
DOI: 10.1007/s00145-004-0218-8

J. Cryptology (2005) 18: 63–76

© 2004 International Association for
Cryptologic Research

Analysis of the Sliding Window Powering Algorithm

Henri Cohen
Laboratoire A2X,

U.M.R. 9936 du C.N.R.S., Université Bordeaux I,
351 Cours de la Libération,

33405 Talence Cedex, France

Communicated by Arjen Lenstra

Received 8 July 2002 and revised 9 June 2003
Online publication 16 March 2004

Abstract. We analyze precisely the parameters entering the sliding window powering
method, and apply this to the case of an elliptic curve over a large finite prime field.

Key words. Binary powering, Addition chain, Window method.

1. The Sliding Window Powering Method

Let G be a group, let g ∈ G, and let N be a positive integer. We want to compute gN

efficiently. Several issues enter into this problem, in particular the representation used
for the elements of G and the operations between them, and the addition or addition–
subtraction chain (if the inverse in G can be computed inexpensively) used for N . In this
paper we are mainly concerned with the latter problem.

If N is fixed and not too large, we can try to find the optimal addition or addition–
subtraction chain for N . However, if N is large or even if N is not too large but is allowed
to vary, this is not practical anymore and we must use reasonable approximations to the
optimal chain.

A first quite reasonable idea is the use of the very simple but efficient binary algorithm
(see [Kn] or [C]). Denote by D the cost of a squaring in G, by A the cost of a multiplication
in G, and let n = 1+ �log2 N� be the number of bits of N . The total cost of computing
gN by the binary algorithm is approximately equal to nD + (n/2)A. Note that we use
the letters D (for doubling) and A (for addition) as if the group was written additively,
because we reserve the use of the letters S (for squaring) and M (for multiplication) for
more basic operations such as base field operations if, for example, G is an elliptic curve
over a field.

It is well known that the binary algorithm can be improved by using base 2e for a
suitable e (see [P], [Y], or [C, Algorithm 1.2.4]). The idea is as follows: we write N in

63

64 H. Cohen

base 2e and we precompute g1, g3,. . . , g2e−1. If

N = (((xv2e + xv−1)2
e + xv−2)2

e + · · · + x1)2
e + x0,

with 0 ≤ xi < 2e, we compute gN by iterating operations of the form a ← a2e
gxi . If

xi = 2ki yi with yi odd, this is done by writing a← (a2e−ki gyi)2
ki , and since the gyi have

been precomputed, this requires e squarings and one multiplication in G. Thus the total
number of squarings in the computation of gN is still approximately equal to n (it is
in fact slightly less), but the total number of multiplications is now equal to 2e−1 + v.
Since v is approximately equal to n/e, we obtain a total computing cost of approximately
nD + (n/e + 2e−1)A.

It is clear that this becomes rapidly better than the binary algorithm. In fact, choosing
simply e = 3, we have n/3+ 4 < n/2 as soon as n ≥ 25. It is also not difficult to find
the optimal value of e for given n by minimizing the function n/e + 2e−1. A similar
analysis is valid if we allow additions and subtractions.

The above method, consisting essentially in looking at the bits of N through a window
of width e (some authors callw = e−1 the width of the window, but we stick to e here), is
naturally called the window method. A perhaps surprising fact (which will be included in
a future reprinting of [C]), is that there is a very easy modification of the window method
(which may be called the sliding window method) which leads to a better performance
with essentially no extra work. This method is based on the following lemmas.

Lemma 1.1. Let e ≥ 1. There exist a unique representation of N as

N = ((((xv2kv + xv−1)2
kv−1 + xv−2)2

kv−2 + · · · + x1)2
k1 + x0)2

k0 ,

satisfying 1 ≤ xi ≤ 2e − 1, xi odd, and ki ≥ e for i > 0.

When subtractions are also allowed, this lemma is modified as follows:

Lemma 1.2. Let e ≥ 1. There exist a unique representation of N as

N = ((((xv2kv + xv−1)2
kv−1 + xv−2)2

kv−2 + · · · + x1)2
k1 + x0)2

k0 ,

satisfying −2e−1 + 1 ≤ xi ≤ 2e−1 − 1, xi odd, xv > 0, and ki ≥ e for i > 0.

Both lemmas are easy to prove, and it is also easy to give algorithms for finding the
xi and ki .

