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A genome-wide cross-trait analysis identifies shared loci and causal
relationships of type 2 diabetes and glycaemic traits with polycystic
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Abstract
Aims/hypothesis The link underlying abnormal glucose metabolism, type 2 diabetes and polycystic ovary syndrome (PCOS) that
is independent of BMI remains unclear in observational studies. We aimed to clarify this association using a genome-wide cross-
trait approach.
Methods Summary statistics from the hitherto largest genome-wide association studies conducted for type 2 diabetes, type 2
diabetes mellitus adjusted for BMI (T2DMadjBMI), fasting glucose, fasting insulin, 2h glucose after an oral glucose challenge (all
adjusted for BMI), HbA1c and PCOS, all in populations of European ancestry, were used.We quantified overall and local genetic
correlations, identified pleiotropic loci and expression–trait associations, and made causal inferences across traits.
Results A positive overall genetic correlation between type 2 diabetes and PCOS was observed, largely influenced by BMI
(rg=0.31, p=1.63×10

–8) but also independent of BMI (T2DMadjBMI–PCOS: rg=0.12, p=0.03). Sixteen pleiotropic loci affecting
type 2 diabetes, glycaemic traits and PCOS were identified, suggesting mechanisms of association that are independent of BMI.
Two shared expression–trait associations were found for type 2 diabetes/T2DMadjBMI and PCOS targeting tissues of the
cardiovascular, exocrine/endocrine and digestive systems. A putative causal effect of fasting insulin adjusted for BMI and type
2 diabetes on PCOS was demonstrated.
Conclusions/interpretation We found a genetic link underlying type 2 diabetes, glycaemic traits and PCOS, driven by both
biological pleiotropy and causal mediation, some of which is independent of BMI. Our findings highlight the importance of
controlling fasting insulin levels to mitigate the risk of PCOS, as well as screening for and long-term monitoring of type 2
diabetes in all women with PCOS, irrespective of BMI.

Keywords Genome-wide cross-trait analysis . Insulin resistance .Mendelian randomisation . Polycystic ovary syndrome .Type2
diabetes

Abbreviations
2hGluadjBMI 2h glucose after an oral glucose

challenge adjusted for BMI
CPASSOC Cross-phenotype association analysis

FDR False discovery rate
(Benjamini–Hochberg correction)

FGadjBMI Fasting glucose adjusted for BMI
FIadjBMI Fasting insulin adjusted for BMI
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GWAS Genome-wide association study
IV Instrumental variable
IVW Inverse variance weighted
LD Linkage disequilibrium
LDSC Linkage disequilibrium score regression
MR Mendelian randomisation
NOME No measurement error
PCOS Polycystic ovary syndrome
SIMEX Simulation extrapolation
T2DMadjBMI Type 2 diabetes mellitus adjusted for BMI
TWAS Transcriptome-wide association study
WC Waist circumference

Introduction

Polycystic ovary syndrome (PCOS) is the most common
endocrine disorder affecting women of reproductive age.
More than half of women with PCOS present with metabolic
comorbidities, including obesity and insulin resistance, and
women with PCOS are at a higher risk of developing type 2
diabetes [1–3], highlighting the importance of monitoring
glucose metabolism for the prevention and management of
PCOS.

Guidelines consistently recommend screening for type 2
diabetes in women with PCOS; however, a key question is

whether screening should be offered to all patients or targeted
only at those who are overweight or obese. Although insulin
resistance and type 2 diabetes in PCOS are often believed to
be attributed to BMI [4, 5], two large systematic reviews and
meta-analyses suggest an effect that is independent of BMI [6,
7]. These inconclusive findings have posed challenges with
regard to optimising clinical practice; however, there are
methodological limitations of these studies because of the
observational nature of conventional epidemiological investi-
gations. The use of advanced study designs and unconfounded
estimates of genetic associations could overcome such limita-
tions and provide new insights into the underlying biology,
which may aid clinical decision making.

Observational associations between two traits usually
suggest shared environmental exposures and shared genetic
components, because of genetic variants either having inde-
pendent effects on both traits (horizontal pleiotropy or pleiot-
ropy) or influencing one trait through their effect on the other
(vertical pleiotropy or causality). Such shared genetic compo-
nents can be dissected using a novel design named genome-
wide cross-trait analysis [8, 9]. To the best of our knowledge,
no such analysis has been conducted to comprehensively
investigate the relationship between PCOS and its primary
coexisting conditions, abnormal glycaemic metabolism and
type 2 diabetes, taking BMI into consideration.

