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Clinical variable-based cluster analysis identifies novel subgroups
with a distinct genetic signature, lipidomic pattern and cardio-renal
risks in Asian patients with recent-onset type 2 diabetes
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Abstract
Aims/hypothesis We sought to subtype South East Asian patients with type 2 diabetes by de novo cluster analysis on clinical
variables, and to determine whether the novel subgroups carry distinct genetic and lipidomic features as well as differential
cardio-renal risks.
Methods Analysis by k-means algorithmwas performed in 687 participants with recent-onset diabetes in Singapore. Genetic risk
for beta cell dysfunction was assessed by polygenic risk score.We used a discovery–validation approach for the lipidomics study.
Risks for cardio-renal complications were studied by survival analysis.
Results Cluster analysis identified three novel diabetic subgroups, i.e. mild obesity-related diabetes (MOD, 45%), mild age-
related diabetes with insulin insufficiency (MARD-II, 36%) and severe insulin-resistant diabetes with relative insulin insuffi-
ciency (SIRD-RII, 19%). Compared with the MOD subgroup, MARD-II had a higher polygenic risk score for beta cell dysfunc-
tion. The SIRD-RII subgroup had higher levels of sphingolipids (ceramides and sphingomyelins) and glycerophospholipids
(phosphatidylethanolamine and phosphatidylcholine), whereas the MARD-II subgroup had lower levels of sphingolipids and
glycerophospholipids but higher levels of lysophosphatidylcholines. Over a median of 7.3 years follow-up, the SIRD-RII
subgroup had the highest risks for incident heart failure and progressive kidney disease, while the MARD-II subgroup had
moderately elevated risk for kidney disease progression.
Conclusions/interpretation Cluster analysis on clinical variables identified novel subgroups with distinct genetic, lipidomic
signatures and varying cardio-renal risks in South East Asian participants with type 2 diabetes. Our study suggests that this
easily actionable approachmay be adapted in other ethnic populations to stratify the heterogeneous type 2 diabetes population for
precision medicine.
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Abbreviations
ANDIS All New Diabetics in Scania
CKD Chronic kidney disease
GWAS Genome-wide association study
LPC Lysophosphatidylcholine
MACE Major adverse cardiovascular events
MARD-II Mild age-related diabetes with insulin

insufficiency
MOD Mild obesity-related diabetes
PRS Polygenic risk score
SIDD Severe insulin-deficient diabetes
SIRD-RII Severe insulin-resistant diabetes with relative

insulin insufficiency

Introduction

The pathogenesis of type 2 diabetes involves a complex inter-
play between genetic susceptibility and environmental factors
[1–3]. Comorbidities such as obesity and dyslipidaemia often
co-exist with dysregulation of glucose metabolism. Hence,
type 2 diabetes is highly heterogeneous in terms of aetiology,
clinical presentation, and risks for vascular and non-vascular
complications [4–7]. However, patients with type 2 diabetes

may be subtyped into relatively homogenous subgroups for
precision medicine [1].

In a landmark study using data-driven cluster analysis,
Ahlqvist et al subtyped recent-onset diabetes into five
subgroups based on common clinical variables under the
assumption that diabetes is clinically manifested when
insulin secretion does not match decreased sensitivity [4,
8]. This novel but easily actionable subtyping approach has
attracted tremendous interest, and the clustering algorithm
has been replicated in several diabetic populations in recent
years [9–13]. While cluster analysis on only a few clinical
variables has the advantage of simplicity compared with
other approaches using omics data [3], it may be argued
that clusters identified from a data correlation matrix are
simply the result of inter-dependency in the clinical vari-
ables [14]. One approach to address this concern is to exam-
ine whether the clusters derived from the common clinical
variable have shared pathophysiological features within the
subgroup but distinct from the other subgroups. Indeed, a
recent study showed that inflammation biomarkers differed
greatly across the novel subgroups [15]. Other studies in a
European population also identified diabetic subgroups that
differed in genetic risk, lipidomic and proteomic signatures
[16, 17].
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Compared with patients of European descent, Asians with
type 2 diabetes havemore severe adiposity at the same level of
BMI, develop diabetes at a younger age, and demonstrate
impaired insulin secretion to compensate for insulin resistance
[18, 19]. South East Asia has a large population with type 2
diabetes due to the dramatic socioeconomic transition over
recent decades [20]. However, to our knowledge, data on clin-
ical variable-based cluster analysis from this region are still
scarce. Most early replication studies used cluster coordinates
derived from the ANDIS cohort (All NewDiabetics in Scania)
[8], rather than de novo cluster analysis, to subtype type 2
diabetes [12, 13, 21–23]. We hypothesise that analysis on
the same set of clinical variables used in the ANDIS cohort
may identify novel subgroups in Asian patients that differ
from those in patients of European descent.

