
J. Cryptol. (2008) 21: 97–130
DOI: 10.1007/s00145-007-9010-x

Tag-KEM/DEM: A New Framework for Hybrid
Encryption

Masayuki Abe
NTT Information Sharing Platform Laboratories, NTT Corporation, Tokyo, Japan

abe.masayuki@lab.ntt.co.jp

Rosario Gennaro
IBM T.J.Watson Research Center, Yorktown Heights, USA

Rosario@us.ibm.com

Kaoru Kurosawa
Ibaraki University, Hitachi, Japan

kurosawa@mx.ibaraki.ac.jp

Communicated by Ronald Cramer

Received 22 May 2005 and revised 22 June 2007
Online publication 8 November 2007

Abstract. This paper presents a novel framework for the generic construction of hy-
brid encryption schemes which produces more efficient schemes than the ones known
before. A previous framework introduced by Shoup combines a key encapsulation
mechanism (KEM) and a data encryption mechanism (DEM). While it is sufficient to
require both components to be secure against chosen ciphertext attacks (CCA-secure),
Kurosawa and Desmedt showed a particular example of KEM that is not CCA-secure
but can be securely combined with a specific type of CCA-secure DEM to obtain a
more efficient, CCA-secure hybrid encryption scheme. There are also many other effi-
cient hybrid encryption schemes in the literature that do not fit into Shoup’s framework.
These facts serve as motivation to seek another framework.

The framework we propose yields more efficient hybrid scheme, and in addition
provides insightful explanation about existing schemes that do not fit into the previous
framework. Moreover, it allows immediate conversion from a class of threshold public-
key encryption to a threshold hybrid one without considerable overhead, which may not
be possible in the previous approach.

Key words. Tag-KEM, Hybrid encryption, Key encapsulation, Threshold encryption

1. Introduction

A fundamental task of cryptography is to protect the secrecy of messages transmitted
over public communication lines. For this purpose we use encryption schemes which
use some secret information (a key) to encode messages in a way that an eavesdropper
cannot decode. However, as networks become more open and accessible, it becomes

97

98 M. Abe, R. Gennaro, and K. Kurosawa

apparently clear that an adversary may not be limited to eavesdropping, but may take a
more active role. She may try to interact with honest parties, by, for example, sending
ciphertexts to them (possibly related to the ciphertexts she intends to decrypt) and an-
alyze their response. Such active attacks can be proven to be much more powerful and
hard to combat than passive ones (see for example [7]).

To model this type of attacks, the notion of chosen-ciphertext security was introduced
by Naor and Yung [32] and developed by Rackoff and Simon [34], and Dolev, Dwork,
and Naor [21]. Security against a chosen ciphertext attack (CCA security, in short)
means that, even if the adversary is allowed to query a decryption oracle on cipher-
texts of her choosing, then she obtains no useful information about messages encrypted
in other ciphertexts. The first CCA-secure cryptosystems were presented in [21,32,34],
but they were quite impractical, as they rely on generic techniques for non-interactive
zero-knowledge. In a breakthrough result, Cramer and Shoup in [16] presented the first
truly practical CCA-secure cryptosystem, whose security is based on the hardness of the
decisional Diffie-Hellman problem. This construction was generalized in [17], using a
new cryptographic primitive called projective hash functions.

Public-key encryption schemes often limit the message space to a particular group,
which can be restrictive when one wants to encrypt arbitrary messages. For this purpose
hybrid schemes are devised. First a Key Encapsulation Mechanism (KEM) is invoked: a
random group element is encrypted and then mapped via a key derivation function into a
random key. Then a Data Encapsulation Mechanism (DEM) is performed: the random
key is used to encrypt the message using a symmetric encryption scheme. A formal
treatment of this paradigm can be found in [18,37] and we refer to it as the KEM/DEM
framework.

As mentioned in the literature, it is sufficient that both KEM and DEM are CCA-
secure to obtain CCA-secure hybrid encryption. This indeed looks quite reasonable
since, if either component is not CCA-secure, then the adversary trying to decrypt a tar-
get ciphertext may be able to alter the corresponding part of the ciphertext and use the
decryption oracle to get useful information. Recently in [29], Kurosawa and Desmedt
introduced a hybrid encryption scheme which is a modification of the hybrid scheme
presented in [35]. Their scheme is interesting from a theoretical point of view: when
one looks at it as a KEM/DEM scheme, their KEM is not CCA-secure [26]. Never-
theless, the resulting scheme is CCA-secure and more efficient than those in [18,37]
both in computation and bandwidth. Thus the Kurosawa-Desmedt scheme suggests that
requiring both KEM/DEM to be CCA-secure, in order to obtain CCA-secure hybrid
encryption, while being a sufficient condition, may not be a necessary one, and might
indeed be an overkill.

Moreover, there are other hybrid encryption schemes in the literature, e.g., [4,33] in
the random oracle model, which are very efficient, but do not fit to the CCA-secure
KEM/DEM framework.

OUR CONTRIBUTION. Prompted by the above observation, we set out to investigate
another KEM/DEM framework that yields more efficient hybrid encryption schemes
and captures a wider variety of existing schemes. Our results can be summarized as
follows:

Tag-KEM/DEM: A New Framework for Hybrid Encryption 99

– We introduce Tag-KEMs: a form of KEM which also takes as input a tag. Though
such a notion is known in the literature, e.g., [37], we give an extended syntax and
show, somewhat surprisingly, that if one uses a CCA-secure Tag-KEM in a novel
way, then it is sufficient for the DEM to be secure simply against a passive attacker,
to yield CCA-secure hybrid encryption.

– We present several constructions of CCA-secure Tag-KEMs based on various com-
bination of assumptions on the tools used to build them. A class of KEM that is
strictly less secure than CCA-secure ones but can yield CCA-secure Tag-KEM is
shown. Importantly, we show that the KEM by Kurosawa and Desmedt belongs to
this class, thus providing a theoretical understanding of their scheme. This answers
an open question of [29].

– We show that the Tag-KEM/DEM framework provides a simple way to create
threshold versions of CCA-secure hybrid encryption schemes, which may not be
possible in the KEM/DEM framework.

– Finally, we show how several schemes in the literature can be cast in our Tag-
KEM/DEM framework. Furthermore we show that some of those schemes can
actually be simplified when considered as instances of our framework.

2. Definitions and Building Blocks

This section introduces all the building blocks used in this paper. Among them, the
notion of Tag-KEM (Sect. 2.1), DEM (Sect. 2.2), and PKE (Sect. 2.3) are used in Sect. 3
to construct our main result. Other building blocks are used in specific constructions or
applications shown in Sects. 4 and 5, respectively.

2.1. Key Encapsulation Mechanism with Tags (Tag-KEM)

In Shoup’s model, a KEM consists of three algorithms: key generation, encryption and
decryption. The difference from public-key encryption is that the encryption algorithm
takes as input only the public key pk and outputs a random one-time DEM key and its
encryption. (See Sect. 2.4.) The encryption function may also take an arbitrary string (a
tag) as an input associated to every ciphertext. In our model, we divide the encryption
function into two functions in such a way that the first one selects a random key and
the second one encrypts the key along with a given tag. We call a KEM that meets this
model a Tag-KEM. Formally:

(pk, sk) ← TKEM.Gen(1λ) A probabilistic algorithm that generates public-key pk
and private-key sk. The public-key defines efficiently
sampleable spaces for tags and encapsulated keys de-
noted by T and KD , respectively.

(ω,dk) ← TKEM.Key(pk) A probabilistic algorithm that outputs one-time key dk ∈
KD and internal state information ω. KD is the key-space
of DEM.

ψ ← TKEM.Enc(ω, τ) A probabilistic algorithm that encrypts dk (embedded
in ω) into ψ along with τ ∈ T , where τ is called a tag.

100 M. Abe, R. Gennaro, and K. Kurosawa

dk ← TKEM.Decsk(ψ, τ) A decryption algorithm that recovers dk from ψ and τ .
For soundness, TKEM.Decsk(ψ, τ) = dk must hold for any
sk, dk, ψ , and τ , associated by the above three functions.
The algorithm can also output special symbol ⊥ �∈ KD to
represent abnormal termination.

TKEM.Enc may also output ⊥ for irregular input τ �∈ T .
Tag-KEM is a generalization of KEM because if the tag is a fixed string, it is a KEM.

Note that, in the above syntactic definition, τ is not included in ψ and explicitly given
to TKEM.Dec. Such explicit treatment of τ has some notational advantages when we
consider an adversary who tries to alter the tag without affecting the encapsulation ψ .

The security of a Tag-KEM requires that the adversary should fail to distinguish
whether a given dk is the correct one-time DEM key embedded in the challenge cipher-
text (ψ, τ) or just a random string. The adversary is allowed to access to the decryption
oracle, denoted by O, which computes TKEM.Decsk(· , ·). Let AT be a probabilistic
polynomial-time (ppt) oracle machine that plays the following game.

[GAME.TKEM: δ ∈ {0,1}]
Step 1. (pk, sk) ← TKEM.Gen(1λ), (ω,dk1) ← TKEM.Key(pk), dk0 ← KD .
Step 2. (τ, ρ) ← AT

O(pk,dkδ).
Step 3. ψ ← TKEM.Enc(ω, τ).
Step 4. δ̃ ← AT

O(ρ,ψ).

In Step 4, AT is not allowed not to ask (ψ, τ) to decryption oracle O. The variable ρ is
a state information of AT, and dkδ is set to either dk0 or dk1 according to the value of δ.
Such convention is used throughout the paper unless otherwise noted.

Let Exp(δ)
tkem,AT

denote the event that AT outputs 1 in GAME.TKEM at δ. Let εtkem,AT

denote the advantage of AT in GAME.TKEM defined as

εtkem,AT =
∣
∣
∣Pr[Exp(0)

tkem,AT
] − Pr[Exp(1)

tkem,AT
]
∣
∣
∣ . (1)

Tag-KEM is CCA-secure if there exists a negligible function εtkem in λ such that, for
sufficiently large λ, εtkem,AT ≤ εtkem holds for all ppt AT. The probability is taken over
all coin flips during the game.

Note that the above security definition simplifies the one presented in [3] (a prelim-
inary version of this paper) in the sense that the adversary is given the key dkδ at the
beginning of the game. It does not affect to the construction but relevant proofs becomes
slightly more involved.

Relation to Similar Notions Tags associated to PKE or KEM can be found in the liter-
ature (e.g. see [37,38]), but they have different syntax and purposes; A tag is supposed
to carry an identity of the encryptor and has to be fixed before the DEM key is selected.
(The encryption function takes a tag as an input and outputs a DEM key.) Despite the
differences, their particular implementation fits into our model without essential modi-
fications.

Tag-based PKE is also introduced in [30] with the same syntax as that of [37,38]
but with a weaker security notion. In their work, the adversary is restricted so that the

Tag-KEM/DEM: A New Framework for Hybrid Encryption 101

same tag associated to the challenge ciphertext must not be sent to the decryption oracle.
Such a weak security is sufficient for some cryptographic applications, as shown in [30].
Though it does not fit into our framework, one of the constructions in [30] is identical
to the one presented in Sect. 5.3 and indeed achieves our higher level of security.

The work in [28] introduces an even weaker definition where the adversary commits
itself to a tag at the beginning of the attack game. It then shows how to convert such
weak security into full CCA-security by using an extra component such as a strong
one-time signature or a message authentication code.

2.2. Data Encapsulation Mechanism (DEM)

A DEM is a symmetric encryption scheme that consists of two algorithms, DEM.Enc
and DEM.Dec associated to a key-space and message space parameterized by λ. We
assume the key space KD is {0,1}λ while the message space is {0,1}∗.

χ ← DEM.Encdk(m) An encryption algorithm that encrypts m into ciphertext χ by
using key dk ∈ KD .

m ← DEM.Decdk(χ) A corresponding decryption algorithm that recovers message
m from input ciphertext χ . Obvious soundness condition
applies.

We only require passive security for DEM. Let AD be a ppt algorithm that plays the
following game.

[GAME.DEM: ξ ∈ {0,1}]
Step 1. (m0,m1, ρ) ← AD(1λ).
Step 2. dk ←KD , χ ← DEM.Encdk(mξ).
Step 3. ξ̃ ← AD(ρ,χ).

The messages, m0 and m1 must be the same length.
Let Exp(ξ)

dem,AD
denote the event that AD outputs 1 in GAME.DEM at ξ . Let εdem,AD

denote the advantage of AD defined as

εdem,AD =
∣
∣
∣Pr[Exp(0)

dem,AD
] − Pr[Exp(1)

dem,AD
]
∣
∣
∣ . (2)

A DEM is one-time secure if there exists a negligible function εdem in λ such that,
for sufficiently large λ, εdem,AD ≤ εdem holds for all ppt AD. One-time pad is a simple
example that fulfills this security notion.

