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Abstract Objective: Increased
expression of long pentraxin 3
(PTX3) has been found in patients
with sepsis or acute respiratory dis-
tress syndrome. Tissue factor (TF)
activation plays an important role in
the pathogenesis of acute lung injury.
The present study sought to determine
the relationship between PTX3
expression and TF activation in acute
lung injury. Methods: Lung injury
was induced by intratracheal instilla-
tion of lipopolysaccharide (LPS) in
mice, and the PTX3 expression, TF
activation and lung injury were
determined. We also treated the lung
injury with an anti-human tissue
factor monoclonal antibody in human
tissue factor knock-in (hTF-KI) mice.
Results: Balb/c mice were chal-
lenged with increasing doses of LPS.
After 24 h, PTX3 protein in the
bronchioalveolar lavage fluid was
increased in parallel with the severity
of lung injury, and correlated with
tissue factor (TF) activity. The
expression and distribution of PTX3
and TF were further documented in
detail 6 h after LPS (5 mg/kg) instil-
lation. Treatment with anti-human TF

monoclonal antibody dramatically
attenuated LPS-induced lung injury,
alveolar fibrin deposition and inflam-
matory cell infiltration in
‘‘humanized’’ hTF-KI mice 6 h after
LPS challenge. The PTX3 expression
was significantly decreased by the
anti-coagulant therapy. Conclu-
sion: These results support the
clinical finding that PTX3 may
be a useful biomarker to the reflect
severity of lung injury and provide
effective therapies. The interplay
between PTX3 and TF could be a
potential mechanism that mediates
lung injury.

Keywords Acute respiratory
distress syndrome � Inflammation �
Pulmonary coagulopathy �
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Introduction

Despite many advances achieved in diagnosis and man-
agement, acute lung injury (ALI) and acute respiratory
distress syndrome (ARDS) still comprise one of the
common causes of life-threatening respiratory failure [1].

Searching for biomarkers for diagnosis and prognosis,
and developing novel therapies have been the focuses in
ALI/ARDS research [2]. Application of bioinformatics,
proteomics and other systems biology approaches has
revealed several potential biomarkers for ALI/ARDS,
such as LIX (LPS-induced CXC chemokine) [3], PBEF
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(Pre-B cell colony-enhancing factor) [4], MIF (macro-
phage migration inhibitory factor) [5] and Pre-Elafin [6].
One such molecule that we are interested in is long
pentraxin 3 (PTX3), which is a soluble pathogen pattern
recognition receptor for innate immunity [7, 8].

In our previous studies, we have found that PTX3 was one
of the genes induced by TNFa in lung alveolar epithelial cells
[9], mediated through JNK signaling pathway [10]. We fur-
ther found induction of PTX3 in multiple ALI models in rats,
including systemic administration of lipopolysaccharide
(LPS), hemorrhagic shock/resuscitation and mechanical
ventilation [11]. Clinical data have shown that the PTX3 level
was dramatically increased in the plasma of patients with
endotoxic shock and sepsis, which was correlated with the
severity of the diseases [12]. Recently, a clinical study dem-
onstrated that the plasma level of PTX3 in ARDS patients was
correlated with lung function, systemic organ failure and
clinical outcome [13], which suggests that PTX3 could be an
early marker of ALI/ARDS [14]. A working group organized
by NIH suggested that a good biomarker should reflect the
pathogenic process of the disease and respond to a therapeutic
intervention [15]. Animal studies with well-established dis-
ease models and controlled experimental conditions could be
useful to verify whether PTX3 meets these criteria.

It has been reported that PTX3 could promote tissue
factor (TF) expression in human endothelial cells and
monocytes upon inflammatory stimuli, such as LPS, IL-1b
and TNFa [16, 17]. TF is a key initiator of coagulation
cascades and is highly expressed in patients with ALI [18].
The evolving understanding of ALI/ARDS indicates an
extensive cross-talk between inflammatory responses and
coagulation cascades, which leads to reciprocal modulation
of the disease [19, 20]. The pro-coagulation state in both
vascular and alveolar compartments ultimately leads to
fibrin deposition in the lung parenchyma. Therefore, pul-
monary coagulopathy has been suggested as a therapeutic
target, and many anti-coagulant therapies have being tested
in preclinical and clinical studies [21, 22]. Recently, we have
demonstrated the therapeutic effects of an anti-human TF
antibody on intestinal ischemia–reperfusion induced ALI in
human TF knock-in (hTF-KI) mice [23].

