
DOI: 10.1007/s00145-004-0215-y

J. Cryptology (2005) 18: 91–110

© 2004 International Association for
Cryptologic Research

An Improved Pseudo-Random Generator Based on the
Discrete Logarithm Problem∗

Rosario Gennaro
IBM T.J.Watson Research Center, P.O. Box 704,

Yorktown Heights, NY 10598, U.S.A.
rosario@watson.ibm.com

Communicated by Matthew Franklin

Received 17 June 2002 and revised 13 July 2003
Online publication 28 September 2004

Abstract. Under the assumption that solving the discrete logarithm problem modulo
an n-bit safe prime p is hard even when the exponent is a small c-bit number, we
construct a new pseudo-random bit generator. This new generator outputs n− c−1 bits
per exponentiation with a c-bit exponent and is among the fastest generators based on
hard number-theoretic problems.

Key words. Pseudorandomness, Discrete logarithm.

1. Introduction

Many (if not all) cryptographic algorithms rely on the availability of some form of
randomness. However, perfect randomness is a scarce resource. Fortunately, for almost
all cryptographic applications, it is sufficient to use pseudo-random bits, i.e. sources of
randomness that “look” sufficiently random to the adversary.

This notion can be made more formal. The concept of cryptographically strong pseudo-
random bit generators (PRBGs) was introduced in papers by Blum and Micali [5] and
Yao [35]. Informally a PRBG is cryptographically strong if it passes all polynomial-time
statistical tests or, in other words, if the distribution of sequences output by the generator
cannot be distinguished from truly random sequences by any polynomial-time judge.

Blum and Micali [5] presented the first cryptographically strong PRBG under the
assumption that modular exponentiation modulo a prime p is a one-way function. This
breakthrough result was followed by a series of papers that culminated in [12] where it
was shown that secure PRBGs exists if any one-way function does.

∗ A preliminary version of this paper appeared in the Proceedings of CRYPTO 2000 [9]. The main differences
between the two versions are summarized in Section 1.3.

91



92 R. Gennaro

To extract a single pseudo-random bit, the Blum–Micali generator requires a full
modular exponentiation in Z∗p. This was improved by Long and Wigderson [22] and
Peralta [26], who showed that up to O(log log p) bits could be extracted by a single
iteration (i.e. a modular exponentiation) of the Blum–Micali generator. Håstad et al.
[15] show that if one considers discrete-log modulo an n-bit composite then almost n/2
pseudo-random bits can be extracted per modular exponentiation.

Better efficiency can be gained by looking at the quadratic residuosity problem in Z∗N
where N is a Blum integer (i.e. the product of two primes of identical bitsize and both
≡ 3 mod 4.) Under this assumption, Blum et al. [4] construct a secure PRBG for which
each iteration consists of a single squaring in Z∗N and outputs a pseudo-random bit. Alexi
et al. [2] showed that one can improve this to O(log log N ) bits and rely only on the
intractability of factoring as the underlying assumption. Up to this date, this is the most
efficient provably secure PRBG based on number-theoretic assumptions.

In [25] Patel and Sundaram (using ideas already present in [15]) propose a very
interesting variation on the Blum–Micali generator. They consider the following variation
of the discrete log problem: they assume that it is hard to solve the discrete log problem
modulo an n-bit prime p even when the exponent is small (say only c bits long with
c < n); we call this the Discrete Log with Short Exponents Assumption. They show then,
that it is possible to extract up to n − c − 1 bits from one iteration of the Blum–Micali
generator. However, the iterated function of the generator itself remains the same, which
means that one gets n− c−1 bits per full modular exponentiations. Patel and Sundaram
left open the question whether it was possible to modify their generator so that each
iteration consisted of an exponentiation with a small c-bit exponent. We answer their
question in the affirmative.

1.1. Our Contribution

We show that it is possible to construct a high-rate discrete-log-based secure PRBG. Un-
der the Discrete Log with Short Exponents Assumption considered in [25], we present a
generator that outputs n−c−1 bits per iteration, which consists of a single exponentiation
with a c-bit exponent.

The basic idea of the new scheme is to show that if the function f : {0, 1}c −→ Z∗p
defined as f (x) = gx mod p is a one-way function, then it also has strong pseudo-
randomness properties over Z∗p. In particular, it is possible to think of it as pseudo-random
generator itself. By iterating the above function and outputting the appropriate bits, we
obtain an efficient PRBG.

Another attractive feature of this generator (which is shared by the Blum–Micali and
Patel–Sundaram generators as well) is that all the exponentiations are computed over a
fixed basis, and thus precomputation tables can be used to speed them up.

Using typical parameters n = 1024 and c = 160 we obtain roughly 860 pseudo-
random bits per 160-bit exponent exponentiations. Higher parameters must be considered
if one takes into account a “concrete security analysis” which includes the security
degradation which is brought about by the security proof. Interestingly, the rate of our
generator (i.e. the number of output bits per modular multiplication) increases as the
parameters go up. However, the overall efficiency does not since the cost of modular
multiplications increases as parameters go up, but, overall, the decrease in efficiency



An Improved Pseudo-Random Generator 93

is much slower than in previously known generators (since the increase in the rate
compensates, in part, for the increase in the cost of multiplications). The efficiency of
the generator can be greatly increased by using a precomputation scheme such as the
one proposed in [21]. See Section 4 for a detailed discussion of these points.

The same technique can be used to speed up the generator proposed in [15], by a factor
of roughly 2, under the assumption that factoring is hard.

1.2. Other Related Work

Micali and Schnorr in [23] consider functions f : {0, 1}n −→ {0, 1}n with the follow-
ing property: when f is fed with a random input from {0, 1}c (with c < n), then the
resulting distribution is computationally indistinguishable from the uniform distribution
over {0, 1}n . Then clearly f can be immediately used as a pseudo-random generator:
choose x = x1 · · · xn at random in {0, 1}n , output the top n− c bits and iterate by setting
x := f (x1 · · · xc).

Micali and Schnorr do not present any function which can be proven to have this
property under some standard cryptographic assumption. Thus they specifically make
this assumption about known cryptographic functions (like RSA or discrete log).

The idea behind our generator is similar to [23], but we are able to provably demonstrate
that this property of the discrete log function with small exponents follows from the much
weaker assumption of its one-wayness.

Håstad and Naslund in [14] consider pseudo-random generators based on symmet-
ric cryptographic primitives (such has block ciphers). The constructions in [14] are
thoroughly analyzed and their security can be proven under some pseudo-randomness
assumption on the underlying primitives. The constructions are very efficient and clearly
beat number-theoretic constructions, such as ours.

Independently from our work, Goldreich and Rosen [10] noticed the improvement by
a factor of 2 to the generator proposed in [15].

