public key.
One popular method is to reduce the public basis as much as possible (say using BKZ
reduction [33]) and then apply Babai’s nearest plane algorithm [3] to the approximation,
using the reduced basis. This approach succeeds if and only if the error vector e lies
in the parallelepiped P1/2(R

∗), where R∗ is formed by the Gram–Schmidt vectors of
the reduced basis. Depending on the geometry of the reduced basis and the error e,
this might work for certain cases where the simple rounding approach fails. Previous
experiments of [29] on the GGH challenges [10] seem to suggest that in practice, even
a moderately good approximation of a lattice vector is sufficient to recover the closest
lattice vector, even in high dimension.

The Special Case of NTRUSIGN

Following the announcement of our result in [30], Whyte observed [36] that symme-
tries in the NTRU lattices might lead to attacks that require far less signatures. Namely,
Whyte noticed that in the particular case of NTRUSIGN, the hidden parallelepiped
P (R) has the following property: for each x ∈ P (R), the block-rotation σ(x) also be-
longs to P (R), where σ is the function that maps any (x1, . . . , xN , y1, . . . , yN) ∈ R

2N to
(xN , x1, . . . , xN−1, yN , y1, . . . , yN−1). This is because σ is a linear operation that per-
mutes the rows of R and hence leaves P (R) invariant. As a result, by using the N possi-
ble rotations, each signature actually gives rise to N samples in the parallelepiped P (R)

(as opposed to just one in the general case of GGH). For instance, 400 NTRUSIGN-
251 signatures give rise to 100,400 samples in the NTRU parallelepiped. Notice that
these samples are no longer independent, and hence Assumption 1 does not hold. Nev-
ertheless, as we will describe later, this technique leads in practice to attacks using a
significantly smaller number of signatures.

148 P.Q. Nguyen, O. Regev

4. Learning a Parallelepiped

In this section, we describe our solution to the Hidden Parallelepiped Problem (HPP),
based on the following steps. First, we approximate the covariance matrix of the given
distribution. This covariance matrix is essentially V tV (where V defines the given par-
allelepiped). We then exploit this approximation in order to transform our hidden par-
allelepiped P (V) into a unit hypercube: in other words, we reduce the HPP to the case
where the hidden parallelepiped is a hypercube. Finally, we show how hypercubic in-
stances of the HPP are related to a multivariate optimization problem based on the
fourth moment, which we solve by a gradient descent. The algorithm is summarized in
Algorithms 1 and 2 and is described in more detail in the following.

Algorithm 1 Solving the Hidden Parallelepiped Problem
Input: A polynomial number of samples uniformly distributed over a parallelepiped

P (V).
Output: Approximations of rows of ±V .

1: Compute an approximation G of the Gram matrix V tV of V t (see Sect. 4.1).
2: Compute the Cholesky factor L of G−1, so that G−1 = LLt .
3: Multiply the samples of P (V) by L to the right to obtain samples of P (C) where

C = V L.
4: Compute approximations of rows of ±C by Algorithm 2 from Sect. 4.3.
5: Multiply each approximation by L−1 to the right to derive an approximation of a

row of ±V .

4.1. The Covariance Matrix Leakage

The first step in our algorithm is based on the idea of approximating the covariance
matrix, which was already present in the work of Gentry and Szydlo [6,35] (after this
basic step, our strategy differs completely from theirs). Namely, Gentry and Szydlo
observed that from GGH signatures one can easily obtain an approximation of V tV ,
the Gram matrix of the transpose of the secret basis. Here, we simply translate this
observation to the HPP setting.

Lemma 1 (Covariance Matrix Leakage). Let V ∈ GLn(R). Let v be chosen from the
uniform distribution over the parallelepiped P (V). Then

Exp
[
vtv

] = V tV/3.

In other words, the covariance matrix of the distribution U(P (V)) is V tV/3.

Proof. We can write v = xV , where x has uniform distribution over [−1,1]n. Hence,

vtv = V txtxV.

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 149

An elementary computation shows that Exp[xtx] = In/3, where In is the n × n identity
matrix, and the lemma follows. �

Hence, by taking the average of vtv over all our samples v from U(P (V)) and mul-
tiplying the result by 3, we can obtain an approximation of V tV .

4.2. Morphing a Parallelepiped into a Hypercube

The second stage is explained by the following lemma.

