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Abstract. We propose an elliptic curve trapdoor system which is of interest in key
escrow applications. In this system, a pair (Es, Epb) of elliptic curves over F2161 is
constructed with the following properties: (i) the Gaudry–Hess–Smart Weil descent
attack reduces the elliptic curve discrete logarithm problem (ECDLP) in Es(F2161 )

to a hyperelliptic curve DLP in the Jacobian of a curve of genus 7 or 8, which is
computationally feasible, but by far not trivial; (ii) Epb is isogenous to Es; (iii) the best
attack on the ECDLP in Epb(F2161 ) is the parallelized Pollard rho method.

The curve Epb is used just as usual in elliptic curve cryptosystems. The curve Es is
submitted to a trusted authority for the purpose of key escrow. The crucial difference
from other key escrow scenarios is that the trusted authority has to invest a considerable
amount of computation to compromise a user’s private key, which makes applications
such as widespread wire-tapping impossible.

Key words. Elliptic curve cryptography, Weil descent, Isogenies, Trapdoor functions,
Key escrow.

1. Introduction

For an elliptic curve E over a finite field F2N , the Gaudry–Hess–Smart (GHS) Weil
descent attack [11] gives (under certain technical assumptions) an explicit group ho-
momorphism � : 〈P〉 −→ JC(F2l ) into the Jacobian of a hyperelliptic curve C over
F2l . Here 〈P〉 denotes the cyclic group of prime order r generated by a given point
P on E , and l is such that N = nl for some positive integer n. By these means, un-
less P ∈ ker(�), the elliptic curve discrete logarithm problem (ECDLP)—given P and
Q ∈ 〈P〉, find λ ∈ [0, r − 1] such that Q = λP—can be reduced to a hyperelliptic
curve discrete logarithm problem (HCDLP) of the form: given �(P) ∈ JC(F2l ) and
�(Q) ∈ 〈�(P)〉, find λ ∈ [0, r − 1] such that�(Q) = λ�(P). The hyperelliptic curve
C is of genus g = 2m−1 or g = 2m−1 − 1, where m = m(n) is the magic number for E
relative to n, which can be easily determined from the defining equation of the elliptic
curve.
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Given that for hyperelliptic curves we have the Enge–Gaudry index calculus method
[4] that is faster than O((#JC(F2l ))1/2) if g > 5, and subexponential in the size of
JC(F2l ) as g/N → ∞, the GHS Weil descent attack may result in a faster algorithm
for the ECDLP than Pollard’s rho algorithm [24], [28]. Indeed, while it was shown
by Menezes and Qu [21] that the GHS attack fails for all elliptic curves over F2N if
N ∈ [100, 600] is prime and N �= 127, Maurer et al. [19] have identified all elliptic
curves defined over characteristic 2 fields of composite extension degree N ∈ [100, 600]
for which the GHS attack reduces the total running time to solve the ECDLP (compared
with applying Pollard rho). In particular, if N = 161, there exists a set I4 of approximately
294 isomorphism classes of elliptic curves over F2161 with the following property: For
any elliptic curve E in I4, the GHS Weil descent attack produces a hyperelliptic curve
C over F223 of genus 7 or 8. That is, m(7) = 4 for all E ∈ I4. If g = 7, the resulting
HCDLP can be solved in an estimated 25,000 days on a 1 GHz PIII workstation, and
it takes an estimated 200,000 days if g = 8. This compares with an estimated 200,000
days on a 450 MHz PII machine to solve the 108-bit ECDLP of the Certicom challenge
[1] in April 2000. Thus, any instance of the ECDLP for any curve in I4 can be considered
feasible, but not trivial. Here we assume that the curve is cryptographically interesting,
meaning that (i) #E(F2N ) = rd where r is prime and d ∈ {2, 4} and (ii) r does not
divide 2N j − 1 for each j ∈ [1, J ], where J is large enough so that it is computationally
infeasible to find discrete logarithms in F∗2N J . (The second requirement, which is almost
always fulfilled for a random curve, is to avoid the Weil pairing [20] and Tate pairing [5]
attacks, while the first requirement implies that the Pohlig–Hellman attack [23] combined
with the parallelized Pollard rho attack [24], [28] takes about 2(N−1)/2 elliptic curve
operations.)

While the magic number m for an elliptic curve E/Fqn (q = 2l) relative to n is an
invariant of the isomorphism class of an elliptic curve, it is in general not invariant under
isogenies between elliptic curves. In particular, given a curve E/F2161 in I4 an elliptic
curve E ′ randomly chosen from the isogeny class of E has magic number 7 relative to
n = 7 with an estimated probability ≈ 1− 2−68 (see Section 3.1). For such a curve E ′,
the GHS attack fails: it yields a hyperelliptic curve over F223 of genus 63 or 64, whose
Jacobian has approximately 21450 elements. Solving the HCDLP in this Jacobian with
index-calculus methods is a task much more expensive than using the Pollard rho method
in E ′(F2161).

In this paper we use the set I4 of elliptic curves over F2161 = F(223)7 with m(7) = 4 to
design a trapdoor system. Using techniques from Menezes and Qu [21], the user, Alice,
generates a cryptographically interesting elliptic curve Es over F2161 with m(7) = 4.
Then, using techniques from Galbraith et al. [7], she computes a curve Epb isogenous
to Es with magic number 7, and an isogeny � from Epb to Es. Alice makes the curve
Epb public (whence the name). She submits Es (and possibly � or related information
on how Epb was obtained from Es) to a trusted authority, Trent, but keeps it otherwise
secret. Epb is cryptographically interesting, and can be used, for example, to execute an
elliptic curve based Diffie–Hellman key exchange protocol. Our trapdoor system has the
following properties:

1. Trent can solve any instance of an ECDLP on Epb, but needs a non-trivial amount
of computing power to do so.
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2. Any attacker not knowing Es and the way Epb was constructed cannot recover
either information any faster than applying Pollard rho in Epb(F2161).

3. Finding another curve E ∈ I4 (and thus as susceptible to the GHS attack as Es)
that is isogenous to Epb/F2161 is equally infeasible.

Consequently, against an attacker who lacks the trapdoor information, Epb provides
the same per-bit-security as any other cryptographically interesting curve over F2161 .
The first property crucially distinguishes our new system from traditional trapdoor sys-
tems such as 2-prime RSA, where knowledge of the trapdoor yields a polynomial time
algorithm to recover the secret key. This makes our trapdoor system attractive for key
escrow applications [22] where the key escrow agency (Trent) wants to be able to control
encrypted communication, but the user’s privacy should be somewhat protected in the
sense that only a small number of keys can be recovered by Trent.

