Skip to main content
Log in

Heart rate reduction with esmolol is associated with improved arterial elastance in patients with septic shock: a prospective observational study

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Ventricular–arterial (V–A) decoupling decreases myocardial efficiency and is exacerbated by tachycardia that increases static arterial elastance (Ea). We thus investigated the effects of heart rate (HR) reduction on Ea in septic shock patients using the beta-blocker esmolol. We hypothesized that esmolol improves Ea by positively affecting the tone of arterial vessels and their responsiveness to HR-related changes in stroke volume (SV).

Methods

After at least 24 h of hemodynamic optimization, 45 septic shock patients, with an HR ≥95 bpm and requiring norepinephrine to maintain mean arterial pressure (MAP) ≥65 mmHg, received a titrated esmolol infusion to maintain HR between 80 and 94 bpm. Ea was calculated as MAP/SV. All measurements, including data from right heart catheterization, echocardiography, arterial waveform analysis, and norepinephrine requirements, were obtained at baseline and at 4 h after commencing esmolol.

Results

Esmolol reduced HR in all patients and this was associated with a decrease in Ea (2.19 ± 0.77 vs. 1.72 ± 0.52 mmHg l−1), arterial dP/dt max (1.08 ± 0.32 vs. 0.89 ± 0.29 mmHg ms−1), and a parallel increase in SV (48 ± 14 vs. 59 ± 18 ml), all p < 0.05. Cardiac output and ejection fraction remained unchanged, whereas norepinephrine requirements were reduced (0.7 ± 0.7 to 0.58 ± 0.5 µg kg−1 min−1, p < 0.05).

Conclusions

HR reduction with esmolol effectively improved Ea while allowing adequate systemic perfusion in patients with severe septic shock who remained tachycardic despite standard volume resuscitation. As Ea is a major determinant of V–A coupling, its reduction may contribute to improving cardiovascular efficiency in septic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Intensive Care Med 39:165–228

    Article  CAS  PubMed  Google Scholar 

  2. Cecconi M, De Backer D, Antonelli M et al (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815

    Article  PubMed  PubMed Central  Google Scholar 

  3. Angus DC, Barnato AE, Bell D et al (2015) A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators. Intensive Care Med 41:1549–1560

    Article  CAS  PubMed  Google Scholar 

  4. Guarracino F, Ferro B, Morelli A, Bertini P, Baldassarri R, Pinsky MR (2014) Ventriculoarterial decoupling in human septic shock. Crit Care 18:R80

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guarracino F, Baldassarri R, Pinsky MR (2013) Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit Care 17:213

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–1706

    Article  PubMed  Google Scholar 

  7. Ohte N, Cheng CP, Little WC (2003) Tachycardia exacerbates abnormal left ventricular–arterial coupling in heart failure. Heart Vessels 18:136–141

    Article  PubMed  Google Scholar 

  8. Prabhu SD (2007) Altered left ventricular–arterial coupling precedes pump dysfunction in early heart failure. Heart Vessels 22:170–177

    Article  PubMed  Google Scholar 

  9. Magder SA (2012) The ups and downs of heart rate. Crit Care Med 40:239–245

    Article  PubMed  Google Scholar 

  10. Azimi G, Vincent JL (1986) Ultimate survival from septic shock. Resuscitation 14:245–253

    Article  CAS  PubMed  Google Scholar 

  11. Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE (1987) Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 15:923–929

    Article  CAS  PubMed  Google Scholar 

  12. Morelli A, Ertmer C, Westphal M et al (2013) Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310:1683–1691

    Article  PubMed  Google Scholar 

  13. Vellinga NA, Boerma EC, Koopmans M et al (2015) International study on microcirculatory shock occurrence in acutely ill patients. Crit Care Med 43:48–56

    Article  PubMed  Google Scholar 

  14. Leibovici L, Gafter-Gvili A, Paul M et al (2007) Relative tachycardia in patients with sepsis: an independent risk factor for mortality. QJM 100:629–634

    Article  CAS  PubMed  Google Scholar 

  15. Dekleva M, Lazic JS, Soldatovic I et al (2015) Improvement of ventricular–arterial coupling in elderly patients with heart failure after beta blocker therapy: results from the CIBIS-ELD trial. Cardiovasc Drugs Ther 29:287–294

    Article  CAS  PubMed  Google Scholar 

  16. Razzolini R, Tarantini G, Boffa GM, Orlando S, Iliceto S (2004) Effects of carvedilol on ventriculo-arterial coupling in patients with heart failure. Ital Heart J 5:517–522

    PubMed  Google Scholar 

  17. Romano SM, Pistolesi M (2002) Assessment of cardiac output from systemic arterial pressure in humans. Crit Care Med 30:1834–1841