In the current study, we first used intratracheal instil-
lation of LPS as a model to determine whether the
expression levels of PTX3 could reflect the severity of
lung injury. We then used ‘‘humanized’’ hTF-KI trans-
genic mice to determine whether increased PTX3
expression can be reversed by an effective therapy.

Materials and methods

Animals, acute lung injury and treatment

The studies were approved by the Animal Use and Care
Committee of the University Health Network. All animals

received humane care. Balb/c mice and human TF knock-
in (hTF-KI) transgenic mice were used in this study. All
mice used were 6–10 weeks old and housed in a patho-
gen-free facility. The hTF-KI mice (129v/C57BL6
background, Centocor, Malvern, PA) were generated by
replacing murine TF gene with the full length human TF
coding sequence, which is expressed under control of
murine TF promoter [23, 24].

Acute lung injury was induced by intratracheal
instillation of LPS (Escherichia coli serotype 055:B5,
Sigma, St. Louis, MO) [25, 26]. Briefly, mice were
anesthetized with 5% isoflurane and suspended by their
front teeth at a 60� angle. The tongue was gently pulled
out to expose the larynx and to prevent the swallow reflex.
An aliquot (100 ll) of saline with different doses of LPS
(0, 1, 2.5 and 5 mg/kg) was instilled into the trachea with
a pipette. The animals were killed by exsanguination
under anesthesia 24 h later. To determine the early
responses, another group of animals were given 5 mg/kg
of LPS and killed after 6 h. To determine the PTX3 levels
after anti-coagulant treatment, the monoclonal antibody
against human TF (5 mg/kg in 100 ll of PBS; Centocor,
Malvern, PA), which has been previously characterized
[23, 24], was injected into the hTF-KI mice through the
jugular vein 10 min after LPS instillation. The same
volume of PBS was given to the control group. Mice were
killed 6 h after LPS instillation.

Bronchoalveolar lavage (BAL)

After killing the animals, tracheotomy was conducted
(four mice/group), and a 22-gauge catheter was inserted
into the trachea. With the right bronchial ligated, the left
lung was lavaged with 250 ll of ice cold saline twice. The
recovered lavage fluids were centrifuged for 10 min at
5,000 rpm, and the supernatants were stored at -80�C
until further analysis.

Histology and immunohistochemistry staining

In a sub-group of animals (four mice/group), the left lung
was inflated at 20 cmH2O and fixed with 4% parafor-
maldehyde in PBS, and embedded in paraffin.
Hematoxylin and eosin (H&E) staining was conducted
with 5-lm tissue slides. The lung injury was assessed with
a modified scoring system according to interstitial cellular
infiltrate, alveolar edema, hemorrhage and cellular exu-
dates [27–29] in a blinded fashion. Immunohistochemical
staining for PTX3 and TF was conducted with a Vecta-
stain ABC kit (Vector Laboratories, Burlingame, CA).
Briefly, lung tissue slides (5 lm) were incubated with
either a polyclonal antibody (Ab) for PTX3 (1:50 dilu-
tion) (Santa Cruz Biotechnology, Santa Cruz, CA), or for
TF (1:200 dilution) (a gift of Dr. J. H. Morrissey,
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University of Illinois at Urbana-Champaign), and then a
secondary antibody. The positive staining was visualized
with Vector red for PTX3 and diaminobenzidine (DAB)
for TF, and then the slides were counterstained with 1%
methyl green and hematoxylin, respectively. The speci-
ficity of antibodies was determined by replacing the
primary antibody with non-immunized IgG (Sigma).
Martius Scarlet Blue (MSB) staining was performed for
alveolar fibrin deposition as previously described [23, 30].

Quantitative real-time PCR

Total RNA from the snap-frozen right lungs (four mice/
group) was isolated using TRIZol Reagent (Invitrogen,
Burlington, Canada) and purified with an RNeasy Mini
Kit (Qiagen, Mississauga, Canada). Synthesis of cDNA
from total RNA was carried out using a TaqMan Reverse
Transcription Reagent kit (Applied Biosystems, Foster
City, CA). The primers (Supplemental Table 1) were
designed using the Primer Express 1.5 software (Applied
Biosystems) and synthesized by ACGT Corp. (Toronto,
Canada). The amplification was performed in a real-time
PCR machine (ABI PRISM 9700HT, Applied Biosys-
tems, Foster City, CA). The relative expression levels of
genes interested were normalized with a housekeeping
gene, GAPDH.