1.3. Editorial Note

This paper is a revised version of [9]. In that version no mention was made of an attack
on the discrete log problem with short exponents which was discovered by van Oorschot
and Wiener in [33]. In order to avoid their attack it is sufficient to restrict the class of
prime moduli to safe primes (i.e. primes p such that (p − 1)/2 is also a prime.) This was
not specified in [9] and we correct it in this version. See Section 2.3 for the technical
details.

The current version also differs in the treatment of the “concrete security analysis” of
the generator (Section 4) and in the details of the security proofs.

1.4. Organization

The paper is organized as follows. In Section 2 we summarize notations, definitions and
prior work. Section 3 presents the main contribution of our paper, the new generator and
its security proof. In Section 4 we discuss the efficiency of our construction compared
with other generators in the literature.



94 R. Gennaro

2. Preliminaries

In this section we summarize notations, definitions and prior work which is relevant to
our result. In the following we denote with {0, 1}n the set of n-bit strings. If x ∈ {0, 1}n
then we write x = xn xn−1 · · · x1 where each xi ∈ {0, 1}. If we think of x as an integer
then we have x =∑i xi 2i−1 (that is, xn is the most significant bit). With Rn we denote
the uniform distribution over {0, 1}n .

2.1. Pseudo-Random Number Generators

Let Xn, Yn be two arbitrary probability ensembles over {0, 1}n . In the following we denote
with x ← Xn the selection of an element x in {0, 1}n according to the distribution Xn ,
and with ProbXn [x] we denote the probability of such an event.

We say that Xn and Yn have statistical distance bounded by �(n) if the following
holds: ∑

x∈{0,1}n
|ProbXn [x]− ProbYn [x]| ≤ �(n).

We say that Xn and Yn are statistically indistinguishable if for every polynomial P(·)
and for sufficiently large n we have that

�(n) ≤ 1

P(n)
.

We say that Xn and Yn are computationally indistinguishable (a concept introduced
in [11]) if any polynomial-time machine cannot distinguish between samples drawn
according to Xn or according to Yn . More formally:

Definition 1. Let Xn, Yn be two families of probability distributions over {0, 1}n . Given
a Turing machine D consider the following quantities:

δD,Xn = Prob[x ← Xn; D(x) = 1],

δD,Yn = Prob[y ← Yn; D(y) = 1].

We say that Xn and Yn are computationally indistinguishable if for every probabilistic
polynomial time D, for every polynomial P(·) and for sufficiently large n we have that

|δD,Xn − δD,Yn | ≤
1

P(n)
.

We now move on to define pseudo-random number generators [5], [35]. There are sev-
eral equivalent definitions, but the following one is sufficient for our purposes. Consider
a family of functions

Gn: {0, 1}kn −→ {0, 1}n,
where kn < n. Gn induces a family of probability distributions (which we denote with
Gn) over {0, 1}n as follows:

ProbGn [y] = Prob[y = Gn(s); s ← Rkn ].



An Improved Pseudo-Random Generator 95

Definition 2. We say that Gn is a cryptographically strong (or secure) PRBG if the
function Gn can be computed in polynomial time and the two families of probability
distributions Rn and Gn are computationally indistinguishable.

The input of a pseudo-random generator is usually called the seed.

2.2. Pseudo-Randomness over Arbitrary Sets

Let An be a family of sets such that for each n we have 2n−1 ≤ |An| < 2n (i.e. we need
n bits to describe elements of An). We denote with Un the uniform distribution over An .
Also let kn be a sequence of numbers such that for each n, kn < n. Consider a family of
functions

AGn: {0, 1}kn −→ An.

AGn induces a family of probability distributions (which we denote with AGn) over An

as follows:

ProbAGn [y] = Prob[y = AGn(s); s ← Rkn ].

Definition 3. We say that AGn is a cryptographically strong (or secure) pseudo-random
generator over An if the function AGn can be computed in polynomial time and the two
families of probability distributions Un and AGn are computationally indistinguishable.

A secure pseudo-random generator over An is already useful for applications in which
one needs pseudo-random elements of that domain. Indeed, no adversary will be able
to distinguish if y ∈ An was truly sampled at random or if it was computed as AGn(s)
starting from a much shorter seed s. An example of this is to consider An to be Z∗p for an
n-bit prime number p. If our application requires pseudo-random elements of Z∗p then
such a generator would be sufficient.

However, as bit generators it may not be secure, since if we look at the bits of an
encoding of the elements of An , then their distribution may be biased. This, however, is
not going to be a problem for us since we use pseudo-random generators over arbitrary
sets as a tool in the proof of our main pseudo-random bit generator.

2.3. The Discrete Logarithm Problem

Let p be a prime. We denote with n the binary length of p. It is well known that
Z∗p = {x : 1 ≤ x ≤ p − 1} is a cyclic group under multiplication mod p. Let g be a
generator of Z∗p. Thus the function

f : Zp−1 −→ Z∗p,

f (x) = gx mod p

is a permutation. The inverse of f (called the discrete logarithm function) is conjectured
to be a function hard to compute (the cryptographic relevance of this conjecture first
appears in the seminal paper by Diffie and Hellman [7] on public-key cryptography). In
spite of extensive research into this problem, the best known algorithms for its solution
still run in time sub-exponential in n (see [1] and [19]).



96 R. Gennaro

In some applications (like the one we describe in this paper) it is important to speed
up the computation of the function f (x) = gx . One possible way to do this is to restrict
its input to small values of x . Let c be an integer which we can think of as depending
on n (c = c(n)). Assume now that we are given y = gx mod p with x ≤ 2c. It appears
to be reasonable to assume that computing the discrete logarithm of y is still hard even
if we know that x ≤ 2c. Indeed, the running time of the sub-exponential algorithms
mentioned before depends only on the size n of the whole group. Depending on the size
of c, different methods may actually be more efficient. Indeed, the so-called baby-step
giant-step algorithm by Shanks [18] or the rho and lambda algorithms by Pollard [28]
(as improved in [34] and [29]) can compute the discrete log of y in O(2c/2) time. If
one restricts the field to generic algorithms (i.e. algorithms that can only perform group
operations and cannot take advantage of specific properties of the encoding of group
elements) then it can be proven that this is the best that can be done (see [31] and [30]).

If the complete factorization of p − 1 is known, then the running time of these algo-
rithms can be improved by using the Pohlig–Hellman decomposition [27]. This is done
by reducing the original discrete log problem, into several “smaller” problems (one for
each distinct prime factor in p − 1).

Van Oorschot and Wiener in [33] present a new method of combining the Pollard
lambda method with a partial Pohlig–Hellman decomposition. Their end result is that
for random primes, using short exponents is not secure. However, one of the stated ways
to avoid their attack is to restrict the moduli to be safe primes p (i.e. such that (p − 1)/2
is also a prime) since in this case the Polhig–Hellman decomposition is useless.