In the current study, we performed de novo cluster analysis
in patients with recent-onset type 2 diabetes in Singapore, a
city state in South East Asia with a mix of three major ethnic
populations. We wished to determine whether the newly iden-
tified subgroups differ in aetiology and pathophysiology from
the perspective of genetics and lipidomics. Importantly, we
sought to determine whether these novel subgroups predict
risks for cardio-renal complications over long-term follow-up.

Methods

Research design We focused on individuals with a diabetes
duration of less than 5 years in the current study because
subgroup assignment derived from cluster analysis has been
shown to be relatively stable within 5 years after diabetes
onset [12]. Details of the cohort used (SMART2D,
Singapore Study of Macro-Angiopathy and Micro-Vascular
Reactivity in Type 2 Diabetes) have been described elsewhere
[24]. Briefly, 2057 participants with type 2 diabetes were
recruited from outpatient clinics in a secondary hospital and
an adjacent primary care medical facility between 2011 and
2014. Type 2 diabetes was diagnosed by the attending physi-
cians after excluding type 1 diabetes and diabetes attributable
to specific causes. Type 1 diabetes was diagnosed as sustained
requirement for insulin treatment within 1 year after diabetes
diagnosis without measurement of GAD antibody. Patients
with cancer and autoimmune disease on active treatments,
and those with HbA1c >12% (108 mmol/mol) at screening
were also excluded from the cohort. Participants were recalled
for a research visit every 3 years, and also followed up by
reviewing electronic health records [25]. All 687 participants
with diabetes duration ≤5 years and eGFR ≥15 ml min–1 1.73
m–2 were included in the current analysis.

This study was approved by the Singapore National
Healthcare Group Domain Specific Review Board and all
participants provided written informed consent.

Clinical and biochemical variables Diabetes duration was
self-reported. Blood pressure was measured three times
using a semi-automated blood pressure monitor, and the
mean value was used. Fasting plasma glucose, HDL- and
LDL-cholesterol and triacylglycerols were quantified by
enzymatic methods (Roche Cobas Integra 700; Roche
Diagnostics, Basel, Switzerland). HbA1c was measured
using a point-of-care analyser (DCA Vantage Analyzer;
Siemens, Munich, Germany). Serum creatinine was
measured using an enzymatic method, and GFR was esti-
mated using the CKD-EPI equation [26]. Urinary albu-
min was quantified using an immunoturbidimetric assay
(Roche Cobas c, Roche Diagnostics, Mannheim,
Germany). Plasma C-reactive protein was quantified
using an immunoassay kit (R&D Systems, Minneapolis,
MN, USA). Fasting plasma C-peptide was measured
using an ELISA kit (Mercodia, Uppsala, Sweden). Both
intra- and inter-assay CVs were <5%. HOMA2-B (%)
and HOMA2-IR were calculated based on fasting
glucose and C-peptide (https://www.dtu.ox.ac.uk/
homacalculator/, version 2.2.3).

Cluster analysis We applied the k-means algorithm as
proposed by Ahlqvist et al to divide participants into
subgroups [8]. Five clinical classifiers (diabetes onset age,
BMI, HbA1c, log-transformed HOMA2-B and HOMA2-IR)
were standardised to a mean value of 0 and SD of 1. The
optimal number of clusters was determined bymajority voting
according to 26 indices provided by the R package ‘NbClust’.
Cluster stability was assessed by the Jaccard index based on
bootstrapping [27].