The point of Lemmas 1.1 and 1.2 is that the number of group squarings and the
number of group multiplications during the precomputations will be the same, but on
the other hand a cursory analysis (see, for example, [CMO1]) shows that the average
order v of group multiplications during the main computation will be approximately
equal to n/(e + 1) instead of n/e. The purpose of this paper is to analyze precisely the
behavior of this sliding window algorithm (see also [Ko] and [MO]). The analysis is
useful also to analyze further more marginal improvements, such as the computation
of the initial quantity gNv−1 with Nv−1 = xv2kv + xv−1. Since the context in which this
problem appeared was the case where G is the group of points of an elliptic curve over a

Analysis of the Sliding Window Powering Algorithm 65

finite field, for which the cost of subtraction is identical to the cost of addition, we give
the detailed analysis for the addition–subtraction algorithm based on Lemma 1.2. The
analysis for the addition-only algorithm based on Lemma 1.1 is essentially identical, and
we only give the results.

2. Basic Mathematical Analysis

We fix a positive integer e (the window size), a positive integer n, and we let N range
uniformly among the integers having exactly n bits, in other words 2n−1 ≤ N < 2n . Let

N = ((((xv2kv + xv−1)2
kv−1 + xv−2)2

kv−2 + · · · + x1)2
k1 + x0)2

k0

be the unique representation of N given by Lemma 1.2, let d(N) = ∑
0≤i≤v ki be the

number of group squarings, and let a(N) = v be the number of group multiplications,
so that the cost of the sliding window algorithm is D (for the computation of g2) plus
(2e−2 − 1)A (for the computation of g3, g5,. . . , g2e−1−1) plus d(N)D + a(N)A (for the
main computation), hence in total a cost of

C(N) = (d(N)+ 1)D + (a(N)+ 2e−2 − 1)A.

We analyze the quantities d(N) and a(N) (and similar quantities) in turn. We first need
preliminary results on a special type of linear recurrence.

2.1. Analysis of the Recurrence 2u(n + e)− u(n + e − 1)− u(n) = 0

The purpose of this section is to prove the following proposition:

Proposition 2.1. Let u(n) be a sequence satisfying the linear recursion

2u(n + e)− u(n + e − 1)− u(n) = 0 for n ≥ 1.

Then there exists ρ > 1 such that as n→∞,

u(n) = 1

e + 1

(
2u(e)+

e−1∑
i=1

u(i)

)
+ O(ρ−n).

Proof. Let Pe(X) = 2Xe− Xe−1−1 be the characteristic polynomial of the recursion.
Note that Pe(1) = 0. Denote by α1 = 1, α2,. . . , αe the roots of Pe(X). We have the
following lemma.

Lemma 2.2. The αi are distinct, and for 2 ≤ i ≤ e we have |αi | < 1.

Proof. The roots of P ′e(X) are X = 0 and X = (e − 1)/(2e). Clearly, Pe(0) �= 0 so
0 is not a root of Pe(X), and Pe((e − 1)/(2e)) = −(1/e)((e − 1)/(2e))e−1 − 1 < 0,
so (e − 1)/(2e) is also not a root of Pe(X), hence all the roots of Pe(X) are simple and
the αi are thus distinct. Let us show that |αi | < 1 for i ≥ 2. Indeed, if |αi | > 1, then
|(2αi − 1)αe−1

i | > (2|αi | − 1) > 1. However, even if |αi | = 1, then |(2αi − 1)αe−1
i | =

|2αi − 1| and if we set αi = eiθ this is equal to
√

5− 4 cos(θ) which can be equal to 1
only if θ = 0, i.e., αi = 1, proving the lemma.

66 H. Cohen

Resuming the proof of the proposition, we deduce that there exist constants Ai such
that u(n) = A1+

∑
2≤i≤e Aiα

n
i , hence by the lemma u(n) = A1+ O(ρ−n) where ρ can

be taken to be equal to the inverse of the largest modulus of the αi for i > 1 (numerically
we have ρ = √2 = 1.414 . . . for e = 3, ρ = 1.2157 . . . for e = 4, and ρ = 1.1296 . . .
for e = 5).

It remains to compute the value of A1. To do this, we must solve the system of
equations

∑
1≤ j≤e Ajα

i
j = u(i) for 0 ≤ i ≤ e − 1, where even though the value of

u(0) may not be defined, we define it so as to satisfy the recursion, in other words we
set u(0) = 2u(e) − u(e − 1). The matrix of this system is the Vandermonde matrix
M = (mi, j) with mi, j = αi−1

j . The inverse of the Vandermonde matrix is well known
(see [Kn]) and is equal to M−1 = (ni, j) with

ni, j = [(α1 − X) · · · ̂(αi − X) · · · (αe − X)]j−1

(α1 − αi) · · · ̂(αi − αi) · · · (αe − αi)
,

wherêmeans that the corresponding term is omitted and [Q(X)]j−1 is the coefficient
of X j−1 in the polynomial Q(X).