For details on the GHS Weil descent attack we refer the interested reader to [11]. In
the following, we just give those details of immediate interest for our exposition, which
involves magic numbers, GHS attack data, and isogenies (Section 2). In Section 3 we do
a little detour on how magic numbers behave under isogenies, and present an important
assumption on how I4 distributes over the isogeny classes of curves overF2161 . The set-up
of our trapdoor system is given in Section 4, while its security is analyzed in Section 5,
and its efficiency in Section 6. Finally, we discuss which finite fields other than F2161 can
possibly be used for similar trapdoor system constructions. In the Appendix we give an
instance of the trapdoor system, and a challenge to attack it.

For a set S we denote by s ∈R S that s is chosen uniformly at random from S.

2. Magic Numbers, GHS Weil Descent and Isogenies

Throughout this paper, let E : y2+ xy = x3+ax2+b be a cryptographically interesting
elliptic curve over F2N , and let P be a point on E of large prime order r . We often
specialize to the case N = 161. Other possible choices for N are discussed in Section 7.

2.1. Magic Numbers

Let N = 161 = 7 · 23 and q = 223, then we can write F2161 = Fq7 . By Menezes and Qu
[21, Lemma 4], F2161 can be decomposed into a direct sum of subspaces:

F2161 = W0 ⊕W1 ⊕W2,

where

W0 = {c : σ(c)+ c = 0} = {c : c223 = c} = F223 ,

W1 = {c : σ 3(c)+ σ 2(c)+ c = 0} = {c : c269 + c246 + c = 0},
W2 = {c : σ 3(c)+ σ(c)+ c = 0} = {c : c269 + c223 + c = 0},

and σ : F2161 → F2161 is the Frobenius endomorphism defined by α �→ αq . Then
|W0| = 223 and |W1| = |W2| = 269. This allows for a classification of magic numbers:
the magic number m of an elliptic curve Ea,b is given as

m = m(b) = dimF2(Span
F2
{(1, b1/2

0 ), (1, b1/2
1 ), . . . , (1, b1/2

n−1)}), (1)
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where bi = σ i (b) [11]. Now, it is immediate from [21] that an elliptic curve E = Ea,b

over F2161 has magic number m(7) = 1 if and only if b ∈ W0\{0}, and m(7) = 4 if and
only if b is an element of

S := (W0 ⊕ (W1\{0})) ∪ (W0 ⊕ (W2\{0})),
and m(7) = 7 otherwise. Note that we have |S| = 2 · 223 · (269 − 1) ≈ 293. We let

I4 = {Ea,b/F2161 : a ∈ {0, 1}, b ∈ S},
the set of representatives of the isomorphism classes of elliptic curves over F2161 with
magic number m(7) = 4. Clearly, |I4| ≈ 294.

It is easy to compute bases (over F2) of the three subspaces W0, W1 and W2, so
that using the above representation for S we can quickly generate random curves Ea,b

(a ∈R {0, 1}) over F2161 with m(7) = 4. Moreover, this allows us to implement an
exhaustive search through the set S.

2.2. GHS Weil Descent Attack Data

Let E ∈ I4 and let it be cryptographically interesting. If the cofactor d is 2, then any
ECDLP in the large prime-order subgroup of order r takes an expected 279.8 elliptic
curve operations using the parallelized Pollard rho method (see Section 7). On the other
hand, the GHS Weil descent attack maps any such ECDLP to an HCDLP in the Jacobian
of a hyperelliptic curve C of genus g = 7 or 8. If g = 7, this HCDLP can be solved
in an expected 234 hyperelliptic curve operations using the Enge–Gaudry index calculus
algorithm [9], [4]. If g = 8, it takes an expected 237 operations in the Jacobian. With
Stein’s analysis [26] of the Jacobian arithmetic, this translates into at most 1.2 · 244

operations in F223 if g = 7, and at most 1.5 · 247 operations in F223 if g = 8. In either
case, a factor base containing 222 prime divisors of degree 1 is used, so that about 244 bit
operations in the final linear algebra step are required. Based on timings from [15], we
estimate that if g = 7, the computational effort for the entire computation corresponds
to about 25,000 days on a 1 GHz PIII workstation. However, only about 270 values b ∈ S
result in a genus 7 curve, while the vast majority of b-values yields a genus 8 curve. In
fact, we have the following theorem.

Theorem 1. Let Ea,b be an elliptic curve over F2161 with m(7) = 4. Then the GHS Weil
descent attack produces a hyperelliptic curve of genus 7 if and only if b ∈ W1\{0} or
b ∈ W2\{0}.

Proof. Let q = 223. By Hess [12, Corollary 6], g = 7 if and only if TrFq7 /Fq (b
1/2) = 0,

which is the case if and only if TrFq7 /Fq (b) = 0. Let

t (x) = x6 + x5 + x4 + x3 + x2 + x + 1.

Then TrFq7 /Fq (b) = t (σ )(b). As in [21], let Ordb(x) denote the unique monic polynomial
f ∈ F2[x] of least degree such that f (σ )(b) = 0. Now we can write

t (x) = g(x)Ordb(x)+ r(x),
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where g(x), r(x) ∈ F2[x] and r(x) = 0 or deg(r(x)) < deg(Ordb(x)). Then

TrFq7 /Fq (b) = g(σ )(b)Ordb(σ )(b)+ r(σ )(b).

Hence, TrFq7 /Fq (b) = 0 if and only if Ordb(x) | t (x). Now, m(7) = 4 if and only if

Ordb(x) = (x+1) j0(x3+x2+1) j1(x3+x+1) j2 with j0, j1, j2 ∈ {0, 1} and j1+ j2 = 1.
Therefore, Ordb(x) | t (x) for b ∈ S if and only if j0 = 0 and exactly one of j1, j2 = 1,
which is the case if and only if b ∈ (W1\{0}) ∪ (W2\{0}).

2.3. Isogenies and Class Groups

For background material, the reader may wish to consult the works of Kohel [16] and
Galbraith [6] on isogenies, and Cohen [2, Chapter 5] and Cox [3] on class groups.

An isogeny between two elliptic curves E and E ′ over a field K is a non-constant
morphism � : E → E ′ such that �(OE ) = OE ′ , where OE and OE ′ denote the zero
elements of the corresponding elliptic curve groups. E and E ′ are called isogenous over
K if � is defined over K ; we write E ∼ E ′. In the case of a finite field, E ∼ E ′ if and
only if #E(K ) = #E ′(K ). The equivalence classes with respect to isogeny are called
isogeny classes.

