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Microvascular heart disease in diabetes mellitus
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Epidemiological studies have demonstrated that dia-
betic patients have an increased risk of developing
heart failure independent of serum cholesterol, sys-
tolic blood pressure and age [1]. Diabetic patients
have a markedly adverse course following myocardial
infarction, with high rates of post-infarct failure and
death [2, 3], and there is a significant association be-
tween dilated cardiomyopathy and a history of diabe-
tes mellitus [4, 5]. Such studies have established the
presence of a myocardial disorder in diabetic pa-
tients, distinct from macrovascular coronary disease
and hypertension, which has led to the concept of dia-
betic cardiomyopathy. Diabetic cardiomyopathy may
be defined as myocardial disease in diabetic patients
unrelated to the presence of macrovascular athero-
matous coronary artery stenosis. It has non-specific
morphological and functional characteristics which
include myocyte hypertrophy [6], interstitial fibrosis,
arteriolar thickening, capillary microaneurysms and
reduced capillary density [7-9], and abnormalities of
left ventricular function with alterations in systolic
and particularly diastolic function [10, 11]. The devel-
opment of diabetic cardiomyopathy is likely to be
multifactorial; putative mechanisms include stiffen-
ing and loss of ventricular compliance due to in-
creased myocardial fibrosis, microvascular dysfunc-
tion, structural changes in collagen, alterations in my-
ocardial energy metabolism, and structural changes
to the sarcolemmal and contractile protein of the
muscle itself. This review will concentrate on the pos-
sible relationship between microvascular dysfunction
in diabetes and diabetic cardiomyopathy.
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Coronary microvascular function

Coronary blood flow (CBF) and myocardial oxygen
consumption are closely matched in the normal heart
through changes in coronary microvascular resistance
in response to the metabolic demands of the myocar-
dium [12]. The mechanisms for this matching proba-
bly involve metabolic, myogenic, endothelial, and
neurohumoral influences on coronary microvascular
diameter and hence resistance [13].

The coronary circulation is often studied in vivo by
measurement of blood flow changes in a large epicar-
dial coronary artery. CBF is inversely related to total
coronary microvascular resistance and hence mi-
crovascular dilatation. This technique treats the coro-
nary microcirculation as a single resistance bed with
homogeneous behaviour. However, techniques have
now been developed to measure microvascular diam-
eter and pressure in vivo in experimental models.
Such techniques although limited to animal models,
are likely to provide valuable data on the heteroge-
neous behaviour of the coronary circulation and al-
low the study of regulatory mechanisms at different
levels in the coronary microcirculation.

Myogenic control

The myogenic response comprises vascular smooth
muscle contraction in response to an increase in in-
traluminal pressure and relaxation in response to a
decrease in pressure. It is involved in autoregulation
in the coronary microcirculation, and responses ap-
pear greatest in vessels 30-70 wm in diameter [14].
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Metabolic control

Metabolic control is probably the dominant influence
on CBF ensuring that flow remains constant for a
given level of metabolic demand. Microvascular
tone is governed by tissue levels of metabolic sub-
strates or products such as adenosine which primarily
dilates vessels less than 150 um in diameter [15, 17].
Mechanisms other than adenosine may also be in-
volved in vessels less than 100 um diameter, as dem-
onstrated by the opening of ATP-sensitive K* chan-
nels during hypoxia [18, 19], and the dilatation over
a wide range of vessel sizes caused by increased myo-
cardial oxygen consumption [20].

Endothelial control

Blood flow acting through mechanotransduction of
shear stress on the endothelial cell surface results in
release of endothelium-derived relaxing factor
(EDREF) or nitric oxide (NO) [21]. Increased flow in
the coronary bed causes release of NO which inte-
grates and amplifies changes in vessel calibre and re-
sistance throughout the bed [22]. NO has been shown
to act on vessels more than 200 um in diameter, and is
necessary for spatial and temporal homogeneity of
flow through a vascular bed [22, 23].

Thus, changes in pressure and flow clearly act
throughout the coronary bed, where a multiplicity of
interacting control mechanisms influence tissue per-
fusion (Fig.1).
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Diabetes and coronary microvascular function
Experimental diabetes

Stuctural abnormalities. The rat hypertension-diabe-
tes model has provided evidence of microangiopathy.
Silicon rubber solution infused in vivo revealed nu-
merous areas of microvascular tortuosity, focal con-
strictions, and microanuerysm formation. These
changes were most prominent in rats with both hyper-
tension and diabetes [24].

Myogenic control. Alloxan-induced diabetic dogs or
dogs subjected to hyperglycaemia demonstrated im-
paired vasodilatation of in vivo coronary arteriolar
microvessels in response to a decrease in perfusion
pressure [25]. Autoregulation was also impaired fol-
lowing intracoronary infusion of glibenclamide [26].