Thus in particular we have the formula

A1 =
e∑

j=1

[(α2 − X) · · · (αe − X)]j−1

(α2 − α1) · · · (αe − α1)
u(j − 1).

Set Qe(X) = Pe(X)/(2(X − 1)). Then Qe(X) =
∏

2≤ j≤e(X − αj), and since α1 = 1,
we have

A1 =
e∑

j=1

Qe(X)j−1

Qe(1)
u(j − 1).

Now we easily check that

Qe(X) = Xe−1 + 1
2 (X

e−2 + · · · + 1)

so that Qe(X)j−1 = 1
2 for j ≤ e − 1 and Qe(X)j−1 = 1 for j = e. In addition,

Qe(1) = (e + 1)/2. Hence finally we obtain

A1 = 2

e + 1

(
u(e − 1)+ 1

2

e−1∑
j=1

u(j − 1)

)
= 1

e + 1

(
u(e − 1)+

e−1∑
j=0

u(j)

)
.

Replacing the (possibly artificial) u(0) by 2u(e)−u(e−1), we obtain the given formula.

Remark. It is easy to check that the recursion for u implies that the quantity

2u(e + k)+
e+k−1∑
i=k+1

u(i)

is independent of k.

Analysis of the Sliding Window Powering Algorithm 67

2.2. Analysis of d(N)

Set

fd(n) = 1

2n−2

∑
2n−1≤N<2n , N odd

d(N)

and

gd(n) = 1

2n−1

∑
2n−1≤N<2n

d(N).

These are the averages of d(N) on n-bit odd numbers and all n-bit numbers, respectively.
Although we are only interested in the function gd(n), the auxiliary function fd(n) will
be very useful.

First note the following. If 2n−1+e ≤ N < 2n+e is odd, we can write in a unique way
N = q2e + r with −2e−1 + 1 ≤ r ≤ 2e−1 − 1 odd, and we have either 2n−1 < q < 2n ,
or q = 2n and r < 0, or q = 2n−1 and r > 0. In addition, we have d(N) = d(q)+ e. It
follows that

2n+e−2 fd(n + e) = 2e−1
∑

2n−1<q<2n

(e + d(q))+ 2e−2(e + d(2n−1))+ 2e−2(e + d(2n))

= 2e−1

2n−1e +
∑

2n−1≤q<2n

d(q)

+ 2e−2

= 2e+n−2e + 2e−2 + 2e+n−2gd(n),

so that

fd(n + e) = gd(n)+ e + 2−n.

On the other hand, since an integer is either even or odd and d(2M) = d(M) + 1, we
have

2n−2 fd(n) =
∑

2n−1≤N<2n

d(N)−
∑

2n−2≤N<2n−1

(d(N)+ 1)

= 2n−1gd(n)− 2n−2gd(n − 1)− 2n−2

so that

fd(n) = 2gd(n)− gd(n − 1)− 1.

Replacing in the preceding recursion, we obtain the recursion involving only the function
gd(n), which is the one we are interested in:

2gd(n + e)− gd(n + e − 1)− gd(n) = 1+ e + 2−n.

This recurrence relation determines gd(n) entirely as soon as we know the values of
gd(1),. . . , gd(e). If N ≤ 2e−1−1 is odd, then d(N) = 0 hence fd(n) = 0 for n ≤ e−1.
Since clearly gd(1) = 0, the recursion 2gd(n) − gd(n − 1) − 1 = fd(n) = 0 for
2 ≤ n ≤ e − 1 implies that gd(n) = 1 − 21−n for 1 ≤ n ≤ e − 1. In addition, if
2e−1 < N < 2e is odd, then N = 1 · 2e + x0 with −2e−1 + 1 ≤ x0 ≤ −1 is the

68 H. Cohen

representation of Lemma 1.2, so that d(N) = e, hence fd(e) = e and so 2gd(e) =
fd(e)+ gd(e − 1)+ 1 = e + 1+ 1− 22−e, hence gd(e) = (e + 2)/2− 21−e.

We summarize what we have just proved in the following:

Lemma 2.3. If gd(n) is the average of the number d(N) of group squarings for n-bit
numbers, then gd(n) satisfies the recursion

2gd(n + e)− gd(n + e − 1)− gd(n) = 1+ e + 2−n

with the initial conditions gd(n) = 1−21−n for 1 ≤ n ≤ e−1 and gd(e) = (e+2)/2−
21−e.

