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Abstract Purpose: To assess
whether partitioning the elastance of
the respiratory system (ERS) between
lung (EL) and chest wall (ECW) elas-
tance in order to target values of end-
inspiratory transpulmonary pressure
(PPLATL) close to its upper physio-
logical limit (25 cmH2O) may
optimize oxygenation allowing con-
ventional treatment in patients with
influenza A (H1N1)-associated
ARDS referred for extracorporeal
membrane oxygenation (ECMO).
Methods: Prospective data collec-
tion of patients with influenza A
(H1N1)-associated ARDS referred for
ECMO (October 2009–January
2010). Esophageal pressure was used
to (a) partition respiratory mechanics
between lung and chest wall,
(b) titrate positive end-expiratory
pressure (PEEP) to target the upper
physiological limit of PPLATL

(25 cmH2O). Results: Fourteen

patients were referred for ECMO. In
seven patients PPLATL was
27.2 ± 1.2 cmH2O; all these patients
underwent ECMO. In the other seven
patients, PPLATL was
16.6 ± 2.9 cmH2O. Raising PEEP
(from 17.9 ± 1.2 to
22.3 ± 1.4 cmH2O, P = 0.0001) to
approach the upper physiological
limit of transpulmonary pressure
(PPLATL = 25.3 ± 1.7 cm H2O)
improved oxygenation index (from
37.4 ± 3.7 to 16.5 ± 1.4,
P = 0.0001) allowing patients to be
treated with conventional ventilation.
Conclusions: Abnormalities of
chest wall mechanics may be present
in some patients with influenza A
(H1N1)-associated ARDS. These
abnormalities may not be inferred
from measurements of end-inspira-
tory plateau pressure of the
respiratory system (PPLATRS). In
these patients, titrating PEEP to
PPLATRS may overestimate the inci-
dence of hypoxemia refractory to
conventional ventilation leading to
inappropriate use of ECMO.

Keywords ARDS � Influenza A
(H1N1) � Transpulmonary pressure �
Extracorporeal membrane
oxygenation
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Introduction

Several reports describe cases of influenza A (H1N1)-
associated acute respiratory distress syndrome (ARDS)
requiring extracorporeal membrane oxygenation (ECMO)
for severe hypoxemia refractory to conventional treatment
[1–6]. However, uncertainty regarding the appropriate
indication for ECMO in these patients still remains [7–
10]. Moreover, clinical evidence in support of ECMO as a
rescue treatment for these patients is controversial [11].

The increase in elastance of the respiratory system
[12] observed in patients with ARDS is mainly attributed
to the increase in elastance of the lung (EL) [12]. Under
these circumstances the elastic properties of the chest wall
(ECW) contribute to the elastance of the respiratory system
(ERS) by approximately 20% [13]. However, alterations in
ECW have been described in patients with ARDS [13–15].
In these patients ECW may contribute to ERS by up to 50%
[16]. This implies that for a value of end-inspiratory
plateau pressure of the respiratory system (PPLATRS) of
30 cmH2O, the end-inspiratory transpulmonary pressure
(PPLATL) will amount to 24 cmH2O in patients with a
‘‘normal’’ chest wall and 15 cmH2O in patients with a
‘‘stiff’’ chest wall [16]. This may be clinically relevant
because (a) several studies suggest that mechanical ven-
tilation should be titrated to PPLATL rather than to
PPLATRS and (b) it has been suggested that the upper
physiological limit of transpulmonary pressure that opti-
mizes alveolar recruitment is 25 cmH2O [14, 15, 17].

We report a case series of patients with influenza A
(H1N1)-associated ARDS that were referred for ECMO
but in whom assessment of transpulmonary pressure led
to a change of the ventilatory strategy that reversed
refractory hypoxemia and avoided ECMO.

Methods

Further details are available in the electronic online sup-
plement. We report patients with influenza A (H1N1)-
associated ARDS referred to the Molinette Hospital
(University of Turin) for ECMO in the period from
September 2009 to January 2010 [18]. The institutional
ethics committee approved data collection and reporting.