Lemma 2 (Hypercube Transformation). Let V ∈ GLn(R). Denote by G ∈ GLn(R)

the symmetric positive definite matrix V tV . Denote by L ∈ GLn(R) the Cholesky fac-
tor1 of G−1, that is, L is the unique lower-triangular matrix with positive diagonal
entries such that G−1 = LLt . Then the matrix C = V L ∈ GLn(R) satisfies the follow-
ing:

1. The rows of C are pairwise orthogonal unit vectors. In other words, C is an or-
thogonal matrix in On(R), and P (C) is a unit hypercube.

2. If v is uniformly distributed over the parallelepiped P (V), then c = vL is uni-
formly distributed over the hypercube P (C).

Proof. The Gram matrix G = V tV is clearly symmetric positive definite. Hence
G−1 = V −1V −t is also symmetric positive definite and has a Cholesky factorization
G−1 = LLt , where L is a lower-triangular matrix. Therefore, V −1V −t = LLt . Let
C = V L ∈ GLn(R). Then

CCt = V LLtV t = V V −1V −tV t = I.

For the second claim, let v be uniformly distributed over P (V). Then we can write
v = xV , where x is uniformly distributed over [−1,1]n. It follows that vL = xV L = xC

has the uniform distribution over P (C). �

Lemma 2 says that by applying the transformation L, we can map our samples from
the parallelepiped P (V) into samples from the hypercube P (C). Then, if we could ap-
proximate the rows of ±C, we would also obtain an approximation of the rows of ±V

by applying L−1. In other words, we have reduced the Hidden Parallelepiped Prob-
lem into what one might call the Hidden Hypercube Problem (see Fig. 2). From an
implementation point of view, we note that the Cholesky factorization (required for
obtaining L) can be easily computed by a process close to the Gram–Schmidt orthogo-
nalization process (see [11]). Lemma 2 assumes that we know G = V tV exactly. If we
only have an approximation of G, then C will only be close to some orthogonal matrix
in On(R): the Gram matrix CCt of C will be close to the identity matrix, and the image
under L of our parallelepiped samples will be uniformly distributed over a body that is
close to being a unit hypercube.

1 Instead of the Cholesky factor, one can take any matrix L such that G−1 = LLt . We work with Cholesky
factorization as this turns out to be more convenient in our experiments.

150 P.Q. Nguyen, O. Regev

Fig. 2. The Hidden Hypercube Problem in dimension two.

4.3. Learning a Hypercube

For any V = [v1, . . . ,vn] ∈ GLn(R) and any integer k ≥ 1, we define the kth moment
of P (V) over a vector w ∈ R

n as

momV,k(w) = Exp
[〈u,w〉k],

where u is uniformly distributed over the parallelepiped P (V).2 Clearly, momV,k(w)

can be approximated by using the given samples from U(P (V)). Since all the odd
moments are zero, we are interested in the first even moments, namely the second and
fourth moments. A straightforward calculation shows that for any w ∈ R

n, they are
given by

momV,2(w) = 1

3

n∑
i=1

〈vi ,w〉2 = 1

3
wV tV wt ,

momV,4(w) = 1

5

n∑
i=1

〈vi ,w〉4 + 1

3

∑
i �=j

〈vi ,w〉2〈vj ,w〉2.

Note that the second moment is given by the covariance matrix mentioned in Sect. 4.1.
When V ∈ On(R) (i.e., the vectors vi are orthonormal), the second moment becomes
‖w‖2/3, while the fourth moment becomes

momV,4(w) = 1

3
‖w‖4 − 2

15

n∑
i=1

〈vi ,w〉4.

By expressing w in the vi basis and taking derivatives in each of the directions vi , it is
not hard to verify that the gradient of the latter is

∇momV,4(w) =
n∑

i=1

(
4

3

(
n∑

j=1

〈vj ,w〉2

)
〈vi ,w〉 − 8

15
〈vi ,w〉3

)
vi .

2 This should not be confused with an unrelated notion of moment considered in [6,15,16].

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 151

Fig. 3. The fourth moment for n = 2. On the left: the dotted line shows the restriction to the unit circle. On
the right: a polar plot restricted to the unit circle.

For w on the unit sphere, the second moment is constantly 1/3, and

momV,4(w) = 1

3
− 2

15

n∑
i=1

〈vi ,w〉4,

(1)

∇momV,4(w) = 4

3
w − 8

15

n∑
i=1

〈vi ,w〉3vi .

See Fig. 3.

Lemma 3. Let V = [v1, . . . ,vn] ∈ On(R). Then the global minimum of momV,4(w)

over the unit sphere of R
n is 1/5, and this minimum is obtained at ±v1, . . . ,±vn. There

are no other local minima.