Define with ω(·) any function (defined over the integers) that grows faster than the
logarithmic function (i.e. for any constant γ there exists an integer nγ such that ω(n) >
γ log n for n > nγ ). Thus if we set c = ω(log n), there are no known polynomial-time
algorithms that can compute the discrete log of y = gx mod p when x is chosen at
random in [0..2c] and p is a safe prime. In [25] it is explicitly assumed that no such
efficient algorithm can exist. This is called the Discrete Logarithm with Short c-Bit
Exponents (c-DLSE) Assumption and we adopt it as the basis of our results as well.

Assumption 1 (c-DLSE [25]). Let SPRIMES(n) be the set of n-bit safe primes and let
c be a quantity that grows faster than log n (i.e. c = ω(log n)). For every probabilistic
polynomial-time Turing machine I, for every polynomial P(·) and for sufficiently large
n we have that

Prob


p← SPRIMES(n);

x ← Rc;
I(p, g, gx , c) = x


 ≤ 1

P(n)
.

Informally the assumption states that for any polynomial-time machine I (for inverter)
that runs on input a safe prime p, and the value gx with x randomly chosen in [0..2c],
the probability that I solves the discrete log problem (i.e. output x) is negligible (can be
made smaller than the inverse of any polynomial by choosing a large enough security
parameter n).

In practice, given today’s computing power and discrete-log computing algorithms,
it seems to be sufficient to set n = 1024 and c = 160. This implies a “security level”
of 280 (intended as work needed in order to “break” 160-DLSE). See [20] for a way to



An Improved Pseudo-Random Generator 97

estimate the size of these parameters, based on the current state of knowledge on the
discrete log problem, and the current computing environment.1

Remark. The c-DLSE assumption is somewhat non-standard and should be considered
with care. Apart from the attacks mentioned above, the discrete log with small exponent
can be attacked with algorithms that try to exploit the low Hamming weight of the
exponent (see [32]). However, in our scenario, the asymptotic complexity of this attack
is higher than 2c/2.

On the other hand, there is evidence supporting the c-DLSE Assumption. Besides
the lower bounds on generic algorithms mentioned above, there are some results on the
inapproximability of the discrete log when restricted to a small set (see [6]).

2.4. Hard Bits for Discrete Logarithm

The discussion in the previous section basically states that the function f (x) = gx mod p
is widely considered to be one-way (i.e. a function easy to compute but not to invert). We
strengthened this assumption, to claim that f remains one-way even when x is chosen
in a restricted domain. In this section we recall the basic notions of hard-core bits for a
one-way function, and how this notion is used to construct PRBGs.

It is well known that even if f is a one-way function, it does not hide all information
about its preimages. For the specific case of the discrete logarithm, it is well known that
given y = gx mod p it is easy to guess the least significant bit of x ∈ Zp−1 by testing to
see if y is a quadratic residue or not in Z∗p (there is a polynomial-time test to determine
that, see [3]).

A Boolean predicate � is said to be hard (or hard-core) for a one-way function f
if any algorithm A that, given y = f (x), guesses �(x) with probability substantially
better than 1/2, can be used to build another algorithm A′ that on input y computes x
with non-negligible probability.

Blum and Micali in [5] prove that the predicate

�: Zp−1 −→ {0, 1},
�(x) =

[
x ≤ p − 1

2

]

is hard for the discrete logarithm function. For the case of safe primes Schnorr in [30]
proves that every bit (except the least significant one) of the binary representation of x is
hard for the discrete log function. For the case of general primes this result was extended
by Håstad and Näslund [13] who proved that every bit of x is hard, except the s least
significant ones, where s is the maximum integer such that 2s divides p − 1.

The above results talk about individual hardness of each bit. We say that a collection
of k bits xi1 , . . . , xik in the the binary representation of x is simultaneously hard-core if
the whole collection of bits looks “random” to a polynomial-time judge who is given the
value gx . Even if a collection of k bits xi1 , . . . , xik in the binary representation of x are
individually hard-core, it does not guarantee that the whole collection “looks random”.

1 Although the above parameters may be sufficient today for the security of the c-DLSE Assumption, they
may not be sufficient for the security of the PRBG we propose, if one takes into account a concrete security
analysis. See Section 4 for details.



98 R. Gennaro

A way to formalize the concept of simultaneous hardness is (following [35]) to say
that it is not possible to guess the value of the j th predicate even after seeing gx and
the value of the previous j − 1 predicates over x . Formally, we say that k predicates
�1, . . . ,�k ,

�i : Zp−1 −→ {0, 1} for i = 1, . . . , k,

are simultaneously hard-core for the discrete-log function if any probabilistic poly-
nomial-time algorithm A such that

Prob[x ← Zp−1; A(gx ,�1(x), . . . ,�j−1(x)) = �j (x)] ≥ 1

2
+ 1

P(n)

for a polynomial P(·), can be used to construct another probabilistic polynomial-time
algorithm A′ which on input gx computes x with non-negligible probability.

In terms of simultaneous security of several bits, Long and Wigderson [22] and Peralta
[26] showed that there are O(log log p) predicates which are simultaneously hard for
discrete log.

2.5. The Patel–Sundaram Generator

Let p be an n-bit prime such that p ≡ 3 mod 4 and let g be a generator of Z∗p. Denote
with c a quantity that grows faster than log n, i.e. c = ω(log n).

In [25] Patel and Sundaram prove that under the c-DLSE Assumption the bits x2, x3,

. . . , xn−c are simultaneously hard for the function f (x) = gx mod p. More formally:

Theorem 1 [25]. For sufficiently large n, if p is an n-bit safe prime and if the c-DLSE
Assumption holds, then for every j , 2 ≤ j ≤ n − c, for every polynomial-time Turing
machine A, for every polynomial P(·) and for sufficiently large n we have that

|Prob[x ← Zp−1; A(gx , x2, . . . , xj−1) = xj ]− 1
2 | ≤

1

P(n)
.

For sake of completeness we present a proof of this theorem in the Appendix.
Theorem 1 immediately yields a secure PRBG. Start with x (0) ∈R Zp−1. Set x (i) =

gx (i−1)
mod p. Set also r (i) = x (i)2 , x (i)3 , . . . , x (i)n−c. The output of the generator will be

r (0), r (1), . . . , r (k) where k is the number of iterations.
Notice that this generator outputs n−c−1 pseudo-random bits at the cost of a modular

exponentiation with a random n-bit exponent.

3. Our New Generator

We now show that under the c-DLSE Assumption it is possible to construct a PRBG
which is much faster than the Patel–Sundaram one. In order to do this we first revisit
the construction of Patel and Sundaram to show how one can obtain a pseudo-random
generator over Z∗p × {0, 1}n−c−1.

Then we construct a function from Zp−1 to Z∗p which induces a pseudo-random dis-
tribution over Z∗p. The proof of this fact is by reduction to the security of the modified



An Improved Pseudo-Random Generator 99

Patel–Sundaram generator. This function is not a generator yet, since it does not stretch
its input.