Let E be an elliptic curve over F2N and let t = 2N + 1 − #E(F2N ) be its trace and
 = t2−4 ·2N be its discriminant. Then the endomorphism ring End(E) can be viewed
as an order in the maximal order O of the quadratic number field Q(

√
). In fact,

Z[π ] ⊆ End(E) ⊆ O,

where π : E(F2N )→ E(F2N ) is the 2N th power Frobenius map on E , whose character-
istic polynomial is T 2 − tT + 2N .

Theorem 2. If E/F2N is an elliptic curve with End(E) ∼= O, then there is a bijection

Cl←→ Ell(O),

where Cl denotes the class group ofO, and Ell(O) denotes the isomorphism classes
of curves isogenous to E whose endomorphism ring is isomorphic to O.

This is proved by Silverman [25, Proposition II.1.2] for elliptic curves over the complex
numbers, and via Deuring’s lifting extends to finite fields (see [17]).

In the following, we conveniently identify an isomorphism class of a curve over F2161

with its representative Ea,b where a ∈ {0, 1} and b ∈ F2161\{0}, and we identify an ideal
class in Cl with its unique reduced representative. Sometimes, however, we will find it
appropriate to use Red(a) to indicate the reduced ideal equivalent to theO-ideal a. By
h we denote the class number, #Cl.

In our trapdoor system we restrict ourselves to elliptic curves over F2161 with square-
free discriminant . For such a curve E , Z[π ] ∼= O and thus End(E ′) ∼= O for
any curve E ′ ∼ E . The set Ell(O) includes all isomorphism classes of curves in the
isogeny class of E , and all isogenies are “horizontal” in the sense of Kohel [16]. Since
is fundamental, we have that, on average, h behaves as c

√||, where c ≈ 0.46 and the
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average is taken over all fundamental negative discriminants up to [2, Section 5.10.1].
Also, h <

√|| ln||/π [2, Exercise 5.27], and, under the Extended Riemann Hy-
pothesis, h > (1 + o(1))

√||/(c ln ln||) where c ≈ 6.8 [18]. Thus, the isogeny
class of an elliptic curve of a k-bit squarefree discriminant  contains roughly 2k/2

isomorphism classes of elliptic curves over the same field.
Now let Ea,b be an elliptic curve over F2N , let j (E) = b−1 denote its j-invariant

and let l be a prime that splits in O (i.e., (/ l) = 1). Then the modular polynomial
�l( j (E), X) has two roots j1 and j2 in F2N , which define two elliptic curves Ea,b1 and
Ea,b2 isogenous to E , where bi = j−1

i . These roots can be computed by a probabilistic
algorithm using O(l2 N ) operations in F2N . In the one-to-one correspondence between
Cl and Ell(O), the two isogenies�1 : E → Ea,b1 and�2 : E → Ea,b2 correspond to
the multiplication of a fixed ideal, for exampleO, by the two prime ideals l1 and l2 lying
over l. In the case of a ramified prime l (i.e. l |),�l( j (E), X) has just one root, yielding
one isogenous curve E ′, and the respective isogeny corresponds to multiplication by an
ideal (class) of order two. For our purpose, we leave these ambiguous ideal classes aside
and restrict ourselves to split primes (which are sufficient to generate the class group).

We have an efficient method to move around in the isogeny class of an elliptic curve
E = Ea,b of squarefree discriminant  in a pseudo-random way, which is given in
Algorithm 1. We assume that this algorithm has access to a file that contains all modular
polynomials �l(X, Y ) for 3 ≤ l < 2000. Vercauteren [30] reports that the latter can be
precomputed in less than 40 hours and with about 63 MB memory usage on a Pentium
III 600 MHz.

Algorithm 1. A pseudo-random walk in the isogeny class.

Input: E = Ea,b over F2N , positive integers K and L where L ≤ 2000.
Accessible data on file: The modular polynomials �l(X, Y ), 3 ≤ l < 2000.
Output:A chain of length K of isogenous curves, where each successor in the chain is
related to its predecessor by an isogeny of degree at most L .

1. Let E1 = E and b1 = b.
2. Compute L := {3 ≤ l ≤ L , l prime, (/ l) = 1}.
3. For i = 2 to K do the following:

(a) Choose l ∈R L.
(b) Read �l(X, Y ) from file.
(c) For j := b−1

i−1, compute the two roots in F2N of�l( j, X), and randomly select
one of them, say j ′.

(d) Let bi := ( j ′)−1 and Ei := Ea,b′ .
4. Return E1, E2, . . . , EK .

Remark 1. We cannot readily apply Teske’s results [27] stating that in a group of prime
order, if 16 or more pairwise distinct so-called “multipliers” (in our application: 16 or
more primes l) are used, a random walk in Ell(O) can be efficiently simulated. In our
application, the corresponding multipliers (via the correspondence between isogenies
and ideal classes) are ideals of small norm l rather than randomly chosen elements of
Cl. Moreover, the groups in which we work are not necessarily of prime order, and
sometimes they are not even cyclic. Nevertheless, extensive experiments suggest that
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L = 300 (which yields, on average, 30 distinct pairs of prime ideals lying over the split
primes l ≤ L) is indeed sufficient for 160-bit discriminants to pseudo-randomly generate
a chain (E1, . . . , EK ) ⊂ Ell(O).

3. Magic Numbers and Isogenies

The magic number of E relative to a fixed n|N is invariant under the power-2 Frobenius
map—this is immediate from (1). However, more patterns occur, which we discuss next.

Proposition 1. The isomorphism classes of an elliptic curve E over F2N that are ob-
tained by repeatedly applying the 2-isogeny stemming from �2(X, Y ) are exactly those
(up to ordering) obtained by repeatedly applying the 2-power Frobenius to E .

Proof. We compute two chains of curves isogenous to Ea,b. For the first chain, let
J = j (E), and let j be a root of the modular polynomial (modulo 2)

�2(J, X) = X3 + X2 J 2 + X J + J 3 = (J + X2)(J 2 + X).

Then j = J 2 or j = √J (in F2N ), and E ′ := Ea, j−1 ∼ E . The next curve is ob-
tained from the root j ′ �= J of �2( j, X), and so forth. For the second chain, repeated
application of the power-2 Frobenius to E produces elliptic curves with j-invariants
J, J 2, J 22

, . . . , J 2k−1
, for some k|N . Clearly, these two chains are identical (up to order-

ing and isomorphisms).