Proof. The method of Lagrange multipliers shows that for w to be an extremum
point of momV,4 on the unit sphere, it must be proportional to ∇momV,4(w). By writ-
ing w = ∑n

i=1〈vi ,w〉vi and using (1), we see that there must exist some α such that
〈vi ,w〉3 = α〈vi ,w〉 for i = 1, . . . , n. In other words, each 〈vi ,w〉 is either zero or ±√

α.
It is easy to check that among all such points, only ±v1, . . . ,±vn form local minima. �

In other words, the hidden hypercube problem can be reduced to a minimization
problem of the fourth moment over the unit sphere. A classical technique to solve such
minimization problems is the gradient descent described in Algorithm 2. The gradient
descent typically depends on a parameter δ, which has to be carefully chosen. Since we
want to minimize the function here, we go in the opposite direction of the gradient. To
approximate the gradient in Step 2 of Algorithm 2, we notice that

∇momV,4(w) = Exp
[∇(〈u,w〉4)] = 4Exp

[〈u,w〉3u
]
.

152 P.Q. Nguyen, O. Regev

Algorithm 2 Solving the Hidden Hypercube Problem by Gradient Descent
Parameters: A descent parameter δ.
Input: A polynomial number of samples uniformly distributed over a unit hypercube

P (V).
Output: An approximation of some row of ±V .

1: Let w be chosen uniformly at random from the unit sphere of R
n.

2: Compute an approximation g of the gradient ∇mom4(w) (see Sect. 4.3).
3: Let wnew = w − δg.
4: Divide wnew by its Euclidean norm ‖wnew‖.
5: if momV,4(wnew) ≥ momV,4(w) where the moments are approximated by sam-

pling
then

6: return the vector w.
7: else
8: Replace w by wnew and go back to Step 2.
9: end if

This allows us to approximate the gradient ∇momV,4(w) using averages over samples,
like for the fourth moment itself.

5. Experimental Results

As usual in cryptanalysis, perhaps the most important question is whether or not the
attack works in practice. We therefore implemented the attack in C++ and ran it on
a 2 GHz PC/Opteron. The critical parts of the code were written in plain C++ using
double arithmetic, while the rest used Shoup’s NTL library version 5.4 [34]. Based
on trial-and-error, we chose δ = 0.7 in the gradient descent (Algorithm 2) for all the
experiments mentioned here. The choice of δ has a big impact on the behavior of the
gradient descent: the choice δ = 0.7 works well, but we do not claim that it is optimal.
When doing several descents in a row, it is useful to relax the halting condition 2 in
Algorithm 2 to abort descents which seem to make very little progress.

5.1. NTRUSIGN

We performed two kinds of experiments against NTRUSIGN, depending on whether
the symmetries of NTRU lattices explained in Sect. 3 were used or not. All the experi-
ments make it clear that perturbation techniques are really mandatory for the security of
NTRUSIGN, though it is currently unknown if such techniques are sufficient to prevent
this kind of attacks.

5.1.1. Without Exploiting the Symmetries of NTRU Lattices

We applied Algorithm 1 to real-life parameters of NTRUSIGN. More precisely, we
ran the attack on NTRUSIGN-251 without perturbation, corresponding to the para-
meter choices ees251sp2, ees251sp3, ees251sp4, and ees251sp5 in the

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 153

Fig. 4. Experiments on NTRUSIGN-251 without perturbation and without using NTRU symmetries. The
curve shows the average number of random descents required to recover the secret key, depending on the
number of signatures, which is in the range 80,000–300,000.

NTRU standards [4] under consideration by IEEE P1363.1 [19]. This corresponds to
a lattice dimension of 502. We did not rely on the uniformity assumption: we gener-
ated genuine NTRUSIGN signatures of messages generated uniformly at random over
{0, . . . , q − 1}n.

The results of the experiments are summarized in Fig. 4. For each given number
of signatures in the range 80,000–300,000, we generated a set of signatures and ap-
plied Algorithm 1 to it: from the set of samples we derived an approximation of the
Gram matrix, used it to transform the parallelepiped into a hypercube, and finally, we
ran a series of about a thousand descents, starting with random points. We regard a
descent as successful if, when rounded to the nearest integer vector, the output of the
descent gives exactly one of the vectors of the secret basis (which is sufficient to recover
the whole secret basis in the case of NTRUSIGN). We did not notice any improvement
using Babai’s nearest plane algorithm [3] (with a BKZ-20 reduced basis [33] computed
from the public basis) as a CVP approximation. The curve shows the average num-
ber of random descents needed for a successful descent as a function of the number of
signatures.