We now solve this linear recurrence explicitly. If we set h(n) = gd(n)−n+2−n , then
h(n) satisfies the homogeneous recurrence 2h(n + e)− h(n + e − 1)− h(n) = 0 with
the initial conditions h(n) = 1−n−2−n for 1 ≤ n ≤ e−1 and h(e) = (2− e)/2−2−e.

It follows from Proposition 2.1 that the solution h(n) to our recurrence relation satisfies
h(n) = A + O(ρ−n) for some ρ > 1, with

(e + 1)A = 2− e − 21−e +
e−1∑
j=1

(1− j − 2− j) = −e(e − 1)

2

so that we have proved:

Proposition 2.4. Let gd(n) be the average of the number d(N) of group squarings on
n-bit numbers. There exists a real number ρ > 1 such that

gd(n) = n − e(e − 1)

2(e + 1)
+ O(ρ−n).

2.3. Analysis of a(N)

The analysis will be very similar to that of d(N), so we can be quite brief. Set

fa(n) = 1

2n−2

∑
2n−1≤N<2n , N odd

a(N)

and

ga(n) = 1

2n−1

∑
2n−1≤N<2n

a(N).

These are the averages of a(N) on n-bit odd numbers and all n-bit numbers, respectively.
Since a(2M) = a(M) we immediately obtain the relation 2n−2 fa(n) = 2n−1ga(n)−

2n−2ga(n−1) so fa(n) = 2ga(n)− ga(n−1). On the other hand, we have a(q2e+r) =
a(q) + 1 and a(r) = 0 for −2e−1 + 1 ≤ r ≤ 2e−1 − 1, r odd. It follows by writing
N = q2e + r that

2n+e−2 fa(n + e) = 2e−1
∑

2n−1<q<2n

(a(q)+ 1)+ 2e−2(1+ a(2n−1))+ 2e−2(1+ a(2n))

= 2e−1(2n−1 + 2n−1ga(n))+ 2e−2(a(2n)− a(2n−1))

= 2e+n−2(1+ ga(n)),

Analysis of the Sliding Window Powering Algorithm 69

so that fa(n+ e) = ga(n)+1. Combining with the other formula that we have obtained,
this gives the recursion 2ga(n + e)− ga(n + e − 1)− ga(n) = 1.

On the other hand, ga(n) = 0 for 1 ≤ n ≤ e − 1, while fa(e) = 1 so ga(e) = 1
2 . We

have thus proved:

Lemma 2.5. If ga(n) is the average of the number a(N) of group multiplications for
n-bit numbers, then ga(n) satisfies the recurrence relation 2ga(n+ e)− ga(n+ e− 1)−
ga(n) = 1 with the initial conditions ga(n) = 0 for 1 ≤ n ≤ e − 1 and ga(e) = 1

2 .

To solve this recursion, we set h(n) = ga(n) − n/(e + 1), so that h(n) satisfies the
homogeneous recurrence relation 2h(n + e)− h(n + e− 1)− h(n) = 0 with the initial
conditions h(n) = −n/(e + 1) for 1 ≤ n ≤ e − 1 and h(e) = 1

2 − e/(e + 1). Applying
Proposition 2.1, this gives:

Proposition 2.6. Let ga(n) be the average of the number a(N) of group multiplications
on n-bit numbers. There exists a real number ρ > 1 such that

ga(n) = n

e + 1
− (e − 1)(e + 2)

2(e + 1)2
+ O(ρ−n).

Corollary 2.7. The average cost of computing gN for an n-bit number N using the
addition–subtraction chain coming from Lemma 1.2 is approximately equal to

C(N) =
(

n + 1− e(e − 1)

2(e + 1)

)
D +

(
2e−2 − 1+ n

e + 1
− (e − 1)(e + 2)

2(e + 1)2

)
A.

We will see below a more precise estimate in the case of elliptic curves.

2.4. Analysis of xv(N)

Let z be an odd integer such that 1 ≤ z < 2e−1. We want to estimate the probability
that the leading coefficient xv is equal to z. Contrary to what intuition could suggest,
this probability is not even close to being uniformly distributed among all values of z. In
fact, we will find the well-known phenomenon that the initial digit of a number is more
often equal to 1 than to any other digit, in an appropriate sense.