Moreover, isogenies stemming from the multiplication-by-l map yield just the same
curves that are obtained by repeated applications of the power-2 Frobenius map. However,
also for l-isogenies associated with�l(J, X) for random odd primes l we may find strong
patterns in the magic numbers, depending on the field F2N = F(2l )n . This is detailed in
the following theorem.

Theorem 3. Let N = nl. Let f0 = x−1 and let f1, . . . , fs be irreducible polynomials
over F2 and j0, j1, . . . , js ∈ N such that

xn − 1 = f j0
0 f j1

1 · · · f js
s .

Let q = 2l and let E : y2 = x3 + ax2 + b be an elliptic curve over Fqn with magic
number m = m(n). Let

f = f i0
0 f i1

1 · · · f is
s , 0 ≤ iv ≤ jv, v = 1, . . . s,

be the unique polynomial of least degree such that f (σ )(b) = 0, where σ is the qth
power Frobenius. Let Uf be the set of roots of f in its splitting field. Let Uf be the
subgroup of nth roots of unity generated by Uf , and let �f | (xn − 1) be the annihilating
polynomial of �Uf . Let B ⊂ F2N be the set of roots of �f (σ ). Then for any elliptic curve
Ea,b′ generated by Algorithm 1 we have b′ ∈ B. The corresponding magic number, m ′,
satisfies m ′ ≤ deg( f ). In particular, if Uf ∪ {1} = �Uf , then m ′ ≤ m.
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Table 1. Non-trivial instances (N , n,m) = (nw, n,m) for
Theorem 3 ( j ∈ {0, 1}, and u, w ∈ N).

n m f (x) m′

3u 3 (x + 1) j (x2 + x + 1) 1, 3
5u 5 (x + 1) j (x4 + x3 + x2 + x + 1) 1, 5
9u 9 (x + 1) j (x2 + x + 1)(x6 + x3 + 1) 1, 3, 7, 9

33u 11 (x11 − 1)/(x + 1) j 1, 11
65u 13 (x13 − 1)/(x + 1) j 1, 13
129u 43 (x43 − 1)/(x + 1) j 1, 43

Proof. We first note that in the language of Menezes and Qu [21], b is of type
(i0, i1, . . . , is). Moreover, m = deg( f ) if i0 > 0 and m = deg( f ) + 1 if i0 = 0.
Now, the group �Uf is the group of kth roots of unity, for some k | n, and �f = xk − 1.
Thus, for b ∈ B we have σ k(b)−b = 0, or bqk = b, which implies B ⊂ Fqk . Conversely,
Fqk ⊂ B, so that B = Fqk . Now, also j := j (Ea,b) ∈ Fqk for any b ∈ B. Therefore, for
any modular polynomial �l(X, Y ), the two roots j1, j2 of �l( j, X) that are in Fqn are
indeed in Fqk . Consequently, b1 := j−1

1 and b2 := j−1
2 are also elements of B = Fqk . For

the magic numbers m1 and m2 of the corresponding isogenous curves Ea,b1 and Ea,b2 ,
this implies mi ≤ k.

Finally, if �Uf = Uf ∪ {1}, then f (x) = xk − 1 or f (x) = (xk − 1)/(x − 1) for some
k | n, and m = k by Theorem 6 of [21], and thus mi ≤ m.

Remark 2. In the notation of the above theorem, by [Theorem 5 of [21]] there exist∏s
v=0,iv �=0(q

ivdv − q(iv−1)dv ) elements b ∈ F2N for which f (σ )(b) = 0; here, dv =
deg( fv). From this it is immediate that if Uf ∪ {1} = �Uf , then the most likely case is
m ′ = m. We thus can say that the magic number m is “almost invariant” under isogenies.
Of course, this includes the trivial situation that k = n. Table 1 shows some parameters
for non-trivial applications of Theorem 3.

Remark 3. It is easy to see that for all non-trivial instances of Theorem 3 where the GHS
Weil descent attack applies, the elliptic curve Ea,b is necessarily defined over a proper
subfield Fqk of Fqn , and thus not cryptographically interesting, with the exception of
Koblitz curves where q = 2 and k = 1. However, Koblitz curves never have a squarefree
discriminant and thus are not considered for our trapdoor system.

3.1. The Case F2161

Theorem 3 does not yield any non-trivial instances for (N , n) = (161, 7): if m = 4,
then �Uf is the set of seventh roots of unity and B = F2161 . On the contrary, we make the
following heuristic assumption:

Assumption A. The set I4 of (isomorphism classes of) elliptic curves over F2161 with
magic number m(7) = 4 is randomly distributed over the isogeny classes in the following
sense: an elliptic curve over F2161 that is randomly chosen from a fixed isogeny class has
magic number m(7) = 4 with probability |I4|/2162.
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Thus, with |I4| ≈ 294, under Assumption A a random curve over F2161 in a given
isogeny class has magic number 4 with probability ≈ 2−68, and magic number 7 with
probability≈ 1− 2−68. Moreover, in any given isogeny class of squarefree discriminant
, we expect to find h/268 isomorphism classes of curves with magic number 4.

Remark 4. Assumption A is not true for small values of N of the form N = 7l. This
is due to the fact that for any given curve E/F2N of magic number m(7) = 4 there
exist up to N curves with magic number 4 that stem from repeated applications of the
power-2 Frobenius. For example, if N = 21 and E has magic number m(7) = 4, there
exist (up to) 20 curves isogenous to E with magic number 4, which prevents I4 from
equally distributing over all isogeny classes. In fact, experimentally we found that while
|I4| ≈ 214, only 29.33··· out of the 211.5 isogeny classes over F221 contain curves with
m(7) = 4—which roughly matches what we expect when taking the effect of the power-
2 Frobenius into account (214/21 = 29.60···). However, as N increases, this distortion
rapidly becomes insignificant, as has been verified in extensive experiments.

4. A Trapdoor System for Elliptic Curves over F2161

4.1. Constructing the Secret Trapdoor Curve

A user does the following steps to construct a cryptographically interesting trapdoor
curve:

Algorithm 2. Construction of the secret trapdoor curve.

Input: Bases of W0, W1, W2.
Output: Cryptographically interesting curve E/F2161 with m(7) = 4.