2.3. Public-Key Encryption (PKE)

A public-key encryption scheme consists of three algorithms, PKE.Gen, PKE.Enc, and
PKE.Dec:

(pk, sk) ← PKE.Gen(1λ) A ppt algorithm that on input the security parameter λ,
generates public and private keys (pk, sk). The public-key
defines the message space M.

c ← PKE.Encpk(m) A ppt algorithm that encrypts a message m ∈ M into a
ciphertext c.

102 M. Abe, R. Gennaro, and K. Kurosawa

m ← PKE.Decsk(c) A polynomial-time algorithm that decrypts c. It outputs either
m ∈ M or a special symbol ⊥ �∈ M. An obvious soundness
condition applies.

Let AE be a ppt oracle algorithm that plays the following game. By O, we denote the
decryption oracle, PKE.Decsk(·)

[GAME.PKE: b ∈ {0,1}]
Step 1. (pk, sk) ← PKE.Gen(1λ).
Step 2. (m0,m1, ρ) ← AE

O(pk).
Step 3. c ← PKE.Encpk(mb).
Step 4. b̃ ← AE

O(ρ, c).

In Step 4, AE is not allowed to ask c to O. In addition, m0 and m1 must be of the
same length. Let Exp(b)

pke,AE
denote the event that AE outputs 1 in GAME.TKEM at b. Let

εpke,AE denote the advantage of AE in GAME.PKE defined as

εpke,AE =
∣
∣
∣Pr[Exp(0)

pke,AE
] − Pr[Exp(1)

pke,AE
]
∣
∣
∣ . (3)

A PKE is CCA-secure if there exists a negligible function εpke in λ such that, for suffi-
ciently large λ, εpke,AE ≤ εpke holds for all ppt AE.

2.4. Key Encapsulation Mechanism (KEM)

A key encapsulation mechanism consists of three algorithms, KEM.Gen, KEM.Enc, and
KEM.Dec defined as follows.

(pk, sk) ← KEM.Gen(1λ) A ppt algorithm that generates public and private keys
(pk, sk). The public-key defines the key space KK .

(K,φ) ← KEM.Encpk() A ppt algorithm that generates key K ∈ KK and its en-
cryption φ.

K ← KEM.Decsk(φ) A polynomial-time algorithm that decrypts φ to recover
K . As well as PKE, an obvious soundness condition ap-
plies. It may output a special symbol ⊥ �∈KK .

Since we use KEM only as a building block to construct Tag-KEM in this paper, we
consider KEM.Enc that outputs K ∈ KK for some specific domain KK rather than the
ones adjusted to a specific DEM key-space.

Let A be a ppt oracle machine that plays the following game. By O we denote the
decryption oracle, KEM.Decsk(·).

[GAME.KEM: b ∈ {0,1}]
Step 1. (pk, sk) ← KEM.Gen(1λ), (K1, φ) ← KEM.Encpk(), K0 ←KK .
Step 2. b̃ ← AO

K (pk, φ,Kb).

In Step 2, AK is not allowed to ask φ to KEM.Dec.

Tag-KEM/DEM: A New Framework for Hybrid Encryption 103

Let Exp(b)
kem,AK

denote the event that AK outputs 1 in GAME.KEM at b. Let εkem,AK

denote the advantage of AK in GAME.KEM defined as

εkem,AK =
∣
∣
∣Pr[Exp(0)

kem,AK
] − Pr[Exp(1)

kem,AK
]
∣
∣
∣ . (4)

A KEM is secure against adaptive chosen ciphertext attacks (CCA secure) if there exists
a negligible function εkem in λ such that, for sufficiently large λ, εkem,AK ≤ εkem holds
for all ppt AK.

2.5. Message Authentication Code (MAC)

A MAC scheme is a pair of algorithms (MAC.Sign,MAC.Ver) and a key-space KM in-
dexed by a security parameter λ. Typically, KM = {0,1}λ. Functions work as follows.

σ ← MAC.Signmk(τ) A deterministic algorithm that takes a mac-key mk ∈ KM

and a message τ ∈ {0,1}∗. It outputs a string σ called
MAC.

0/1 ← MAC.Vermk(σ, τ) A deterministic algorithm that takes mac-key mk ∈
KM , MAC σ , and message τ and outputs 1 if σ =
MAC.Signmk(τ), or outputs 0, otherwise.

A message with MAC, (σ, τ), is valid with regard to mk if 1 = MAC.Vermk(σ, τ).
Let AM be a ppt algorithm that plays the following game

[GAME.MAC]

Step 1. (τ, ρ) ← AM(1λ).
Step 2. mk ←KM , σ ← MAC.Signmk(τ).
Step 3. (σ ′, τ ′) ← AM(ρ,σ).

Let Expmac,AM
denote the event that (σ ′, τ ′) �= (σ, τ) and MAC.Vermk(σ, τ) = 1. Let

εmac,AM denote the success probability of AM in GAME.MAC defined as

εmac,AM = Pr[Expmac,AM
]. (5)

A MAC is secure against one-time chosen message attacks if there exists a negligible
function εmac in λ such that, for sufficiently large λ, εmac,AM ≤ εmac holds for all ppt AM.

2.6. Key Derivation Function (KDF)

We require a key derivation function, say KDF2, that maps a key K generated by KEM
into a pair of keys (dk,mk) for DEM and MAC. More precisely, let KDF2 be a map:
KK → KD ×KM , where KDF2, KK , KD and KM are all indexed by a security parame-
ter λ. (Extra keys may also be used as an index if needed.)

We require that (dk,mk) is pseudorandom when K is uniformly chosen. Let

D1 = {(dk,mk) |K ←KK, (dk,mk) ← KDF2(K)}, and

D0 = {(dk,mk) | (dk,mk) ← KD ×KM}.

104 M. Abe, R. Gennaro, and K. Kurosawa

Let AF be a ppt algorithm that plays the following game. Input D is a distribution
defined over KD ×KM .

[GAME.KDF: D]

Step 1. (dk,mk) ←D.
Step 2. b̃ ← AF(dk,mk).

Let Pr[Exp(Di)
kdf,AF

] denote the event that AF outputs 1 in GAME.KDF with distribution
Di ∈ {D0,D1}. A KDF2 is secure if there exists a negligible function εkdf in λ such that,
for sufficiently large λ,

∣
∣
∣Pr[Exp(D0)

kdf,AF
] − Pr[Exp(D1)

kdf,AF
]
∣
∣
∣ ≤ εkdf (6)

holds for all ppt algorithm AF.

2.7. Security Properties of Hash Functions

Collision-Resistance (CR): A hash function H is said to be collision resistant if it is
hard to find (x, x′) such that H(x) = H(x′). Formally, let Hλ be a collection of hash
functions such that Hλ = {H : {0,1}∗ → {0,1}λ}. Define H = {Hλ}λ∈N. Consider the
following game, where ACR is a ppt algorithm called a collision finder.

[GAME.CR]

Step 1. H ← Hλ.
Step 2. (x, x′) ← ACR(H).

Let Expcr denote the event such that H(x′) = H(x) and x′ �= x in GAME.CR. We say
that H is collision resistant if there exists a negligible function εcr in λ such that, for
sufficiently large λ, Pr[Expcr] ≤ εcr holds for all ppt ACR. For simplicity, we also say
that Hλ (or even H) is collision resistant.

Target Collision-Free (TC): A hash function H is target collision-free if, for a ran-
domly chosen (H,x), it is hard to find x′ such that H(x) = H(x′). It is a special
case of universal one-way. Formally, let Xλ = {X} be a collection of domains and
X = {Xλ}λ∈N. Let Hλ = {H : X → {0,1}λ | X ∈ Xλ} and H = {Hλ}λ∈N. Note that X is
identified by the description of H . Let ATCH be a ppt algorithm that plays the following
game.

[GAME.TCH]

Step 1. H ← Hλ, x ← X.
Step 2. x′ ← ATCH(H,x).

Let Exptch denote the event such that x′ ∈ X and H(x′) = H(x) in GAME.TCH. We say
that {Hλ} is target collision-free with respect to X if there exists a negligible function
εtch in λ such that Pr[Exptch] ≤ εtch holds for all polynomial-time ATCH for sufficiently
large λ.

Random Prefix Collision-Free (RPH): Random prefix collision-free is a notion in
between target collision-free and collision-free; For a randomly chosen H , the adversary

Tag-KEM/DEM: A New Framework for Hybrid Encryption 105

first outputs x. It is then given a random prefix r and asked to output r ′ and x′ such that
H(r, x) = H(r ′, x′).

Formally, let Xλ = {X} be a collection of domains and X = {Xλ}λ∈N. We define Rλ

and R in the same way. Then, let Hλ = {H : X × R → {0,1}λ | X ∈ Xλ,R ∈ Rλ} and
H = {Hλ}λ∈N. Let ARPH be a ppt algorithm that plays the following game.

[GAME.RPH]

Step 1. H ← Hλ.
Step 2. (ρ, x) ← ARPH(H).
Step 3. r ← R.
Step 4. (r ′, x′) ← ARPH(ρ, r) such that r ′ ∈ R and x′ ∈ X.

Let Exprph denote the event such that H(r ′, x′) = H(r, x) and (r ′, x′) �= (r, x) in
GAME.RPH. We say that H is random prefix collision-free with regard to X and
R if there exists a negligible function εrph in λ such that, for sufficiently large λ,
Pr[Exprph] ≤ εrph holds for all ppt ARPH.

3. Generic Construction of Hybrid PKE

In GAME.TKEM, it is important to see that, for challenge ciphertext (ψ, τ) the adversary
is allowed to ask (ψj , τj) to the decryption oracle even if ψ = ψ as long as τj �= τ .
Therefore, to achieve the CCA-security, Tag-KEM must provide some sort of integrity
to τ so that making any query with τj �= τ cannot be useful for the adversary. We exploit
this property to protect the DEM part and relax the required security.

Suppose that there exists a Tag-KEM such that any string χ can be used as a tag,
i.e., T = {0,1}∗. We then construct a hybrid PKE as follows. PKE.Gen is the same as
TKEM.Gen; Given security parameter λ, it outputs public-key pk and private-key sk.
Encryption and decryption functions are as follows.

Function: PKE.Encpk(m)

(ω,dk) ← TKEM.Key(pk)
χ ← DEM.Encdk(m)

ψ ← TKEM.Enc(ω,χ)

Output c = (ψ,χ)

Function: PKE.Decsk(c)

(ψ,χ) ← c

dk ← TKEM.Decsk(ψ,χ)

m ← DEM.Decdk(χ)

Output m

When the length of one-time DEM key dk varies depending on the length of the
message, like one-time pad, the syntax of Tag-KEM will be modified so that dk and
TKEM.Dec can take the necessary information.

The following theorem states the security of the above hybrid PKE.

Theorem 1 (Tag-KEM/DEM composition theorem). If the Tag-KEM is CCA secure
and the DEM is one-time secure then the above hybrid PKE scheme is CCA secure. In
particular, εpke,AE ≤ 2εtkem + εdem holds for all ppt algorithm AE.

Proof. We consider a series of games GAME.0, . . . ,GAME.3. Let Xi denote the event
that adversary AE outputs 1 in GAME.i.

106 M. Abe, R. Gennaro, and K. Kurosawa

GAME.0: Let GAME.0 be GAME.PKE with b = 0. Then

Pr[Exp(0)
pke,AE

] = Pr[X0]. (7)

Note that m0 is encrypted at Step-3 in GAME.0.

GAME.1: Use a random key, dk× ← KD , to encrypt m0 in Step-3 of GAME.0.
We claim that

|Pr[X0] − Pr[X1]| ≤ εtkem. (8)

The claim is proven by constructing AT that attacks the underlying Tag-KEM scheme
as in GAME.TKEM by using AE as follows. Given (pk,dkδ), AT sends pk to AE. Given
(m0,m1) from AE, AT computes χ = DEM.Encdkδ (m0) and outputs χ as the target tag.
It then receives ψ as a challenge in GAME.TKEM. Ciphertext (ψ,χ) is then sent to AE
as a challenge in GAME.PKE. Each decryption query, (ψi,χi), from AE is forwarded to
decryption oracle TKEM.Dec that takes ψi as a ciphertext and χi as a tag. On receiving
dki from TKEM.Dec, AT returns mj = DEM.Decdki

(χi) to AE. (If dki = ⊥, AT returns
mj = ⊥.) When AE outputs b̃, AT outputs δ̃ = b̃ and halts.