We finally show how to obtain a pseudo-random bit generator, by iterating the above
function and outputting the appropriate bits.

3.1. The Patel–Sundaram Generator Revisited

As usual let p be an n-bit safe prime and let c = ω(log n). Consider the following
function (which we call PSG for Patel-Sundaramam Generator):

PSGn,c: Zp−1 −→ Z∗p × {0, 1}n−c−1,

PSGn,c(x) = (gx mod p, x2, . . . , xn−c).

That is, on input a random seed x ∈ Zp−1, the generator outputs gx and n − c − 1
consecutive bits of x , starting from the second least significant.

An immediate consequence of the result in [25], is that under the c-DLSE assumption
PSGn,c is a secure pseudo-random generator over the set Z∗p×{0, 1}n−c−1. More formally,
if Un is the uniform distribution over Z∗p, then the distribution induced by PSGn,c over
Z∗p×{0, 1}n−c−1 is computationally indistinguishable from the distribution Un×Rn−c−1.

In other words, for any probabilistic polynomial-time Turing machine D, we can
define

δD,U Rn = Prob[y← Z∗p; r ← Rn−c−1; D(y, r) = 1],

δD,P SGn,c = Prob[x ← Zp−1; D(PSGn,c(x)) = 1],

then for any polynomial P(·) and for sufficiently large n, we have that

|δD,U Rn − δD,P SGn,c | ≤
1

P(n)
.

In the next section we show our new generator and we prove that if it is not secure then
we can show the existence of a distinguisher D that contradicts the above.

3.2. A Preliminary Lemma

We also assume that p is an n-bit safe prime and c = ω(log n). Let g be a generator of
Z∗p and denote ĝ = g2n−c

mod p. Recall that if s is an n-bit integer we denote with si the
i th bit in its binary representation, i.e. s = ∑n

i si 2i−1. With div we denote the integer
division function, thus s div 2k is going to be the (n− k)-bit integer sn · · · sk+1, i.e. s div
2k =∑n−k

i=1 sk+i 2i−1.
The function we consider is the following:

RGn,c: Zp−1 −→ Z∗p,

RGn,c(s) = ĝ(s div 2n−c)gs1 mod p.

That is we consider modular exponentiation in Z∗p with base g, but only after zeroing the
bits in positions 2, . . . , n − c of the input s (these bits are basically ignored). In other



100 R. Gennaro

words, writing the exponent in binary form we have2

RGn,c(s) = gsnsn−1···sn−c+10···01.

We denote with RGn,c the following probability distribution over Z∗p (which is induced
by the function RG in the usual way):

ProbRGn,c [y] = Prob[y = RGn,c(s); s ← Zp−1].

The following lemma states that the distribution RGn,c is computationally indistinguish-
able from the uniform distribution over Z∗p if the c-DLSE assumption holds.

Lemma 1. Let p be an n-bit safe prime and let Un be the uniform distribution over
Z∗p. If the c-DLSE Assumption holds, then the two distributions Un and RGn,c are
computationally indistinguishable (see Definition 1).

The proof of the lemma goes by contradiction. We show that if RGn,c can be distinguished
from Un , then the Patel–Sundaram generator PSG is not secure. We do this by showing
that any efficient distinguisher between RGn,c and the uniform distribution over Z∗p
can be transformed into a distinguisher for PSGn,c. This contradicts Theorem 1 and
ultimately the c-DLSE Assumption.

Proof. Assume for the sake of contradiction that there exists a distinguisher D and a
polynomial P(·) such that for infinitely many n’s we have that

δD,Un − δD,RGn,c ≥
1

P(n)
,

where

δD,Un = Prob[x ← Z∗p; D(p, g, x, c) = 1],

δD,RGn,c = Prob[s ← Zp−1; D(p, g,RGn,c(s), c) = 1].

We show how to construct a distinguisher D̂ that “breaks” PSG.
In order to break PSGn,c we are given as input (p, g, y, r, c) with y ∈ Z∗p and

r ∈ {0, 1}n−c−1 and we want to guess if it comes from the distribution Un × Rn−c−1 or
from the distribution P SGn,c of outputs of the generator PSGn,c. The distinguisher D̂
will follow this algorithm:

1. Consider the integer z := r ◦ 0 where ◦means concatenation. Set w := yg−z mod
p;

2. Output D(p, g, w, c).

Why does this work? Assume that (y, r) was drawn according to PSGn,c(x) for some
random x ∈ Zp−1. Then w = gu where u = 2n−c(x div 2n−c) + x1 mod p − 1. That

2 This is why we use the value ĝ as the basis in the first definition of RG, otherwise the bits sn · · · sn−c+1

would be placed in positions 1 to c.



An Improved Pseudo-Random Generator 101

is, the discrete log of w in base g has the n − c − 1 bits in position 2, . . . , n − c equal
to 0 (this is because r is identical to those n − c − 1 bits of the discrete log of y by the
assumption that (y, r) follows the P SGn,c distribution). Thus once we set ĝ = g2n−c

we
get w = ĝx div 2n−c

gx1 mod p, i.e. w = RGn,c(x). Thus if (y, r) is drawn according to
P SGn then w follows the same distribution as RGn .

On the other hand, if (y, r) was drawn with y randomly chosen in Z∗p and r randomly
chosen in {0, 1}n−c−1, then all we know is that w is a random element of Z∗p.

Thus D̂ will guess the correct distribution with the same advantage asD does. Which
contradicts the security of the PSG generator.

3.3. The New Generator

It is now straightforward to construct the new generator. The algorithm receives as a
seed a random element s in Zp−1 and then it iterates the function RG on it. The pseudo-
random bits outputted by the generator are the bits ignored by the function RG. The
output of the function RG will serve as the new input for the next iteration.

In more detail, the algorithm IRGn,c (for Iterated-RG generator) works as follows.
Start with x (0) ∈R Zp−1. Set x (i) = RGn,c(x (i−1)). Set also r (i) = x (i)2 , x (i)3 , . . . , x (i)n−c.
The output of the generator will be r (0), r (1), . . . , r (k−1) where k is the number of iterations
(chosen such that k = poly(n) and k(n − c − 1) > n).

Notice that this generator outputs n − c − 1 pseudo-random bits at the cost of a
modular exponentiation with a random c-bit exponent (i.e. the cost of the computation
of the function RG).

Theorem 2. Under the c-DLSE Assumption, IRGn,c is a secure PRBG (see Defini-
tion 2).

Proof. We first notice that, for sufficiently large n, r (0) is an almost uniformly dis-
tributed (n − c − 1)-bit string. This is because r (0) is composed of the bits in positions
2, 3, . . . , n−c of a random element of Zp−1 and thus it is possible to bound the statistical
distance between the distribution of r (0) and the uniform distribution over {0, 1}n−c−1

with 21−c. This can be easily seen as follows: write p− 1 = A2n−c + B where A (resp.
B) is the integer represented by the top c (resp. bottom n − c) bits of p − 1.