    Article  PubMed  Google Scholar 

  18. Scolletta S, Bodson L, Donadello K, Taccone FS, Devigili A, Vincent JL, De Backer D (2013) Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Med 39:1025–1033

    Article  PubMed  Google Scholar 

  19. Lewis T (1906) The factors influencing the prominence of the dicrotic wave. J Physiol 34:414–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith D, Craige E (1986) Mechanism of the dicrotic pulse. Br Heart J 56:531–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fincke R, Hochman JS, Lowe AM et al (2004) Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 44:340–348

    Article  PubMed  Google Scholar 

  22. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in the isolated canine ventricle. Am J Physiol 245:H733–H788

    Google Scholar 

  23. Levy MM, Rhodes A, Phillips GS, Townsend SR, Schorr CA, Beale R, Osborn T, Lemeshow S, Chiche JD, Artigas A, Dellinger RP (2014) Surviving Sepsis Campaign: association between performance metrics and outcomes in a 7.5-year study. Intensive Care Med 40:1623–1633

    Article  PubMed  Google Scholar 

  24. Rhodes A, Phillips G, Beale R et al (2015) The Surviving Sepsis Campaign bundles and outcome: results from the International Multicentre Prevalence Study on Sepsis (the IMPreSS study). Intensive Care Med 41:1620–1628

    Article  PubMed  Google Scholar 

  25. Freeman GL, Little WC, O’Rourke RA (1987) Influence of heart rate on the left ventricular performance in conscious dogs. Circ Res 61:455–464

    Article  CAS  PubMed  Google Scholar 

  26. Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608

    Article  PubMed  Google Scholar 

  27. Sanfilippo F, Santonocito C, Morelli A, Foex P (2015) Beta-blocker use in severe sepsis and septic shock: a systematic review. Curr Med Res Opin 31:1817–1825

    Article  PubMed  Google Scholar 

  28. Pemberton P, Veenith T, Snelson C, Whitehouse T (2015) Is it time to beta block the septic patient? Biomed Res Int. doi:10.1155/2015/424308

  29. Asfar P, Meziani F, Hamel JF et al (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370:1583–1593

    Article  CAS  PubMed  Google Scholar 

  30. Sanfilippo F, Corredor C, Fletcher N, Landesberg G, Benedetto U, Foex P, Cecconi M (2015) Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med 41:1004–1013

    Article  PubMed  Google Scholar 

  31. Repessé X, Charron C, Vieillard-Baron A (2013) Evaluation of left ventricular systolic function revisited in septic shock. Crit Care 17(4):164

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kimmoun A, Louis H, Kattani NA et al (2015) β1-adrenergic inhibition improves cardiac and vascular function in experimental septic shock. Crit Care Med 43:e332–e340

    Article  CAS  PubMed  Google Scholar 

  33. Ogura Y, Jesmin S, Yamaguchi N et al (2014) Potential amelioration of upregulated renal HIF-1alpha-endothelin-1 system by landiolol hydrochloride in a rat model of endotoxemia. Life Sci 118:347–356

    Article  CAS  PubMed  Google Scholar 

  34. Seki Y, Jesmin S, Shimojo N et al (2014) Significant reversal of cardiac upregulated endothelin-1 system in a rat model of sepsis by landiolol hydrochloride. Life Sci 118:357–363

    Article  CAS  PubMed  Google Scholar 

  35. Bergel DH (1961) The dynamic elastic properties of the arterial wall. J Physiol 156:458–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Giannattasio C, Vincenti A, Failla M et al (2003) Effects of heart rate changes on arterial distensibility in humans. Hypertension 42:253–256

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Morelli.

Ethics declarations

Conflicts of interest

Andrea Morelli received honoraria for speaking at Baxter symposia. Mervyn Singer served as a consultant and received honoraria for speaking and chairing symposia for Baxter. Salvatore Mario Romano has a patent “Method and apparatus for measuring cardiac flow output” (USA Patent Number 6758822). No other disclosures were reported.

Additional information

Take-home message: Despite achieving recommended hemodynamic targets, ventricular-arterial decoupling may persist in patients with septic shock and it can deteriorate progressively during the course of the disease. Such patients may potentially benefit from therapies aimed at normalizing V–A coupling. Among them, HR reduction with esmolol could effectively improve Ea while allowing adequate systemic perfusion in septic shock patients remaining tachycardic despite standard resuscitation. As Ea is a major determinant of V–A coupling, its reduction may contribute to improving cardiovascular efficiency in septic shock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morelli, A., Singer, M., Ranieri, V.M. et al. Heart rate reduction with esmolol is associated with improved arterial elastance in patients with septic shock: a prospective observational study. Intensive Care Med 42, 1528–1534 (2016). https://doi.org/10.1007/s00134-016-4351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-016-4351-2

Keywords

Navigation