Observe that the decryption oracle for AE is perfectly simulated because the correct
decryption key is obtained from TKEM.Dec for every query. Next observe that, when
δ = 1, dkδ is the correct key embedded in ψ and the view of AE is thus identical to that
in GAME.0. Hence we have Pr[X0] = Pr[Exp(1)

tkem,AT
]. Similarly, when δ = 0, dkδ is just

a random key used only for computing χ and the view of AE is thus identical to that in
GAME.1. Hence Pr[X1] = Pr[Exp(0)

tkem,AT
]. Accordingly, we have |Pr[X0] − Pr[X1]| =

|Pr[Exp(1)
tkem,AT

] − Pr[Exp(0)
tkem,AT

]| ≤ εtkem as claimed.

GAME.2: Encrypt m1 instead of m0 in GAME.1.
We claim that

|Pr[X1] − Pr[X2]| ≤ εdem. (9)

Namely, AE playing GAME.1 and GAME.2 essentially conducts a passive attack to
DEM. The claim is proven by constructing AD that plays GAME.DEM by using AE
as follows. AD first generates (pk, sk) by using PKE.Gen and gives pk to AE. Given
(m0,m1) from AE, AD outputs (m0,m1) and receives challenge ciphertext χ . It then
computes ψ by following TKEM.Key and TKEM.Enc by using χ as a tag, and sends chal-
lenge ciphertext c = (ψ,χ) to AE. All decryption queries are appropriately processed
by using sk. When AE outputs b̃, AD outputs ξ̃ = b̃.

The major factor of the running time of AD is that of AE and that for simulating
the decryption oracle which grows only linearly in the number of decryption queries.
Observe now that, when ξ = 0 in GAME.DEM, χ is an encryption of m0 as in GAME.1.
Also observe that key dk× used for making the challenge ciphertext in GAME.DEM and
the key embedded in ψ are independent and randomly chosen just as well as those in
GAME.1. Hence the view of AE is identical to that in GAME.1. We thus have Pr[X1] =
Pr[Exp(0)

dem,AD
]. One can argue in the same way that the view of AE is identical to that

in GAME.2 when ξ = 1. Hence Pr[X2] = Pr[Exp(1)
dem,AD

] holds. Accordingly, |Pr[X1] −
Pr[X2]| = |Pr[Exp(0)

dem,AD
] − Pr[Exp(1)

dem,AD
]| ≤ εdem as in the claim.

Tag-KEM/DEM: A New Framework for Hybrid Encryption 107

GAME.3: Use correct dk generated by TKEM.Key for DEM.Enc in Step-3 of GAME.2.
Just as well as (8), we obtain

|Pr[X2] − Pr[X3]| ≤ εtkem. (10)

Observe also that GAME.3 is the same as GAME.PKE with b = 1. Hence

Pr[X3] = Pr[Exp(1)
pke,AE

]. (11)

From (7), (8), (9), (10) and (11), we have

εpke,AE =
∣
∣
∣Pr[Exp(0)

pke,AE
] − Pr[Exp(1)

pke,AE
]
∣
∣
∣ = |Pr[X0] − Pr[X3]| ≤ 2εtkem + εdem

as in the theorem. �

4. Construction of Tag-KEM

This section develops some methods for constructing a Tag-KEM from a PKE or a
KEM. (Note that a KEM is generally obtained from PKE. Hence starting from a KEM
is more general.) Since some methods are available to convert a weak PKE to a CCA-
secure one in various setting, we assume CCA-secure PKE and KEM are available.
Construction of KEM directly from weaker components is studied in [19].

4.1. Based on PKE with Long Plaintext

Our first construction of Tag-KEM is just to encrypt (dk, τ) by using a CCA-secure
PKE. It indeed works well if the PKE accepts a long enough plaintext. Lengthy tags τ

would be compressed by using a hash function.
Formally, we construct Tag-KEM from PKE as follows. TKEM.Gen is essentially the

same as PKE.Gen; It outputs (pk, sk). It also selects hash function H . (For notational
simplicity, we assume that H is included in pk and sk.) TKEM.Key chooses random dk

from KD . It also outputs state information ω = pk ‖ dk. TKEM.Enc and TKEM.Dec are
as follows.

Function: TKEM.Enc(ω, τ)

(pk, dk) ← ω

τ ′ = H(τ)

ψ = PKE.Encpk(dk ‖ τ ′)
Output ψ

Function: TKEM.Decsk(ψ, τ)

dk ‖ τ ′ ← PKE.Dec(sk,ψ)

If τ ′ = H(τ), return dk

Return ⊥, otherwise

Theorem 2. If PKE is CCA-secure and H is collision resistant, the above Tag-KEM
is CCA-secure. In particular, εtkem,AT ≤ εpke + 2εcr holds for all ppt algorithm AT.

Proof is given in Appendix A. One efficient implementation would be to use Rabin-
SAEP+ [8] encryption, where the message length is shorter than that of RSA but suf-
ficient for encrypting a standard DEM key and a hashed tag. One can also apply the
technique of [24] to shorten the ciphertext.

108 M. Abe, R. Gennaro, and K. Kurosawa

4.2. Based on CCA-Secure KEM and MAC

In this section we construct a CCA-secure Tag-KEM from a CCA-secure KEM and a
MAC. The idea is to encrypt a random key K using the KEM, and apply KDF2 to K to
extract two keys dk and mk; one for encryption and the other for creating MAC.

Formally, we construct a Tag-KEM as follows. Let L = (KEM.Gen,KEM.Enc,
KEM.Dec), M = (MAC.Sign,MAC.Ver), and KDF2 : KK → KD × KM be KEM, MAC,
and KDF, respectively. TKEM.Gen is the same as KEM.Gen; It outputs (pk, sk).1

TKEM.Key is that, given pk, it computes (K,φ) ← KEM.Encpk() and (dk,mk) ←
KDF2(K). Then it outputs dk and state information ω = (mk,φ).

TKEM.Enc and TKEM.Dec are as follows.

Function: TKEM.Enc(ω, τ)

(mk,φ) ← ω

σ ← MAC.Signmk(τ)

Output ψ = (φ,σ)

Function: TKEM.Decsk(ψ, τ)

(φ,σ) ← ψ

K ← KEM.Decsk(φ)

(dk,mk) ← KDF2(K)

If K = ⊥ or MAC.Vermk(σ, τ) �= 1
output ⊥
Otherwise, output dk

Clearly the CCA security of the KEM scheme will prevent an adversary from gaining
any advantage by manipulating the KEM ciphertext φ. On the other hand the security
of the MAC will prevent an adversary from gaining any advantage by manipulating
MAC σ .

Applying Theorem 1 to the above Tag-KEM yields the same hybrid encryption
scheme as in Shoup’s KEM/DEM framework when the DEM part is implemented by
following the encrypt-then-MAC paradigm. By looking at that scheme in a different
light, we are able to proceed a step further in refining the assumptions and the effi-
ciency, as shown in the next section.

4.3. Based on weak KEM and MAC

In the previous construction, there is some redundancy at play. If a KEM is combined
with a MAC as shown in Sect. 4.2, the MAC will be used to preserve the integrity of
ciphertexts. Accordingly, one may no longer need the KEM’s functionality of verifying
ciphertexts. Following this intuition, we show a new security notion of KEM that can be
strictly weaker than CCA but sufficient to yield CCA-secure Tag-KEM when combined
with a MAC.

Predicate-dependent CCA Security Let L be a KEM as in Sect. 4.2. Let P : {0,1}∗ ×
{0,1}∗ → {0,1} be a poly-time computable predicate.

For L and P , let VD be a decryption oracle that takes (φi, ηi) ∈ {0,1}∗ × {0,1}∗
and returns KEM.Decsk(φi) if P(KEM.Decsk(φi), ηi) = 1, or returns ⊥ otherwise. We
then define the following attack game.

1 If KDF2 requires a key, it is generated in TKEM.Gen and included in pk and sk. See Sect. 2.6 for details
of KDF.

Tag-KEM/DEM: A New Framework for Hybrid Encryption 109

[GAME.LKEM: b ∈ {0,1}]
Step 1. (pk, sk) ← KEM.Gen(1λ), (K1, φ) ← KEM.Encpk(), K0 ←KK .

Step 2. b̃ ← A
VD(·,·)
L (pk, φ,Kb).

It is required that φi �= φ for all φi sent to VD. Let Exp(b)
lkem,AL

denote the event that AL
outputs 1 in GAME.LKEM with b. Define εlkem,AL as

εlkem,AL =
∣
∣
∣Pr[Exp(0)

lkem,AL
] − Pr[Exp(1)

lkem,AL
]
∣
∣
∣ . (12)

A KEM is LCCA secure with respect to predicate P if there exists a negligible function
εlkem in λ such that, for sufficiently large λ, εlkem,AL ≤ εlkem for all ppt algorithm AL.

The above definition may seem too general since in the useful case shown later we
only consider MAC.Ver as P . Nevertheless, a general treatment is helpful to specify what
property is really needed. Also in some cases, it makes the security analysis slightly
simpler as will be shown in our analysis of the Kurosawa-Desmedt scheme.

When Does LCCA Become Weaker than CCA? The strength of LCCA security is sub-
ject to the property of P . If P outputs 1 for any input, LCCA is clearly equivalent to
CCA. If it outputs 0 for any input, LCCA is equivalent to a passive attack, i.e., an attack
without the decryption oracle, for which we cannot prove the security of Tag-KEM in
Sect. 4.2. Hence a very weak instance may exist in the class.

Proof of the Tag-KEM in Sect. 4.2 We prove the security of the construction when the
underlying KEM is LCCA secure with respect to Pmac defined as Pmac(K, (σ, τ)) =
MAC.Vermk(σ, τ) where mk is (dk,mk) ← KDF2(K). Note that, in the Tag-KEM con-
struction shown in Sect. 4.2, P is not used in TKEM.Dec. Hence the underlying KEM
L itself might be insecure against CCA as mentioned above. However, since P is
assumed to be Pmac and it is indeed provided from outside, LCCA security will be
achieved. Namely, the MAC has two different roles in the construction; one is to au-
thenticate the tag and the other is to work as a predicate as a part of the underlying
KEM. As we could have predicted, this is very close to the combination of a CCA KEM
and a MAC (but not exactly the same). Nevertheless, we formally prove the security to
see that the MAC plays the different roles without inconsistency.

Theorem 3. If L is LCCA secure with respect to Pmac then the Tag-KEM defined in
Sect. 4.2 is CCA secure. In particular, εtkem,AT ≤ 2εlkem + qD εmac + 2εkdf holds for any
ppt algorithm AT that makes at most qD decryption queries.

Proof is in Appendix B. We note that the result in this section might be regarded
as theoretical. In practice, proving that a KEM is LCCA-secure (with respect to Pmac)
could only be slightly easier than proving the security of resulting scheme as Tag-KEM.
And one can expect better reduction cost by directly proving the security of Tag-KEM
by exploiting particular properties.

We finally remark that one can also construct CCA-secure Tag-KEM from RCCA-
secure KEM which is strictly weaker than CCA-secure ones. See Sect. 5.4 for further
discussion.

110 M. Abe, R. Gennaro, and K. Kurosawa

4.4. Based on KEM with Hash Function

We show another approach of constructing Tag-KEM. It is useful when your PKE does
not have enough plaintext length as needed in Sect. 4.1 and/or increasing ciphertext
length as in Sect. 4.2 is not acceptable.

If a KEM uses a hash function, probably for verifying ciphertexts, the KEM may
be converted to a Tag-KEM simply by including the tag into the hash function input.
This approach is correct if the hash function is involved in the scheme in a ’meaning-
ful’ way and provides ’sufficient’ security. Following this approach, we constructs two
Tag-KEMs based on OAEP+ [36] and Cramer-Shoup KEM [35]. The security proofs
are essentially unchanged from those of the original schemes. (Although a generic con-
struction of this approach can be shown, it would not be quite useful due to its complex-
ity. Showing that a PKE/KEM fits into the generic framework may not be meaningfully
simpler than directly proving that the resulting Tag-KEM scheme is secure. Indeed, in
all cases we have in mind, the security proof is essentially unchanged from that of the
original scheme.)

In the following Tag-KEM, the original PKE or KEM is obtained just by deleting the
tag τ .