A specific string r (0) appears with probability 2A/(p − 1). Indeed, if you consider all
of the elements of Zp−1 and partition them in 2n−c−1 sets based on the values of the bits
in positions 2, 3, . . . , n − c then each set will have exactly 2A elements (the factor of 2
comes from the last bit). On the other hand, a uniformly chosen (n − c − 1)-bit string
will appear with probability 2−(n−c−1). Thus the statistical distance � between the two
distributions can be expressed as

� = �
∣∣∣∣ 1

2n−c−1
− 2A

p − 1

∣∣∣∣ = 1− A2n−c

A2n−c + B
= B

A2n−c + B
.

Now recall that 2c−1 < A < 2c and 2n−c−1 < B < 2n−c, thus we can bound � as
follows:

� <
2n−c

2n−c2c−1 + 2n − c − 1
= 1

2c−1 + 2−1
< 21−c.



102 R. Gennaro

Now by virtue of Lemma 1 we know that all the values x (i) follow a distribution which is
computationally indistinguishable from the uniform one on Z∗p. By the same argument
as above it follows that all the r (i) must follow a distribution which is computationally
indistinguishable from Rn−c−1.

The proof follows a hybrid argument, which is a standard proof method that can be
explained as follows. If there is a distinguisher D between the distribution induced by
IRGn,c and the distribution Rk(n−c−1), then we can construct a distinguisher D1 that for
a specific index i distinguish between the distribution followed by r (i) and the uniform
distribution Rn−c−1. Now that implies that it is possible to distinguish the distribution
followed by x (i) and the uniform distribution over Z∗p This contradicts Lemma 1 and
ultimately the c-DLSE Assumption. The distinguisher D1 is built by analyzing the be-
havior of the distinguisher D over hybrid distributions that are somewhat “in between”
IRGn,c and Rk(n−c−1): i.e. up to a specific index i they follow Rk(n−c−1), but from index
i + 1 they behave like IRGn,c.

We now work out the technical details more formally. For each i = 0, . . . , k, con-
sider the hybrid distribution Hi over {0, 1}k(n−c−1) defined by the following experi-
ment: (1) choose x ∈R Zp−1; (2) Run IRGn,c(x) but only for k − i iterations and let
r (i), r (i+1), . . . , r (k−1) be the output; (3) for each j = 0, . . . , i − 1 set r ( j) as a random
(n − c − 1)-bit string. Clearly, H0 is the distribution induced by IRGn,c. On the other
hand, Hk is the uniform distribution Rk(n−c−1).

LetD be a distinguisher between the distribution induced by IRGn,c and the distribu-
tion Rk(n−c−1) which succeeds with non-negligible probability π . Denote

πi = Prob[x ← Hi ;D(x) = 1].

Then we have that |π0 − πk | ≥ π . However, that means that there must exist one index
i = 1, . . . , k such that

|πi−1 − πi | ≥ π
k
,

which is still non-negligible.
Now we describe the distinguisher D1 which contradicts Lemma 1. D1 runs on input

a value x ∈ Z∗p and it attempts to determine if x follows the uniform distribution
Un or the distribution RGn,c over Z∗p. The distinguisher D1 first runs IRGn,c(x) but
only for k − i iterations and let r (i), r (i+1), . . . , r (k−1) be the output. Then for each
j = 0, . . . , i − 1 set r ( j) as a random (n − c − 1)-bit string. It then runs D on the
resulting string �r = r (0), r (1), . . . , r (k−1) and outputs whatever D outputs.

Consider the string �r = r (0), r (1), . . . , r (k−1) defined above. If x was uniformly chosen
in Z∗p then clearly this experiment is identical to the one defining the distribution Hi ,
thus �r follows the distribution Hi . On the other hand, if x was selected according to the
distribution RGn,c it is not hard to see that �r follows the distribution Hi−1. Thus D1

distinguishes between the two distributions with non-negligible advantage π/k.

3.4. A Comment on the HSS Generator

In [15] Håstad et al. show that under the assumption that factoring RSA moduli is hard,
the modular exponentiation function simultaneously hides half of its input bits.



An Improved Pseudo-Random Generator 103

In other words, let N = pq be the product of two large primes and let g ∈ Z∗N be an
element of sufficiently high order Og (see [15] for details). Then the function

f : [1..Og] −→ Z∗N ,
f (x) = gx mod N

is one-way under the assumption that factoring is hard. The paper [15] shows that either
the top or the bottom half of the bits of x are simultaneously hard for this function. Let
n = |N |.

It is suggested in [15] to use the above results to construct the following pseudo-
random generator. Start from a random x ∈ [1..Og]. To simplify the notation denote the
binary expansion of x as XT ◦ xB, where XT are the top half of the bits, and xB the bottom
half. The output of the generator is the value ( f (x) = gx , xB). By the above result,
this is pseudo-random over the set G × {0, 1}|Og/2| (where G is the group generated by
g). This can be transformed into a PRBG by applying a universal hash function to this
value. Thus with one full exponentiation the above generator produces roughly n/2 extra
pseudorandom bits.

It is not hard to see that an argument similar to the one of Lemma 1 allows us to state
that the function f , when computed over inputs in [1..Og] randomly chosen but with
the bottom half bits equal to zero, induces a pseudorandom distribution over G. As in
Lemma 1 the basic idea of the proof is to show that if (gx , xB) is pseudo-random over
G × {0, 1}|Og/2|, then

gx

gxB
= gx−xB = gxT ◦�0

must be pseudo-random over the group G.
Thus we can get roughly n/2 extra pseudo-random bits by computing a modular

exponentiation with an exponent which is only half the one used by [15]. The net result
is an improvement by a factor of 2 in the speed of the generator proposed in [15].

A similar result was independently achieved in [10].

4. Efficiency Analysis

Our new generator is very efficient. It outputs n − c− 1 pseudo-random bits at the cost
of a modular exponentiation with a random c-bit exponent, or roughly 1.5c modular
multiplications in Z∗p. Compare this with the Patel–Sundaram generator where the same
number of pseudo-random bits would cost 1.5n modular multiplications. Moreover, the
security of our scheme is tightly related to the security of the Patel–Sundaram one, since
the reduction from our scheme to theirs is quite immediate.

So far we have discussed security in asymptotic terms. If we want to instantiate prac-
tical parameters we need to analyze more closely the concrete security of the proposed
scheme.

A close look at the proof of security in [25] shows the following. If we assume that
Theorem 1 fails, i.e. that for some j , 2 ≤ j ≤ n − c, there exists an algorithm A which
runs in time T (n), and a polynomial P(·) such that without loss of generality

Prob[x ← Zp−1; A(gx , x2, . . . , xj−1) = xj ] >
1

2
+ 1

P(n)
,



104 R. Gennaro

then we have an algorithmIA to break c-DLSE which runs in time O((n−c)cP2(n)T (n))
if 2 ≤ j < n − c− log P(n) and in time O((n − c)cP3(n)T (n)) if n − c− log P(n) ≤
j ≤ n − c (the hidden constant is very small).