Beta cell dysfunction, insulin resistance and type 1 diabetes
polygenic risk scores Genome-wide association study
(GWAS) and principal component analysis on GWAS arrays
in participants of the cohort have been described before [28].
We created polygenic risk scores (PRSs) for beta cell dysfunc-
tion and insulin resistance based on 35 SNPs associated with
insulin secretion and 20 SNPs associated with insulin sensi-
tivity, respectively, in Asian populations. We weighted the
SNPs by their effect on the risk of type 2 diabetes to determine
whether the novel subgroups differ in genetic risk for type 2
diabetes development (see electronic supplementary material
[ESM] Table 1) [29]. A high score indicates more severe beta
cell dysfunction and insulin resistance. A type 1 diabetes PRS
was constructed by a similar approach using nine SNPs (ESM
Table 2) [30, 31]. Details on PRS derivation are given in ESM
Methods. We fitted linear regression models to compare the
differences in PRS across the three subgroups, in which the
score was entered as a dependent variable and subgroup
membership, sex and scores for the top three principal compo-
nents in lieu of self-reported ethnicity were entered as
covariates.
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Lipidomics assay and data analysis

We adopted a discovery–validation approach for the
lipidomics study to reduce the likelihood of false positives
due to multiple comparisons. The validation study was nested
in an independent cohort that has been described previously
[32]. In brief, 226 participants with diabetes duration ≤5 years
and eGFR ≥15ml min–1 1.73 m–2 were randomly selected. As
measurements of HOMA2-IR and HOMA2-B were not avail-
able for the validation cohort, we used the plasma triacylglyc-
erol/HDL-cholesterol ratio as a proxy for insulin resistance [4,
33]. Using the ‘reference’ approach [4], the coordinate of the
cluster centre in the discovery cohort was calculated as the
mean value of BMI, diabetes onset age, HbA1c and the plasma
triacylglycerol/HDL-cholesterol ratio, and participants in the
validation cohort were assigned cluster membership based on
minimal Euclidean distance.

Technical details for the lipidomics assay by LC-MS are
described in ESM Methods. A total of 315 lipid species were
included in the discovery study after excluding those with a
signal-to-noise ratio <3 and correcting for batch effect. We
applied the Kruskal–Wallis test to compare the levels of lipid
species across the three subgroups. Those with p values below
the Bonferroni correction threshold (p <1.59 × 10-4, 0.05/315)
were subjected to the Kruskal–Wallis test in the validation
cohort, and a nominal p value <0.05 was considered statisti-
cally significant. We plotted a heatmap to visualise lipid
species that differed across diabetes subgroups in both discov-
ery and validation cohorts. Furthermore, we fitted linear
regression models to compare differences in lipid species
between two subgroups, in which log-transformed lipid
concentration was entered as a dependent variable and
subgroup membership as an independent variable.

Identification of adverse clinical outcomes and statistical
analysis All-cause mortality was identified from electronic
medical records and cross-validated against the national death
registry [34]. Cardiovascular death was identified from death
certificates. Non-fatal acute myocardial infarction and stroke
were identified from hospitalisation discharge summaries and
surgical operation procedures. Major adverse cardiovascular
events (MACE) were a composite of non-fatal acute myocar-
dial infarction, stroke and death attributable to cardiovascular
disease, whichever occurred first. Ascertainment of incident
heart failure has been described previously [35]. Progressive
chronic kidney disease (CKD) was defined as a decrease in
eGFR of 40% or more from the baseline level, with repeated
measurements at least 3 months apart as confirmation [36].
The follow-up was censored at 30 November 2019.

Incidence rates for progressive CKD, incident heart failure,
MACE and all-cause mortality are presented as event number
per 1000 person-years. The cumulative risk for cardio-renal
events was plotted by the Kaplan–Meier approach and

compared by logrank test. We fitted Cox proportional hazard
regression models to study the associations of subgroup with
cardio-renal risks in the follow-up period. Index age, sex and
ethnicity were included as covariates in the models. We also
adjusted baseline eGFR for the study on progressive CKD.
The proportional hazards assumption was tested based on
Schoenfeld residuals. No violation of proportional hazard
assumption was identified.

Results

Data-driven cluster analysis identified three novel subgroups
in participants with recent-onset type 2 diabetes A total of
687 individuals with recent-onset diabetes were subjected to
cluster analysis [8]. Majority voting according to 26 indices
suggested that the study population may be optimally
partitioned into three subgroups (ESM Fig. 1). The mean
values of Jaccard indices were above 0.86 for all three clusters
based on 5000 bootstraps, implying that the clusters were
stable. Participant baseline characteristics in the three
subgroups are presented in Table 1 and ESM Fig. 2.