Denote by fx,z(n) (resp., gx,z(n)) the average of δz(N) on all odd (resp., all) n-bit
numbers N , in other words

Proposition 2.8. Let fx,z(n) be the probability that the leading coefficient xv(N) be
equal to an odd number z for n-bit numbers. There exists a real number ρ > 1 such that

fx,z(n) =

3

e + 1
+ O(ρ−n) if z = 1,

1

2m−2(e + 1)
+ O(ρ−n) if z has exactly m bits with m ≥ 2.

70 H. Cohen

In particular, the probability that xv(N) has one bit is equal to 3/(e + 1) + O(ρ−n)

while the probability that xv(N) has exactly m bits is equal to 1/(e + 1)+ O(ρ−n) for
m ≥ 2.

Proof. For simplicity of notation, define δz(N) = 1 if xv(N) = z and δz(N) = 0
otherwise. We have therefore

fx,z(n) = 1

2n−2

∑
2n−1≤N<2n , N odd

δz(N) and gx,z(n) = 1

2n−1

∑
2n−1≤N<2n

δz(N).

Since δz(2k) = δz(k) we immediately obtain the relation

2n−2 fx,z(n) = 2n−1gx,z(n)− 2n−2gx,z(n − 1),

hence fx,z(n) = 2gx,z(n)−gx,z(n−1). On the other hand for q > 0 we have δz(q2e+r) =
δz(q), hence it follows by writing N = q2e + r with r as above that

2n+e−2 fx,z(n + e) = 2e−1
∑

2n−1<q<2n

δz(q)+ 2e−2 + 2e−2

= 2e−1
∑

2n−1≤q<2n

δz(q)

= 2e+n−2gx,z(n),

so that fx,z(n+ e) = gx+z(n). Combining with the other formula that we have obtained,
this gives the recursion 2gx,z(n + e)− gx,z(n + e − 1)− gx,z(n) = 0.

We now consider two cases.

Case 1: z = 1. Then we have δz(r) = 0 for 3 ≤ r < 2e−1, r odd, δz(1) = 1, and
δz(r) = 1 for 2e−1 < r < 2e, r odd. Thus, fx,z(1) = 1, fx,z(n) = 0 for 2 ≤ n ≤ e − 1,
fx,z(e) = 1, hence gx,z(n) = 1/2n−1 for 1 ≤ n ≤ e − 1, while gx,z(e) = 1/2+ 1/2e−1.

Using Proposition 2.1, we obtain that for z = 1 the average of δz(N) on n-bit numbers
is equal to 3/(e + 1)+ O(ρ−n) for some ρ > 1.

Case 2: z > 1. Let m be the number of bits of z, so that 2m−1 ≤ z < 2m . We have
2 ≤ m ≤ e − 1. Then δz(r) = 0 for 1 ≤ r < 2e, r odd, except for r = z. Thus,
fx,z(n) = 0 for 1 ≤ n ≤ e, n �= m, and fx,z(m) = 1/2m−2, hence gx,z(n) = 0 for
n < m − 1, gx,z(n) = 1/2n−1 for m ≤ n ≤ e. Using Proposition 2.1, we obtain that
for 2m−1 ≤ z < 2m , 2 ≤ m ≤ e − 1, the average of δz(N) on n-bit numbers is equal to
1/(2m−2(e + 1))+ O(ρ−n) for some ρ > 1.

2.5. Analysis of s(N)

For a fine analysis of the window method, we must also know the average number of±1
among the xi (N). Thus, we let

s(N) =
∑

0≤i≤v, xi (N)=±1

1

Analysis of the Sliding Window Powering Algorithm 71

be the number of ±1 in N .

fs(n) = 1

2n−2

∑
2n−1≤N<2n , N odd

s(N)

and

gs(n) = 1

2n−1

∑
2n−1≤N<2n

s(N).

Since s(2k) = s(k) we immediately obtain the relation 2n−2 fs(n) = 2n−1gs(n) −
2n−2gs(n − 1), so fs(n) = 2gs(n)− gs(n − 1).

To simplify notation, set δ(r) = 1 if r = ±1, δ(r) = 0 otherwise. Then s(q2e + r) =
s(q)+ δ(r) and s(r) = δ(r) for 1 ≤ r < 2e−1, r odd, s(r) = 1 for 2e−1 < r ≤ 2e − 3,
r odd, and s(2e − 1) = 2. It follows by writing N = q2e + r that

2n+e−2 fs(n + e) =
∑

−2e−1<r<2e−1, odd

∑
2n−1<q<2n

(s(q)+ δ(r))

+
∑

1≤r<2e−1, odd
(1+ δ(r))+

∑
−2e−1<r≤−1, odd

(1+ δ(r))

=
∑

−2e−1<r<2e−1, odd

∑
2n−1≤q<2n

(s(q)+ δ(r))

= 2e+n−2gs(n)+ 2n,

so that fs(n + e) = gs(n) + 1/2e−2. Combining with the other formula that we have
obtained, this gives the recursion 2gs(n + e)− gs(n + e − 1)− gs(n) = 1/2e−2.