The security of our PBRG is by reduction to Theorem 1. The reduction is very tight,
i.e. does not add to the complexity, except for the hybrid argument in Theorem 2 which
introduces a factor of k in the reduction. Basically if we denote with � the total number
of bits output by the generator (say before reseeding it), then k = �/(n − c) and thus we
can upper bound the complexity of the reduction with the term O(�cP3(n)T (n)).

In order to be able to say that our PRBG is secure we need to make sure that this
complexity is smaller than the time to break c-DLSE with the best known algorithm
(which we know today is 2c/2).

The BBS Generator. The BBS generator was introduced by Blum et al. in [4] under
the assumption that deciding quadratic residuosity modulo a composite is hard. The
generator works by repeatedly squaring modN a random seed in Z∗N where N is a
Blum integer (N = P Q with P, Q both primes of identical size and ≡ 3 mod 4.) At
each iteration it outputs the least significant bit of the current value. The rate of this
generator is thus of 1 bit/squaring. In [2] Alexi et al. showed that one can output up
to k = O(log log N ) bits per iteration of the squaring generator (and this while also
relaxing the underlying assumption to the hardness of factoring). The actual number k
of bits that can be outputted depends on the concrete parameters adopted.

The reduction in [2] is not very tight and was recently improved by Fischlin and
Schnorr in [8]. The complexity of the reduction quoted there is

O(n log n P2(n)T (n)+ n2 P4(n) log n)

(here P(n), T (n) refers to a machine which guesses the next bit in one iteration of the
BBS generator in time T (n) and with advantage 1/P(n)).

If we want to output m bits per iteration, the complexity grows by a factor of 22m and
the reduction quickly becomes more expensive than known factoring algorithms. We do
not consider this variation, since this increase in the reduction will force us to choose a
larger security parameter n. This in turn will make the multiplications more expensive,
so the factor of m saved in the number of multiplications, will be offset by the larger
individual cost of each multiplication. Notice instead that the reduction in [25] (and thus
in our PRBG) depends only linearly on the number of bits outputted.

Again, if � is the total number of bits output, then we must introduce a hybrid argument
on the number k = �/m of iterations, which increases the complexity by a factor of k.
Thus we can upper bound the complexity of the BBS reduction with the term

O

(
�

22k

k
(n log n P2(n)T (n)+ n2 P4(n) log n)

)
.

How to Compare. We are going to fix some bounds on the security we are willing to
tolerate, in particular, on the time T which we assume any adversary will run for, and
the advantage 1/P with which he can correctly guess. We are also going to fix a bound
on � the number of bits output by the generator. For both our generator and for the BBS
generator this bounds will yield some concrete time bounds on the complexity of the



An Improved Pseudo-Random Generator 105

reduction. Using known estimates on the complexity of the discrete log and factoring
problem we will estimate the security parameters (i.e. the values n and c) which make
the reductions meaningful (i.e. for which the complexity of the reduction is inferior to
the complexity of the best known factoring/dlog algorithm). At this point we will be
able to make concrete statements on the comparative efficiency of the two generators.

Concrete Parameters. Here is how we fix the parameters. We set, following [8], � = 107

and P = 102 (i.e. we bound the adversary’s probability by 1/100). Also, following [20],
we define T = 3.5·1010 MIPS/year, the upper bound on the running time of the adversary
(this value of T is the estimation given in [20] for the amount of unfeasible computation
in the year 2003).

In order to make the computation simple, we approximate c with the value c = 3 ·102,
and n = 103. Notice that this somewhat increases the complexity of the reduction of our
generator, while it underestimates the complexity of the reduction of the BBS generator
(thus the end result will eventually underestimate the improvement of our generator
compared with BBS).

With the above parameters, the complexity of both reductions will be ≈ 1026

MIPS/year. We now extrapolate from [20] the values n = 3000 and c = 225: for
these values the fastest algorithms for (i) factoring, (ii) computing general discrete log
and (iii) computing discrete logs with short exponents all have complexity larger than
1026 in 2003.

So now we can do a comparison. The BBS generator will output one bit per modular
squaring; considering that squaring is twice as fast than modular multiplication, we have
that the BBS rate is of 2 bits per modular multiplication. Our PRBG instead outputs
3000 − 225 = 2775 bits per modular exponentiation with an exponent of 225 bits,
which on average will cost around 350 multiplications. This yields a rate of about 7 bits
per multiplication, which is about 3.5 times faster than the BBS generator.

4.1. Using Precomputed Tables

The most expensive part of the computation of our generator is to compute ĝs mod p
where s is a c-bit value.

We can take advantage of the fact that in our generator3 the modular exponentiations
are all computed over the same basis ĝ. This feature allows us to precompute powers of
ĝ and store them in a table, and then use these values to compute ĝs quickly for any s.

The simplest approach is to precompute a table T :

T = {ĝ2i
mod p; i = 0, . . . , c}.

Now, one exponentiation with base ĝ and a random c-bit exponent can be computed
using only 0.5c multiplications on average. The cost is an increase to O(cn) bits of
required memory.

With this simple improvement one iteration of our generator will require roughly 113
multiplications, which yields a rate of more that 24 pseudo-random bits per multiplica-
tion. The size of the table is about 84 kbytes (225 values stored).

3 As well as in the Patel–Sundaram one or in the Blum–Micali one.



106 R. Gennaro

Lim and Lee [21] present more flexible tradeoffs between memory and computation
time to compute exponentiations over a fixed basis. Their approach is applicable to our
scheme as well. We refer to [21] for details, but the following table summarizes the results:
the first column is the memory requirement (in kbytes and number of values stored) and
the second column is the efficiency (number of multiplications and corresponding rate
of pseudo-random bits per multiplication):

Storage size (kbytes (# values)) # Mults/Rate (# bits per mult)

16 (42) 86/32
58 (155) 52/53

189 (504) 41/67

Remark. Notice that in the above we are talking about modular multiplications of
3000-bit numbers. Our PRBG has the nice feature that increasing the security parameter
increases the bit/multiplication rate of the generator. Indeed, notice that when the security
parameter is increased in order to tolerate a stronger adversary, the length of the modulus
increases by a larger amount, compared with the length of the exponent. This is a natural
consequence of the fact that for the discrete log problem, we have sub-exponential
algorithms in the size of the modulus, but only exponential ones in the size of the
exponent.