Cluster 1 (45% of participants) was labelled as mild
obesity-related diabetes (MOD). Participants in this subgroup
had a high BMI (30.1 ± 5.0 kg/m2), an elevated HOMA2-IR
(median 2.2, IQR 1.8–2.9) and preserved insulin secretion as
evidenced by high levels of fasting C-peptide and HOMA2-B
(median 97%, IQR 78–132%).

Cluster 2 (19.0% of participants) was labelled as severe
insulin-resistant diabetes with relative insulin insufficiency
(SIRD-RII). These participants had the highest level of
HOMA2-IR (median 2.7, IQR 1.9–3.8), the highest BMI
(31.6 ± 5.9 kg/m2) and the worst glycaemic control among
the three subgroups. They also had the highest level of triac-
ylglycerols, the lowest level of HDL-cholesterol, the highest
level of C-reactive protein and the youngest age at diabetes
diagnosis. Their HOMA2-B index was low (median 44%,
IQR 32–62%) but their fasting C-peptide remained at a high
level compared with the other two subgroups.

Cluster 3 (36% of participants) was labelled as mild age-
related diabetes with insulin insufficiency (MARD-II). These
participants were slightly older (56 ± 9.9 years) and had a low
HOMA2-B index (median 53%, IQR 40–66%) at diabetes
diagnosis. Their fasting C-peptide was 45% lower than the
other two subgroups. They had no overt obesity (BMI 24.9
± 3.4 kg/m2) and only moderately elevated HOMA2-IR
(median 1.3, IQR 0.9–1.6).

The MOD subgroup was taken as the reference in the
subsequent analyses because it was the largest subgroup in
the study population.

High PRS for beta cell dysfunction in the MARD-II subgroup
Compared with the MOD subgroup, the participants in the
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Table 1 Baseline characteristics
of three subgroups derived from
k-means cluster analysis in indi-
viduals with recent-onset type 2
diabetes (n=687)

Variable MOD (45%) SIRD-RII (19%) MARD-II (36%) p value

Number of participants 307 130 250 –

Index age (years) 55 ± 9.6 43 ± 11.5 59 ± 9.9 <0.001

Age at diabetes onset (years) 52 ± 9.4 40 ± 10.9 56 ± 9.9 <0.001

Male 144 (46.9) 74 (56.9) 131 (52.4) 0.13

Ethnicity <0.001

Chinese 123 (40.1) 62 (47.7) 157 (62.8)

Malay 104 (33.9) 37 (28.5) 49 (19.6)

Asian Indian 80 (26.1) 31 (23.8) 44 (17.6)

Diabetes duration (years) 3.0 (1.0–4.0) 3.0 (2.0–5.0) 3.0 (1.0–5.0) 0.19

BMI (kg/m2) 30.1 ± 5.0 31.6 ± 5.9 24.9 ± 3.4 <0.001

HbA1c (%) 6.9 ± 0.7 9.2 ± 1.2 7.1 ± 0.9 <0.001

HbA1c (mmol/mol) 52 ± 5.3 77 ± 10 54 ± 6.8 –

Fasting plasma glucose (mmol/l) 6.5 ± 1.4 10.7 ± 2.6 7.4 ± 1.7 <0.001

Fasting C-peptide (pmol/l) 931 (771–1185) 920 (709–1305) 523 (386–644) <0.001

HOMA2-B (%) 96.9 (77.5–131.7) 43.7 (32.4–61.9) 53.3 (40.0–66.0) <0.001

HOMA2-IR 2.2 (1.8–2.9) 2.7 (1.9–3.8) 1.3 (0.9–1.6) <0.001

Triacylglycerol/HDL ratio 1.1 (0.8–1.8) 1.6 (1.1–2.3) 0.9 (0.6–1.4) <0.001

Blood pressure (mmHg)