On the other hand, fs(1) = 2, fs(n) = 0 for 2 ≤ n ≤ e − 1, fs(e) = 1+ 1/2e−2, so
gs(n) = 1/2n−1 for 1 ≤ n ≤ e − 1 and gs(e) = 1/2+ 1/2e−2. We have thus proved:

Lemma 2.9. If gs(N) is the average number of ±1 for n-bit numbers, then gs(N)
satisfies the recurrence relation 2gs(n + e)− gs(n + e− 1)− gs(n) = 1/2e−2 with the
initial conditions gs(n) = 1/2n−1 for 1 ≤ n ≤ e − 1 and gs(e) = 1/2+ 1/2e−2.

To solve this recursion, we set h(n) = gs(n)− n/(2e−2(e+ 1)), so that h(n) satisfies
the homogeneous recurrence relation 2h(n + e) − h(n + e − 1) − h(n) = 0 with the
initial conditions h(n) = 1/2n−1 − n/(2e−2(e + 1)) for 1 ≤ n ≤ e − 1 and h(e) =
1/2+ 1/(2e−2(e + 1)). Applying Proposition 2.1, we finally obtain:

Proposition 2.10. The average number of xi (N) = ±1 for n bit numbers is equal to

n

2e−2(e + 1)
+ 3

e + 1
− (e − 1)(e + 2)

2e−1(e + 1)2
+ O(ρ−n)

for some ρ > 1.

Since we have proved in the preceding section that the probability that xv(N) = 1 is
equal to 3/(e + 1) (xv(N) = −1 is not possible), we obtain:

72 H. Cohen

Corollary 2.11. The average number of xi (N) = ±1 among the xi (N) for 0 ≤ i ≤
v − 1 for n bit numbers is equal to

n

2e−2(e + 1)
− (e − 1)(e + 2)

2e−1(e + 1)2
+ O(ρ−n)

for some ρ > 1.

Since we may choose two among the 2e−1 possible digits, we see that this time intuition
does not fool us, since the value given above is (up to O(ρ−n)) exactly equal to the average
number of group multiplications given in Proposition 2.6 divided by 2e−2.

2.6. The Case of the Addition-Only Window Method

In this section we give the corresponding results for the addition-only method using the
representation of Lemma 1.1 instead of Lemma 1.2. The proofs are essentially identical
to the addition/subtraction case so are omitted.

Proposition 2.12. In the case of the addition-only method, there exists ρ > 1 such
that:

(1) The average number gd(n) of group squarings is equal to

gd(n) = n − e2 + e + 2

2(e + 1)
+ O(ρ−n).

(2) The average number of group multiplications is equal to

ga(n) = n

e + 1
− e(e + 3)

2(e + 1)2
+ O(ρ−n).

(3) The probability fx,z(n) that the leading coefficient xv(N) is equal to an odd
number z for n-bit numbers is equal to

fx,z(n) = 1

2m−2(e + 1)

if z has exactly m bits, with 1 ≤ m ≤ e. In particular, the probability that xv(N)
has one bit is equal to 2/(e + 1) while the probability that xv(N) has exactly m
bits is equal to 1/(e + 1) for 2 ≤ m ≤ e.

(4) The average number of xi = 1 for n bit numbers is equal to

n

2e−1(e + 1)
+ 2

e + 1
− e(e + 3)

2e(e + 1)2
+ O(ρ−n).

3. Application to Elliptic Curve Exponentiation

In [CMO2], we have presented an improved method for elliptic curve exponentiation
using the sliding window method together with two new ideas: the use of a new modified

Analysis of the Sliding Window Powering Algorithm 73

coordinate system J m , and the use of mixed coordinates for a single computation. In
the present section we use the results of the preceding section together with the results
of [CMO2] to analyze the method precisely.

Let Fp be a finite prime field, where p is assumed to be large (for example, at least 96
bits), and let E be an elliptic curve over Fp whose affine equation is

y2 = x3 + ax + b.