Patients were centralized if conventional ventilation
[19], in association with nitric oxide, and/or prone posi-
tioning, and/or high frequency oscillation, resulted in
HbO2 \85%; oxygenation index [25; PaO2/FiO2 \100
with PEEP C10 cmH2O; hypercapnia and respiratory
acidosis with pH\7.25; SvO2 or SvcO2\65% despite Ht
[30% and administration of vasoactive drugs [18]. Cri-
teria for initiating ECMO were oxygenation index [30;
PaO2/FiO2\70 with PEEP C15 cmH2O; pH \ 7.25 for at
least 2 h [18]. Exclusion criteria for ECMO were
(a) intracranial bleeding and other major contraindication

to anticoagulation, (b) previous severe disability; poor
prognosis because of the underlying malignancy, and
(c) mechanical ventilation for longer than 7 days [18].

At arrival, all patients were ventilated according to the
ARDS Network protocol [19]. Mechanics of the respira-
tory system was partitioned between lung and chest wall.
Throughout the period of data recording all patients were
orotracheally intubated and in semirecumbent position
(head of bed from 30 to 45� inclination), sedated and
paralyzed, as prescribed by the attending physicians.

Flow and PPLATRS were measured. The pressure
required to distend the chest wall was estimated using the
measurement of esophageal pressure (PES) [20]. ERS,
ECW, and EL were calculated as previously described [20].
PPLATCW and end-inspiratory plateau pressure of the
lung (PPLATL) were estimated using the following
equations [16]:

PPLATCW ¼ ECW=ERSð Þ � PPLATRS

PPLATL ¼ PPLATRS � PPLATCW

The shape of the airway opening pressure versus time
during constant flow (the stress index) was recorded as
previously described [21–24].

If values of PPLATL during conventional ventilation
were less than 25 cmH2O, PEEP was further increased
until PPLATL was equal to 25 cmH2O [14, 15, 17].
ECMO criteria were hence evaluated 20–30 min after the
initiation of ventilation with the new PEEP setting. If
values of PPLATL during conventional ventilation were at
least 25 cmH2O, ECMO criteria were evaluated with
ventilator settings as set on entry.

Data are presented as mean ± standard deviation.
Comparisons were performed using paired and unpaired
T test, as appropriate. Differences were considered sig-
nificant if P \ 0.05.

Results

In the period October 2009–January 2010, 36 patients
with novel A (H1N1) infection were admitted to the ICUs
of the Piedmont region. Among them, 20 patients had
ARDS and 14 were transferred to the regional coordi-
nating center with ECMO facilities as a result of
developing the pre-established criteria.

Values of oxygenation index and of PaO2/FiO2 ratio
indicated immediate use of ECMO in all patients [18].
Partitioning of respiratory mechanics showed that in seven
patients PPLATL was higher than 25 cmH2O (27.2 ±
1.2 cmH2O), whereas in the other seven patients it was
lower than 25 cmH2O (16.6 ± 2.9 cmH2O) (Table 1).
Values of PPLATRS were similar in the groups (31.0 ± 1.0
vs. 31.5 ± 0.5 cmH2O, respectively). Whereas in the
former extracorporeal support was immediately initiated
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(ECMO group), in the latter increasing PEEP until
PPLATL reached the upper physiological limit of trans-
pulmonary pressure (25.3 ± 1.7 cmH2O) resulted in an
increase of oxygenation index and of PaO2/FiO2 to an
extent that criteria for extracorporeal support were no
longer met and patients were treated with conventional
ventilation in association with low-flow CO2 removal [25]
in four patients (no ECMO group) (Fig. 1).

Table 2 shows the physiological parameters in the
ECMO and no ECMO groups. Although values of ERS did
not differ, EL was higher (32.3 ± 5.3 vs. 20.2 ±
4.7 cmH2O/L; P = 0.001) and ECW was lower (6.1 ± 0.7
vs. 17.2 ± 1.7; P = 0.0001) in the ECMO than in no
ECMO group. In the latter, increasing PEEP from
17.9 ± 1.2 to 22.3 ± 1.4 cmH2O (P = 0.0001) to target

an increase in PPLATL from 16.6 ± 2.9 to 25.3 ±
1.7 cmH2O/L (P = 0.0001) significantly decreased the
oxygenation index from 37 ± 4 to 16 ± 1 (P = 0.0001).
The significant (P = 0.0001) increase of PPLATRS from
31.5 ± 0.5 to 38.4 ± 1.0 cmH2O observed with con-
ventional ventilation and higher PEEP was associated
with (a) the increase in ERS (from 37.4 ± 4.2 to 43.8 ±
3.3 cmH2O/L; P = 0.0001) and EL (from 20.2 ± 4.7 to
28.6 ± 2.3 cmH2O/L; P = 0.0001), (b) the increase
of stress index (from 0.922 ± 0.033 to 1.052 ± 0.032;
P = 0.0001), and (c) the reduction in PaCO2 (from
54.6 ± 8.4 to 42.9 ± 8.0; P = 0.001). Increasing PEEP
significantly increased right atrial pressure (from 17 ± 2
to 20 ± 3 mmHg, P = 0.001) but did not affect mean
systolic pressure, cardiac output, and cardiac index.