1. Choose b ∈R S.
2. Check if E0,b or its twist E1,b is cryptographically interesting and denote the

resulting curve by E . Otherwise, go back to Step 1.
3. Let  be the discriminant of E , and check the following:

(a)  is squarefree,
(b) || ≥ 2157,
(c) 276 ≤ h < 283,
(d) the odd, cyclic part of Cl has cardinality ≥ 268.

If so, return E . Otherwise, go back to Step 1.

There are 293 pairs (E0,b, E1,b) to choose from in Step 1 of Algorithm 2. Their group
orders are of the form 2m and 4m ′, where m is a 161-bit number and m ′ is a 160-bit
number. Assuming 2m and 4m ′ are randomly distributed over the even integers and the
integers ≡ 0mod4 in the Hasse-interval, respectively, we know by the Prime Number
Theorem that m or m ′ is prime with probability about 1/ln 2160 so that there should exist
some 287 cryptographically interesting elliptic curves in I4. Now, we find experimentally
that 90–95 out of any 100 random elliptic curves over F2161 in I4 have a squarefree
discriminant. A curve passes Step 3(b) if #E(F2161) is not too close to the edges of
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the Hasse interval. More precisely, || ≥ 2157 whenever #E(F2161) does not lie in the
outermost 0.5%-ranges of the Hasse interval, which is true for the vast majority of curves.
Given the reasoning in Section 2.3, a curve that passes step 3(b) is highly likely to pass
the much more expensive to verify next step. The lower bound in Step 3(c) ensures that
the (up to) 160 (isomorphism classes of) curves isogenous to E with m(7) = 4 that
stem from the power-2 Frobenius do not lead to a violation of Assumption A (note:
276/161 > 268), while the upper bound is to make finding another isogenous curve
in I4 difficult enough (see Section 5.3). Criterion 3(d) guarantees that the problem of
reconstructing the trapdoor curve from the public curve is hard enough (see Section 5.2).
Note that the vast majority of curves over F2161 have 162- or 163-bit discriminants, and
the vast majority of such class groups have cardinality > 280.

Experimentally, we found that out of 3000 randomly chosen pairs of elliptic curves in
I4, 58, or 1.93%, have order or twisted order twice or four times a prime, 2782 (92.73%)
have a squarefree discriminant, 54 satisfy both criteria, 2998 have || ≥ 2157 while 2999
curves have 276 ≤ h < 283. In 2987 out of 3000 cases (99.57%) we find that the odd
cyclic part of Cl has cardinality≥ 268. Altogether, 54 out of 3000 curves (1.8%) passed
all criteria. Extrapolating, this translates into expected 287.2 suitable trapdoor curves, so
there is plenty to choose from. Steps 1 and 2 are executed an expected 52 times, while
Step 3 most likely has to be executed just once.

4.2. Constructing Public Curves

We next need to construct a curve Epb isogenous to the trapdoor curve E . Apart from
the group order, Epb must not leak information about E in the sense that given Epb, it
should not be any easier to recover E than to find any other curve in I4 isogenous to Epb.
While we have fast exponentiation methods to generate a random element in Cl from
a generating set efficiently, there is no such method known to us in Ell(O). We thus
resort to a variant of Algorithm 1. Given a prime l with (/ l) = 1, let l(l), l′(l) ∈ O
denote the two prime ideals lying over l. For a positive integer L let

P(, L) =
{
(Red(l(l)),Red(l′(l))) : 3 ≤ l ≤ L , l prime and

(


l

)
= 1

}
.

Let M := M(, L) denote the number of pairwise distinct pairs in P(, L), and let
L = {l1, . . . , lM} denote the corresponding primes.

Algorithm 3. Algorithm to construct a public curve.

Input: Cryptographically interesting curve Ea,b ∈ I4, parameter L and B.
Accessible data on file: The modular polynomials �l(X, Y ), 3 ≤ l ≤ L .
Output: Epb/F2161 , isogenous to Ea,b.

1. Determine M = M(, L) and L = {l1, . . . , lM} as defined above.
2. Let j ′ := j− := b−1.
3. For i = 1, . . . ,M do the following:

(a) Read �li (X, Y ) from file.
(b) Select ni ∈R {0, 1, . . . , B}.
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(c) (Construct a chain of ni li -isogenous curves.)
For k = 1, . . . , ni do the following:

(i) Compute the two roots j1 and j2 in F2161 of �li ( j ′, X).
(ii) If j1 �= j− then let j− = j ′ and j ′ = j1,

otherwise let j− = j ′ and j ′ = j2.
4. Let b′ = ( j ′)−1 and return Epb = Ea,b′ .

In Section 5.2 we show that suitable choices for L and B are (L , B) = (300, 11) or
(L , B) = (500, 3). Then, on average, M B/2 ≈ 165 for the first choice, and M B/2 ≈ 70
for the second choice, which is how often the for-loop (Step 3(b)) is expected to be
executed.

4.3. Solving the ECDLP Using the Trapdoor Curve

We now discuss the computational effort for the key escrow agency (Trent) to recover a
user’s secret key, i.e. to solve an ECDLP on a user’s public curve Epb given the trapdoor
curve Es ∈ I4.

If, along with Es as part of the trapdoor information, Alice has also submitted the
sequence of j-invariants encountered while computing the public curve ( j ′ in Step
3(b(ii)) of Algorithm 3), then Trent can compute the explicit chain of isogenies in time
O(L) using Vélu’s formulae [29]. This enables him to map efficiently any given ECDLP
in Epb(F2161) to an ECDLP on Es ∈ I4, for which the GHS attack data given in Section
2.2 apply.

Should Trent know only the public and secret elliptic curves over F2161 , one needs first
to construct a chain of isogenies of small degrees linking Epb and Es. This can be done
using ideas of Galbraith et al. [7]: Starting from Epb and Es, two pseudo-random walks
in the isogeny class of Epb, Es are computed (similar as in Algorithm 1, but this time
the walks have to be deterministic), where one keeps track of all l-values and j-variants
encountered on the way. A distinguished point method [28] is used to detect a collision
between these two walks, which is expected to occur after

√
πh steps in the isogeny

class. (The expected number of steps is by a factor of
√

2 larger than usually in birthday
paradox applications. This is because only a collision between the two walks—in the
parallelized version: between a walk starting from Epb and one starting from Es—yields
the desired result, while a collision within one walk—in the parallelized version: among
walks originating at the same curve—is useless.) This computation can be efficiently
parallelized to run on k machines where one works with k/2 walks of both kinds.