Metabolic control. Cardiac hyperactivity induced ei-
ther by pacing or inotropic agents (to increase myo-
cardial oxygen demand) resulted in impaired coro-
nary vasodilatation in spontaneously diabetic rats
compared to non-diabetic rats. The diabetic rat heart
also had a reduced dilatation to adenosine, but a sim-
ilar response to sodium nitroprusside [27].

Endothelial control. There is a wealth of evidence
from animal models of diabetes of endothelial dys-
function [28,29] (for reviews of possible mechanisms).
The majority of the studies have however been per-
formed using large conduit arteries. Nevertheless
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there is evidence of impaired microvascular responses
in these models, e. g. reduced endothelium-dependent
responses in pial arterioles [30] as well as in the femo-
ral and mesenteric circulations of diabetic rats [31].

Thus it is clear, at least in animal models that dia-
betes has potential adverse effects on several of the
interacting control mechanisms which influence tis-
sue perfusion.

Clinical diabetes

Structural abnormalities. Characteristic morphologi-
cal features of diabetic microangiopathy include:
basement membrane thickening, arteriolar thicken-
ing, capillary microaneurysms and reduced capillary
density. All of these features have been described in
diabetic hearts [32, 33] suggesting a similar disease
process in the cardiac microcirculation.

Metabolic control. Pacing-induced increase in CBF
was reduced in diabetic compared to nondiabetic
subjects. The underlying mechanism for this impair-
ment of metabolic vasodilatation was not clearly es-
tablished but did not appear to be due to an impaired
response to adenosine (in contrast to the rat model)
nor due to the use of sulphonylureas which block
K* -sensitive ATPase channels [34].

Endothelial control. Endothelial responses in diabetic
(most with hypertension) and non-diabetic subjects
were assessed by intracoronary infusion of ACh. Dia-
betic patients had impaired endothelium-dependent
dilatation of the epicardial coronary artery [35]. The
diabetic patients also had a reduced coronary flow re-
serve (maximal pharmacological induced CBF/ basal
CBF - an index of vasodilator reserve of the coronary
circulation), a finding confirmed in a later study [34,
35].

Discussion

It is clear therefore that both structural and func-
tional abnormalities of the coronary microcirculation
are present in experimental and clinical diabetes. The
hypothesis that microvascular disease is involved in
the development of diabetic cardiomyopathy is at-
tractive.

Control of CBF is complex, involving a vascular
scheme where the primary influences of different
regulatory elements act at different sites in the coro-
nary circulation. Metabolite- and pressure-induced
changes in tone occur in coronary microvessels less
than 150 yum in diameter, whereas flow-induced
changes in tone occur in larger microvessels. Thus,
endothelium-dependent dilatation of the larger
microvessels may occur as a result of metabolically
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induced increases in flow downstream (Fig.1). A
normally functioning endothelium is necessary for
homogeneity of flow distribution throughout the
vascular bed at different flow rates, with loss of
EDREF leading to spatial and temporal heterogeneity
of perfusion. However, loss of EDRF activity may
not impair the ability of a vascular bed to increase
its flow to match an increase in metabolic work, as
increased metabolic signals acting on vessels less
than 150 pum diameter may override loss of flow-me-
diated dilatation in larger vessels. Nevertheless loss
of EDREF activity reduces the vasodilatory capacity
of a vascular bed. This has been demonstrated in
both experimental and clinical studies where mi-
crovascular responses to adenosine and increased
metabolic demand were attenuated by inhibition of
NO synthesis [36, 37]. In a recent study however, in-
hibition of NO synthesis was not associated with at-
tenuation of microvascular responses to metabolic
stimuli, the authors concluding that the NO-medi-
ated effect may have been counterbalanced by an in-
creased metabolic signal [38]. In another study in the
pig, inhibition of NO synthesis resulted in functional
and structural abnormalities of the coronary micro-
circulation resembling the microangiopathy seen in
diabetic cardiomyopathy [39]; however, the animals
also became hypertensive.

Endothelial dysfunction by contributing to mi-
crovascular abnormalities may explain the reduced
coronary flow reserve observed in diabetic patients,
the reduced dilator reserve of arterioles due to endo-
thelial dysfunction may lower the threshold for myo-
cardial ischaemia particularly when macrovascular
coronary disease is present.

Conclusion

Diabetic cardiomyopathy is thus a real clinical entity.
Its pathophysiology is poorly understood, but it is
clear that hyperglycaemia and hypertension are im-
portant factors. The development of diabetic cardi-
omyopathy is probably multifactorial, but endothelial
dysfunction by contributing to microvascular abnor-
malities probably plays an important role.
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