Table 1 Individual values of PPLATRS and PPLATL (cmH2O)

Patient no. ECMO Patient no. No ECMO

Conventional ventilation Conventional ventilation Conventional ventilation and higher PEEP

PPLATRS PPLATL PPLATRS PPLATL PPLATRS PPLATL

1 32.1 28.5 8 31.7 18.8 37.2 26.1
2 29.7 25.8 9 31.9 15.1 38.5 25.2
3 31.3 25.6 10 31.8 12.3 40.6 27.1
4 30.4 27.6 11 31.8 15.9 38.6 27.3
5 30.8 26.9 12 31 15.8 38 23.5
6 31.2 28.8 13 30.5 16.9 37.5 22.8
7 31.4 27.2 14 31.7 21.7 38.7 25
Mean ± SD 31 ± 1 27.2 ± 1.2 Mean ± SD 31 ± 0.5 16.6 ± 2.9 38.4 ± 1 25.3 ± 1.7

PPLATRS end-inspiratory plateau pressure of the respiratory system, PPLATL end-inspiratory plateau pressure of the lung, ECMO
extracorporeal membrane oxygenation, SD standard deviation

Patients with influenza A (H1N1) induced ARDS
N = 20

PATIENTS TRANSFERRED TO REGIONAL CENTER FOR ECMO
N = 14

partitioning of respiratory mechanics

Oxygenation Index: 34 5

PPLATL: 27.2 1.2 cmH2O

N = 7

ECMO

INCREASE PEEP

UNTIL PPLATL ≅ 25 cmH2O 

Oxygenation Index: 16 1

NO ECMO

Oxygenation Index: 37 4

PPLATL: 16.6 2.9 cmH2O

N = 7

Patients admitted to the ICUs of the Piedmont region with proved influenza A (H1N1) and mechanically ventilated
October 2009- January 2010

N = 36

Fig. 1 Study flow chart. ARDS
acute respiratory distress
syndrome, ECMO
extracorporeal membrane
oxygenation, PEEP positive
end-expiratory pressure,
PPLATL transpulmonary
pressure
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Table 3 shows the clinical and demographic charac-
teristics of the patients. Except for age (35.4 ± 11.1 vs.
53.3 ± 11.7 years; P = 0.01) and fluid balance prior to
admission to the referral center (718 ± 270 vs. 1,384 ±
332 mL; P = 0.01), Murray’s score [26] (3.82 ± 0.19 vs.
3.61 ± 0.43) and other clinical variables did not differ
between the ECMO and no ECMO groups.

Discussion

The present case series shows that partitioning of respi-
ratory mechanics between lung and chest wall revealed a
subset of patients with influenza A (H1N1)-associated
ARDS in whom hypoxemia was refractory to the con-
ventional treatment not because of a profound alteration
of the lung parenchyma but because a large amount of the
pressure applied at the airways was not transmitted to
the lung parenchyma but dissipated against a ‘‘stiff’’
chest wall. In these patients, targeting PEEP to reach the
upper physiological limit of transpulmonary pressure
(25 cmH2O) [14, 15, 17], instead of the ‘‘safe’’ limit of
PPLATRS (30 cmH2O) [19], improved oxygenation to an
extent that ECMO criteria were no longer met.

The reported incidence of patients with influenza A
(H1N1)-associated ARDS transitioning from conven-
tional ventilation to ECMO is extremely variable. Reports
from Australia and New Zealand [1] and from France [2]
indicate that patients on ECMO were 34 and 50% of the

mechanically ventilated patients, respectively. In Hong
Kong [3] and Canada [4] only 6% of the patients were
shifted from conventional ventilation to ECMO. In the
present study, 14 patients were referred to the regional
center to initiate ECMO for refractory hypoxemia. Parti-
tioning of respiratory mechanics between lung and chest
wall allowed us to identify seven patients that responded
to conventional treatment and avoided ECMO provided
that PEEP was sufficiently high to be transmitted to the
collapsed lungs and to overcome chest wall stiffness. By
doing so, the incidence of ECMO in the Piedmont region
went from the possible 39% (14 out of a total of 36
mechanically ventilated patients) to the observed 19% (7
of the 36 mechanically ventilated patients) (Fig. 1).