Typically, a single random descent does not take much time: for instance, a usual
descent for 150,000 signatures takes roughly ten minutes. When successful, a descent
may take as little as a few seconds. The minimal number of signatures to make the attack
successful in our experiments was 90,000, in which case the required number of random
descents was about 400. With 80,000 signatures, we tried 5,000 descents without any
success. The curve given in Fig. 4 may vary a little bit, depending on the secret basis: for
instance, for the basis used in the experiments of Fig. 4, the average number of random
descents was 15 with 140,000 signatures, but it was 23 for another basis generated with
the same NTRU parameters. It seems that the exact geometry of the secret basis has an
influence, as will be seen in the analysis of Sect. 6.

154 P.Q. Nguyen, O. Regev

Table 1. Experiments on NTRUSIGN-251 without
perturbation, using NTRU symmetries.

Number Expected number of descents
of signatures to recover the secret key

1,000 2
500 40
400 100

5.1.2. Exploiting the Symmetries of NTRU Lattices

Based on Whyte’s observation described in Sect. 3, one might hope that the number
of signatures required by the attack can be shrunk by a factor of roughly N . Luckily,
this is indeed the case in practice (see Table 1): as few as 400 signatures are enough
in practice to recover the secret key, though the corresponding 100,400 parallelepiped
samples are not independent. This means that the previous number of 90,000 signatures
required by the attack can be roughly divided by N = 251. Hence, NTRUSIGN without
perturbation should be considered totally insecure.

5.2. The GGH Challenges

We also did experiments on the GGH challenges [10], which range from dimension 200
to 400. Because there is actually no GGH signature challenge, we simply generated
secret bases like in the GGH encryption challenges. To decrease the cost of sample
generation, and because there was no concrete proposal of a GGH signature scheme,
we relied on the uniformity assumption: we created samples uniformly distributed over
the secret parallelepiped and tried to recover the secret basis.

When the number of samples becomes sufficiently high, the approximation obtained
by a random descent is sufficiently good to disclose one of the vectors of the secret basis
by simple rounding, just as in the NTRUSIGN case: however, the number of required
samples is significantly higher than for NTRUSIGN; for instance, with 200,000 samples
in dimension 200, three descents are enough to disclose a secret vector by rounding;
whereas three descents are also enough with 250,000 samples for NTRUSIGN, but this
corresponds to a dimension of 502, which is much greater than 200. This is perhaps
because the secret vectors of the GGH challenges are significantly longer than those of
NTRUSIGN.

However, one can significantly improve the result by using a different rounding pro-
cedure, as pointed out in Sect. 3. Namely, instead of rounding the approximation to an
integer vector, one can apply a CVP approximation algorithm such as Babai’s nearest
plane algorithm [3]: such algorithms will succeed if the approximation is sufficiently
close to the lattice, and one can improve the chances of the algorithm by computing
a lattice basis as reduced as possible (using, for instance, BKZ reduction [33]). For
instance, with only 20,000 samples in dimension 200, it was impossible to recover a
secret vector by rounding, but it became easy with Babai’s nearest plane algorithm on
a BKZ-20 reduced basis (obtained by BKZ reduction of the public HNF basis): more
precisely, three random descents sufficed on the average. More generally, Fig. 5 shows
the average number of samples required so that ten random descents disclose a secret

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 155

Fig. 5. Average number of GGH signatures required so that ten random descents coupled with Babai’s
nearest plane algorithm disclose with high probability a secret vector, depending on the dimension of the
GGH challenge.

vector with high probability, depending on the dimension of the GGH challenge, using
Babai’s nearest plane algorithm on a BKZ-20 reduced basis. Figure 5 should not be in-
terpreted as the minimal number of signatures required for the success of the attack: it
only gives an upper bound for that number. Indeed, there are several ways to decrease
the number of signatures:

– One can run much more than ten random descents.
– One can take advantage of the structure of the GGH challenges. When starting a

descent, rather than starting with a random point on the unit sphere, we may exploit
the fact that we know the rough directions of the secret vectors.

– One can use better CVP approximation algorithms or use better reduction algo-
rithms in conjunction with Babai’s nearest plane algorithm.

6. Theoretical Analysis

Our goal in this section is to give a rigorous theoretical justification to the success of
the attack. Namely, we will show that given a large enough polynomial number of sam-
ples, Algorithm 1 succeeds in finding a good approximation to a row of V with some
constant probability. For sake of clarity and simplicity, we will not make any attempt
to optimize this polynomial bound on the number of samples. We will also assume that
we can perform operations on real numbers; modifying the analysis to work with finite
precision numbers should be straightforward. Let us remark that it is possible that a rig-
orous analysis already exists in the ICA literature, although we were unable to find any
(an analysis under some simplifying assumptions can be found in [17]). Also, Frieze
et al. [5] sketch a rigorous analysis of a similar algorithm.