Systolic 137 ± 16.8 136 ± 14.9 139.3 ± 18.0 0.07

Diastolic 80.2 ± 9.3 82.0 ± 9.2 78.3 ± 9.5 0.001

Kidney function

eGFR (ml min–1 1.73 m–2) 92 ± 19.2 109 ± 19.7 92 ± 21.0 <0.001

Urine ACR (mg/mmol) 1.5 (0.5–4.1) 2.7 (0.7–8.4) 1.1 (0.1–4.6) <0.001

Lipid profile, mmol/l

HDL-cholesterol 1.3 ± 0.4 1.2 ± 0.3 1.4 ± 0.4 <0.001

LDL-cholesterol 2.8 ± 0.8 3.3 ± 0.9 2.8 ± 0.8 <0.001

Triacylglycerol 1.4 (1.1–1.9) 1.8 (1.3–2.4) 1.2 (0.9–1.6) <0.001

C-reactive protein (μg/ml) 2.7 (1.1–5.8) 3.8 (2.0–7.9) 1.5 (0.5–3.5) <0.001

Medication usage

Metformin 243 (79.2) 118 (90.8) 204 (81.6) 0.02

Sulfonylurea 127 (41.4) 63 (48.5) 100 (40.0) 0.27

DPP4 inhibitor 7 (2.3) 10 (7.7) 6 (2.4) 0.01

Insulin 14 (4.6) 25 (19.2) 25 (10.0) <0.001

Statins 232 (75.6) 92 (70.8) 183 (73.2) 0.49

RAS blocker 141 (45.9) 65 (50.0) 116 (46.4) 0.79

Data are presented as means ± SD, median (IQR) or n (%)

ACR, albumin/creatinine ratio; DPP4, dipeptidyl peptidase 4; RAS, renin–angiotensin system

Table 2 Association of PRS with
subgroup membership PRS Beta cell dysfunction coefficient

(95% CI)
p value Insulin resistance coefficient

(95% CI)
p value

MOD Reference Reference

SIRD-RII 1.00 (−0.31, 2.31) 0.14 −0.15 (−0.85, 0.56) 0.68

MARD-II 1.39 (0.32, 2.47) 0.01 −0.11 (−0.69, 0.46) 0.70

Male sex Reference Reference

Female sex 1.30 (0.34, 2.25) 0.01 0.28 (−0.23, 0.79) 0.28

For the linear regression models, the PRS was the dependent variable and cluster membership (MOD subgroup as
reference), sex and GWAS principal components 1–3 were used as covariates

Diabetologia (2022) 65:2146–21562150

1 3



Fig. 1 Plasma lipid species that differed significantly across the three
subgroups in the discovery cohort (a) and the validation cohort (b).
Ce r , c e r amide ; Hex1Cer , monohexosy l ce r amide ; LPC,

lysophosphatidylcholine; LPI, lysophosphatidylinositol; PC, phosphati-
dylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol;
SM, sphingomyelin

Table 3 Association of novel
subgroup with adverse cardio-
renal risk during the follow-up
period by Cox proportional
hazard regression

Outcome Unadjusted HR (95% CI) p value Adjusted HRa (95% CI) p value

Progressive CKD

MOD Reference Reference

SIRD-RII 2.33 (1.05, 5.18) 0.04 3.67 (1.53, 8.8) 0.004

MARD-II 1.84 (0.88, 3.85) 0.11 2.64 (1.20, 5.82) 0.02

Heart failure

MOD Reference Reference

SIRD-RII 2.30 (1.08, 4.89) 0.03 5.23 (2.35, 11.6) <0.001

MARD-II 0.99 (0.45, 2.17) 0.97 0.87 (0.39, 1.98) 0.75

MACE

MOD Reference Reference

SIRD-RII 0.93 (0.39, 2.22) 0.87 1.92 (0.75, 4.89) 0.17

MARD-II 0.69 (0.32, 1.50) 0.35 0.61 (0.27, 1.36) 0.23

All-cause mortality

MOD Reference Reference

SIRD-RII 1.12 (0.48, 2.59) 0.80 2.99 (1.22, 7.30) 0.02

MARD-II 1.11 (0.56, 2.23) 0.76 0.78 (0.38, 1.62) 0.51

a Age, sex and ethnicity were adjusted for outcomes of all-cause mortality, incident heart failure and MACE in
Cox proportional hazard regression models. Baseline eGFR was also adjusted for outcome of progressive CKD
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MARD-II subgroup had a significantly higher PRS for beta
cell dysfunction after adjustment for sex and GWAS principal
components 1–3 (Table 2). There was no significant differ-
ence in the PRS for beta cell dysfunction between the SIRD-
RII and MOD subgroups, and no significant difference in the
PRS for insulin resistance among the three subgroups.