4.4.1. From OAEP+

Let f be a one-way trapdoor permutation. The encryption function of Tag-KEM is
constructed from OAEP+ by encrypting dk and tag τ as follows:

r ′ = H ′(r ‖ dk ‖ τ), s = (G(r) ⊕ dk) ‖ r ′, w = H(s) ⊕ r, ψ = f (s ‖ w)

where r is random and G, H , H ′ are random oracles [4].
The security is argued in the same way as the original OAEP+ except for the case

in which the adversary successfully creates a valid ciphertext (ψ, τ ′) from challenge
ciphertext (ψ, τ). In such a case, (ψ, τ ′) is valid only if H ′(r ‖ dk ‖ τ) = H ′(r ‖ dk ‖ τ ′)
holds since ψ uniquely identifies r, r ′ and K . When H ′ outputs a k1-bit string, such an
event happens with probability at most qH ′ 2−k1 where qH ′ is the maximum number
of queries to H ′. Based on this observation, we define game GAME.0’ in such a way
that the decryption oracle returns ⊥ for any (ψ, τ ′) with τ ′ �= τ . The rest of the security
proof is done in the same way as in the original paper [36] except obvious modifications.
Accordingly, only qH ′ 2−k1 is an extra reduction cost to that of OAEP+.

4.4.2. From Cramer-Shoup Encryption

Based on the Cramer-Shoup Encryption (actually its KEM variant), a Tag-KEM is ob-
tained by including a tag in the hash function used in the encryption algorithm. Let Gq

be a multiplicative group of prime order q . A private-key is (x1, x2, y1, y2, z1, z2) ∈ Zq

and the public-key is g1, g2 ← G2
q , and c = g

x1
1 g

x2
2 , d = g

y1
1 g

y2
2 , h = g

z1
1 g

z2
2 . The en-

cryption algorithm of Tag-KEM outputs dk = hr and ciphertext (u1, u2, v) such that

u1 = gr
1, u2 = gr

2, α = H(u1 ‖ u2 ‖ τ), v = crdαr

where r ∈ Zq is random and H is a hash function. The decryption algorithm outputs

dk = u
z1
1 u

z2
2 if v

?= u
x1+αy1
1 u

x2+αy2
2 . It outputs ⊥ otherwise. Applying Theorem 1 results

in the hybrid PKE mentioned briefly in [16].

Tag-KEM/DEM: A New Framework for Hybrid Encryption 111

The Cramer-Shoup encryption requires H to be Target Collision-Free (as defined in
Sect. 2.7) since all inputs to the hash function, i.e., u1 and u2, are chosen randomly in
advance. On the other hand, GAME.TKEM allows the adversary to choose τ after seeing
the description of H and then u1 and u2 are randomly chosen. Hence we require H to
be Random Prefix Collision-Free as formally defined in Sect. 2.7.

It holds that

(Collision-Free) ⇒ (Random Prefix Collision-Free) ⇒ (Target Collision-Free).

Hence it is reasonable to use cryptographic hash functions like SHA-1 which can be
assumed collision-free.

Theoretically, we do not know if there exists a separation between Collision-Freeness
and Random Prefix Collision-Freeness. It is not clear how to launch a birthday attack
in GAME.RPH (if the randomness of r affects to the output in GAME.RPH). Also, we
do not know constructions of random prefix collision-free hash functions from target
collision-free or universal one-way hash functions. We thus resort to strong collision-
freeness. The only drawback is that this requires a longer output (about twice as much
because the birthday paradox applies here), but it hardly affects to the performance as
long as |α| is smaller than |q|.

4.5. Based on ID-based PKE

An ID-based encryption scheme is selective-ID secure if it is secure against chosen
ciphertext and chosen ID attacks provided that the target ID is committed at the begin-
ning and the ID must not be included in any decryption query. Efficient selective-ID
ID-based encryption schemes (sIBE in short) based on standard cryptographic assump-
tions are presented in [9].

It is shown in [15] that sIBE can be transformed into a CCA-secure PKE by using
strong one-time signature. In [10], Boneh and Katz improved the efficiency of [15] by
replacing the one-time signature with a commitment scheme (using hash function) and
a MAC. We show that the conversion from sIBE to CCA PKE also yields a CCA-secure
Tag-KEM (without adopting the result of Sect. 4.1).

Let (SIG.Gen,SIG.Sign,SIG.Ver) be a strong one-time signature scheme where
SIG.Gen is a key generation algorithm, SIG.Sign is a signature generation algorithm,
and SIG.Ver is a signature verification algorithm. Let sIBE.Enc(pk, ID,m) be the en-
cryption function of an sIBE. We then construct a Tag-KEM scheme as follows:
TKEM.Key(pk) simply chooses dk randomly. Then TKEM.Enc encrypts dk and τ into
ciphertext ψ = (vk, φ,σ) as

(vk, sk) ← SIG.Gen(1λ), φ ← sIBE.Enc(pk, vk,dk), σ = SIG.Sign(sk, φ ‖ τ).

Decryption is rather trivial; TKEM.Dec first verifies the signature σ using vk and then
decrypts the rest of the parts.

The CCA-secure PKE of [15] is obtained by deleting τ from the above Tag-KEM.
The security proof is almost the same as in [15] with obvious modification. The reduc-
tion cost does not change, either.

The length of a ciphertext of the above Tag-KEM is the same as the original CCA-
secure PKE. But the resulting hybrid PKE may yield shorter ciphertext thanks to the

112 M. Abe, R. Gennaro, and K. Kurosawa

one-time secure DEM that typically yield shorter ciphertext than CCA-secure ones
needed to combine with the original CCA-secure PKE.

One can extend the above Tag-KEM to ID-based one in the same way starting from
a 2-level hierarchical IBE that is selective-ID secure in the second level and fully CCA
secure in the first level. (A given ID is assigned to the first-level ID and vk is assigned
to the second-level ID.) ID-based KEM is also studied in [6].

5. Applications

In this section, we show how our framework yields new hybrid encryption schemes,
captures some known schemes, and even finds ways to improve them.

5.1. Threshold Hybrid PKE

Roughly, a threshold (hybrid) PKE is a PKE whose decryption m ← PKE.Decsk(c) is
implemented by a multi-party protocol. In the (n, k)-threshold model, the private key
sk is shared among n decryption servers and they cooperatively compute m from given
c without revealing anything but m (or ⊥ for invalid c) in the presence of an adversary
that can corrupt at most k − 1 decryption servers. The corruption can be static (i.e. done
before starting the protocol) or dynamic (i.e., done adaptively during the protocol). For
simplicity, we assume that a trusted party generates the key, and shares it among the
servers. A distributed key generation protocol can be used instead if desired.

The CCA-security of threshold PKE is defined as a natural extension of the CCA-
security of regular (non-threshold) PKE as in [38]. The decryption oracle is replaced
by n decryption servers and the adversary is allowed to corrupt up to k − 1 of them.
A corrupted player provides all its view to the adversary and is completely controlled
by the adversary.

Theoretically, results from general multi-party computation, e.g., [5,25], imply that
any (hybrid) PKE can be converted to its threshold version in several settings. Since such
a generic conversion suffers from unrealistic complexity, dedicated constructions have
been pursued starting from [20]. In the standard model, the first CCA-secure thresh-
old PKE is presented in [13] followed by, e.g., [1,2,11,12,27]. However, no efficient
threshold hybrid PKE, is known in the standard model, in particular via a generic con-
struction like KEM/DEM. If a threshold CCA KEM and a threshold CCA DEM are
available, their simple combination would yield a CCA-secure threshold hybrid PKE
like the standard KEM/DEM composition. However, an efficient threshold DEM seems
difficult to obtain due to its use of symmetric key techniques such as block ciphers and
MAC.

Can we then combine a CCA-secure threshold KEM and a CCA-secure standard
(i.e., non-threshold) DEM to obtain a CCA-secure hybrid PKE? Unfortunately, this also
seems quite unlikely. A rough argument is the following. Assume an adversary that cor-
rupts at least one decryption server. Given a challenge ciphertext (φ,χ), the adversary
creates a random χ ′ and sends (φ,χ ′) to the decryption servers. The decryption servers
work on φ to decrypt dk. Since the DEM is not threshold, the key dk must be known
in its entirety to the servers (at least to one of them, the one who performs the DEM
decryption). Hence the adversary can recover dk by corrupting at least one server, and
then will correctly decrypt χ to win the CCA game.

Tag-KEM/DEM: A New Framework for Hybrid Encryption 113

The Tag-KEM/DEM framework offers an attractive way to get around this difficulty.
We exploit the feature that the DEM part needs only be one-time secure (as defined in
Sect. 2.2) so that the session-key can be securely exposed on decryption. Remember
that one-time secure DEM can be implemented by a one-time pad that leaks the key on
decryption. Hence revealing the decryption key dk as a result of decrypting ψ does not
impact the security in the Tag-KEM/DEM framework. The combination of threshold
Tag-KEM and a one-time secure DEM thus results in a CCA-secure threshold hybrid
PKE. In other words, by replacing Tag-KEM with its threshold version, we can obtain
a threshold Tag-KEM/DEM framework.

A formal security definition of threshold Tag-KEM can be derived from the defin-
ition of threshold PKE in [38]. The following composition theorem can be proven by
translating the proof of Theorem 1 to the threshold setting. The proof is omitted to avoid
redundancy.

Theorem 4 (Threshold Tag-KEM/DEM composition theorem). If a threshold Tag-
KEM is threshold-CCA secure and a DEM is one-time secure then their Tag-KEM/DEM
composition yields a threshold-CCA secure hybrid PKE scheme which retains the same
threshold and corruption model as those for the threshold Tag-KEM. In particular,
ε
(n,k)
th-pke,A ≤ 2ε

(n,k)
th-tkem + εdem holds for all polynomial-time adversary A where ε

(n,k)
th-pke,A

and ε
(n,k)
th-tkem are the advantages of threshold PKE and threshold KEM, respectively.

A note on the security model In the above threshold Tag-KEM/DEM construction,
the adversary can obtain a correct session-key by querying a valid ciphertext to hon-
est decryption servers. (One-time pad DEM trivially exposes the session-key from a
ciphertext and a message, though this is not true for arbitrary DEM.) Such information
is irrelevant to conform to the game-based security definition for threshold PKE [38]
but becomes an obstacle when a simulation-based security definition [13] is concerned.
Roughly, the simulation-based security of [13] compares a threshold PKE with an ideal
encryption system managed by a trusted party and states that the threshold PKE is se-
cure if the adversary in the ideal model can be simulated by using the adversary in the
real threshold model. It is claimed in [13] that the simulation-based security implies the
game-based one but the reverse does not hold. According to the simulation-based secu-
rity, the adversary in the real threshold model should obtain nothing but a message when
a valid ciphertext is sent to the decryption servers since the ideal encryption is defined
so. Since the schemes based on the threshold Tag-KEM/DEM composition reveals the
session-key, it does not match this security notion. Since this problem essentially comes
from the use of a non-threshold DEM, it is highly unlikely that the simulation-based
security is achieved unless the DEM is shared.

Instantiation Threshold Cramer-Shoup PKE which is CCA-secure against static ad-
versaries is shown in [1,13], and the conversion technique in Sect. 4.4 (or result of
Sect. 4.1 with larger security parameter) can be used to obtain a threshold Cramer-
Shoup Tag-KEM. Accordingly, by following the threshold version of Theorem 1, one
can have a secure threshold hybrid PKE scheme in the standard model. Adaptive se-
curity can be achieved as well based on the adaptively secure threshold Cramer-Shoup
encryption of [2].

114 M. Abe, R. Gennaro, and K. Kurosawa

5.2. Revisiting the Kurosawa-Desmedt Scheme

In [29], Kurosawa and Desmedt introduced a hybrid encryption scheme based on
Cramer-Shoup encryption. The private-key sk = (x1, x2, y1, y2) and public-key pk =
(g1, g2, c, d) are a part of those in the Cramer-Shoup encryption shown in Sect. 4.4.
Encryption of message m ∈ {0,1}∗ is:

u1 = gr
1, u2 = gr

2, α = H(u1 ‖ u2), v = crdαr ,

(dk,mk) ← KDF2(v), χ = G(dk) ⊕ m, σ = MAC.Signmk(χ),

where r is random, H is a target collision-free hash function, G is a pseudo-random bit
generator, and MAC.Sign is a MAC generation function. The ciphertext is (u1, u2, χ,σ).
In this scheme, (u1, u2) is considered as the KEM part and (χ,σ) is considered as the
CCA-secure DEM part. Though the combination results in a CCA-secure hybrid PKE,
the KEM part is not CCA-secure [26].

Our framework offers another approach to the analysis of the scheme. That is, we
consider (u1, u2, σ) as the Tag-KEM part and χ as the one-time secure DEM part. The
Tag-KEM part is further decomposed to KEM part, (u1, u2) and MAC, (σ). It is known
that this KEM is not CCA secure [26]. Hence it does not fulfill the requirement stated in
Sect. 4.2. Yet we can prove that (u1, u2) constitutes an LCCA secure KEM with regard
to a predicate Pmac(K = v,η = (χ,σ)). See Appendix C for a proof. Accordingly, the
Kurosawa-Desmedt scheme can be thoroughly explained by our framework and their
design approach is validated.