It could appear that this feature is what allows our generator to win over the BBS one,
due to the large security parameters produced by the concrete security analysis. We point
out, that even for the parameters used today (n = 1024 and c = 160), assuming that both
the BBS and our generator are secure, we still outperform BBS by a factor of almost 2
(without using tables). Indeed, with these parameters our generator still outputs 860 bits
per modular exponentiation with 160-bit exponents (on average 240 multiplications)
for a rate of 3.5 bits per modular multiplication. Using tables the rate can be pushed
to 21 (with 12 kbytes of storage) or 43 (with 300 kbytes). On the other hand, BBS is
still stuck at 1 bit per modular squaring, which is comparable with a rate of 2 bits per
modular multiplication (as we pointed out above, the version of BBS that outputs more
bits per iteration cannot really be considered practical, due to the high cost of the security
reduction).

This points to a nice feature of our generator. If the algorithmic state of the art remains
the same, the increase of security parameters has a much lower negative impact on the
efficiency of our generator. Indeed, the increased cost of modular multiplication is offset
in part by the increase in the rate of the generator.

Implementation Results. The efficiency of the scheme was confirmed by experimental
implementation results. These results confirmed the theoretical analysis in comparison
with the BBS generator. They also allowed us to compare our generator with heuristic
(i.e. not provably secure) ones based on collision-resistant hashing and/or block ciphers.
Although we could not hope to be competitive with respect to these generators, it was
surprising to find out that our generator is only slower by a factor of 10, which may not
be a too high price to pay in exchange for provable security in certain applications.



An Improved Pseudo-Random Generator 107

The implementation tests were also carried out on tamper-proof dedicated crypto-
graphic devices with specific hardware support for modular exponentiations and multi-
plications. The results over this platform indicated that precomputation tables are actually
not useful, since the overhead of managing the tables is higher than the cost of performing
exponentiations in hardware.

A report on the implementation tests can be found in [16].

5. Conclusions

In this paper we presented a secure PRBG whose efficiency is comparable with the squar-
ing (BBS) generator. The security of our scheme is based on the assumption that solving
discrete logarithms remains hard even when the exponent is small. This assumption was
first used by Patel and Sundaram in [25]. Our construction, however, is much faster than
theirs since it only uses exponentiations with small inputs.

An alternative way to look at our construction is the following. Under the c-DLSE
assumption the function f : {0, 1}c −→ Z∗p defined as f (x) = gx is a one-way function.
Our results indicate that f also has strong pseudo-randomness properties over Z∗p. In
particular, it is possible to think of it as a pseudo-random generator itself. We are aware
of only one other example in the literature of a one-way function with these properties
[17] based on the hardness of subset-sum problems.

The c-DLSE Assumption is not as widely studied as the regular discrete log assumption
so it needs to be handled with care. However, it seems a reasonable assumption to make.

It would be nice to see if there are other cryptographic primitives that could bene-
fit in efficiency from the adoption of stronger (but not unreasonable) number-theoretic
assumptions. Examples of this are already present in the literature (e.g. the efficient con-
struction of pseudo-random functions based on the Decisional Diffie–Hellman problem
in [24]). It would be particularly interesting to see a PRBG that beats the rate of the
squaring generator, even if at the cost of a stronger assumption on factoring or RSA
inversion (ruling out pseudo-randomness assumptions like the ones considered in [23]).

Acknowledgments

This paper owes much to the suggestions and advice of Shai Halevi. Hugo Krawczyk
pointed out the remark in Section 4.1. I also thank Mihir Bellare, Dario Catalano and
Paul van Oorschot for useful comments and suggestions.

Appendix. A proof of Theorem 1

In order to prove Theorem 1 we first need to show that the bits in positions 2, . . . , n− c
are individually secure. Then we prove simultaneous security.

Before we embark on the proof, we make a remark about computing square roots
modulo p. It is well known that square roots modulo p can be efficiently computed.
Assume now that p ≡ 3 mod 4 (which is the case for safe primes), and that we are
given a quadratic residue y = gz . There are two square roots for y: y1 = gz/2 and



108 R. Gennaro

−y1 = gz/2+(p−1)/2. Since (p − 1)/2 is odd, only one of them is a quadratic residue:
we call this the principal square root of y. Since quadratic residuosity modulo p can
be efficiently recognized, then principal square roots can be efficiently computed. A last
observation is that if z is such that its two least significant bits are zeros, then the principal
square root of y is y1 = gz/2.

Individual Security. Let i be an integer 1 ≤ i ≤ n − c and assume that we have a
polynomial-time Turing MachineAi which on input p, g, gx computes correctly the i th
bit xi of x with probability (over x) 1

2 +ε(n)where ε(n) > 1/P(n) for some polynomial
P(·).

In order to contradict the c-DLSE Assumption we show how to build an algorithm
A which uses Ai and, given y = gz (for z ∈R [0..2c]), computes z with non-negligible
probability. Let γ = 1 − log ε = O(log n). We split the proof into two parts: the first
case has 1 ≤ i < n − c − γ . The second one is n − c − γ ≤ i ≤ n − c.

If 1 ≤ i < n − c− γ the inversion algorithm A works as follows. We are given y = gz

and we know that z < 2c. We compute z bit by bit; let zi denote the i th bit of z. To
compute z1 we just check if y is a quadratic residue or not. We then “zero” out z1 by
setting y ← yg−z1 . From now on, the discrete log of y has a zero on the last significant
bit.

To compute z2 we square y i − 1 times, computing yi = y2i−1
mod p. This will place

z2 in the i th position (with all zeros to its right). Since Ai may be correct only slightly
more than half of the time, we need to randomize the query. Thus we choose r ∈R Zp−1

and run Ai on ŷ = yi gr mod p. Notice the following:

• Given the assumptions on z and i we know that yi = y2i−1 = g2i−1z and 2i−1z is not
taken mod p − 1 since it will not “wrap around”.
• logg(ŷ) = 2i−1z + r mod p− 1. However, since 2i−1z has at least γ leading zeros

the probability (over r ) that 2i−1z + r wraps around is ≤ ε/2.
• Since z2 has all zeros to its right, there are no carrys in the i th position of the sum.

Thus by subtracting ri from Ai ’s answer we get z2 unless 2i−1z + r wraps around
or Ai provides a wrong answer.

In conclusion we get the correct z2 with probability 1
2+ε/2, thus by repeating the process

several (polynomially many) times and taking majority we get the correct z2 with very
high probability.

Once we get z2, we “zero” it in the value y and then take the principal square root of
y, i.e. we set y ←

√
yg−2z2 . Notice that the argument of the square root procedure is a

value whose discrete log has the least two significant bits set to zero. So the discrete log
of the new y is z/2 (see the remark at the beginning of the proof). This places z3 in the
place that was previously z2. We can now repeat the above process to discover it, and
iterate to compute all the other bits of z.

Since each bit is determined with very high probability, the value z = zc · · · z1 will be
correct with non-negligible probability.