Distinct lipidomic patterns across the three subgroups The
clinical profiles of the discovery and validation cohorts were
comparable (ESM Tables 3 and 4). Of the 315 lipid species
included in the discovery study, 75 differed across the three
subgroups (p value <1.59 × 10-4), and 45 of them also
differed significantly across the three subgroups in the vali-
dation cohort (nominal p <0.05, ESM Fig. 3). The SIRD-
RII subgroup had high levels of glycerophospholipids,
mainly phosphatidylethanolamine, phosphatidylcholine
and phosphatidylinositol subspecies, but lower levels of
lysophosphatidylcholine (LPC), including subspecies with
alkyl ether and plasmalogen bonds. They also had remark-
ably high level of sphingolipids (sphingomyelins and

ceramides). In contrast, the MARD-II subgroup had low
levels of glycerophospholipids and sphingolipids but
higher levels of LPC (Fig. 1). The subsequent between-
group comparisons identified 17 lipid species, mainly phos-
phatidylethanolamine, phosphatidylcholine, ceramides and
sphingomyelins, that differed between the SIRD-RII and
MOD subgroups. The phosphatidylethanolamine, phos-
phatidylinositol, phosphatidylcholine and sphingomyelin
levels were lower in the MARD-II subgroup compared with
the MOD subgroup, and levels of LPC subspecies were
higher (ESM Tables 5 and 6).

Risks for cardio-renal complications in the three subgroups
during follow-up Themedian follow-up duration was 7.3 years
(IQR 6.7–7.7). The crude incident rates for progressive CKD,
incident heart failure, MACE and all-cause mortality are shown
in ESMTable 7. The incident rate for heart failure in the SIRD-
RII subgroup (14.5 per 1000 person-years; 95% CI 7.7, 24.8)
was twofold higher than that in the other subgroups: 6.4 for the
MOD subgroup (95% CI 3.5, 10.7) and 6.3 for the MARD-II

Fig. 2 Cumulative incidence of adverse clinical outcomes by diabetes subgroups: (a) progressive CKD, (b) incident heart failure, (c) MACE, and (d) all-
cause mortality. Only participants with baseline eGFR above 60 ml min 1.73 m–2 were included in the analysis on progressive CKD
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subgroup (95% CI 3.1, 11.2). Additionally, the SIRD-RII
subgroup had the highest risk for progressive CKD, followed
by the MARD-II and MOD subgroups: 15.9 (95% CI 8.2,
27.8), 12.7 (95% CI 7.4, 20.3) and 6.8 (95% CI 3.5, 11.9) per
1000 person-years, respectively.

Cumulative incidences were plotted for visualisation by the
Kaplan–Meier approach (Fig. 2). Cox proportional hazard
regression models suggested that the SIRD-RII subgroup
had a 2.30-fold unadjusted risk (95% CI 1.08, 4.89) for heart
failure compared with the MOD subgroup. Adjustment for
index age, sex and ethnicity strengthened the association
(adjusted HR 5.23; 95% CI 2.35, 11.60). The SIRD-RII
subgroup had a 2.33-fold unadjusted risk (95% 1.05, 5.18)
and a 3.67-fold adjusted risk (95% CI 1.53, 8.80) for progres-
sive CKD, with adjusted and unadjusted hazard ratios of 1.84
(95% 0.88, 3.85) and 2.64 (95% CI 1.20, 5.82) in the MARD-
II subgroup compared with the MOD subgroup. Additionally,
the SIRD-RII subgroup had the same unadjusted risks for
MACE and all-cause mortality as the other subgroups, despite
being more than 10 years younger and having similar diabetes
duration. Further analysis suggested that they had a 2.99-fold
age-adjusted risk (95% CI 1.22, 7.30) for all-cause mortality
compared with the MOD subgroup (Table 3).