5. Security Analysis

While our system is designed such that the ECDLP in Epb(F2161) can be solved by the
trusted authority (such as the key escrow agency), this feature must not diminish the se-
curity against any outside attacker. The purpose of this section is to show that there is no
faster method to solve the ECDLP in Epb(F2161) than running a parallelized Pollard rho
attack in its subgroup of large prime order. First note that Epb is cryptographically inter-
esting. Moreover, there are only two other possibilities to do a GHS Weil descent, namely
to map the ECDLP into the Jacobian of a hyperelliptic curve over F27 , or over F2. In the
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first case, as can readily be seen from [21], this results in curves of genus 1, 2047 or 2048,
so that the Jacobians are either too small to yield any information on the ECDLP, or far
too large (of size≈ 214329) to allow for an algorithm faster than Pollard rho. In the second
case the smallest Jacobian that is large enough to yield information on the ECDLP corre-
sponds to a genus 2047 curve and thus contains≈ 22047 elements, which is still too large
to allow for an algorithm faster than Pollard rho. Consequently, the only other possible
attack is to find a curve E ∈ I4 isogenous to Epb along with an isogeny � : Epb → E ,
and to solve the corresponding ECDLP in E(F2161) via the GHS attack. We argue that
the following problem cannot be solved in time faster than 280 elliptic curve operations.

Problem P. Given Epb/F2161 with m(7) = 7, find E ∼ Epb with m(7) = 4.

There are three possible approaches to solve this problem: (i) search the isogeny class
of Epb for a curve E ∈ I4; (ii) try to retrieve the trapdoor curve E knowing that
Epb was constructed via Algorithm 3; and (iii) search the set I4 for a curve E with
#E(F2161) = #Epb(F2161).

We first consider the cost for moving around in the isogeny class of Epb. That is,
we estimate the computational cost of stepping from one curve to the next (Step 4 of
Algorithm 1, Step 3(b) of Algorithm 3). The dominating cost is that for computing the
roots in F2161 of�l( j, X) for a given j-invariant and a given prime l ∈ L, which is lower
bounded by ≈ l2 · 161 operations in F2161 . Compared with the cost of an elliptic curve
operation in Epb (doubling or adding of points using projective coordinates), which is
bounded below by 10 operations in F2161 [13], this means that one step in the isogeny
class of Epb using �l is at least by a factor of 16 · l2 more expensive than one elliptic
curve operation.

5.1. Searching the Isogeny Class of Epb for a Curve in I4

Using Algorithm 1, the attacker can perform a pseudo-random walk in the isogeny class
of Epb. Each elliptic curve encountered this way is checked for membership in I4 by
computing its magic number m relative to n = 7. Under Assumption A, an expected
268 steps in the isogeny class have to be executed until an appropriate curve is found.
This takes much longer than running a Pollard rho attack in Epb(F2161): each step in the
isogeny class costs at least as much as 16l2 elliptic curve operations; here using all split
primes l up to L = 300 is appropriate to simulate a random walk properly; working
with only eight pairwise distinct (pairs of) prime ideals of smallest norm l (l split) does
not properly simulate a random walk and would still require, on average, working with
l-values up to 80. So we safely may assume that the average step of Algorithm 1 costs
at least the equivalent of 16 · 302 elliptic curve operations. Now, 268 · 16 · 302 > 280.

5.2. Reconstructing the Trapdoor Curve from the Public Curve

By the correspondence between Ell(O) and Cl, the isogeny� that maps the trapdoor
curve Es to the public curve Epb can be represented by the ideal class of

b :=
M∏

i=1

li
ni ,
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where li is one of l(li ), l′(li ) and ni ∈ [0, B]. If an attacker could find integers n′i such
that

∏M
i=1 li

n′i = b, this would allow her (using a variant of Algorithm 3) to construct
a chain of

∑M
i=1 n′i isogenies of small degree li that maps Epb to Es. The task would

be feasible (using index-calculus techniques in Cl, see [7]) if b was known; which
it is not. Thus, all the attacker can do is to check for candidate tuples (n′1, . . . , n′M)
if the resulting isogeny yields a curve in I4. We estimate the number of candidate
tuples that have to be tried in order to find Es with non-negligible probability. By
construction of the trapdoor curve, Cl has an odd cyclic part of cardinality h,oc ≥
268. Having excluded the ramified primes ≤ L , we expect that the large majority of
the li (i = 1, . . . ,M) have an element order of order of magnitude 268. Now let
{g1, . . . , gd} be a generating set of Cl such that ord g1 | ord g2 | · · · | ord gd . Note that
ord gd ≥ 268. For each i = 1, . . . ,M , let 0 ≤ ki j < ord gj such that li =

∏d
j=1 gj

ki j .
Then

b =
d∏

j=1

g
�

M

i=1ki j ni

j .

An attacker now has to find n′i such that for sj :=∑M
i=1 ki j n′i mod(ord gj ), b =

∏d
j=1 g

sj

j .
Here she may want to exploit the knowledge that a solution exists with 0 ≤ n′i ≤ B. So
consider the mapping

[0, B]M � (n1, . . . , nM) �→ (s1, . . . , sd), sj =
M∑

i=1

ki j ni mod(ord gi ).

The cardinality of the image of this mapping is bounded below by the number of possible
choices for sd , which is of the order of magnitude max{(B + 1)M , ord gd}.

For sample values of L , in Table 2 we give the average (Mave), minimum (Mmin) and
maximum (Mmax) values M(, L) (see Section 4.2); averages, etc., are taken over 500
negative discriminants of the form  = t2 − 4 · 2161 with t a randomly chosen odd
integer in the Hasse interval. In the columns for B(·) we indicate the least integer values
B such that (B + 1)M ≥ 268, for Mave, Mmin and Mmax.

These data show that L = 500 and B = 3, or L = 300 and B = 11 are suitable
choices for Algorithm 3 to hide the trapdoor curve effectively: an attacker is expected
to have to try about 268/2 candidates to retrieve Es, where the cost of each trial is at
least the cost of 16l2 elliptic curve operations, where l = max{li : n′i �= 0}. Thus, this
approach by far exceeds the cost of running a Pollard rho attack in Epb(F2161).

Table 2. Least values of B such that (B + 1)M > 268.