ELISA for PTX3

PTX3 levels in the homogenized lungs, BAL fluid and
plasma were determined in duplicate with an ELISA kit
(R & D System, Minneapolis, MN). The optical density
was read at 450 nm with an automatic plate reader
(Thermo Labosystems, Chantilly, VA). The concentra-
tions were calculated by converting the optical density
readings against a standard curve [10, 11].

TF activity assay

TF activity in the homogenized lung tissues, BAL fluids
and plasma was measured with a colorimetric assay
(American Diagnostica, Stamford, CT). Lipidated human
TF provided in the kit was used as positive control for a
standard curve.

Statistical analysis

Data are presented as mean ± standard deviation (SD).
The GraphicPad Prizm program was used for the statistics
analysis following the standard protocols. The inter-group
differences were tested by one-way analysis of variance
(ANOVA) and Tukey’s test for post hoc multiple

comparisons. The differences between two groups were
tested with Student’s t test. The correlation between
PTX3 levels and TF activities was tested by Pearson’s
correlation analysis. P values \0.05 are defined as
significant.

Results

Intra-tracheal LPS-induced lung injury is associated
with PTX3 expression and TF activation

To determine whether the PTX3 expression could be
associated with the severity of lung injury, we challenged
Balb/c mice with different dosages of LPS (0, 1, 2.5 and
5 mg/kg) through intratracheal instillation. After 24 h,
infiltration of inflammatory cells, hemorrhage and inter-
stitial edema were observed in the lung in an LPS dose-
dependent manner (Fig. 1). TF activation is a hallmark of
lung injury [22]. TF activity and PTX3 concentration in
the BAL fluids were increased with the incremental doses
of LPS (Fig. 2). The concentration of PTX3 was posi-
tively correlated with the TF activity and the lung injury
scores (Fig. 2).

It has been reported that PTX3 expression is rapidly
enhanced at the early stage of infectious/inflammatory
diseases [8, 13]. To determine the relationship between
PTX3 and TF at the early stage of lung injury, another
group of animals were killed 6 h after LPS (5 mg/kg)
intratracheal instillation. The LPS-induced lung injury
(Supplemental Fig. 1) was accompanied with significant
increases in immunohistochemistry staining, mRNA level
and activity of TF in the lung tissues (Fig. 3). The levels
of PTX3 gene and protein (Fig. 4) in the lung tissues as
well as in the serum were also significantly increased after
LPS challenge. Immunostaining (Fig. 4) showed that the
increased PTX3 was mainly found along the alveolar wall
and airway epithelium. Some cells in the alveolar space
were also stained PTX3 positive.

Reducing ALI with anti-TF antibody decreased PTX3
expression in the lung

We then used transgenic mice in which the murine TF
gene was replaced by knocking in human TF gene (hTF-
KI) to determine whether the PTX3 expression could be
decreased by anti-coagulant therapy with an anti-human
TF antibody. We have recently shown that the anti-human
TF monoclonal antibody ameliorated intestinal ischemia-
reperfusion-induced lung injury in the hTF-KI mice [23].
In the present study, the antibody treatment dramatically
attenuated the LPS-induced lung injury and alveolar fibrin
deposition (Fig. 5). A significant reduction of lung injury
score, total cell counts in the BAL fluid and inhibition of
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Fig. 1 LPS instillation induced
mouse lung injury in a dose-
dependent manner. Balb/c mice
were challenged with different
dosages of LPS via intratracheal
instillation and killed 24 h later.
The severity of lung injury
increased with the incremental
doses of LPS. The slides shown
are representatives from
four mice/group (H&E, 4009)
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Fig. 2 Increased PTX3
expression was associated with
TF activation and injury
severity induced by LPS in
lung. LPS challenged Balb/c
mice were killed 24 h later, and
the lungs were subjected to
BAL. TF activity and PTX3
concentration in the BAL fluid
were increased as the LPS dose
increased and were well
correlated each other. PTX3
levels were correlated with lung
injury scores. All data shown
are mean ± SD from
four mice/group. *p \ 0.05 and
**p \ 0.01 versus control
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plasma TF activity was detected in the antibody-treated
group in comparison with vehicle control (Fig. 6).
Importantly, this antibody also significantly decreased
PTX3 expression in the BAL fluid and in the lung tissues
(Fig. 6), suggesting that PTX3 level does reflect the lung
injury and is useful to monitor the therapeutic effects.