In order to approximate the covariance matrix, the fourth moment, and its gradient,
our attack computes averages over samples. Because the samples are independent and
identically distributed, we can use known bounds on large deviations such as the Cher-
noff bound (see, e.g., [2]) to obtain that with extremely high probability the approxi-
mations are very close to the true values. In our analysis below we omit the explicit
calculations, as these are relatively standard.

156 P.Q. Nguyen, O. Regev

6.1. Analysis of Algorithm 2

We start by analyzing Algorithm 2. For simplicity, we consider only the case in which
the descent parameter δ equals 3/4. A similar analysis holds for 0 < δ < 3/4. Another
simplifying assumption we make is that, instead of the stopping rule in Step 5, we
simply repeat the descent step some small number r of times (which will be specified
later).

For now, let us assume that the matrix V is an orthogonal matrix, so our samples
are drawn from a unit hypercube P (V). We will later show that the actual matrix V , as
obtained from Algorithm 1, is very close to orthogonal and that this approximation does
not affect the success of Algorithm 2.

Theorem 3. For any c0 > 0, there exists c1 > 0 such that given nc1 samples uniformly
distributed over some unit hypercube P (V), V = [v1, . . . ,vn] ∈ On(R), Algorithm 2
with δ = 3/4 and r = O(log logn) descent steps outputs with constant probability a
vector that is within �2 distance n−c0 of ±vi for some i.

Proof. We first analyze the behavior of Algorithm 2 under the assumption that all
gradients are computed exactly without any error. We write any vector w ∈ R

n as w =∑n
i=1 wivi. Then, using (1), we see that for w on the unit sphere,

∇momV,4(w) = 4

3
w − 8

15

n∑
i=1

w3
i vi .

Since we took δ = 3/4, Step 3 in Algorithm 2 performs

wnew = 2

5

n∑
i=1

w3
i vi .

The vector is then normalized in Step 4. So we see that each step in the gradient descent
takes a vector (w1, . . . ,wn) to the vector α · (w3

1, . . . ,w
3
n) for some normalization factor

α (where both vectors are written in the vi basis). Hence, after r iterations, a vector
(w1, . . . ,wn) is transformed to the vector

α · (w3r

1 , . . . ,w3r

n

)
for some normalization factor α.

Recall now that the original vector (w1, . . . ,wn) is chosen uniformly from the unit
sphere. It can be shown that with some constant probability, one of its coordinates is
greater in absolute value than all other coordinates by a factor of at least 1+Ω(1/ logn)

(first prove this for a vector distributed according to the standard multivariate Gaussian
distribution and then note that by normalizing we obtain a uniform vector from the unit
sphere). For such a vector, after only r = O(log logn) iterations, this gap is amplified to
more than, say, nlogn, which means that we have one coordinate very close to ±1, and
all others are at most n−logn in absolute value. This establishes that if all gradients are
known exactly, Algorithm 2 succeeds with some constant probability.

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 157

To complete the analysis of Algorithm 2, we now argue that it succeeds with good
probability even in the presence of noise in the approximation of the gradients. First, it
can be shown that for any c > 0, given a large enough polynomial number of samples,
with very high probability all our gradient approximations are accurate to within an
additive error of n−c in the �2 norm (we have r such approximations during the course
of the algorithm). This follows by a standard application of the Chernoff bound followed
by a union bound. Now let w = (w1, . . . ,wn) be a unit vector in which one coordinate,
say the j th, is greater in absolute value than all other coordinates by at least a factor
of 1 + Ω(1/ logn). Since w is a unit vector, this in particular means that wj > 1/

√
n.

Let w̃new = w − δ∇mom4(w). Recall that for each i, w̃new,i = 2
5w3

i , which in particular
implies that w̃new,j > 2

5n−1.5 > n−2. By our assumption on the approximation g, we
have that for each i, |w̃new,i − wnew,i | ≤ n−c. So for any k �= j ,

|wnew,j |
|wnew,k| ≥ |w̃new,j | − n−c

|w̃new,k| + n−c
≥ |w̃new,j |(1 − n−(c−2))

|w̃new,k| + n−c
.