L Mave B(Mave) Mmin B(Mmin) Mmax B(Mmax)

300 30.0 4 19 11 41 3
500 46.4 2 34 3 60 2
700 61.4 2 44 2 77 1

1000 82.5 1 65 2 108 1
2000 149.6 1 122 1 175 1
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5.3. Searching I4 for a Curve Isogenous to Epb

The only method currently known to find an elliptic curve over F2161 with m(7) = 4 that
has a given number t of points is exhaustive search through I4: loop through all elements
b ∈ S (see Section 2.1) and check if E0,b(F2161) or its twist has the desired cardinality,
either by counting the number of points of E0,b over F2161 , or by testing for a random
point R ∈ E0,b(F2161) (and then again for R′ on the twisted curve) whether t R = OE0,b .

Under Assumption A, there exist h/268 elliptic curves in I4 isogenous to Epb. To find
one such curve, the expected number of b ∈ S that have to be considered is 2161/h.
With h < 283, this number is bounded below by 278. Given that the cost of point
counting over F2161 [10] still exceeds the cost of four elliptic curve operations in F2161 ,
finding a curve in I4 isogenous to Epb is at least as costly as performing 280 elliptic curve
operations.

6. Efficiency

Elliptic curve cryptosystems using curves over F2161 that were constructed as in Section
4 are just as efficient as cryptosystems using a randomly chosen curve over the same
field.

The only drawback of our system is that its set-up is somewhat more time-consuming
than just randomly choosing a cryptographically interesting curve over F2161 . The dom-
inant additional step in the construction of the trapdoor curve is the computation of
#Cl for a 163-bit discriminant . This computation, which usually has to be exe-
cuted just once, takes a few minutes on a Sun Ultra 60 Workstation using Jacobson’s
subexponential-time algorithm [14] (implemented in LiDIA). It is, however, infeasible
on small devices. The construction of the public curve from the trapdoor curve re-
quires the computation of the roots over F2161 of about 70 polynomials �l( j, X) when
L = 500, or about 165 polynomials �l( j, X) when L = 300, each of which requires
O(161l2) operations in F2161 . Using Magma on a Sun Ultra 60 Workstation, for each
�l( j, X) this takes between a few seconds and a couple of minutes for 3 ≤ l ≤ 500.
When L = 300, Algorithm 3 can be sped up by choosing B only after M is computed,
such that (B + 1)M > 268, which in most cases yields a significantly smaller value
of B.

Open Question. Is there an equivalent to the square-and-multiply algorithm to com-
pute in the isogeny class of an elliptic curve? This would be a means to speed up the
construction of public curves.

7. Other Suitable Parameter Choices for Trapdoor Systems

We now look for other fields F2N and GHS attack parameters that can be used in a
trapdoor construction. Let I denote a set of (isomorphism classes of) trapdoor curves
over F2N for which the GHS attack reduces the ECDLP to a HCDLP in the Jacobian of
a hyperelliptic curve of genus g = 2m−1(−1) over F2l , that is feasible, or at least much
faster to solve than the ECDLP and possibly feasible in the future. Let n = N/ l. Let
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J = log2(#I ). First we derive conditions on J such that the use of a public curve Epb

over F2N provides as much security as a randomly chosen cryptographically interesting
curve over F2N . For this, the following aspects enter the picture:

Running time of the Pollard rho method. Pollard’s rho algorithm for solving the
ECDLP in the subgroup of order r of E(F2N ) has an expected running time of (

√
πr)/2

elliptic curve additions (taking into account the speed-up by a factor of
√

2 due to the
“inverse-point method” [8], [31]). Since E is cryptographically interesting, r ≈ 2N−1

(taking into account that there is always a cofactor at least 2). We henceforth use
(
√
π2N−1)/2 = 2N/2−0.67··· to express the running time of Pollard’s rho algorithm.

Validity of Assumption A. Assumption A generalized toF2N means that an elliptic curve
over F2N randomly chosen from a given isogeny class has magic number m with prob-
ability 2J−(N+1), which can only be true if there is no distortion due to the N iso-
morphism classes of curves in I stemming from the power-2 Frobenius. That is, we
require that #I ≥ N · #ISOG, where #ISOG denotes the number of isogeny classes over
F2N , which is 2N/2+1 (taking into account that #E(F2N ) is always even). Thus, we need
J ≥ N/2+ log N + 1 for the equivalent of Assumption A to hold.

Cost to find a curve in I that is isogenous to Epb.

Case 1: Assumption A holds. Then we expect that I contains h · 2J−(N+1) curves
isogenous (over F2N ) to any given curve with discriminant. In other words, out of the
#I/2 elements b ∈ S (|S| = #I if n even) we expect to need to check 2N/h of them
until an isogenous curve is found. Each such check involves point counting for E0,b over
F2N [10], which we consider at least as costly as four elliptic curve operations over F2N .
Then the expected cost to find a curve isogenous to Epb in I exceeds the cost of the
Pollard rho algorithm if h < 2(N+5)/2. This bound, which is almost a formality given
that  ≤ 2N+2 and h ∼

√
, needs to be imposed when constructing the trapdoor

curve. No condition on #I arises in this case.

Case 2: Assumption A does not hold. For the benefit of the attacker we assume that
exhaustive search of I is possible, and that all b ∈ S that have been tested can be
stored along with their orbits under the power-2 Frobenius. Then for up to #I/(2N )
b-values (#I/N if n even) one needs to determine #E0,b(F2). This altogether requires
the equivalent of about 4#I/2N = 2J+1−log N elliptic curve operations. In order that this
cost exceeds the cost of Pollard rho we require J ≥ N/2+ log N − 1.67, a bound only
slightly lower than if we required Assumption A. Therefore we assume from now on
that J be chosen such that Assumption A holds.

Cost to reconstruct the trapdoor curve from the public curve. As soon as I is large
enough so that finding a curve in I isogenous to Epb is no easier than solving the ECDLP
in Epb(F2N ), we can always choose h,oc (when constructing the trapdoor curve) and
L , B (when constructing the public curve) large enough to guarantee the cost of recon-
structing Es from Epb exceeds the cost of Pollard rho.

Cost to find a curve in the isogeny class of Epb that is also in I . Under Assumption A,
it takes an expected 2N+1−J random walk steps in the isogeny class of Epb to encounter a
curve E ′ ∈ I . Each such step requires O(Nl2) operations in F2N , or the equivalent of at
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Table 3. Extension degrees N suitable for the trapdoor construction of this paper.