Therefore, in the current study we aimed to investigate the
shared genetic contributions between type 2 diabetes,
glycaemic traits and PCOS that are independent of BMI by
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conducting a comprehensive genetic analysis that leveraged
the hitherto largest genome-wide association study (GWAS)
summary statistics for each trait. We examined the role of type
2 diabetes, type 2 diabetes adjusted for BMI (T2DMadjBMI)
[10], fasting glucose, fasting insulin, 2h glucose after an oral
glucose challenge (all adjusted for BMI: FGadjBMI, FIadjBMI
and 2hGluadjBMI, respectively) and HbA1c [11] in the devel-
opment of PCOS [12] in people of European ancestry.

Methods

Study designAn overview of the study design is shown in Fig.
1. We performed a genome-wide cross-trait analysis to quan-
tify overall and local genetic correlation, identify pleiotropic
loci, detect expression–trait associations and infer causal
relationships.

GWAS summary statistics for type 2 diabetes, glycaemic traits
and PCOS GWAS summary statistics for type 2 diabetes and
T2DMadjBMI were obtained from the DIAbetes Genetics
Replication AndMeta-analysis (DIAGRAM) consortium; this
dataset included 74,124 individuals with type 2 diabetes and
824,006 control participants from 32 European-ancestry
GWASs [10]. Individuals with diabetes were identified based
onWHO 1999 criteria (fasting plasma glucose ≥7.0 mmol/l or
2h plasma glucose ≥11.1 mmol/l) [13], HbA1c ≥6.5%, casual
glucose ≥11.1 mmol/l, use of diabetes medication or treatment
for diabetes, medical records, ICD codes and self-report,
either alone or in combination. The effect of each variant
across all studies was combined using a fixed-effect meta-
analysis of log ORs, yielding 231 type 2 diabetes-associated
index SNPs of genome-wide significance (p<5×10−8). For
T2DMadjBMI, the top associated SNPs were not reported by
the original GWAS; we thus identified independent genome-

GWAS availability Exposures Outcome

Fasting glucose 

Fasting insulin 

2h glucose 

(adjusted for BMI)

n= ~200,000

PCOS

n=10,074 cases/

103,164 controls

HbA1c

(unadjusted for BMI) 

n=~200,000

Overall and local

genetic correlation

Genome-wide genetic correlation

analysis

Local genetic correlation analysis

Cross-trait meta-analysis

Transcriptome-wide association

analysis

Mendelian randomisation

Cross-trait meta-

analysis, functional

analysis and causal

inference

Type 2 diabetes

(adjusted and

unadjusted for BMI) 

n=74,124 cases/

824,006 controls

Genomic correlation, shared loci and

causal relationships between type 2

diabetes, glycaemic traits and PCOS

Fig. 1 Illustration of the genome-wide cross-trait analysis design. We
first quantified overall and local genetic correlation, then identified specif-
ic pleiotropic loci and detected expression–trait associations and finally
inferred causal relationships. Genome-wide genetic correlation analysis:
https://github.com/bulik/ldsc; local genetic correlation analysis: https://

huwenboshi.github.io/hess/; cross-trait meta-analysis: http://hal.case.
edu/~xxz10/zhu-web/; Mendelian randomisation: https://mrcieu.github.
io/TwoSampleMR/; transcriptome-wide association analysis: http://
gusevlab.org/projects/fusion/
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wide significant (p<5×10−8) SNPs applying clumping at an
r2<0.01 (see electronic supplementary material [ESM]
Tables 1 and 2 for type 2 diabetes- and T2DMadjBMI-associ-
ated index SNPs, respectively).

GWAS summary statistics for glycaemic traits (FGadjBMI,
FIadjBMI, HbA1c, 2hGluadjBMI) were obtained from the
Meta-Analyses of Glucose and Insulin-related traits
Consortium (MAGIC); the dataset included 281,416 individ-
uals without diabetes (70% European ancestry) [11]. For each
glycaemic trait, adjustment was made for study-specific
covariates and principal components. Independent genome-
wide significant (p<5×10−8) SNPs in European ancestry were
identified by this meta-GWAS, resulting in 85 FGadjBMI-
associated index SNPs, 42 FIadjBMI-associated index SNPs,
86 HbA1c-associated index SNPs and 12 2hGluadjBMI-asso-
ciated index SNPs (ESM Tables 3–6, respectively).