Both in the ECMO and in the no ECMO group the
oxygenation index was equally compromised (Table 2)
suggesting equal impairment of lung function. However,
the oxygenation index is calculated using mean airway
pressure. Indeed, the mean transpulmonary pressure
during conventional mechanical ventilation was lower in
the no ECMO than in the ECMO group (13.4 ± 1.6 vs.
21.4 ± 1.7, P = 0.01) and therefore the oxygenation
index calculated using the mean transpulmonary pressure
was significantly lower in the no ECMO than in the
ECMO group (19.8 ± 1.6 vs. 28.7 ± 4.8 P = 0.01).

The ‘‘open lung’’ approach aims at maximizing alve-
olar recruitment and counteracting tidal recruitment of
unstable alveoli by setting PEEP as high as possible to
match a PPLATRS of 30 cmH2O [27–29]. A recent meta-
analysis suggests that this approach may reduce mortality

Table 2 Ventilatory, respiratory, and gas exchange parameters

ECMO No ECMO

Conventional
Ventilation

Conventional
ventilation

Conventional ventilation
and higher PEEP

VT (mL/kg PBW) 5.0 ± 0.9 5.0 ± 0.8 5.0 ± 0.8
PEEP (cmH2O) 17.1 ± 1.6 17.9 ± 1.2 22.3 ± 1.4#

RR (breaths/min) 32.8 ± 2.4 31.1 ± 0.3 30.3 ± 2.4
Oxygenation index 34 ± 5 37 ± 4 16 ± 1#

PaO2/FiO2 75 ± 10 67 ± 5 180 ± 9##

PAO, mean 25.2 ± 2.7 25.1 ± 1.8 29.1 ± 1#

PaCO2 (mmHg) 54.3 ± 7.4 54.6 ± 8.4 42.9 ± 8.0##

pH 7.386 ± 0.035 7.371 ± 0.094 7.405 ± 0.089
PPLATRS (cmH2O) 31.0 ± 1 31.5 ± 0.5 38.4 ± 1.0#

PPLATCW (cmH2O) 4.0 ± 1.4* 14.7 ± 2.5 13.5 ± 0.8#

PPLATL (cmH2O) 27.2 ± 1.2* 16.6 ± 2.9 25.3 ± 1.7#

ERS (cmH2O/L) 38.4 ± 5.2 37.4 ± 4.2 43.8 ± 3.3#

EL (cmH2O/L) 32.3 ± 5.3** 20.2 ± 4.7 28.6 ± 2.3#

ECW (cmH2O/L) 6.1 ± 0.7* 17.2 ± 1.7 15.2 ± 2.6
ECW/ERS 0.16 ± 0.03* 0.47 ± 0.08 0.35 ± 0.04
Stress index 1.071 ± 0.032 0.922 ± 0.033 1.052 ± 0.032#

Data are expressed as mean ± standard deviation
ECMO extracorporeal membrane oxygenation, VT/kg PBW tidal
volume/kg predicted body weight, PEEP positive end-expiratory
pressure, RR respiratory rate, PaO2 arterial partial pressure of O2,
FiO2 inspired O2 fraction, PAO, mean mean airway opening pressure,
PaCO2 arterial partial pressure of CO2, ERS static respiratory

system elastance, EL static lung elastance, ECW static chest wall
elastance
* P = 0.0001; ** P = 0.001 ECMO vs. no ECMO
# P = 0.0001 ## P = 0.001 conventional ventilation vs. conven-
tional ventilation and higher PEEP
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in patients with ARDS in comparison to the conventional
approach [30]. Recently, Mercat and co-workers [28]
proposed an open lung protocol in which PEEP was
individually set as high as possible to match a PPLATRS

target of 30 cmH2O. The open lung strategy adopted in
the present report is based on the same rationale but, in
order to overcome the bias induced by chest wall stiff-
ness, aimed at an end-inspiratory transpulmonary pressure
of 25 cmH2O. Note that this value is regarded as the
upper physiological limit of transpulmonary pressure [14,
15, 17] and is the value recorded in patients with ARDS
and normal ECW (ECW/ERS ratio of 0.2) at a PPLATRS of
30 cmH2O. This approach differs from the one proposed
by Talmor and co-workers [20] that titrated PEEP in order
to obtain values of end-expiratory transpulmonary pres-
sure ranging between 0 and 10 cmH2O.