If |w̃new,k| > n−(c−1), then the above is at least (1 − O(1/n))(wj/wk)
3. Otherwise,

the above is at least Ω(nc−3). Hence, after O(log logn) steps, the gap wj/wk becomes
Ω(nc−3). Therefore, for any c0 > 0, we can make the distance between the output vector
and one of the ±vi ’s less than n−c0 by choosing a large enough c. �

6.2. Analysis of Algorithm 1

The following theorem completes the analysis of the attack. In particular, it implies
that if V is an integer matrix all of whose entries are bounded in absolute value by
some polynomial, then running Algorithm 1 with a large enough polynomial number
of samples from the uniform distribution on P (V) gives (with constant probability)
an approximation to a row of ±V whose error is less than 1/2 in each coordinate and
therefore leads to an exact row of ±V simply by rounding each coordinate to the nearest
integer. Hence we have a rigorous proof that our attack can efficiently recover the secret
key in both NTRUSIGN and the GGH challenges.

Theorem 4. For any c0 > 0, there exists c1 > 0 such that given nc1 samples uniformly
distributed over some parallelepiped P (V), V = [v1, . . . ,vn] ∈ GLn(R), Algorithm 1
outputs with constant probability a vector ẽV , where ẽ is within �2 distance n−c0 of
some standard basis vector ei .

Proof. Recall that a sample v from U(P (V)) can be written as xV , where x is chosen
uniformly from [−1,1]n. So let vi = xiV for i = 1, . . . ,N be the input samples. Then
our approximation G to the Gram matrix V tV is given by G = V t ĨV , where Ĩ =
3
N

∑
xt
ixi . We claim that with high probability, Ĩ is very close to the identity matrix.

Indeed, for x chosen randomly from [−1,1]n, each diagonal entry of xtx has expectation
1/3, and each off-diagonal entry has expectation 0. Moreover, these entries take values
in [−1,1]. By the Chernoff bound we obtain that for any approximation parameter
c > 0, if we choose, say, N = n2c+1, then with very high probability each entry in Ĩ − I

is at most n−c in absolute value. This implies that all eigenvalues of the symmetric

158 P.Q. Nguyen, O. Regev

matrix Ĩ are in the range 1 ± n−c+1 (and in particular we obtain that Ĩ and hence also
G are invertible).

Recall that we define L to be the Cholesky factor of G−1 = V −1Ĩ−1V −t and that
C = V L. Now CCt = V LLtV t = Ĩ−1, which implies that C is close to an orthogonal
matrix. Let us make this precise. Consider the singular value decomposition of C given
by C = U1DU2, where U1,U2 are orthogonal matrices, and D is diagonal. Then CCt =
U1D

2Ut
1 and hence D2 = Ut

1Ĩ
−1U1. From this it follows that the diagonal of D consists

of the square roots of the reciprocals of the eigenvalues of Ĩ , which in particular means
that all values on the diagonal of D are also in the range 1 ± n−c+1.

Consider the orthogonal matrix C̃ = U1U2. We claim that for large enough c, samples
from P (C) “look like” samples from P (C̃). More precisely, assume that c is chosen
so that the number of samples required by Algorithm 2 is less than, say, nc−4. Then, it
follows from Lemma 4 below that the statistical distance3 between a set of nc−4 samples
from P (C) and a set of nc−4 samples from P (C̃) is at most O(n−1). By Theorem 3, we
know that when given samples from P (C̃), Algorithm 2 outputs an approximation of a
row of ±C̃ with some constant probability. Hence, when given samples from P (C), it
must still output an equally good approximation of a row of ±C̃ with a probability that
is smaller by at most O(n−1) and in particular, constant.

To complete the proof, let c̃ be the vector obtained in Step 4. The output of Algorithm
1 is then

c̃L−1 = c̃C−1V = (
c̃C̃−1)(C̃C−1)V = (

c̃C̃−1)(U1D
−1Ut

1

)
V.

As we have seen before, all eigenvalues of U1D
−1Ut

1 are close to 1. It therefore follows
that the above is a good approximation to a row of ±V , and it is not hard to verify that
the quality of this approximation satisfies the requirements stated in the theorem. �

Lemma 4. The statistical distance between the uniform distribution on P (C) and that
on P (C̃) is at most O(n−c+3).

Proof. We first show that the parallelepiped P (C) is almost contained and almost
contains the cube P (C̃):

(
1 − n−c+2)P

(
C̃

) ⊆ P (C) ⊆ (
1 + n−c+2)P

(
C̃

)
.