Discussion

PTX3 as a potential biomarker

PTX3 is an acute phase protein and the first defined
member of long pentraxin family. Unlike the classic
pentraxins, such as C-reactive protein and serum amyloid

P that are mainly produced in liver, PTX3 is produced by
a variety of tissue cells and inflammatory cells at the site
of injury/inflammation [8]. For this reason, we used an
intra-pulmonary injury model induced by intra-tracheal
instillation of LPS in the present study. The expression of
PTX3 in the lung tissue and BAL fluid increased in an
LPS dose-dependent manner, in parallel with the severity
of lung injury. ALI/ARDS could be induced by intra- and
extra-pulmonary causes [31]. In another study, both intra-
pulmonary (ventilator-induced lung injury) and extra-
pulmonary (systemic administration of LPS, hemorrhagic
shock/resuscitation) factors induced PTX3 expression in
rats [11]. Moreover, the expression of PTX3 was also
correlated with expressions of TNFa and IL-1b [11], as
well as TF in the lungs [32]. Responding to a therapeutic
intervention has been considered as one of the important

Fig. 5 Anti-hTF mAb reduced
LPS-induced lung injury and
fibrin alveolar depositon. The
hTF-KI mice were challenged
with LPS (5 mg/kg)
intratracheally, and then treated
with 5 mg/kg of anti-hTF mAb
(LPS ? Ab group) or PBS
(LPS only group) intravenously.
The animals were killed 6 h
later. The therapeutic effects of
anti-TF antibody were
determined by reduced tissue
injury (H&E staining, 4009)
and alveolar fibrin deposition
(MSB staining, 4009) in the
lung
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features for potential biomarkers [14, 15]. It is difficult to
provide clinical evidence to support this notion, whereas
animal studies are more feasible for the proof in principle.
One of the novel findings of the present study is that the
anti-TF therapy reduced lung injury and PTX3 expres-
sion. Our studies provide experimental data to support the
clinical observations [12, 13] that PTX3 may be a bio-
marker for ALI/ARDS. These data cannot be easily
obtained in the clinical setting.

Therapeutic application of anti-human TF antibody
in ALI

One of the well-recognized mechanisms of ALI/ARDS
is the excessive inflammatory response in the lung [1].
A pro-coagulation state exists during the pathogenesis
of ARDS, and alveolar fibrin deposition has been char-
acterized as a hallmark of the early phase of ALI.
Anti-coagulant therapy has been studied for ALI/ARDS
treatment [21, 33, 34]. The production and activation of
TF have been found to be significantly increased in
human lung epithelial cells in vitro after stimulation with
pro-inflammatory cytokines and in vivo in ARDS patients
[35].

Recently, we have reported that blockade of TF using
a monoclonal antibody specifically against human TF
significantly attenuated the inflammation and lung tissue

injury induced by intestinal ischemia-reperfusion in the
hTF-KI transgenic mice [23]. In the present study, we
further demonstrated the protective effects of the anti-TF
antibody in the intrapulmonary ALI model induced
by intratracheal LPS challenge. These studies provide
examples of using ‘‘humanized’’ mice to test anti-human
antibodies in the pre-clinical stage in both extra- and
intra-pulmonary ARDS animal models.

Since the number of transgenic mice available was
limited to us, the LPS dose-related studies and the
relationship between PTX3 and TF expression and dis-
tribution studies at early phase of LPS stimulation were
conducted with Balb/c mice, whereas hTF-KI mice are
from 129v/C57BL6 background. Different strains of mice
may have different inflammatory responses. On the other
hand, the increased PTX3 expression and TF activation
observed from different strains of mice suggest that this
could be common responses.

Relationship between PTX3 and TF

It was reported that PTX3 enhanced TF expression/acti-
vation induced by LPS or inflammatory cytokines in
cultured human endothelial cells [17] and in monocytes
activated by LPS [16]. These observations led to the
speculation that PTX3 may interact with coagulation
cascades by modulating TF expression/activation. Indeed,
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we found a positive correlation between the expression of
PTX3 and TF activity. Administration of anti-hTF anti-
body protected animals from severe lung injury and
reduced PTX3 expression in the lung. This finding sug-
gests a reciprocal relationship between TF and PTX3,
which merits further investigation.

In summary, our results strongly support PTX3 as a
biomarker of acute lung injury. Further studies are

necessary to determine the role of PTX3/TF interaction in
ALI/ARDS.
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