In patients with ARDS, the increase of ERS is mainly
attributed to EL [31]. However, alterations in ECW have
been also described in these patients [13, 15]. Moreover,
influenza A (H1N1)-associated ARDS frequently occurs
in obese subjects [32], a category of patients that often
present a compromised ECW [33]. Under these circum-
stances: (a) part of PPLATRS may be ‘‘wasted’’ to distend
the chest wall and only a fraction of the pressure applied
at the airways will inflate the lung [14]; (b) the amount of
pressure that will result in lung recruitment depends on
the ECW/ERS ratio [16]. In normal adults the ECW/ERS

ratio is approximately 0.4 [16]. In patients with ARDS,
Gattinoni and co-workers [13] described patients with a
normal chest wall and a ECW/ERS ratio of 0.2 and patients
with a substantial impairment of the elastic properties of

the chest wall and a ECW/ERS ratio of 0.5 in patients with
compromised chest wall mechanics [16]. Mergoni et al.
[34], Ranieri et al. [15], and Grasso et al. [14] later
confirmed these findings. We show that in seven of our
patients, the impairment of the elastic properties of the
respiratory system (ERS = 38.4 ± 5.2 cmH2O/L) was
due to a profound and substantial alteration of the lung
parenchyma. In these patients the ECW/ERS ratio was
0.16 ± 0.03 and PPLATL during conventional ventilation
was 27.2 ± 1.2 cmH2O (Table 2), hypoxemia was
refractory to conventional treatments and ECMO was
required to re-establish oxygenation. In the remaining
patients, chest wall mechanics substantially contributed to
the observed values of ERS (37.4 ± 4.2 cmH2O/L) with
an ECW/ERS ratio of 0.47 ± 0.08 (Table 2). In these
patients, during conventional ventilation and with a PEEP
of 17.9 ± 1.2 cmH2O, baseline PPLATL was 16.6 ±
2.9 cmH2O. Raising PEEP to 22.3 ± 1.4 cmH2O to tar-
get the upper physiological limit of PPLATL (25.3 ±
1.7 cmH2O) decreased oxygenation index (from 37 ± 4
to 16 ± 1; P = 0.0001) reverting the indication for
ECMO and allowing treatment with conventional venti-
lation. The significant improvement in oxygenation
(Table 2) with a relatively small increase of PEEP (4.4 ±
1.4 cmH2O, range 4–6 cmH2O) suggests a high potential
for alveolar recruitment in the no ECMO group [35].

Recent evidence [36] accounts for significant alveolar
hyperinflation at PPLATRS levels higher than 28 cmH2O.
However several arguments support the lack of any direct
or indirect evidence of hyperinflation observed in the
present study even if we did not directly assess

Table 3 Demographic and clinical characteristics at admission to the referring center

Age Gender BMI APACHE II Murray’s
score [26]

Co-morbidities Rescue
therapies

Days
of MV

Fluid
balance (mL)

Outcome

ECMO 44 M 43 14 3.75 Obesity PP, NO 3 456 A
24 F 33 16 4.00 Obesity PP, NO 0 827 A
36 M 48 31 3.50 Obesity PP, NO 1 1,006 A
34 M 31 22 4.00 Obesity NO 4 474 D
31 F 32 24 4.00 Obesity PP 2 696 D
24 M 23 9 3.75 None NO 2 457 A
55 M 22 19 3.75 None PP, NO 1 1,101 A

Mean 35.4* 33.2 19.3 3.82 1.9 718*
SD 11.1 9.5 7.2 0.19 1.3 270
No ECMO 44 F 22 8 3.75 None PP, NO 3 1,342 A

66 M 27 18 3.75 Diabetes PP, NO 1 1,120 A
54 F 31 14 3.00 Obesity PP, NO 4 1,897 A
38 F 24 8 4.00 Drug addiction PP, NO 2 1,254 A
46 F 31 27 3.00 Obesity PP, NO 5 1,765 D
55 M 37 23 3.75 Obesity PP, NO 4 1,326 A
70 F 29 29 4.00 Diabetes PP, NO 3 981 A