Additional analyses To assess whether the participant’s sex
affects cluster analysis, we regressed sex on clinical variables
and used regression residuals as the new classifiers [37]. This
new analysis also partitioned participants into three clusters,
and the cluster membership showed high agreement with that
in the primary analysis (approximately 90% concordance, ESM
Table 8). We also clustered participants into four subgroups
according to centroids derived from the ANDIS cohort [8].
As shown in ESM Figs 4 and 5, 67% of the participants in
the severe insulin-deficient diabetes (SIDD) subgroup were
from the SIRD-RII subgroup although they did not have a
significantly lower level of fasting C-peptide. In the follow-up
period, the SIDD subgroup had the highest risk for progressive
CKD (ESM Table 9). This finding was different from that of
previous studies, which showed that the SIRD group had the
highest risk for progressive CKD [8, 10, 12, 23]. Participants
with a type 1 diabetes PRS in the top five percentiles had a
slightly lower HOMA2-B (57% vs 69%, p=0.02) compared
with those in the remaining 95 percentiles. However, fasting
C-peptide did not differ between the two groups (p=0.19). As
shown in ESM Table 10, 9% and 7% participants in the SIRD-
RII and MARD-II subgroups, respectively, were classified as
having a high type 1 diabetes PRS.

Discussion

By applying the k-means algorithm on the same clinical vari-
ables as proposed by the previous study in a European

population [8], we identified three novel subgroups in partic-
ipants with recent-onset type 2 diabetes in our South East
Asian cohort. The largest subgroup (MOD, 45% of partici-
pants) is characterised by mild obesity, insulin resistance and
preserved insulin secretion. The second largest subgroup
(MARD-II, 36% of participants) is characterised by a slightly
older age of diabetes onset and low beta cell secretion with no
overt insulin resistance. The third subgroup (SIRD-RII, 19%
of participants) is characterised by severe insulin resistance,
poor glycaemic control and relative insulin insufficiency as
indicated by preserved insulin secretion but a low HOMA2-
B. Our genetics and lipidomics studies suggest a significant
difference in genetic risks for diabetes aetiology and distinct
pathophysiological features in the three subgroups.
Importantly, we demonstrate that the clinical variable-based
cluster analysis may potentially stratify patients by risk for
cardio-renal complications after diabetes onset.

As hypothesised, we identified diabetes subgroups with
overlapping but distinct characteristics in our South East
Asian population compared with patients of European
descent. In the landmark study by Ahlqvist et al [8], and also
in subsequent replication studies in the European and US
populations [10, 12, 21], the largest subgroup is MARD
(approximately 40%), followed by the MOD subgroup
(approximately 20%) and the SIRD subgroup (approximately
20%). In the present study, the largest subgroup is MOD
(45%), followed by theMARD-II subgroup (36%). The domi-
nance of obesity-related diabetes in this Asian study popula-
tion may be attributable to the socioeconomic transformation
and concurrent rapid increase in the prevalence of obesity over
recent decades in this population. Our study indicates that de
novo cluster analysis is warranted to subtype heterogeneous
type 2 diabetes patients in various ethnic populations. As
shown in ESM Fig. 5, patients in our SIDD subgroup derived
from the ANDIS cohort centroids do indeed have a low
HOMA2-B. However, their C-peptide level is close to the
mean value of the full cohort, suggesting that these partici-
pants do not have insulin deficiency.

Elucidating the aetiology of diabetes may shed light on
strategies for diabetes prevention and treatment. Our data
suggest that obesity and the related insulin resistance are the
main driving factor for diabetes pathogenesis in this Asian
study population. This highlights the importance for preven-
tion and treatment of obesity to slow down the rising preva-
lence of diabetes in this region [20]. However, the MARD-II
subgroup has neither overt obesity nor insulin resistance.
Instead, they are characterised by a 40% lower fasting C-
peptide and a low HOMA2-B. These features are different in
patients of European descent, in whom the HOMA2-B index
in this subgroup remained high [8]. Patients in this subgroup
have a higher PRS for beta cell dysfunction, which suggests
the presence of impaired beta cell function determined by
genetic background. This is in agreement with a large study
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showing that patients with type 2 diabetes who have a high
number of beta cell dysfunction-related genetic loci have a
reduced fasting C-peptide level [3].