GWAS summary statistics for PCOS, conducted through
international collaborations, comprised 10,074 individuals
with PCOS and 103,164 control participants of European
ancestry. Diagnosis of PCOS was made based on the
National Institutes of Health (NIH) or Rotterdam criteria, or
by self-report [12]. In total, 14 independent genome-wide
significant (p<5×10–8) SNPs were identified by meta-
analysing the GWASs (ESM Table 7).

We extracted relevant information on each index SNP from
each GWAS for Mendelian randomisation (MR) analysis and
downloaded a full set of summary statistics for the other anal-
yses. Detailed information on the characteristics of the GWAS
data sources and the units for trait measurement are provided
in ESM Table 8. All genetic data were aligned to the human
reference genome build 37 (or hg19).

Statistical analysis

Overall genetic correlation analysis We performed a pairwise
genetic correlation analysis using linkage disequilibrium score
regression (LDSC), an algorithm that quantifies the average
sharing of genetic effect across the whole genome between
two traits unaffected by environmental confounders [14].
The final estimates ranged from –1 to 1, with –1 indicating a
perfect negative genetic correlation and 1 indicating a perfect
positive genetic correlation. We used pre-computed linkage
disequilibrium (LD) scores obtained from ~1.2 million
common SNPs in European ancestry represented in the
HapMap3 reference panel, commonly believed to be of high
imputation quality. A Bonferroni-corrected p value threshold
of 0.05/6 was used to represent statistical significance.

Local genetic correlation analysis Overall genetic correlation
estimated by LDSC aggregates information across all variants
in the genome. It is possible that, even though two traits show
negligible overall genetic correlation, there are specific

regions in the genome contributing to both traits.We therefore
estimated the pairwise local genetic correlation using ρ-HESS
(heritability estimation from summary statistics). This algo-
rithm partitions the genome into 1703 prespecified LD-
independent regions of 1.5 Mb and precisely quantifies genet-
ic correlation restricted to each region [15]. A Bonferroni-
corrected p value threshold of 0.05/1703 was used to represent
statistical significance and p<0.05 was used as a suggestive
significance threshold.

Cross-trait meta-analysis Genetic correlation reflects either
causality or pleiotropy. We therefore conducted a cross-trait
meta-analysis at individual SNP level to identify pleiotropic
loci shared between traits, using cross-phenotype association
analysis (CPASSOC) [16]. CPASSOC integrates GWAS
summary statistics from multiple correlated traits to detect
variants associated with at least one trait, controlling for popu-
lation structure or cryptic relatedness. The pairwise SHet was
calculated to combine summary statistics across traits. This
test statistic (SHet) is an extension of SHom and is used more
commonly in practice, showing improved power with hetero-
geneous genetic effects [16]. SNPs reaching genome-wide
significance (pCPASSOC <5×10–8) in paired traits and sugges-
tive significance (psingle trait <1×10

–3) in a single trait were
considered significant pleiotropic SNPs.

We applied the PLINK clumping function to obtain inde-
pendent SNPs (parameters: –clump-p1 5e-8 –clump-p2 1e-5 –
clump-r2 0.2 –clump-kb 500) [17]. The Ensembl Variant
Effect Predictor (VEP) was used for detailed functional anno-
tation of the variants identified [18].

We categorised all CPASSOC-identified significant
pleiotropic SNPs into one of four categories. The first
category was ‘known’ shared SNPs that reached
genome-wide significance in both single traits being
analysed. These SNPs were identified as naturally shared
SNPs even without CPASSOC testing. The second cate-
gory was ‘single-trait-driven’ shared SNPs that reached
genome-wide significance in either of the two single traits
and in CPASSOC. The third category was shared SNPs
that, despite not being driven by a single trait, were in LD
with index SNPs previously identified in single-trait
GWASs (LD r2> 0.2). Finally, the fourth category, novel
SNPs, was prioritised by us and was of particular interest;
novel SNPs were defined as shared SNPs that are neither
driven by a single trait nor in LD with index SNPs iden-
tified in single-trait GWASs (LD r2< 0.2).

Transcriptome-wide association study CPASSOC identifies
genetic variants affecting multiple traits without considering
gene expression or tissue specificity; however, many genetic
variants influence complex traits by modulating gene expres-
sion levels [19]. To identify relevant genes whose expression
patterns across tissues suggest a shared biological mechanism,
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we performed a transcriptome-wide association study
(TWAS) using FUSION [19]. We first performed a single-
trait TWAS leveraging the expression weights of 48 post-
mortem tissues available at GTEx (version 7) and then
intersected the single-trait TWAS results to examine if they
were shared across traits. The false discovery rate (FDR)
Benjamini–Hochberg correction (FDR <0.05) was used with-
in each tissue to account for multiple comparisons.