N n l m g J t F T TM ρ D

154 7 22 4 7 90 1 21 33 42 76 34
161 7 23 4 7 94 1 22 34 44 80 36
182 7 26 4 7 106 1 25 37 50 90 40
189 7 27 4 7 110 1 26 38 52 94 42
196 7 28 4 7 114 1 27 39 54 97 43

least Nl2/10 elliptic curve operations in Epb(F2N ), where l ∈ {3, . . . , L}, and L is large
enough so that Cl is generated by the split primes of norm≤ L and that a random walk
in the isogeny class is simulated. The average cost for each random walk step certainly
exceeds 90N elliptic curve operations (substituting l = 30). Thus, a lower bound for the
cost to find an isogenous curve that is in I is 2N+1−J+log N+6.5, which exceeds the cost
of Pollard rho if J ≤ N/2+ log N + 8.

Summing up, we obtain the following bounds on J = log #I :

N/2+ log N + 1 ≤ J ≤ N/2+ log N + 8. (2)

(Note that the lower bound on #I also ensures that there are plenty of cryptographically
interesting curves in I to choose from.) This leaves only a very small window for
#I . Also, only those values for N are suitable for which any other way of doing the
GHS attack (that is, using a different decomposition N = nl) either fails or yields
an algorithm faster than Pollard rho only for a negligible proportion of elliptic curves
over F2N .

Now, Table 3 lists the GHS attack parameters for all finite fields F2N (150 ≤ N ≤
600, N composite) that are possibly suitable for a trapdoor construction as presented
in this paper. These data were obtained as follows: Given N , for all divisors n of N
we determined those magic numbers m for which the Enge–Gaudry index calculus
algorithm in the resulting Jacobian of C/F2N/n of genus g = 2m−1(−1)with an optimally
chosen smoothness bound yields a running time faster than Pollard rho for E(F2N ). (The
smoothness bound t is the bound on the degree of the prime divisors that are included into
the factor base.) For each such m, we then determined the number #I of isomorphism
classes of curves over F2N with magic number m relative to n, and checked if (2) holds
for J = log #I . In Table 3, J has been rounded to the nearest integer. Moreover, the
entries for F , T , TM and ρ are the logarithms (base 2, rounded to the nearest integer) of
the factor base size F(t), the expected number T (t) of hyperelliptic curve operations in
the Enge–Gaudry algorithm, the maximum TM(t) of T (t) and L(t) = F(t)2 (L(t) is a
measure for the cost of the linear algebra step), and the expected number of elliptic curve
operations in Pollard’s rho method, respectively. D denotes the difference ρ−TM . Table
3 shows that only extension degrees N that are multiples of 7 are suitable. However,
as N increases, the size of I grows faster than the running time for Pollard rho, and
thus the problem of finding an isogenous curve with magic number 4 becomes too easy
quickly.
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8. Final Remark

As a by-product of this work, the following statements are immediate: (i) Any algorithm
to solve Problem P efficiently makes all curves over F2161 insecure. (ii) Any algorithm
to solve Problem P considerably faster than solving the ECDLP in Epb(F2161) makes
the field F2161 uninteresting for cryptographic applications. (iii) Any elliptic curve over
F2161 that is given to a user of an elliptic curve cryptosystem and is not explicitly meant
to be used in a trapdoor system must be generated provably at random, or otherwise is
suspicious of being constructed by Algorithm 3 or a variant thereof.
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Appendix

A. An Example

Using Algorithm 2, we constructed the curve Es,1 = Ea,b over F2161 = F2[z]/(z161 +
z18+1)where a = 0 and b = z152+ z143+ z139+ z136+ z135+ z133+ z130+ z125+ z124+
z122+ z120+ z119+ z118+ z117+ z116+ z114+ z113+ z112+ z110+ z109+ z106+ z105+
z103+ z102+ z101+ z99+ z97+ z96+ z92+ z91+ z88+ z87+ z86+ z85+ z81+ z78+ z77+
z76+ z75+ z73+ z71+ z69+ z68+ z67+ z66+ z63+ z59+ z58+ z53+ z51+ z50+ z49+
z48+ z46+ z45+ z44+ z42+ z38+ z34+ z

33+ z32+ z31+ z29+ z27+ z26+ z24+ z23+
z22+ z21+ z20+ z19+ z18+ z17+ z16+ z15+ z14+ z13+ z12+ z10+ z7+ z6+ z4+ z3+ z2.
This curve has magic number m(7) = 4, and on performing the GHS Weil descent attack
we obtain a hyperelliptic curve of genus g = 8. It has 4r points over F2161 , with r =
730750818665451459101841775429946272920385056109 prime. Its discriminant 
is squarefree, has 162 bits, and Cl = [1215497015372525105759490], with an 80-bit
odd cyclic part. Thus, Es,1 is a valid trapdoor curve.

We then used Algorithm 3 with L = 300 and B = 11. We found M = 28, and
constructed the public curve Epb,1 = Ea,b′ with a = 0 and b′ = z160 + z156 + z155 +
z153+z152+z151+z150+z149+z148+z147+z146+z145+z143+z142+z141+z130+z129+
z127+z126+z125+z124+z123+z120+z118+z112+z109+z104+z103+z102+z101+z99+
z98+z97+z96+z93+z92+z91+z90+z88+z85+z83+z77+z74+z70+z68+z65+z64+z63+
z62+z61+z60+z58+z57+z55+z50+z48+z45+z41+z38+z37+z36+z33+z31+z30+
z27+z26+z24+z23+z22+z21+z20+z19+z17+z16+z14+z13+z10+z8+z7+z4+z3+z.

B. A Challenge

Alice uses the public curve Epb,2 = Ea,b over F2161 = F2[z]/(z161 + z18 + 1), where
a = 1 and b = z160+ z158+ z155+ z152+ z151+ z150+ z149+ z148+ z147+ z144+ z142+
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z140+ z137+ z136+ z134+ z133+ z131+ z130+ z127+ z126+ z124+ z123+ z122+ z120+
z117+z114+z111+z109+z103+z102+z100+z99+z98+z95+z94+z90+z88+z86+z81+
z80+z79+z78+z77+z76+z75+z74+z65+z64+z57+z56+z54+z53+z52+z50+z46+
z45+z44+z40+z39+z37+z35+z33+z31+z30+z29+z28+z26+z23+z22+z21+z18+
z14 + z13 + z9 + z8 + z7 + z3 + z2 + 1. This curve has been constructed from a curve in
I4 using Algorithm 3 with L = 300 and B = 11. Epb,2(F2161) has group order 2r where
r = 1461501637330902918203684418527084399771825396431. Its discriminant 
has 163 bits and is squarefree, and Cl = [2 2 382272180083678181989678], with a
78-bit odd cyclic part.

Challenge: find a curve in I4 isogenous over F2161 to Epb,2.
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