To show this, take any vector y ∈ [−1,1]n. The second containment is equivalent to
showing that all the coordinates of yU1DUt

1 are at most 1 + n−c+2 in absolute value.
Indeed, by the triangle inequality,

∥∥yU1DUt
1

∥∥∞ ≤ ‖y‖∞ + ∥∥yU1(D − I)Ut
1

∥∥∞ ≤ 1 + ∥∥yU1(D − I)Ut
1

∥∥
2

≤ 1 + n−c+1√n < 1 + n−c+2.

3 The statistical distance (or total variation distance) between two distributions is the maximum probabil-
ity with which one can distinguish between an input sampled from the first distribution and an input sampled
from the second distribution.

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 159

The first containment is proved similarly. On the other hand, the ratio of volumes be-
tween the two cubes is ((1 + n−c+2)/(1 − n−c+2))n = 1 + O(n−c+3). From this it
follows that the statistical distance between the uniform distribution on P (C) and that
on P (C̃) is at most O(n−c+3). �

Acknowledgements

We thank William Whyte for helpful discussions and the anonymous referees for useful
comments.

References

[1] M. Ajtai, Generating hard instances of lattice problems, in Complexity of Computations and Proofs.
Quad. Mat., vol. 13 (Dept. Math., Seconda Univ. Napoli, Caserta, 2004), pp. 1–32

[2] N. Alon, J.H. Spencer, The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics
and Optimization, 2nd edn. (Wiley, New York, 2000)

[3] L. Babai, On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13
(1986)

[4] Consortium for Efficient Embedded Security. Efficient embedded security standards #1: Imple-
mentation aspects of NTRUencrypt and NTRUsign. Version 2.0 available at http://grouper.ieee.org/
groups/1363/lattPK/index.html, June (2003)

[5] A. Frieze, M. Jerrum, R. Kannan, Learning linear transformations, in 37th Annual Symposium on Foun-
dations of Computer Science, Burlington, VT, 1996 (IEEE Comput. Soc. Press, Los Alamitos, 1996),
pp. 359–368

[6] C. Gentry, M. Szydlo, Cryptanalysis of the revised NTRU signature scheme, in Proc. of Eurocrypt ’02.
LNCS, vol. 2332 (Springer, Berlin, 2002)

[7] C. Gentry, C. Peikert, V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic construc-
tions, in Proc. 40th ACM Symp. on Theory of Computing (STOC), pp. 197–206 (2008)

[8] C. Gentry, J. Jonsson, J. Stern, M. Szydlo, Cryptanalysis of the NTRU signature scheme (NSS) from
Eurocrypt 2001, in Proc. of Asiacrypt ’01. LNCS, vol. 2248 (Springer, Berlin, 2001)

[9] O. Goldreich, S. Goldwasser, S. Halevi, Public-key cryptosystems from lattice reduction problems, in
Proc. of Crypto ’97. LNCS, vol. 1294 (Springer, Berlin, 1997), pp. 112–131. Full version available at
ECCC as TR96-056

[10] O. Goldreich, S. Goldwasser, S. Halevi, Challenges for the GGH cryptosystem. Available at
http://theory.lcs.mit.edu/~shaih/challenge.html

[11] G. Golub, C. Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, 1996)
[12] J. Hoffstein, J. Pipher, J. Silverman, NTRU: a ring based public key cryptosystem, in Proc. of ANTS III.

LNCS, vol. 1423 (Springer, Berlin, 1998), pp. 267–288. First presented at the rump session of Crypto
’96

[13] J. Hoffstein, J. Pipher, J.H. Silverman, NSS: An NTRU lattice-based signature scheme, in Proc. of
Eurocrypt ’01. LNCS, vol. 2045 (Springer, Berlin, 2001)

[14] J. Hoffstein, N.A.H. Graham, J. Pipher, J.H. Silverman, W. Whyte, NTRUsign: Digital signatures using
the NTRU lattice. Full version of Proc. of CT-RSA. LNCS, vol. 2612. Draft of April 2, 2002, available
on NTRU’s website

[15] J. Hoffstein, N.A.H. Graham, J. Pipher, J.H. Silverman, W. Whyte, NTRUsign: Digital signatures using
the NTRU lattice, in Proc. of CT-RSA. LNCS, vol. 2612 (Springer, Berlin, 2003)

[16] J. Hoffstein, N.A.H. Graham, J. Pipher, J.H. Silverman, W. Whyte, Performances improvements and a
baseline parameter generation algorithm for NTRUsign, in Proc. of Workshop on Mathematical Prob-
lems and Techniques in Cryptology (CRM, 2005), pp. 99–126

[17] A. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component analysis. Neural Comput.
9(7), 1483–1492 (1997)