5.3. Refined Fujisaki-Okamoto Conversion and More

Fujisaki-Okamoto Conversion We revisit the Fujisaki-Okamoto conversion [22] that
provides secure construction of hybrid encryption in the random oracle model. By fit-
ting their scheme into our framework, we can see that one of their assumptions can be
eliminated and a refined version is obtained without loss of efficiency.

Let PKE.Encpk(· ; ·) be a public-key encryption function where the last argument de-
notes the random coins used in the function. The Fujisaki-Okamoto conversion com-
bines PKE and DEM by using two random oracles, H and G, as follows:

ψ ← PKE.Encpk(K;H(K ‖ m)), χ ← DEM.EncG(K)(m).

K is uniformly chosen from {0,1}λ. The ciphertext is (ψ,χ). The resulting hybrid PKE
is CCA-secure if PKE is one-way, DEM is one-time secure and DEM.Enc is a bijection.

Now one can observe that PKE.Encpk(K;H(K ‖ τ)) works as a Tag-KEM encryption
function that encapsulates the DEM key G(K). Then, according to our framework, we
have a slightly modified hybrid encryption:

ψ ← PKE.Encpk(K;H(K ‖ χ)), χ ← DEM.EncG(K)(m)

which does not require DEM.Enc to be a bijection. Details are given in Appendix D.

Tag-KEM/DEM: A New Framework for Hybrid Encryption 115

Bellare-Rogaway Scheme The scheme shown by Bellare and Rogaway in [4] is a spe-
cial case of the Fujisaki-Okamoto construction. The encryption function consists of a
one-way permutation f and random oracles H and G;

ψ = f (r), σ = H(r ‖ m), χ = G(r) ⊕ m.

This scheme specifies to use one-time pad for the DEM part. According to our frame-
work, we can generalize to any one-time secure DEM by modifying the scheme as

ψ = f (r), σ = H(r ‖ χ),χ = DEM.EncG(r)(m).

REACT REACT-RSA [33] is very similar to the above Bellare-Rogaway scheme;

ψ = f (r), σ = H(r ‖ m ‖ ψ ‖ χ), χ = DEM.EncG(r)(m),

where f is the RSA encryption function. In this case, our framework shows that m

can be removed from the inputs to H . Including m to H would result in slightly better
reduction in the security proof. But removing it yields more benefit in computation
when m is very long. Even ψ can be removed if the decryption function verifies that ψ

is in the correct domain. In the case of RSA, domain checking is done just by comparing
the ciphertext to the modulus. Hence by setting σ = H(r ‖ χ) we have more efficient
scheme. Indeed, the resulting scheme is the same as the modified Bellare-Rogaway
scheme shown in this section.

The common factor lying underneath the above-mentioned examples is the Tag-KEM
scheme whose ciphertext is ψ = (f (r),H(r ‖ τ)) where H is a random oracle. Such a
scheme also appears in [30].

Some ISO Standard Candidates Finally, as mentioned in Sect. 4.1, KEM schemes
based on RSA and HIME described in [37] allow to label each ciphertext. This label
can be used as a tag in our framework. Hence the DEM no longer need to provide CCA
security when combined with those KEMs as suggested by our framework.

5.4. Revisiting RCCA-secure PKE

This section revisits RCCA-secure PKE in [14] and show that their construction of
CCA-secure hybrid PKE from RCCA-secure PKE can be improved by following our
Tag-KEM/DEM framework.

The notion of RCCA-secure PKE was introduced in [14]. RCCA is a variant of CCA
where the decryption oracle returns a special nonce ‘test’ when it receives a cipher-
text that yields one of the questioned message, m0 and m1. Accordingly, even if the
adversary can tweak the challenge ciphertext without affecting the embedded plaintext
(such a feature is called benign-malleability [37]), sending it to the decryption oracle
will give no advantage to the adversary in determining which of the questioned mes-
sages is hidden there. ‘R’ stands for ‘replayable’ in this sense. RCCA-security is a strict
relaxation of CCA-security and proven useful for several cryptographic tasks, though,
currently, there is no known instance of RCCA-secure PKE that is more efficient than
known CCA-secure ones.

116 M. Abe, R. Gennaro, and K. Kurosawa

In [14], it is shown that combining an RCCA-secure PKE and a CCA-secure symmet-
ric encryption can yield a CCA-secure hybrid PKE. For a one-time secure DEM and a
one-time MAC, their construction is summarized as follows. Given message m, output
ciphertext (φ,χ,σ) such that;

φ ← PKE.Encpk(dk ‖ mk), χ ← DEM.Encdk(m ‖ φ), σ ← MAC.Signmk(χ),

where dk and mk are chosen randomly from appropriate domains. It is stressed that φ

is encrypted by DEM and this double-encryption structure is essential in their security
proof. Due to this special structure, the construction does not fit into our framework.
Below, we show a slightly more efficient variant that avoids double encryption and fits
into our framework.

φ ← PKE.Encpk(dk ‖ mk), χ ← DEM.Encdk(m), σ ← MAC.Signmk(χ ‖ φ).

Intuitively, applying MAC to φ offsets the benign-malleability of φ. The modified
scheme yields shorter ciphertext and needs less computation.

From the above, we derive a Tag-KEM scheme which is summarized as follows.

(K,φ) ← KEM.Encpk(), (dk,mk) ← KDF2(K), σ ← MAC.Signmk(τ ‖ φ).

It can be seen as a variant of the construction shown in Sect. 4.2; MAC is applied to
τ ‖ φ rather than to τ . In Appendix E, we give a definition of RCCA-security for KEM,
which is an analogue notion of that for PKE, and prove that the above Tag-KEM is
CCA-secure if KEM is RCCA-secure. Hence, according to Theorem 1, the modified
hybrid PKE is CCA-secure. This uncovers the redundancy of the double-encryption in
the original construction and obtains a more efficient scheme.

6. Conclusions and Open Problems

We presented a new framework for constructing hybrid encryption schemes by extend-
ing the CCA KEM/DEM framework. The new Tag-KEM/DEM framework captures a
wide variety of schemes and can yield better hybrid encryption schemes especially in
the size of the ciphertext. Several schemes are improved on other aspects as well ac-
cording to our framework.

Yet there are some situations where the traditional KEM/DEM framework is use-
ful. For instance, schemes that follow the KEM/DEM framework are better suitable for
streaming applications where the receiver does not need to buffer the entire ciphertext.
Tag-KEM/DEM schemes generally require an entire ciphertext to derive dk. We also
note that some Tag-KEM/DEM schemes provide the streaming feature. (The scheme
based on Cramer-Shoup shown in Sect. 4.4 is an example). It is also known that the
KEM/DEM framework can be extended to establish some limited form of secure chan-
nels [31] (where no forward security is considered) while such extension is not available
in Tag-KEM/DEM.

Finally, we list some open problems as follows.

Tag-KEM/DEM: A New Framework for Hybrid Encryption 117

On the Tag-KEM Security Can the security of Tag-KEM be relaxed? Although the
tag is chosen by the adversary in GAME.TKEM the adversary cannot select an arbitrary
tag any more once the Tag-KEM is combined with a DEM since the tag is a ciphertext
encrypted with a random one-time key. If the DEM provides the strong property such
that the ciphertext is indistinguishable from random strings of the same length, replacing
the ciphertext with a random string offsets the choice of the adversary. This observation
suggests that we may be able to relax the security requirement for Tag-KEM in such a
way that the tag is chosen randomly rather than chosen by the adversary. Can we prove
a variant of Theorem 1 in such a case?

On the Necessity of Stronger Hash Functions Is a random prefix collision-free hash
function unavoidable in the construction shown in Sect. 4.4? This questions is closely
related to the previous one. If the tag is chosen randomly rather than chosen by the
adversary, target collision free hash functions will suffice.

More on the Random Prefix Collision-Free More study is needed about random prefix
collision-free hash functions. It would be interesting to show constructions from other
primitives, especially from one-way permutations (or alternatively the impossibility of
a black-box version of such a construction).

Acknowledgements

The authors would like to thank Hugo Krawczyk, Shai Halevi, Yevgeniy Dodis, Victor
Shoup and Eiichiro Fujisaki for valuable discussion.

Appendix A. Proof of Theorem 2

Let AT be an adversary for the Tag-KEM given in Sect. 4.1. By using AT, we construct
AE that plays GAME.PKE to attack the underlying PKE as follows.

1. Given pk, AE chooses (dk0,dk1) ← KD ×KD and sends pk and dk1 to AT.
2. Given τ from AT, AE outputs (dk0 ‖ H(τ),dk1 ‖ H(τ)) as target messages and

receives ψ as in GAME.PKE. It then sends ψ to AT.
3. For each decryption query (ψi, τi) made by AT, AE does the following: If ψi = ψ ,

return ⊥ to AT. Otherwise, send ψi to the decryption oracle of GAME.PKE. Given
dki ‖ τ ′

i from the decryption oracle, if τ ′
i �= τi , return ⊥ to AT. Otherwise, return

dki .
4. When AT outputs δ̃, AE outputs b̃ = δ̃.

Observe that all the decryption queries (ψi, τi) with ψi �= ψ made by AT are perfectly
answered by AE since ψi is correctly decrypted by the decryption oracle of GAME.PKE.

Let Col denote an event that H(τ) = H(τi) for some i. If Col never happens, then ⊥ is
the correct answer for all decryption queries (ψ, τi) with τi �= τ because H(τ) �= H(τi).
Observe that when b = 1 in GAME.PKE the view of AT in the simulated GAME.TKEM is
the same as that in GAME.TKEM with δ = 1 since dk1 is correctly embedded in ψ . So we
have Pr[Exp(1)

tkem,AT
|¬Col] = Pr[Exp(1)

pke,AE
¬|Col]. Similarly, when b = 0 in GAME.PKE

118 M. Abe, R. Gennaro, and K. Kurosawa

the view of AT is the same as that in GAME.TKEM with δ = 0 since dk1 given to AT is
independent of ψ . So we have Pr[Exp(1)

tkem,AT
|¬Col] = Pr[Exp(1)

pke,AE
¬|Col]. The follow-

ing lemma [18] is then applied to the above equalities.

Lemma 1. If event X∧¬Z occurs if and only if Y ∧¬Z occurs, then |Pr[X]−Pr[Y]|≤
Pr[Z].

We thus have
∣
∣
∣Pr[Exp(0)

tkem,AT
] − Pr[Exp(1)

tkem,AT
]
∣
∣
∣ ≤

∣
∣
∣Pr[Exp(0)

pke,AE
] − Pr[Exp(1)

pke,AE
]
∣
∣
∣ + 2Pr[Col].

(13)

Next we consider the case of Col. The adversary finds a collision H(τ) = H(τi)

where τ and τi are both chosen by the adversary after seeing hash function H defined
as a part of the public-key. It therefore corresponds to finding a collision in GAME.CR.
Accordingly, Pr[Col] is upper bound by

Pr[Col] ≤ εcr. (14)

From (13) and (14),

εtkem,AT ≤ εpke + 2εcr. (15)

Appendix B. Proof of Theorem 3

The following is the CCA attack against the Tag-KEM shown in Sect. 4.3. Decryption
oracle O is TKEM.Decsk(·, ·).

[GAME.TKEM: δ ∈ {0,1}]
Step 1. (pk, sk) ← KEM.Gen(1λ), (K1, φ) ← KEM.Encpk(),

(dk1,mk) ← KDF2(K1), dk0 ←KD .
Step 2. (τ, ρ) ← AT

O(pk, dkδ).
Step 3. σ ← MAC.Signmk(τ).
Step 4. δ̃ ← AT

O(ρ, (φ,σ)).

In Step 4, AT is not allowed to send ((φ,σ), τ) to the decryption oracle.
The outline of our proof is the same as that of [18]. Defining a series of games,

GAME.0, . . . ,GAME.5 by modifying GAME.TKEM and examining fluctuation of proba-
bility. Let Xi denote the event that δ̃ = δ in GAME.i . In each game, (dk1,mk) will be
generated in Step 1 in a different way.

The following is the description of the games. Every claim is proven formally after
all outline is shown.