Bidirectional Mendelian randomisation analysis A two-
sample MR analysis was conducted to evaluate causal associ-
ations. The inverse variance weighted (IVW) approach was
used in the primary analysis assuming all instrumental vari-
ables (IVs) to be valid; the results would be biased even if only
one IV was invalid [20]. We carried out a series of sensitivity
analyses to determine the robustness of the results, including
using a weighted median estimator method [21] and an MR-
Egger regression [22], which gave consistent estimates under
relaxed assumptions. We calculated the Cochran’s Q value to
assess heterogeneity among individual IVs, with funnel plots
created for visualisation. We used the MR pleiotropy residual
sum and outlier (MR-PRESSO) framework as an additional
check for pleiotropy and outliers. The global test detects plei-
otropy among IVs and, when significant, the outlier test
corrects for pleiotropy by outlier removal [23]. Both the
MR-Egger regression and the IVW approach are based on
the no measurement error (NOME) assumption, meaning that
the variance of the SNP–exposure association is negligible,
which can rarely be satisfied, leading to regression dilution
bias in MR-Egger regression [24]. We evaluated the degree
of such dilution using I2GX and corrected for it using simula-
tion extrapolation (SIMEX) [24]. To test if the causal estimate
was driven by a single SNP, we performed a leave-one-out
analysis in which each SNP was iteratively removed and the
IVW approach was applied using the remaining SNPs. Steiger
filtering was used to exclude all SNPs explaining more vari-
ance in the outcome than the exposure, after which the IVW
method was repeated [25]. We then checked whether the
results were consistent after excluding palindromic SNPs
(A/T orG/C SNPswith the same pairs of letters on the forward
and reverse strands).

Finally, to examine if genetic predisposition to PCOS influ-
ences type 2 diabetes and glycaemic traits, we performed a
bidirectional MR analysis in which 14 genome-wide signifi-
cant PCOS-associated SNPs were used as IVs [12].

A Bonferroni-corrected p value threshold of 0.05/6 and
p<0.05 were used to represent statistical significance and
suggestive significance, respectively.

All MR analyses were conducted in R version 4.1.2 (R
Foundation for Statistical Computing, Vienna, Austria) using
the packages ‘Two-SampleMR’, ‘SIMEX’ and ‘MR-
PRESSO’.

Results

Overall and local genetic correlation After correcting for
multiple testing (p<0.05/6), we found a strong positive overall
genetic correlation between type 2 diabetes and PCOS
(rg=0.31, p=1.63×10

–8) (Table 1). As BMI affects both traits
in observational studies, we explored the genetic correlation
between PCOS and T2DMadjBMI, in which the effect of BMI
was controlled for. As expected, the positive genetic correla-
tion was attenuated to less than half of its original value
(rg=0.12, p=0.03), with suggestive significance indicating that
the shared genetic basis was largely influenced by BMI but
was also to a non-trivial extent independent of BMI. For
glycaemic traits, we did not observe any significant overall
genetic correlation with PCOS (FGadjBMI: rg=−0.04,
p=0.54; FIadjBMI: rg=0.09, p=0.24; HbA1c: rg=0.13, p=0.06;
2hGluadjBMI: rg=0.07, p=0.47).

After breaking down the genome into 1703 regions and
correcting for multiple testing (p<0.05/1703), no significant
local genetic correlation was identified between type 2 diabe-
tes or glycaemic traits and PCOS (ESM Fig. 1). Suggestive
significance (p<0.05) was observed for type 2 diabetes–PCOS
at five genomic regions, for T2DMadjBMI–PCOS at six geno-
mic regions, for FGadjBMI–PCOS at one genomic region and
for HbA1c–PCOS at one genomic region (ESM Table 9).

Cross-trait meta-analysis CPASSOC identified 16 indepen-
dent pleiotropic SNPs reaching genome-wide significance
(pCPASSOC<5×10

–8) in paired traits and suggestive signifi-
cance (psingle trait<1×10

–3) in a single trait (Table 2).
Notably, none of these 16 SNPs was previously reported
to be associated with PCOS (0/16), while most of them
were associated with at least one glycaemic trait or with
type 2 diabetes (10/16).