Apart from the choice of affine coordinates, denoted A, we also use the Jacobian
coordinates (x, y, z) corresponding to the affine point (x/z2, y/z3)when z �= 0, denoted
J , and the modified Jacobian coordinates (x, y, z, az4) with the same meaning but with
an extra component, denoted J m (in [CMO2] we also considered ordinary projective
coordinates and Chudnovsky Jacobian coordinates, but they are not useful in practice).

3.1. The Ordinary Horner Scheme

The strategy given in [CMO2] is the following, assuming reasonable practical hypotheses
about the respective times for inversion I , multiplication M , and squaring S in the base
field Fp.

Let P be a point on E given in affine coordinates. To simplify the analysis, we assume
that we are in a generic situation so that no point encountered during the computation is
the point at infinity. This is of course highly likely since the prime p has been assumed
large.

To compute N · P for some large integer N using the base 2e sliding window repre-
sentation, we first precompute 2P in affine coordinates, then the points x · P in affine
coordinates for 3 ≤ x ≤ 2e−1 − 1, x odd by 2e−2 − 1 additions in affine coordi-
nates. Since, with evident notations, we have t (A ← A + A) = I + 2M + S and
t (A← 2A) = I + 2M + 2S, the precomputations require a time T1 given by

T1 = S + 2e−2(I + 2M + S).

For the main computation, we use Horner’s scheme on the representation

N = ((((xv2kv + xv−1)2
kv−1 + xv−2)2

kv−2 + · · · + x1)2
k1 + x0)2

k0

given by Lemma 1.2. Thus, if we set

Nj = ((xv2kv + xv−1)2
kv−1 + · · · + xj+1)2

kj+1 + xj ,

and Pj = Nj · P , we initialize Pv ← xv · P and we set for j = v − 1, . . . , j = 0,

Pj ← 2kj+1 · Pj+1 + xj · P

and the final result is

N · P = 2k0 · P0.

The computation of Pj ← 2kj+1 · Pj+1 + xj · P is performed as follows. By induction
Pj+1 will be in the modified Jacobian coordinates J m . The kj+1 − 1 doublings will be
done using these coordinates, while the last such doubling will use these coordinates

74 H. Cohen

but give the result in ordinary Jacobian coordinates. The following times are taken from
[CMO2]:

t (J m ← 2J m) = 4M + 4S,

t (J ← 2J m) = 3M + 4S,

t (J m ← 2A) = 3M + 4S,

t (A← 2J m) = I + 6M + 5S,

t (J m ← J +A) = 9M + 5S,

t (J m ← A+A) = 5M + 4S,

t (A← J +A) = I + 11M + 4S.

Thus the computation of Pj ← 2kj+1 · Pj+1+ xj · P for 1 ≤ j ≤ v− 2 requires a time
t2, j given by

t2, j = kj+1(4M + 4S)+ 8M + 5S.

For j = 0, the time is given by the same formula of k0 > 0, but we can subtract M+2S if
k0 = 0 since we need the result only in Jacobian, but not modified Jacobian, coordinates.

For j = v−1, 2P has already been computed, in affine coordinates, so the computation
time is

t2,v−1 = kv(4M + 4S)+ 3M + S.

Finally, assuming we want the result in affine coordinates, the final k0 doublings require
the time for conversion from Jacobian to affine if k0 = 0, that is, I + 3M + S, and
otherwise time

t2,−1 = k0(4M + 4S)+ I + 2M + S.

Thus, the time for Horner’s scheme is

T2 =
(∑

0≤ j≤v
kj

)
(4M + 4S)+ I + v(8M + 5S)− 3M − (3+ 2δ(k0)S),

where δ(x) is the Kronecker symbol equal to 0 except when x = 0 for which it is equal
to 1.

Using the notation used in the preceding section, this can be written

T2(N) = d(N)(4M + 4S)+ I + a(N)(8M + 5S)− 3M − (3+ 2δ(k0)S).

Since the probability for k0 = 0 is equal to 1
2 (no need for a detailed analysis for that),

we deduce from Section 2 that the average of T2(N) over integers N having exactly n
bits is approximately equal to(

n − e(e − 1)

2(e + 1)

)
(4M + 4S)+

(
n

e + 1
− (e − 1)(e + 2)

2(e + 1)2

)
(8M + 5S)+ I − 3M − 4S.

Analysis of the Sliding Window Powering Algorithm 75

3.2. Horner’s Scheme with Initialization

As already mentioned, it is possible to improve slightly on the first step of Horner’s
scheme. For example, if xv = 1 and kv = e, instead of computing 2kv · P which requires
kv doublings, we can simply compute 2 · (P + (2e−1 − 1)P) which requires only one
doubling and one addition, since (2e−1 − 1)P has been precomputed. This is especially
attractive since by the results of Section 2 we know that xv will be equal to 1 with high
probability.