GAME.0: This game is the same as GAME.TKEM with δ = 0, where dk0 is given to AT
in Step 2. Since it is just a notational change, we have

Pr[Exp(0)
tkem,AT

] = Pr[X0]. (16)

Tag-KEM/DEM: A New Framework for Hybrid Encryption 119

GAME.1: Replace K1 with random K0 ← KD in Step 1. Then apply the following rule
to the decryption oracle: For every query (φi, σi, τi) such that φi = φ, the oracle uses
mk created in Step 1 to verify MAC (σi, τi) and returns dk1 created also in Step 1 if the
MAC is valid. (It returns ⊥ if the MAC is invalid.) It then holds that

|Pr[X0] − Pr[X1]| ≤ εlkem. (17)

GAME.2: Generate dk1 and mk independently at random as dk1 ← KD , mk ← KM . It
then holds that

|Pr[X1] − Pr[X2]| ≤ εkdf. (18)

GAME.3: Replace dk0 with dk1 in Step 2. We claim that the view of the adversary differs
only if the adversary is successful in forging MAC. Hence it holds that

|Pr[X2] − Pr[X3]| ≤ qD εmac. (19)

GAME.4: Generate dk1 and mk together by (dk1,mk) ← KDF2(K0) from random
K0 ← KD . It then holds that

|Pr[X3] − Pr[X4]| ≤ εkdf. (20)

GAME.5: Replace K0 with K1 and remove the rule applied to the decryption oracle in
GAME.1. It then holds that

|Pr[X4] − Pr[X5]| ≤ εlkem. (21)

Observe that GAME.5 turns out to be GAME.TKEM with δ = 1. Hence

Pr[X5] = Pr[Exp(1)
tkem,AT

]. (22)

Conclusion: From (16–22), we have

|Pr[Exp(0)
tkem,AT

] − Pr[Exp(1)
tkem,AT

]| = |Pr[X0] − Pr[X5]| ≤ 2εlkem + qD εmac + 2εkdf

as stated in the theorem.
In the following we show proofs for (17), (18), and (19). The proofs for (20) and (21)

are obtained from those for (18) and (17), respectively, with trivial modifications.

Proof of (17) We construct adversary AL in GAME.LKEM by using AT as a black-box
as follows.

– (Setup) Given (pk, φ,Kb) as input, AL computes (dk1,mk) ← KDF2(Kb). It also
selects dk0 ← KD . Run AT by sending (pk, dk0).

– (Oracle Queries) For every query ((φj , σj), τj) from AT, if φj �= φ, AL forwards
(φj , (σj , τj)) to oracle VD. Given Kj ∈ KK from VD, AL computes (dkj ,∗) ←
KDF2(Kj) and returns dkj to AT. If Kj = ⊥, AL returns ⊥ to AT. For every query
with φj = φ, AL first verifies MAC σj with mk. If it is valid, AL returns dk1 to
AT. Otherwise, AL returns ⊥.

120 M. Abe, R. Gennaro, and K. Kurosawa

– (Challenge) Given τ from AT, AL computes σ ← MAC.Signmk(τ) and returns
(φ,σ) to AT.

– (Output) When AT outputs δ̃, AL outputs b̃ = δ̃.

In the above simulation, when b = 1, the view of AT is the same as that in GAME.0
since K1 given to AL is correctly related to φ. On the other hand, when b = 0, given K0
is independent of φ and the view of AT is the same as that in GAME.1. Therefore, the
probability that AL outputs b̃ = 1 is the same as that AT outputs δ̃ = 1. |Pr[X0]−Pr[X1]|
is thus upper bound by εlkem.

Proof of (18) In game GAME.1, dk1 and mk are correctly generated by (dk1,mk) ←
KDF2(K0). On the other hand, these are generated at random in game GAME.2. Dis-
tinguishing these two cases are exactly the same as distinguishing distribution D1 and
D0 as defined in Sect. 2.6. It is however important to stress that dk0 is independent of
the rest of variables observed in game GAME.1 (and GAME.2). It is therefore straight-
forward to construct adversary AF that plays GAME.KDF by using AT as a black-box.
|Pr[X1] − Pr[X2]| is thus upper bound by εkdf.

Proof of (19) Let F3 denote an event that AT makes a query, (φj , σj , τj), for which
the decryption oracle returns dk1. Observe that the view of AT in GAME.2 and GAME.3
are identical unless F3 happens and dk1 is included in the view. Therefore |Pr[X2] −
Pr[X3]| ≤ Pr[F3] holds due to Lemma 1.

To upper bind Pr[F3], we construct adversary AM that attacks MAC as in GAME.MAC
by using AT as follows. AM chooses J ← {1, . . . , qD}. It then generates (pk, sk) and φ

as specified in GAME.3 and runs AT. When AT outputs τ , AM outputs τ as a chosen
message and obtains MAC σ . It then sends challenge ciphertext (φ,σ) to AT. When
AT makes J -th query, AM outputs (τJ , σJ) as a forgery and stops. For every other
query, (φi, σi, τi), such that φj �= φ, AM decrypts φj by using sk. If φj = φ, AM simply
returns ⊥.

The simulation is perfect by the moment F3 happens at the first time. If F3 happens
at index J at the first time, the output of AM is a successful forgery (σJ , τJ) since the
query must be different from (σ, τ). Since AM correctly guesses J with probability
1/qD , the success probability of AM is Pr[F3]/qD , which is upper bound by εmac by
definition. We thus have |Pr[X2] − Pr[X3]| ≤ Pr[F3] ≤ qD εmac.

Appendix C. Kurosawa-Desmedt KEM

We define the Kurosawa-Desmedt KEM as follows. Key generation function KEM.Gen
is as illustrated in Sect. 5.2. It outputs pk = (g1, g2, c, d) and sk = (x1, x2, y1, y2). On
input pk, KEM.Enc outputs random key K and ciphertext φ = (u1, u2) such that

r ← Zq, u1 = gr
1, u2 = gr

2, α = H(u1 ‖ u2), K = crdαr .

Given sk and φ, decryption function KEM.Dec outputs K such that

α = H(u1 ‖ u2), K = u1
x1+αy1u2

x2+αy2 .

Tag-KEM/DEM: A New Framework for Hybrid Encryption 121

We say φ = (u1, u2) is valid if there exists r ∈ Zq such that u1 = gr
1, u2 = gr . Other-

wise, it is invalid.

Lemma 2. The above Kurosawa-Desmedt KEM is LCCA-secure with respect to Pmac

if H is TCR and the DDH assumption holds.

We start by describing GAME.LKEM against the Kurosawa-Desmedt KEM.

1. Run KEM.Gen to generate pk = (g1, g2, c, d) and sk = (x1, x2, y1, y2). Choose
r∗ ← Zq and compute

u∗
1 = gr∗

1 , u∗
2 = gr∗

2 , α∗ = H(u∗
1, u

∗
2), K∗ = cr∗

dr∗α∗
.

Let φ∗ = (u∗
1, u

∗
2) and K1 = K∗. Choose K0 ∈ Gq randomly. Then choose δ ←

{0,1} and give (pk, φ∗,Kδ) to AL.
2. AL makes query ((u1j , u2j), ηj) to extended oracle VD arbitrarily. Let Kj =

KEM.Decsk(u1j , u2j). Oracle VD returns ⊥ if (Kj , ηj) does not satisfy Pmac.
Otherwise, it returns Kj (which might be ⊥ anyway). Eventually AL outputs
δ̃ ∈ {0,1}.

Since the proof is quite similar to that of [23,29], we only show a sketch of it. From
a viewpoint of AL, there are four unknown variables x1, x2, y1, y2, and two (linear)
equations on them given by (the discrete log of) c and d . Hence there is a freedom
of 4 − 2 = 2 dimensions. We consider this probability space on (x1, x2, y1, y2) of the
2 dimensions. Let GAME.0 be the original game as shown above. We will define a
sequence of games GAME.1, Let Xi be the event that δ̃ = δ in GAME.i .

GAME.1 is the same as GAME.0, except that K∗ is computed as K∗ = (u∗
1)

x1+y1α
∗ ×

(u∗
2)

x2+y2α
∗
. It is clear that Pr[X1] = Pr[X0] because the value of v∗ does not change.

GAME.2 is the same as GAME.1, except that VD returns ⊥ if, for given query
(u1j , u2j , ηj), α∗ = H(u∗

1, u
∗
2) = H(u1j , u2j). Since H is assumed target collision-

free, |Pr[X2] − Pr[X1]| is negligible.

GAME.3 is the same as GAME.2, except that u∗
1, u

∗
2 ∈ Gq are chosen at random. By

DDH assumption, |Pr[X3] − Pr[X2]| is negligible.

GAME.4 is the same as GAME.3, except that VD returns ⊥ for a query ((u1j , u2j), ηj)

if (u1j , u2j) is invalid.

Suppose that AL makes an invalid query, (u1j , u2j), at step 2 of GAME.3. (Remem-
ber that (u1j , u2j) = (u∗

1, u
∗
2) is not allowed.) Note that (u∗

1, u
∗
2) is invalid with over-

whelming probability. Then as shown in [18], K∗ and Kj are pair-wise independently
distributed over Gq . The query is therefore rejected with overwhelming probability due
to Pmac. Consequently, Pr[X3] − Pr[X2] is negligible.

GAME.5 is the same as GAME.4, except that K∗ is chosen at random from Gq . In
GAME.4, (u∗

1, u
∗
2) is invalid with overwhelming probability. Hence K∗ is uniformly

122 M. Abe, R. Gennaro, and K. Kurosawa

distributed over Gq . Therefore Pr[X5] − Pr[X4] is negligible. Also in game GAME.5, it
is clear that Pr[X5] = 1/2 because the view of AL is independent of δ. This completes
the proof on LCCA security.

Appendix D. Details of Refined Fujisaki-Okamoto Conversion

The Scheme Let E = (PKE.Gen,PKE.Enc,PKE.Dec) be a public-key encryption
scheme. By R, we denote a space of random coins used in PKE.Enc. Let H : {0,1}λ ×
{0,1}∗ → R and G : {0,1}λ →KD be random oracles.

A Tag-KEM obtained from a refined Fujisaki-Okamoto Conversion is as follows.
TKEM.Gen is the same as PKE.Gen; Given 1λ, it outputs key pair (pk, sk). Given pk,
TKEM.Key outputs (dk, (pk,K)) such that K ← {0,1}λ, dk ← G(K). The pair (pk,K)

is the state information. TKEM.Enc and TKEM.Dec are as follows.

Function: TKEM.Enc((pk,K), τ)

r ← H(K ‖ τ)

ψ ← PKE.Encpk(K; r)
Output ψ

Function: TKEM.Decsk(ψ, τ)

K ← PKE.Decsk(ψ)

r ← H(K ‖ τ)

If ψ ← PKE.Encpk(K; r)
output G(K)

Output ⊥, otherwise

Suppose that the PKE is one-way against chosen plaintext attack and γ -uniform.
(Roughly, a PKE is one-way against chosen plaintext attack if it is infeasible to compute
K from PKE.Encpk(K; r) except for negligible probability, say εow. Also, a PKE is γ -
uniform if, for any K and ψ , randomly chosen r causes ψ = PKE.Encpk(K; r) with
probability less than γ . See [22] for details.) Then the following holds.

Theorem 5. The above refined Fujisaki-Okamoto Tag-KEM is CCA secure in the ran-
dom oracle model. In particular, εtkem,AT ≤ 2qD γ + 2qG εow.

Proof. GAME.TKEM for the above Tag-KEM is as follows. By O, we denote the de-
cryption oracle TKEM.Decsk(· , ·).

GAME.TKEM: δ ∈ {0,1}
Step 1. (pk, sk) ← PKE.Gen(1λ), K1 ← {0,1}λ, dk1 = G(K1), dk0 ← KD .
Step 2. (τ, ρ) ← AT

O,H,G(pk, dkδ).
Step 3. ψ ← PKE.Encpk(K1;H(K1 ‖ τ)).
Step 4. δ̃ ← AT

O,H,G(ρ,ψ).

We define games, GAME.0, GAME.1 and GAME.2 as shown in the sequel. In this
proof, we consider the uniform choice of δ as a part of the game and define Xi as an
event that δ̃ = δ in GAME.i .

In each game, we treat each random oracle as a table that appends an entry every time
it is drawn with a fresh query. Given fresh Kj , oracle G outputs random dkj and append
(dkj ,Kj) to its table. Given fresh Kj ‖ τj , oracle H outputs random rj . Since Kj , τj

and rj uniquely determines corresponding ciphertext, say ψj , we assume that H stores

Tag-KEM/DEM: A New Framework for Hybrid Encryption 123

(Kj , τj , rj ,ψj) to the table. When exact reduction cost is concerned, computation time
for the ciphertexts, which is linear in the number of H oracle queries, should be included
in the running time of the simulator.