Four SNPs were shared between type 2 diabetes and PCOS
(rs8050136, rs9675376, rs72753599 and rs10938398). The
mos t s i gn i f i c an t s ha r ed l ocu s was r s 8050136
(pCPASSOC=1.95×10

–85) located near FTO, which was also
shared by T2DMadjBMI-PCOS (sentinel SNP [the most

Table 1 Genome-wide genetic correlation between type 2 diabetes/
glycaemic traits and PCOS

Trait 1 Trait 2 rg rg_SE p value

PCOS T2DM 0.31 0.05 1.63×10–8

PCOS T2DMadjBMI 0.12 0.06 0.03

PCOS FGadjBMI –0.04 0.07 0.54

PCOS FIadjBMI 0.09 0.08 0.24

PCOS HbA1c 0.13 0.07 0.06

PCOS 2hGluadjBMI 0.07 0.10 0.47

rg, genetic correlation; T2DM, type 2 diabetes mellitus
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significant SNP at the locus]: rs9930501, pCPASSOC=6.07×10
–15)

and HbA1c -PCOS ( s en t i n e l SNP : r s 8047587 ,
pCPASSOC=2.87×10

–10). The second most significant locus was
rs72753599 (pCPASSOC=3.94×10

–13) near PROX1, a gene that
was also shared by T2DMadjBMI-PCOS (sentinel SNP:
rs72753599, pCPASSOC=6.26×10

–14) and FGadjBMI−PCOS
(sentinel SNP: rs72753599, pCPASSOC=1.62×10

–12).
Five SNPs were shared between T2DMadjBMI and PCOS

(rs1509097, rs2238689, and rs3934729, in addition to
rs9930501 and rs72753599 mentioned in the previous para-
g raph) . The mos t s ign i f i can t SNP (rs2238689 ,
pCPASSOC=9.67×10

–24) was located near GIPR.
For FGadjBMI and PCOS, the most significant shared locus

(sentinel SNP: rs9844212, pCPASSOC=4.41×10
–13) was near

ADCY5. This locus was also shared by T2DMadjBMI and
PCOS (sentinel SNP: rs3934729, pCPASSOC=1.44×10

–8).
Three SNPs were shared between FIadjBMI and PCOS

(rs745379, rs3813583 and rs4135247), amongwhich the most
significant (sentinel SNP: rs745379, pCPASSOC=1.49×10

–9)
was located near GATA4, a PCOS-associated gene [12] that
also plays an essential role in pancreatic development [26].

Among the four SNPs shared by HbA1c and PCOS
(rs8047587, rs1265564, rs2238689 and rs4731113), the most
significant (rs1265564, pCPASSOC=2.91×10

–13) was near
CUX2, a gene that is expressed in neural tissues and that has
previously been reported to be associated with insulin-
dependent diabetes. CUX2 directly regulates the expression
of a transcription factor for the insulin gene [27].

Detailed annotations of each variant are shown in ESM
Table 10.

Transcriptome-wide association studiesAccounting for multi-
ple testing (FDR <0.05) and across all tissues, single-trait
TWAS identified 21 genes that are significantly associated
with PCOS (ESM Table 11); 20806 genes were found to be
significantly associated with type 2 diabetes, 11446 genes for
T2DMadjBMI, 4241 genes for FGadjBMI, 2693 genes for
FIadjBMI, 5702 genes for HbA1c, and 157 genes for
2hGluadjBMI (ESM Fig. 2). Intersecting the single-trait
TWAS results across traits, we identified one gene,
ARL14EP, expressed in multiple tissues of the cardiovascular
system and exocrine/endocrine system, that is shared between
type 2 diabetes and PCOS. When the effect of BMI was
removed, we found a second gene, SERPINB8, expressed in
stomach, that is shared between T2DMadjBMI and PCOS
(Table 3).

Bidirectional Mendelian randomisation A significant causal
effect of genetically predisposed type 2 diabetes on PCOS
was observed using the IVW approach (OR 1.15, 95% CI
1.06, 1.25), which remined directionally consistent in MR-
Egger regression (OR 1.10, 95% CI 0.93, 1.31) and using
the weighted median approach (OR 1.09, 95% CI 0.96,

1.16) (Fig. 2). When the effect of BMI was removed, no caus-
al association between T2DMadjBMI and PCOSwas observed
(IVW: OR 1.06, 95% CI 0.96, 1.16; MR-Egger: OR 0.92,
95% CI 0.75, 1.12; weighted median: OR 0.95, 95% CI
0.82, 1.10).