Mean 53.3 28.7 18.1 3.61 3.1 1,384
SD 11.7 4.9 8.6 0.43 1.3 332

ECMO extracorporeal membrane oxygenation, BMI body mass
index, APACHE II acute physiology, age and chronic health eval-
uation II score, PP prone position, NO nitric oxide, Days of MV
days of mechanical ventilation prior admission to the referral

center, A alive, D death, Fluid balance cumulative fluid balance
prior admission to the referral center
* P = 0.01 ECMO versus no ECMO
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recruitment and hyperinflation. First, PPLATL was sig-
nificantly lower than PPLATRS, due to high Ecw. Second,
stress index went from the range of values associated with
tidal recruitment (0.922 ± 0.033) to the range of values
associated with protective ventilation (1.052 ± 0.032;
P = 0.0001). Third, although a decrease in cardiac output
could have per se decreased shunt and improved oxy-
genation [37], we found that cardiac output remained
unchanged. Fourth, despite the slight but significant
increase of EL with the higher PEEP strategy could be
explained by assuming that in these patients the increase
of PEEP shifted tidal ventilation close to the upper
inflection point of the pulmonary volume–pressure curve
[38–41], recent evidence suggests that ‘‘regional elas-
tance’’ of lung tissue previously collapsed and re-
expanded by applied pressure is higher than the elastance
of the normally patent lung regions [42].

The observational nature of the present study limits
the interpretation of its results. First, alterations of ECW

in patients with ARDS have been associated with
excessive and unopposed abdominal pressure [43] or
with pleural effusions due to a positive fluid balance
[14]. Moreover, in normal subjects ERS increases with
age, due to an increase of ECW [44]. Although we found
that patients with impaired chest wall mechanics were
older (53.3 ± 11.7 vs. 35.4 ± 11.1 years; P = 0.01) and
had a more pronounced positive fluid balance
(1,384 ± 332 vs. 718 ± 270 mL; P = 0.01) than the
patients that had a normal chest wall, the small number
of patients included in the study does not allow one to
identify clinical or physiological variables that could
predict the alteration of impairment of chest wall
mechanics. Second, we report on a cohort of patients
with a particularly diffuse and recruitable form of ARDS.
Third, portioning ERS between ECW and EL is based on
the measurement of PES and on the assumption that this
measurement (a) represents the average pleural pressure
[45], (b) is insensitive to changes in lung volume [46]
and to local gradients in pleural pressure [12]. Unfortu-
nately none of these assumptions have ever been verified
in patients with ARDS [47]. Fourthly, several other
methods have been proposed to set up an open lung
approach [48, 49]. Borges and co-workers [50] showed
that applying distending pressures up to 60 cmH2O could
successfully recruit the lung in ARDS patients consid-
ered not responders to conventional lung-distending
pressures. Therefore, it is conceivable that targeting a
PPLATL higher than 25 cmH2O would have successfully
recruited patients also in the ECMO group. Finally, we
must point out that reducing tidal volume from 6 to
4 mL/kg would have allowed higher PEEP levels at
baseline in both groups [51].

May our data influence physicians’ attitudes to
implement ECMO in patients with ARDS? Unfortunately,
available data come from case series [1–5, 18, 52] and
only one randomized clinical trial tested the efficacy ofT
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ECMO in patients with severe ARDS [53]. Table 4 pre-
sents the main ECMO criteria of these studies together
with the ECMO criteria proposed by the Extracorporeal
Life Support Organization guidelines [54]. As can be seen
all our patients would have been treated with ECMO
according to the existing criteria. Results of the present
study may therefore suggest that (a) liberal and inclusive
criteria for centralizing patients with H1N1-induced
ARDS to centers with ECMO facilities [1–5, 18, 52]
should not be considered prima facie grounds to actually
implement ECMO, (b) titrating PEEP to target a PPLATL

value of 25 cmH2O [14, 15, 17] instead of a PPLATRS of
30 cmH2O [27, 28] may optimize oxygenation and pre-
vent inappropriate use of ECMO in those patients with
influenza A (H1N1)-associated ARDS that have abnormal
chest wall mechanics. Further studies are required to
evaluate whether these conclusions may apply to a gen-
eral population of ARDS patients.
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