GAME.0: The same as GAME.TKEM. Recall that, in the original definition of
GAME.TKEM in Sect. 2.1, the choice of δ is not included in the probability space
for events Exp(0)

tkem,AT
and Exp(0)

tkem,AT
while it is included for event X0. By simple cal-

culation, however, we have

∣
∣
∣Pr[Exp(0)

tkem,AT
] − Pr[Exp(1)

tkem,AT
]
∣
∣
∣ = 2

∣
∣
∣
∣
Pr[X0] − 1

2

∣
∣
∣
∣
. (23)

GAME.1: For every decryption query (ψj , τj), if the table of H does not contain any
entry (∗, τj ,∗,ψj) the decryption oracle returns ⊥.

In GAME.0, rj is chosen randomly if (ψj , τj) is not in the list of H . In such a case,
(ψj , τj) passes the verification test in the decryption with probability at most γ . Since
at most qD decryption queries are made, the probability that there is a query that is
accepted in GAME.0 but rejected in GAME.1 is at most qDγ . The view of the adversary
is unchanged unless such a query is made. Accordingly,

|Pr[X0] − Pr[X1]| ≤ qD γ. (24)

GAME.2: If AT sends K1 to oracle G, abort the game.
Let AskG denote the event that AT sends K1 to G. Observe that GAME.2 is identical

to GAME.1 unless AskG happens. Hence we have

|Pr[X1] − Pr[X2]| ≤ Pr[AskG].
To upper bound Pr[AskG], we construct an adversary, say Aow, that breaks the one-

way property of the underlying PKE by using AT as follows.
Given ψ and pk, Aow first flips coin J ← {1, . . . , qG} and simulates GAME.2 in the

following way.

– Use given pk and ψ in Step 1 and 4, respectively.
– In Step 1, choose dk uniformly from KD . Then give (pk, dk) to AT.
– H and G are simulated just as given. Given J -th query KJ to G, output KJ and

halt.
– For every decryption query (ψj , τj), if the table of H contains an entry,

(Ki, τi, ri ,ψi), such that ψj = ψi and τj = τi , return G(Ki). Otherwise, return ⊥.

If J -th query to G is made before the encryption oracle is invoked, the simulation is
perfect. Even if it happens after the encryption oracle is invoked, randomly chosen dk

perfectly simulates the output of the encryption oracle regardless of the choice of δ. Ac-
cordingly, Aow perfectly simulates GAME.2 up to the moment J -th query to G is made.
And once event AskG happens at J -th query, the output of Aow is PKE.Dec(sk,ψ).

Running time of Aow is almost the same as that of AT plus computing time of en-
cryption function qH times. Now we have

|Pr[X1] − Pr[X2]| ≤ Pr[AskG] ≤ qG εow. (25)

124 M. Abe, R. Gennaro, and K. Kurosawa

Since AT never asks K1 to G in GAME.2, δ is independent from the view of AT due
to the true randomness of G. Hence Pr[X2] = 1

2 . From (23), (24), and (25), we have

∣
∣
∣Pr[Exp(0)

tkem,AT
] − Pr[Exp(1)

tkem,AT
]
∣
∣
∣ = 2

∣
∣
∣
∣
Pr[X0] − 1

2

∣
∣
∣
∣
≤ 2qD γ + 2qG εow. �

Appendix E. Tag-KEM from RCCA-secure KEM

RCCA security for KEM is defined in the same way as that for PKE. We modify
GAME.KEM in Sect. 2.4 in such a way that decryption oracle O returns ‘test’ when
the result of decryption is in {K1,K0}.2 Call this modified game GAME.RKEM. Let
Exp(b)

rkem,AR
denote the event that adversary AR outputs 1 in GAME.RKEM with b. De-

fine εrkem,AR as

εrkem,AR =
∣
∣
∣Pr[Exp(0)

rkem,AR
] − Pr[Exp(1)

rkem,AR
]
∣
∣
∣ . (26)

A KEM is RCCA secure if there exists a negligible function εrkem in λ such that, for
sufficiently large λ, εrkem,AR ≤ εrkem for all ppt algorithm AR.

An RCCA-secure KEM can be constructed from an RCCA-secure PKE: just encrypt
dk by the PKE. An RCCA-secure Tag-KEM can be constructed from an RCCA-secure
KEM in the same way as in Sect. 4.2 except for that MAC.Sign and MAC.Ver take τ ‖ φ

instead of τ as an input. That is, TKEM.Gen is the same as KEM.Gen. TKEM.Key is that,
given pk, it computes (K,φ) ← KEM.Encpk() and (dk,mk) ← KDF2(K). Then it out-
puts dk and state information ω = (mk,φ). TKEM.Enc and TKEM.Dec are as follows.

Function: TKEM.Enc(ω, τ)

(mk,φ) ← ω

σ ← MAC.Signmk(τ ‖ φ)

Output ψ = (φ,σ)

Function: TKEM.Decsk(ψ, τ)

(φ,σ) ← ψ

K ← KEM.Decsk(φ)

(dk,mk) ← KDF2(K)

If K = ⊥ or MAC.Vermk(σ, τ ‖ φ) �= 1
output ⊥
Otherwise, output dk

Theorem 6. If a KEM is RCCA-secure, a MAC is one-time secure, and a KDF is
secure, the above Tag-KEM is CCA-secure. In particular, εtkem,AT ≤ 2εrkem +qD εmac +
2εkdf + 2qD / |KK |.

Proof. The CCA attack game to the above Tag-KEM is as follows.

2 Note that, when δ = 1, K0 is independent from the view of the adversary. Nevertheless, the decryption
oracle returns ’test’ if the decryption coincidentally yields K0. Such a treatment is necessary to handle the
case where the size of KK is very limited.

Tag-KEM/DEM: A New Framework for Hybrid Encryption 125

Step 1. 1. (pk, sk) ← KEM.Gen(1λ).
2. (K1, φ) ← KEM.Encpk(), K0 ←KK .
3. (dk1,mk) ← KDF2(K1).
4. dk0 ← KD .

Step 2. (τ, ρ) ← AT
O(pk, dkδ).

Step 3. σ ← MAC.Signmk(τ ‖ φ).
Step 4. δ̃ ← AT

O(ρ, (φ,σ)).

Note that K0 in Step 1.2 is included only for later use and unused in this original
GAME.TKEM.

For each query ((φj , σj), τj) decryption oracle O works as follows.

[Decryption Oracle]

O-1. Kj = KEM.Decsk(φj).
O-2. (dkj ,mkj) ← KDF2(Kj).
O-3. If MAC.Vermkj

(σj , τj ‖ φj) = 1, return dkj . Return ⊥, otherwise.

The outline of the proof is similar to that for Theorem 3 in Appendix B. We define a
series of games, GAME.0, . . . , GAME.7 by gradually modifying the above GAME.TKEM.
Let Xi denote the event that δ̃ = δ in GAME.i .

GAME.0: Fix dkδ to dk0 in Step 2. We apparently have

Pr[Exp(0)
tkem,AT

] = Pr[X0]. (27)

GAME.1: Apply the following rule to the decryption oracle.

Rule.1 If Kj ∈ {K1,K0} in Step O-1, then in Step O-3, use dk1 and mk defined in
Step 1.3. instead of dkj and mkj , respectively.

We claim that

|Pr[X0] − Pr[X1]| ≤ qD / |KK |. (28)

GAME.2: Replace K1 with K0 in Step 1.3. We claim that

|Pr[X1] − Pr[X2]| ≤ εrkem. (29)

GAME.3: Generate dk1 and mk in Step 1.3 randomly and independently by dk1 ← KD

and mk ← KM . Also replace Rule.1 with the following Rule.2.

Rule.2 If Kj = K1 in Step O-1, then in Step O-3, use dk1 and mk defined in Step 1.3
instead of dkj and mkj , respectively.

Applying Rule.2 completely removes K0 from the view of the adversary in GAME.3. It
then holds that

|Pr[X2] − Pr[X3]| ≤ εkdf. (30)

GAME.4: Replace dk0 in Step 2 with dk1. We claim that

|Pr[X3] − Pr[X4]| ≤ qD εmac. (31)

126 M. Abe, R. Gennaro, and K. Kurosawa

GAME.5: In Step 1.3 Generate dk1 and mk by (dk1,mk) ← KDF2(K0) in Step 1.3. Also
replace Rule.2 with Rule.1. Just as well as (30), we have

|Pr[X4] − Pr[X5]| ≤ εkdf. (32)

GAME.6: Replace K0 with K1 in Step 1.3. As well as (29), we have

|Pr[X5] − Pr[X6]| ≤ εrkem. (33)

GAME.7: Remove Rule.1 from the decryption oracle. As well as (28), we claim that

|Pr[X6] − Pr[X7]| ≤ qD / |KK |. (34)

Finally, by inspection, one can see that GAME.7 is the same as GAME.TKEM with
δ = 1. Hence

Pr[X7] = Pr[Exp(1)
tkem,AT

]. (35)

Conclusion: By summing from (27) to (35), we have

|Pr[Exp(0)
tkem,AT

] − Pr[Exp(1)
tkem,AT

]| = |Pr[X0] − Pr[X7]|
≤ 2εrkem + qD εmac + 2εkdf + 2qD / |KK |

as in the theorem.

Proof of (28) There are two events that happen only in GAME.1.

– There is a query accepted in GAME.0 but rejected in GAME.1.
– There is a query rejected in GAME.0 but accepted in GAME.1.

Let E1 denote the event that any of the above events happen. Unless E1 takes place, the
view of the adversary is identical in GAME.0 and GAME.1. Hence,

|Pr[X0] − Pr[X1]| ≤ Pr[E1]. (36)

Observe that, if Kj = K1, then mkj = mk and none of the events in E1 can occur.
If E1 happens, then Kj = K0, which occurs with probability at most 1/|KK | for each
query since K0 is chosen randomly and it is independent from the view of the adversary.
We thus have

Pr[E1] ≤ qD / |KK |. (37)

Proof of (29) The claim is proven by constructing AR that attacks the underlying
RCCA-secure KEM by using AT as a black-box. The construction is straightforward.
We however stress that, when the decryption oracle of the RCCA game returns ’test’
in response to a query from AR, the corresponding query from AT can be perfectly
answered simply by following Rule.1.

Just for completeness, we give the details in the following. Adversary AR works as
follows.

Tag-KEM/DEM: A New Framework for Hybrid Encryption 127

– (Setup) Given (pk, φ,Kb) as input, AR computes (dk1,mk) ← KDF2(Kb). It also
selects dk0 ← KD . Run AT by sending (pk, dk0).

– (Oracle Simulation) For every query ((φj , σj), τj) from AT, AR forwards φj to
O. If ‘test’ is returned, AR executes Step O-3 with (dk1,mk). Otherwise, if Kj is
returned, AR executes Step O-2 and O-3 as specified.

– (Challenge) Given τ from AT, AR computes σ ← MAC.Signmk(τ ‖ φ) and returns
(φ,σ) to AT.

– (Output) When AT outputs δ̃, AR outputs b̃ = δ̃.

Suppose that b = 1. Then dk1 and mk are generated as well as those in GAME.1.
When ‘test’ is returned during the simulation of the decryption oracle, the use of these
dk1 and mk just follows Rule.1 and yields the same view as in GAME.1. Hence Pr[X1] =
Pr[Exp(1)

rkem,AR
]. On the other hand, if b = 0, dk1 and mk are generated as well as those

in GAME.2. Even in this case, using these dk1 and mk in the case of ‘test’ follows Rule.1
and yields the same view as in GAME.2. Hence Pr[X2] = Pr[Exp(0)

rkem,AR
]. Accordingly,

|Pr[X1] − Pr[X2]| = |Pr[Exp(1)
rkem,AR

] − Pr[Exp(0)
rkem,AR

]| ≤ εrkem (38)

as claimed.

Proof of (30) We construct AF that attacks KDF2 as in GAME.KDF in Sect. 2.6 by
using AT as a black-box as follows. Given (dk∗,mk∗) as input, AF simulates GAME.2
as specified except that (dk∗,mk∗) is assigned to (dk1,mk) in Step 1.3. To simulate
the decryption oracle, AF uses the secret key sk generated by itself. If Step O-1 yields
Kj = K1, AF uses (dk1,mk) in Step O-3. AF never generates K0 and leaves it undefined
in the simulation.