For glycaemic traits, a positive association between genet-
ically predicted FIadjBMI and risk of PCOS was observed
(IVW: OR 2.85, 95% CI 1.37, 5.92). The effect remained
suggestively significant (p=0.03) using the weighted median
approach (OR 3.08, 95% CI 1.10, 8.59). The MR-Egger
regression yielded a directionally consistent estimate that
was not significant (OR 1.02, 95% CI% 0.12, 8.94). No causal
effect of any other glycaemic trait on PCOS was observed, as
shown using the IVW approach (FGadjBMI: OR 0.92, 95% CI
0.66, 1.28; HbA1c: OR 1.20, 95% CI 0.70, 2.07; 2hGlu: OR
0.76, 95% CI 0.49, 1.18); the same results were found using
the other two approaches (Fig. 2).

We observed directionally consistent results in the sensitiv-
ity analyses performed, corroborating the robustness of the
findings (ESM Results, ESM Tables 12-16 and ESM Figs
3–7).

Finally, genetically predisposed PCOS did not seem to
affect type 2 diabetes or any of the glycaemic traits, with all
effects close to null in reverse MR analysis (ESM Fig. 8). All
14 SNPs explained more variance in PCOS than in type 2
diabetes or glycaemic traits, meaning that no SNPs were
removed in Steiger filtering.

Discussion

To the best of our knowledge, this is the first large-scale
genome-wide cross-trait analysis investigating the genomic
correlation, pleiotropic loci, expression–trait associations and
causal relationships between type 2 diabetes or glycaemic
traits and PCOS. We found a positive overall type 2
diabetes–PCOS genetic correlation, which was largely driven
by, but was also independent of, BMI, indicating a shared
genetic basis as a result of pleiotropy or causality. We next
identified 16 pleiotropic SNPs that are shared across traits and
two expression–trait associations tagging tissues of the cardio-
vascular, exocrine/endocrine and digestive systems, suggest-
ing a common biology. We further demonstrated a putative
causal role of genetically predicted type 2 diabetes and
FIadjBMI in the development of PCOS, supporting a role of
interventions on fasting insulin levels in the prevention of
PCOS.

Our findings are largely in line with those from previous
studies, yet extend these findings in several important ways.
First, leveraging summary statistics from the hitherto largest
GWASs, our study substantially improves the statistical
power of genetic correlation analysis. Day et al identified a
positive type 2 diabetes–PCOS genetic correlation [12] using
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a type 2 diabetes GWAS including 34,840 individuals with
diabetes and 114,981 control participants, whichwe replicated
using a sample size that was sixfold higher (using the most
recently published GWAS involving 74,124 individuals with
diabetes and 824,006 control participants). On the other hand,
although a positive genetic correlation was revealed for
FIadjBMI (96,496 individuals) and PCOS by the same authors
[12], our analysis, with double the sample size (~200,000
individuals), did not support such a finding. Second, in MR
analysis, incorporating additional IVs (42 vs 12 FIadjBMI
SNPs) derived from large-scale GWASs substantially
improves the strength of genetic instruments as well as both
the accuracy and the precision of causal estimates. With the
current sample size for the outcome of PCOS (n=113,238, 9%
cases), and assuming that the phenotypic variance of the expo-
sures explained by IVs is around 0.62% [11], we were able to
detect an association of a 38% change in the risk of PCOS
with FIadjBMI with 80% power. Third, while a previous MR
analysis reported only a null PCOS–type 2 diabetes causal
association [28], our bidirectional MR analysis, which took
into consideration reverse causation, found a novel type 2

diabetes–PCOS causal association, suggesting that a genetic
predisposition to type 2 diabetes plays an important role in
PCOS development. A fourth advancement is the consider-
ation of the effect of BMI. While previous observational stud-
ies have found inconsistent results on whether the link
between type 2 diabetes/glycaemic traits and PCOS can be
entirely attributed to BMI [4–7, 29], our findings support a
pathogenesis pathway that is independent of BMI. BMI may
not be sufficient at reflecting adiposity, yet the results from
our previous investigation largely supported the role of BMI
rather than fat distribution (waist-to-hip ratio with and without
adjusting for BMI) in the development of PCOS [30]. Waist
circumference (WC) [31], another and potentially better indi-
cator of abdominal fat, was examined and a positive genetic
corre la t ion was ident i f ied with PCOS (rg=0.46,
p=5.32×10−11). However, when the effect of BMI was
removed, the prior positive WC–PCOS genetic correlation
was attenuated to null (WCadjBMI: rg=0.08, p=0.19). This
evidence collectively supports the role of BMI rather than
fat distribution in the pathogenesis of PCOS, suggesting the
adequacy and appropriateness of adjusting only for BMI in the