We could very precisely write the optimal addition chain to choose for the initialization
step. Since the gain would be minimal (less than M), we will be content with the following
approximation to optimality.

If 2m−1 ≤ xv < 2m , in other words if xv has exactly m bits, with 1 ≤ m ≤ e − 1, we
compute Pv−1 ← xv2kv · P in ordinary Jacobian coordinates by using the identity

xv2
kv = 2kv−(e−m)((2e−1 − 1)+ (xv2e−m + 1− 2e−1)).

Since 2m−1 ≤ xv ≤ 2m − 1 and m ≤ e − 1, we have

1 ≤ xv2
e−m + 1− 2e−1 ≤ 2e−1 − 2e−m + 1 ≤ 2e−1 − 1,

so the computation of xv2kv using this method requires only kv − (e−m) doublings and
one addition, giving a gain of e − m doublings minus one addition.

More precisely, the usual method for computing xv2kv · P giving the result in ordinary
Jacobian coordinates requires time (kv−1)(4M+4S)−2M since 2P has been computed.

The above method requires time (kv − e + m + 1)(4M + 4S). The improvement is
thus equal to (e − m − 2)(4M + 4S) − 2M , so should be used when m ≤ e − 3. In
particular, there is no possible gain when e ≤ 3.

It is easy to compute the average gain when e ≥ 4: by Proposition 2.8, we have xv = 1
with probability 3/(e+1) and xv has m bits with probability 1/(e+1) for 2 ≤ m ≤ e−1.
Since we use this method only for m ≤ e−3, a small computation shows that the average
gain is equal to

2

e + 1
((e2 − 2e − 5)M + (e2 − e − 6)S).

3.3. Using Montgomery’s Trick

There is still another trick which can be used to speed up the computation. This is the use
of a variant of Montgomery’s method for computing simultaneous inverses, applied to the
precomputations which are necessary in the window method for elliptic curves. Recall
that if k inversions modulo p are to be performed simultaneously, using Montgomery’s
method we may compute a single inverse modulo p at the cost of 3(k−1)multiplications
(see, for example, Algorithm 10.3.4 of [C]).

As explained above, we first compute 2P in affine coordinates. However, now we
compute simultaneously 3P = 2P + P and 4P = 2P + 2P (still in affine coordinates)
using Montgomery’s idea, then simultaneously 5P = 4P + P , 7P = 4P + 3P , 8P =
4P + 4P , and so on until (2e−2 + 1)P = 2e−2 P + P ,. . . , (2e−1 − 1)P = 2e−2 P +
(2e−2−1)P and we do not compute 2e−1 P . Although we compute the apparently useless

76 H. Cohen

quantities 4P , 8P ,. . . , 2e−2 P , a short calculation shows that the time for computing x ·P
for x odd, 3 ≤ x ≤ 2e−1 − 1, using this method is equal to

(e − 1)I + (5 · 2e−2 + 2e − 12)M + (2e−2 + 2e − 5)S

when e ≥ 3. For example, with e = 5 this gives 4I + 38M + 13S, compared with
T1 = 8I + 16M + 9S using the ordinary method, and this is almost always faster since
I is much larger than M .

References

[C] H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics,
vol. 138, Springer-Verlag, Berlin, 1993.

[CMO1] H. Cohen, A. Miyaji, and T. Ono, Efficient elliptic curve exponentiation, Proceedings ICICS ’97,
Lecture Notes in Computer Science, vol. 1334, Springer-Verlag, Berlin, 1997, pp. 282–290.

[CMO2] H. Cohen, A. Miyaji, and T. Ono, Efficient elliptic curve exponentiation using mixed coordinates,
Proceedings ASIACRYPT ’98, Lecture Notes in Computer Science, vol. 1514, Springer-Verlag, Berlin,
1998, pp. 51–65.

[Kn] D. Knuth, The Art of Computer Programming, vol. II, third edition, Addison-Wesley, Reading, MA,
1997.

[Ko] C. Koc, Analysis of sliding window techniques for exponentiation.
[MO] F. Morain and J. Olivos, Speeding up the computations on an elliptic curve using addition–subtraction

chains, 1990.
[P] N. Pippenger, On the evaluation of powers and monomials, SIAM J. Comput., 9 (1980), 230–250.
[Y] A. Yao, On the evaluation of powers, SIAM J. Comput., 5 (1976), 100–103.