If n − c − γ < i < n − c the above procedure may fail since now 2i z does not have
γ leading zeros anymore. We fix this problem by guessing the γ leading bits of z (i.e.
zc−γ , . . . , zc). This is only a polynomial number of guesses.



An Improved Pseudo-Random Generator 109

For each guess, we “zero” those bits (let α be the γ -bit integer corresponding to each
guess and set y← yg−2c−γ α). Now we are back in the situation we described above and
we can run the inversion algorithm. This will give us a polynomial number of guesses
for z, and we can then test which is the correct one.

Simultaneous Security. Notice that in the above inversion algorithm, every time we
query Ai with the value ŷ we know all the bits in position 1, . . . , i − 1 of logg(ŷ).
Indeed, these are the first i − 1 bits of the randomizer r . Thus we can substitute the
above oracle with the weaker one Âi which expects ŷ and the bits of logg(ŷ) in position
1, . . . , i − 1.

References

[1] L. Adleman. A Subexponential Algorithm for the Discrete Logarithm Problem with Applications to
Cryptography. Proc. IEEE FOCS, pp. 55–60, 1979.

[2] W. Alexi, B. Chor, O. Goldreich and C. Schnorr. RSA and Rabin Functions: Certain Parts Are as Hard
as the Whole. SIAM J. Comput., 17(2):194–209, April 1988.

[3] E. Bach and J. Shallit. Algorithmic Number Theory, Volume I. MIT Press, Cambridge, MA, 1996.
[4] L. Blum, M. Blum and M. Shub. A Simple Unpredictable Pseudo-Random Number Generator. SIAM J.

Comput., 15(2):364–383, May 1986.
[5] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits.

SIAM J. Comput., 13(4):850–864, November 1984.
[6] D. Coppersmith and I. Sharplinski. On Polynomial Approximation of the Discrete Logarithm and the

Diffie–Hellman Mapping. J. Cryptology, 13(3):339–360, Summer 2000.
[7] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. Inform. Theory, IT-22:644–654,

November 1976.
[8] R. Fischlin and C. Schnorr. Stronger Security Proofs for RSA and Rabin Bits. J. Cryptology, 13(2):221–

244, Spring 2000.
[9] R. Gennaro An Improved Pseudo-Random Generator Based on Discrete Log. Proc. CRYPTO ’2000,

pp. 469–481. LNCS 1880. Springer-Verlag, Berlin, 2000.
[10] O. Goldreich and V. Rosen. On the Security of Modular Exponentiations with Applications to the

Construction of Pseudorandom Generators. J. Cryptology, 16(2):71–93, Spring 2003.
[11] S. Goldwasser and S. Micali. Probabilistic Encryption. J. Comput. System Sci., 28:270–299, 1988.
[12] J. Håstad, R. Impagliazzo, L. Levin and M. Luby. A Pseudo-Random Generator from any One-Way

Function. SIAM J. Comput., 28(4):1364–1396, 1999.
[13] J. Håstad and M. Näslund. The Security of Individual RSA Bits. Proc. IEEE FOCS, pp. 510–519, 1998.
[14] J. Håstad and M. Näslund. Practical Constructions and Analysis of Pseudo-Randomness Primitives.

Proc. ASIACRYPT ’01, pp. 442–459. LNCS 2248. Springer-Verlag, Berlin, 2001.
[15] J. Håstad, A. Schrift and A. Shamir. The Discrete Logarithm Modulo a Composite Hides O(n) Bits.

J. Comput. System Sci., 47:376–404, 1993.
[16] N. Howgrave-Graham, J. Dyer and R. Gennaro. Pseudo-Random Number Generation on the IBM 4758

Secure Crypto Coprocessor. Proc. CHES ’01, pp. 93–102. LNCS 2162. Springer-Verlag, Berlin, 2001.
[17] R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes Provably as Secure as Subset Sum.

J. Cryptology, 9(4):199–216, 1996.
[18] D. Knuth. The Art of Computer Programming (vol. 3): Sorting and Searching. Addison-Wesley, Reading,

MA, 1973.
[19] A.K. Lenstra, H.W. Lenstra, M.S. Manasse and J.M. Pollard. The Number Field Sieve. Proc. STOC ’90,

pp. 564–572. ACM Press, New York, 1990.
[20] A.K. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. J. Cryptology, 14(4):255–293. Autumn

2001.
[21] C.H. Lim and P.J. Lee. More Flexible Exponentiation with Precomputation. Proc. CRYPTO ’94,

pp. 95–107. LNCS 839. Springer-Verlag, Berlin, 1994.



110 R. Gennaro

[22] D. Long and A. Wigderson. The Discrete Log Hides O(log n)Bits. SIAM J. Comput., 17:363–372, 1988.
[23] S. Micali and C. Schnorr. Efficient, Perfect Polynomial Random Number Generators. J. Cryptology,

3(3):157–172, Summer 1991.
[24] M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-Random Functions.

Proc. IEEE FOCS, pp. 458–467, 1997.
[25] S. Patel and G. Sundaram. An Efficient Discrete Log Pseudo Random Generator. Proc. CRYPTO ’98,

pp. 304–317. LNCS 1462. Springer-Verlag, Berlin, 1998.
[26] R. Peralta. Simultaneous Security of Bits in the Discrete Log. Proc. EUROCRYPT ’85, pp. 62–72. LNCS

219. Springer-Verlag, Berlin, 1986.
[27] S.C. Pohlig and M.E. Hellman. An Improved Algorithm for Computing Logarithms over G F(p) and its

Cryptographic Significance. IEEE Trans. Inform. Theory, IT-24(1):106–110, January 1978.
[28] J.M. Pollard. Monte-Carlo Methods for Index Computation (mod p). Math. Comp., 32(143):918–924,

1978.
[29] J.M. Pollard. Kangaroos, Monopoly and Discrete Logarithms. J. Cryptology, 13(4):437–447, Autumn

2000.
[30] C. Schnorr. Security of Almost ALL Discrete Log Bits. Electronic Colloquium on Computational

Complexity. Report TR98-033. Available at http://www.eccc.uni-trier.de/eccc/.
[31] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. Proc. EUROCRYPT ’97,

pp. 256–266. LNCS 1233. Springer-Verlag, Berlin, 1997.
[32] D. Stinson. Some Baby-Step Giant-Step Algorithms for the Low Hamming Weight Discrete Logarithm

Problem. Math. Comp., 71:379–391, 2002.
[33] P.C. van Oorschot and M. Wiener. On Diffie–Hellman Key Agreement with Short Exponents. Proc.

EUROCRYPT ’96, pp. 332–343. LNCS 1070. Springer-Verlag, Berlin, 1996.
[34] P.C. van Oorschot and M. Wiener. Parallel Collision Search with Cryptanalytic Applications. J. Cryp-

tology, 12(1):1–28. Winter 1999.
[35] A. Yao. Theory and Applications of Trapdoor Functions. Proc. IEEE FOCS, pp. 80–91, 1982.