Exposure: T2DM and glycaemic traits

T2DM

IVW

   Weighted median

    MR-Egger

T2DMadjBMI

IVW

   Weighted median

    MR-Egger

FGadjBMI

IVW

   Weighted median

    MR-Egger

FIadjBMI

IVW

   Weighted median

    MR-Egger

HbA1c

    IVW

   Weighted median

    MR-Egger

2hGluadjBMI

    IVW

   Weighted median

    MR-Egger

OR (95% CI)

1.15 (1.06, 1.25)

1.09 (0.96, 1.16)

1.10 (0.93, 1.31)

1.06 (0.96, 1.16)

0.95 (0.82, 1.10)

0.92 (0.75, 1.12)

0.92 (0.66, 1.28)

0.95 (0.60, 1.51)

0.68 (0.37, 1.24)

2.85 (1.37, 5.92)

3.08 (1.10, 8.59)

1.02 (0.12, 8.94)

1.20 (0.70, 2.07)

0.89 (0.41, 1.94)

0.99 (0.35, 1.02)

0.76 (0.49, 1.18)

0.81 (0.53, 1.23)

0.35 (0.12, 1.02)

p

1.27 × 10
−3

0.17

0.26

0.26

0.51

0.40

0.62

0.83

0.21

4.89 × 10
−3

0.03

0.99

0.50

0.77

0.99

0.22

0.32

0.08

0 1 3 42

OR (95% CI)

Fig. 2 Estimates of the causal effects of genetically predicted type 2
diabetes and glycaemic traits on PCOS. The boxes denote the point esti-
mates of the causal effects and the error bars denote the 95% CIs. The
IVW approach was used in the primary analysis and the MR-Egger and

weighted median approaches were used in sensitivity analyses. The ORs
for PCOSwere scaled to the per unit increase in log OR of type 2 diabetes
and per unit increase in glycaemic traits. T2DM, type 2 diabetes mellitus
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current study. Results from multivariable MR adjusting for
female adult BMI [32] consistently support a suggestive direct
type 2 diabetes–PCOS causal association that is independent
of BMI (IVW: OR 1.09, p=0.04).

In addition to the genetic correlations and causal relation-
ships (type 2 diabetes–PCOS and/or FIadjBMI–PCOS) identi-
fied by our study, results from cross-trait meta-analysis
suggest that the observational link may largely be explained
by potential pleiotropic variants affecting both traits indepen-
dently and by mechanisms that are independent of BMI. Here
we highlight four novel SNPs (as defined in theMethods) with
interesting findings. The first of these is rs3934729 located
near ADCY5, a gene shared by T2DMadjBMI, FGadjBMI and
PCOS and overlapping a suggestively significant
T2DMadjBMI–PCOS local genetic correlation region
chr3:11019665-13070799. Variation in ADCY5 increases
fasting glucose levels and type 2 diabetes risk through altered
expression in beta cells and impaired glucose signalling [33]
and has been found to decrease the disposition index (an indi-
cator of insulin secretion capacity) in women with gestational
diabetes after adjusting for BMI [34]. Variation in ADCY5 has
also been shown to affect ovarian morphological-related traits
in bovines [35]. The second novel SNP, rs8047587, is located
near FTO, a gene shared by HbA1c, T2DMadjBMI and PCOS.
Candidate gene studies have suggested that FTO variation is
associated with insulin resistance or hyperinsulinaemia in
women with PCOS, independent of BMI [36]. The third novel
SNP, rs2238689, shared by T2DMadjBMI, HbA1c and PCOS,
is located near GIPR, which encodes a G protein-coupled
receptor for gastric inhibitory polypeptide expressed in the
pituitary and ovaries. Variation in GIPR is known to lead to
impaired glucose tolerance and type 2 diabetes through an
impaired incretin (a gut-derived peptide hormone) effect
[37]. Recent work has linked the amelioration of PCOS after
weight-loss bariatric surgery to an improved gut hormonal
milieu, highlighting the role of gut hormone receptor modu-
lation in PCOS [38]. The fourth novel SNP, rs4135247, is
shared by FIadjBMI and PCOS and is located near PPARG,
a gene involved in the insulin signalling pathway in type 2
diabetes that has been found to be associated with PCOS
susceptibility [39]. In addition to novel shared SNPs, we
further highlight one single-trait-driven SNP of interest,
rs72753599, located near PROX1, a gene known to alter beta
cell insulin secretion [40], which was shared by type 2 diabe-
tes, T2DMadjBMI, FGadjBMI and PCOS. At first glance,
PROX1 seems to play no major role in PCOS; however, a
previous study found that PROX1 affects the pathogenesis of
PCOS through its involvement in lymphatic vasculature in the
ovary [41]. Finally, a TWAS identified one gene shared by
T2DMadjBMI and PCOS, suggesting potential shared biology
through a protein encoded by ARL14EP. ARL14EP is
expressed in the aorta, tibial artery, thyroid and ovary, among
other tissues. ARL14EP encodes an effector protein that