[18] A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001)

http://grouper.ieee.org/groups/1363/lattPK/index.html
http://grouper.ieee.org/groups/1363/lattPK/index.html
http://theory.lcs.mit.edu/~shaih/challenge.html

160 P.Q. Nguyen, O. Regev

[19] IEEE P1363.1. Public-key cryptographic techniques based on hard problems over lattices. See
http://grouper.ieee.org/groups/1363/lattPK/index.html, June 2003

[20] P. Klein, Finding the closest lattice vector when it’s unusually close, in Proc. of SODA ’00 (ACM–SIAM,
2000)

[21] V. Lyubashevsky, D. Micciancio, Asymptotically efficient lattice-based digital signatures, in Fifth The-
ory of Cryptography Conference (TCC). Lecture Notes in Computer Science, vol. 4948 (Springer,
Berlin, 2008)

[22] R. McEliece, A public-key cryptosystem based on algebraic number theory. Technical report, Jet Propul-
sion Laboratory, 1978. DSN Progress Report 42-44

[23] D. Micciancio, Improving lattice-based cryptosystems using the Hermite normal form, in Proc. of CALC
’01. LNCS, vol. 2146 (Springer, Berlin, 2001)

[24] D. Micciancio, Cryptographic functions from worst-case complexity assumptions. Survey paper pre-
pared for the LLL+25 conference. To appear

[25] D. Micciancio, S. Goldwasser, Complexity of Lattice Problems: A Cryptographic Perspective. The
Kluwer International Series in Engineering and Computer Science, vol. 671 (Kluwer Academic, Boston,
2002)

[26] D. Micciancio, O. Regev, Lattice-based cryptography, in Post-Quantum Cryprography, ed. by D.J. Bern-
stein, J. Buchmann (Springer, Berlin, 2008)

[27] D. Micciancio, S. Vadhan, Statistical zero-knowledge proofs with efficient provers: lattice problems and
more, in Advances in Cryptology—Proc. CRYPTO ’03. Lecture Notes in Computer Science, vol. 2729
(Springer, Berlin, 2003), pp. 282–298

[28] M. Naor, M. Yung, Universal one-way hash functions and their cryptographic applications, in Proc. 21st
ACM Symp. on Theory of Computing (STOC), pp. 33–43 (1989)

[29] P.Q. Nguyen, Cryptanalysis of the Goldreich–Goldwasser–Halevi cryptosystem from Crypto ’97, in
Proc. of Crypto ’99. LNCS, vol. 1666 (Springer, Berlin, 1999), pp. 288–304

[30] P.Q. Nguyen, O. Regev, Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures, in
Advances in Cryptology—Proceedings of EUROCRYPT ’06. LNCS, vol. 4004 (Springer, Berlin, 2006),
pp. 215–233

[31] P.Q. Nguyen, J. Stern, The two faces of lattices in cryptology, in Proc. of CALC ’01. LNCS, vol. 2146
(Springer, Berlin, 2001)

[32] O. Regev, Lattice-based cryptography, in Advances in Cryptology—Proc. of CRYPTO ’06. LNCS,
vol. 4117 (Springer, Berlin, 2006), pp. 131–141

[33] C.P. Schnorr, M. Euchner, Lattice basis reduction: improved practical algorithms and solving subset
sum problems. Math. Program. 66, 181–199 (1994)

[34] V. Shoup, NTL: A library for doing number theory. Available at http://www.shoup.net/ntl/
[35] M. Szydlo, Hypercubic lattice reduction and analysis of GGH and NTRU signatures, in Proc. of Euro-

crypt ’03. LNCS, vol. 2656 (Springer, Berlin, 2003)
[36] W. Whyte, Improved NTRUSign transcript analysis. Presentation at the rump session of Eurocrypt ’06,

on May 30 (2006)

http://grouper.ieee.org/groups/1363/lattPK/index.html
http://www.shoup.net/ntl/

	Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures
	Abstract
	Introduction
	Our Results
	Related Work
	Open Problem
	Other Schemes
	Road Map

	Background and Notation
	Lattices
	The GGH Signature Scheme
	NTRUSign

	The Hidden Parallelepiped Problem
	The Special Case of NTRUSign

	Learning a Parallelepiped
	The Covariance Matrix Leakage
	Morphing a Parallelepiped into a Hypercube
	Learning a Hypercube

	Experimental Results
	NTRUSign
	Without Exploiting the Symmetries of NTRU Lattices
	Exploiting the Symmetries of NTRU Lattices

	The GGH Challenges

	Theoretical Analysis
	Analysis of Algorithm 2
	Analysis of Algorithm 1

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