Consider the case where given (dk∗,mk∗) belongs to D1. In this case, we expect that
the view of AT is the same as that in GAME.2. Let K0 denote the key that generates
(dk∗,mk∗), i.e., (dk∗,mk∗) ← KDF2(K0). Although such K0 is unknown to AF and
the simulation does not care for K0 at all, it perfectly simulates the case of Kj = K0
as in Rule.1 because, if Kj = K0, then (dkj ,mkj) = (dk∗,mk∗) = (dk1,mk) and AF

actually use such (dk1,mk) in the simulation. Accordingly, Pr[X2] = Pr[Exp(D1)
kdf,AF

].
Next consider the case where (dk∗,mk∗) belongs to D0. In this case, (dk1,mk) are

random and independent as in GAME.3. For such (dk∗,mk∗), we do not define cor-
responding K0 and it is the case as specified in Rule.2. Hence the view of AT in the
simulation is identical to that in GAME.3. Accordingly, Pr[X3] = Pr[Exp(D0)

kdf,AF
].

In summary, we have

|Pr[X2] − Pr[X3]| = |Pr[Exp(D1)
kdf,AF

] − Pr[Exp(D0)
kdf,AF

]| ≤ εkdf (39)

as claimed.

Proof of (31) Since both dk0 in GAME.3 and dk1 in GAME.4 are taken randomly from
KD , the view of the adversary at the beginning of Step 2 is unchanged. Let E4 denote
the event that the decryption oracle returns dk1 as a result of following Rule.2. If E4
happens, the adversary in GAME.4 obtains the same key as given in Step 2 while it is

128 M. Abe, R. Gennaro, and K. Kurosawa

just a random and independent key in GAME.3. Unless E4 happens, the view of the
adversary is unchanged. We thus have

|Pr[X3] − Pr[X4]| ≤ Pr[E4]. (40)

Since mk is generated independently from any other variables in both GAME.3 and
GAME.4, and used only once for creating σ in the challenge ciphertext, event E4 implies
that the adversary is successful in forging MAC with respect to mk. One can then show
Pr[E4] ≤ qD εmac in the similar way as for the proof of (19) in Appendix B with obvious
modifications. �

References

[1] M. Abe, Robust distributed multiplication without interaction, in Advances in Cryptology—
CRYPTO’99, ed. by M. Wiener. Lecture Notes in Computer Science, vol. 1666 (Springer, Berlin, 1999),
pp. 130–147

[2] M. Abe, S. Fehr, Adaptively secure Feldman VSS and applications to universally-composable thresh-
old cryptography. IACR ePrint Archive 2004/119, June 10 2004. Preliminary version was presented in
CRYPTO 2004

[3] M. Abe, R. Gennaro, K. Kurosawa, V. Shoup, Tag-KEM/DEM: a new framework for hybrid encryption
and a new analysis of Kurosawa-Desmedt KEM, in Advances in Cryptology—EUROCRYPT 2005, ed.
by R. Cramer. Lecture Notes in Computer Science, vol. 3494 (Springer, Berlin, 2005), pp. 128–146.
Also available at IACR e-print 2005/027 and 2004/194

[4] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in
First ACM Conference on Computer and Communication Security (Association for Computing Machin-
ery, 1993), pp. 62–73

[5] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant
distributed computation, in Proceedings of the 20th Annual ACM Symposium on the Theory of Comput-
ing, pp. 1–10, 1988

[6] K. Bentahar, P. Farshim, M. Malone-Lee, N. Smart, Generic constructions of identity-based and certifi-
cateless KEMs. IACR e-print Archive 058/2005, 2005

[7] D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA encryption standard
PKCS #1, in Advances in Cryptology—CRYPTO’98, ed. by H. Krawczyk. Lecture Notes in Computer
Science, vol. 1462 (Springer, Berlin, 1998), pp. 1–12

[8] D. Boneh, Simplified OAEP for the RSA and Rabin functions, in Advances in Cryptology—CRYPTO
2001, ed. by J. Killian. Lecture Notes in Computer Science, vol. 2139 (Springer, Berlin, 2001), pp. 275–
291

[9] D. Boneh, X. Boyen, Efficient selective-ID secure identity based encryption, in Advances in
Cryptology—EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027 (Springer, Berlin,
2004), pp. 223–238

[10] D. Boneh, J. Katz, Improved efficiency for CCA-secure cryptosystems built using identity-based en-
cryption. Technical Report 2004/261, IACR ePrint archive, 2004

[11] X. Boyen, Q. Mei, B. Waters, Direct chosen ciphertext security from identity-based techniques, in ACM
Conference on Computer and Communications Security (ACM, 2005), pp. 320–329. Also available at
IACR e-print 2005/288

[12] D. Boneh, X. Boyen, S. Halevi, Chosen ciphertext secure public key threshold encryption without ran-
dom oracles, in Topics in Cryptology—CT-RSA 2006, ed. by T. Rabin, S. Halevi. Lecture Notes in
Computer Science, vol. 3860 (Springer, Berlin, 2006), pp. 226–243

[13] R. Canetti, S. Goldwasser, An efficient threshold public key cryptosystem secure against adaptive cho-
sen ciphertext attack, in Advances in Cryptology—EUROCRYPT’99, ed. by J. Stern. Lecture Notes in
Computer Science, vol. 1592 (Springer, Berlin, 1999), pp. 90–106

Tag-KEM/DEM: A New Framework for Hybrid Encryption 129

[14] R. Canetti, H. Krawczyk, J. Nielsen, Relaxing chosen-ciphertext security, in Advances in Cryptology—
CRYPTO 2003, ed. by D. Boneh. Lecture Notes in Computer Science, vol. 2729 (Springer, Berlin,
2003), pp. 565–582. Also available at IACR ePrint archive 2003/174

[15] R. Canetti, S. Halevi, J. Katz, Chosen-ciphertext security from identity-based encryption, in Advances
in Cryptology—EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027 (Springer, Berlin,
2004), pp. 207–222

[16] R. Cramer, V. Shoup, A practical public key cryptosystem provably secure against adaptive chosen ci-
phertext attack, in Advances in Cryptology—CRYPTO’98, ed. by H. Krawczyk. Lecture Notes in Com-
puter Science, vol. 1462 (Springer, Berlin, 1998), pp. 13–25

[17] R. Cramer, V. Shoup, Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-
key encryption, in Advances in Cryptology—EUROCRYPTO 2002, ed. by L. Knudsen. Lecture Notes
in Computer Science, vol. 2332 (Springer, Berlin, 2002), pp. 45–64

[18] R. Cramer, V. Shoup, Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

[19] A. Dent, A designer’s guide to KEMs, in 9th IMA International Conference on Cryptography and Cod-
ing, ed. by K.G. Paterson. Lecture Notes in Computer Science, vol. 2898 (Springer, Berlin, 2003),
pp. 133–151

[20] Y.G. Desmedt, Y. Frankel, Threshold cryptosystems, in Advances in Cryptology—CRYPTO’89, ed. by
G. Brassard. Lecture Notes in Computer Science, vol. 435 (Springer, Berlin, 1990), pp. 307–315

[21] D. Dolev, C. Dwork, M. Naor, Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)
[22] E. Fujisaki, T. Okamoto, Secure integration of asymmetric and symmetric encryption schemes, in Ad-

vances in Cryptology—CRYPTO’99, ed. by M. Wiener. Lecture Notes in Computer Science, vol. 1666
(Springer, Berlin, 1999), pp. 537–554

[23] R. Gennaro, V. Shoup, A note on an encryption scheme of Kurosawa and Desmedt. Technical Report
2004/194, IACR ePrint archive, 2004

[24] C. Gentry, How to compress Rabin ciphertexts and signatures (and more), in Advances in Cryptology—
CRYPTO 2004, ed. by M. Franklin. Lecture Notes in Computer Science, vol. 3152 (Springer, Berlin,
2004), pp. 179–200

[25] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game or a completeness theorem for
protocols with honest majority, in Proceedings of the 19th annual ACM Symposium on the Theory of
Computing, New York City, pp. 218–229, 1987

[26] J. Herranz, D. Hofheinz, E. Kiltz, The Kurosawa-Desmedt key encapsulation is not chosen-ciphertext
secure. IACR e-print Archive 2006/207, 2005

[27] S. Jarecki, A. Lysyanskaya, Adaptively secure threshold cryptography: introducing concurrency, re-
moving erasures (extended abstract), in Advances in Cryptology—EUROCRYPT 2000. Lecture Notes in
Computer Science, vol. 1807 (Springer, Berlin, 2000), pp. 221–242

[28] E. Kiltz, Chosen-ciphertext security from tag-based encryption, in Theory of Cryptography—TCC’06,
ed. by S. Halevi, T. Rabin. Lecture Notes in Computer Science, vol. 3876 (Springer, Berlin, 2006),
pp. 581–600

[29] K. Kurosawa, Y. Desmedt, A new paradigm of hybrid encryption scheme, in Advances in Cryptology—
CRYPTO 2004, ed. by M. Franklin. Lecture Notes in Computer Science, vol. 3152 (Springer, Berlin,
2004), pp. 426–442

[30] P. MacKenzie, M.K. Reiter, K. Yang, Alternatives to non-malleability: definitions, constructions, and
applications, in Theory of Cryptography—TCC’04, ed. by M. Naor. Lecture Notes in Computer Science,
vol. 2951 (Springer, Berlin, 2004), pp. 171–190

[31] W. Nagao, Y. Manabe, T. Okamoto, A universally composable secure channel based on the KEM-
DEM framework, in Theory of Cryptography—TCC’05. Lecture Notes in Computer Science, vol. 3378
(Springer, Berlin, 2005), pp. 426–444

[32] M. Naor, M. Yung, Public-key cryptosystems provably secure against chosen ciphertext attacks. In Pro-
ceedings of the 22nd annual ACM Symposium on the Theory of Computing, pp. 427–437, 1990

[33] T. Okamoto, D. Pointcheval, REACT: Rapid enhanced-security asymmetric cryptosystem transform, in
RSA’2001. Lecture Notes in Computer Science (Springer, Berlin, 2001)

[34] C. Rackoff, D. Simon, Non-interactive zero-knowledge proof of knowledge and chosen ciphertext at-
tack, in Advances in Cryptology—CRYPTO’91. Lecture Notes in Computer Science, vol. 576 (Springer,
Berlin, 1992), pp. 433–444

130 M. Abe, R. Gennaro, and K. Kurosawa

[35] V. Shoup, Using hash functions as a hedge against chosen ciphertext attack, in Advances in Cryptology—
EUROCRYPT 2000. Lecture Notes in Computer Science, vol. 1807 (Springer, Berlin, 2000), pp. 275–
288

[36] V. Shoup, OAEP reconsidered, in Advances in Cryptology—CRYPTO 2001. Lecture Notes in Computer
Science, vol. 2139 (Springer, Berlin, 2001), pp. 239–259

[37] V. Shoup, ISO 18033-2: An emerging standard for public-key encryption (committee draft). Available
at http://shoup.net/iso/, June 3 2004

[38] V. Shoup, R. Gennaro, Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptol.
15(2), 75–96 (2002)

	Tag-KEM/DEM: A New Framework for Hybrid Encryption
	Abstract
	Introduction
	Definitions and Building Blocks
	Key Encapsulation Mechanism with Tags (Tag-KEM)
	Relation to Similar Notions

	Data Encapsulation Mechanism (DEM)
	Public-Key Encryption (PKE)
	Key Encapsulation Mechanism (KEM)
	Message Authentication Code (MAC)
	Key Derivation Function (KDF)
	Security Properties of Hash Functions

	Generic Construction of Hybrid PKE
	Construction of Tag-KEM
	Based on PKE with Long Plaintext
	Based on CCA-Secure KEM and MAC
	Based on weak KEM and MAC
	Predicate-dependent CCA Security
	When Does LCCA Become Weaker than CCA?
	Proof of the Tag-KEM in Sect. 4.2

	Based on KEM with Hash Function
	From OAEP+
	From Cramer-Shoup Encryption

	Based on ID-based PKE

	Applications
	Threshold Hybrid PKE
	A note on the security model
	Instantiation

	Revisiting the Kurosawa-Desmedt Scheme
	Refined Fujisaki-Okamoto Conversion and More
	Fujisaki-Okamoto Conversion
	Bellare-Rogaway Scheme
	REACT
	Some ISO Standard Candidates

	Revisiting RCCA-secure PKE

	Conclusions and Open Problems
	On the Tag-KEM Security
	On the Necessity of Stronger Hash Functions
	More on the Random Prefix Collision-Free

	Acknowledgements
	Appendix A. Proof of Theorem 2
	Appendix B. Proof of Theorem 3
	Proof of (17)
	Proof of (18)
	Proof of (19)

	Appendix C. Kurosawa-Desmedt KEM
	Appendix D. Details of Refined Fujisaki-Okamoto Conversion
	The Scheme

	Appendix E. Tag-KEM from RCCA-secure KEM
	Proof of (28)
	Proof of (29)
	Proof of (30)
	Proof of (31)

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