interacts with ADP-ribosylation factor-like 14, which may
control the movement of MHC class II-containing vesicles,
contributing to a PCOS diagnosis based on the NIH criteria,
which presents the greatest risk for insulin resistance and other
metabolic disorders [42]. All these findings suggest a biolog-
ical mechanism that is independent of BMI. Further studies
are needed to replicate and verify our findings. Another mech-
anism that may explain the higher risk of type 2 diabetes in
PCOS is testosterone excess [43].

From translational and clinical perspectives, our findings
clarify that both a shared genetic aetiology and causal effects
explain the observational link between abnormal glucose
metabolism and type 2 diabetes and PCOS, and deliver two
messages that may inform clinical practice. First, findings of
pleiotropic variants highlight a shared aetiology underlying
glycaemic traits and type 2 diabetes and PCOS, in which
women with PCOS are inherently at a higher risk of abnormal
glucose metabolism and type 2 diabetes through pathways that
are independent of BMI, supporting the need for long-term,
regular monitoring of glycaemic status in these individuals.
Second, findings of the FIadjBMI–PCOS and type 2 diabetes–
PCOS (univariable MR and multivariable MR) causal associ-
ations suggest the importance of controlling fasting insulin
levels to mitigate the risk of developing PCOS, irrespective
of BMI. From a broader public health perspective, lifestyle
interventions (e.g. exercise and diet modification) may
improve glucose metabolism and decrease PCOS risk
simultaneously.

We acknowledge a few limitations. First, because of limit-
ed data availability, we were unable to use sex-specific
GWAS data on type 2 diabetes and glycaemic traits to match
the data on the female-specific outcome PCOS at the time of
conducting the analysis. However, sex heterogeneity did not
seem to play a significant role when using female-specific
type 2 diabetes GWASs, which are now available through
the DIAGRAM consortium website (https://diagram-
consortium.org/index.html; accessed 17 March 2022)
(female rg=0.33, p=1.24×10

−7; ESM Table 17, ESM Fig. 9).
Although underpowered, female-specificMR analysis yielded
directionally consistent findings (IVW: OR 1.08, p=0.24) to
type 2 diabetes−PCOS MR findings using the sex-combined
type 2 diabetes GWAS (OR 1.15, 95% CI 1.06, 1.25). Using
sufficiently powered female-specific data could thus be a
future direction for research. Second, PCOS encompasses
genetically heterogeneous subtypes, as recently classified in
an unsupervised clustering analysis [44]; however, we were
unable to assess these subtypes because of limited data avail-
ability. Third, the generalisability of our findings was restrict-
ed to European ancestry populations. Fourth, although statis-
tical power was greatly improved in our analysis compared
with previous MR analyses, we acknowledge that the pheno-
typic variance explained by IVs for some traits remains
modest. Therefore, studies with even greater statistical power
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are warranted. However, the instruments used were sufficient-
ly strong, as reflected by the F statistics (ESM Table 8).
Finally, nearly all the included exposure GWASs (except for
HbA1c) were adjusted for BMI. Although this enables effects
to be interrogated independently of BMI, it is also likely to
introduce collider bias, which could violate the independence
assumption (IVs are not associated with confounders) [45]. In
the glycaemic GWAS study, Chen et al confirmed that collid-
er bias influenced less than 2% of the glycaemic signals [11];
our MR results are also most likely to be unbiased, although
they should be interpreted with caution.

To conclude, leveraging the hitherto largest genome-wide
genetic data and advanced statistical genetics approaches, our
study provides novel insights into the observational associa-
tions of type 2 diabetes and glycaemic traits with PCOS. Our
findings suggest that such associations are driven in part by
pleiotropic effects and in part by causal effects of a genetic
predisposition to type 2 diabetes and of fasting insulin on the
development of PCOS, which are independent of BMI.

Supplementary Information The online version contains peer-reviewed
but unedited supplementary material available at https://doi.org/10.1007/
s00125-022-05746-x.
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