Participants in the SIRD-RII subgroup had the highest
HOMA2-IR and the worst glycaemic control. The high levels
of BMI, triacylglycerol and C-reactive protein, low level of
HDL-cholesterol, and the markedly increased levels of
sphingo- and glycerophospholipids also support the presence
of severe insulin resistance. The low HOMA2-B in this
subgroup should be interpreted in the presence of high
HOMA2-IR and uncontrolled hyperglycaemia. We reasoned
that participants in this subgroup do not have absolute insulin
deficiency because their fasting C-peptide was at a level
comparable to that in theMOD subgroup and 40% higher than
that in the MARD-II subgroup. Instead, the low level of
HOMA2-B suggests that the beta cell secretion capacity is
unable to adequately compensate for severe insulin resistance
[2]. Hence, we designated them as having ‘relative insulin
insufficiency’. This is in agreement with our genetic study,
which did not find a higher PRS for beta cell dysfunction in
this subgroup. We postulate that the relatively insufficient
insulin secretion in this subgroup may be partly attributable
to glucotoxicity and lipotoxicity, given the uncontrolled
hyperglycaemia, overt dyslipidaemia and abnormal
lipidomics profile. Intriguingly, we did not observe a signifi-
cant difference in the PRS for insulin resistance across the
three subgroups. This may suggest that genetic risk is not
the main determinant for insulin resistance in the SIRD-RII
subgroup. However, it may bemore reasonable to attribute the
null analytical outcome to the relatively small sample size in
the current study.

Plasma lipidomic signatures have been associated not only
with the risk for type 2 diabetes pathogenesis but also the risk
for diabetic complications [38]. Compared with the MOD
subgroup, the SIRD-RII subgroup is characterised by activa-
tion of the ceramide/sphingomyelin pathway and remodelling
of glycerophospholipid metabolism, but the levels of these
two classes of lipids were lower in the MARD-II subgroup.
Both sphingolipid and glycerophospholipid metabolism have
been associated with insulin resistance [39, 40], supporting
the consistency between the lipidomic signature and clinical
phenotype in the current study. On the other hand, LPC level
was higher in the SIRD-RII subgroup but lower in the
MARD-II subgroup. The pathophysiological mechanisms
underlying the contrasting pattern of LPC between these two
subgroups remain unknown.

In agreement with previous studies, the clinical variable-
derived subgroups also demonstrated distinct cardio-renal
risks in our cohort [1]. The SIRD-RII subgroup shows the
highest cardio-renal risks, as manifested by a significantly
higher risk for heart failure and progressive CKD. Our finding
is consistent with data from the ANDIS cohort, the German
Diabetes Study and a retrospective study in a Japanese

population, which showed that the SIRD subgroup was at
increased risk for progressive CKD [8, 11, 12]. We extended
these previous studies by showing that heart failure may be
another important adverse clinical outcome associated with
SIRD that warrants further studies. The excessive cardio-
renal risk in the SIRD-RII subgroup is attributable to the more
severe clinical risk factors, including poor glycaemic control
and dyslipidaemia, as well as novel risk factors such as acti-
vation of the ceramide pathway and increased inflammation
tone [40]. Interestingly, we also observed that the MARD-II
subgroup had a moderately elevated risk for progressive
CKD. The mean age in this subgroup is only 4 years older
than that in the MOD subgroup. Hence, ageing is unlikely to
account for the difference in CKD risk. It is possible that
diabetes may remain undiagnosed for a longer period in the
MARD-II subgroup due to the less pronounced metabolic risk
profile, but this is speculative.

Our study adds evidence to support that data-driven cluster
analysis upon clinical variables may set the foundation for
precision medicine. In addition to diabetes prevention and
healthcare resource allocation, it may have implications for
precision of medication treatment. The MARD-II subgroup
has a low insulin secretion and high PRS for beta cell dysfunc-
tion. Patients in this subgroup may better respond to insulin
secretagogues, as shown in the ADOPT trial [21]. On the other
hand, patients in the SIRD-RII and MOD subgroups may
respond better to medications that improve insulin sensitivity
beyond and above interventions for weight loss. The SIRD-
RII subgroup may benefit from early administration of
sodium–glucose cotransporter 2 inhibitors and glucagon-like
peptide 1 receptor agonists, given the high cardio-renal risk in
this subgroup [41].

The strengths of the current study include a well-
characterised cohort with a long follow-up. We included only
participants with recent-onset type 2 diabetes to partly miti-
gate confounding, and used the same clustering algorithm on
the same clinical variables to enable reasonable comparison
between this Asian study population and patients of European
descent. Nevertheless, several important weaknesses must be
highlighted. First, the sample size is moderate, and thus our
study on the insulin resistance PRS may be underpowered.
Second, although we have excluded type 1 diabetes on the
basis of clinical criteria, we did not measure GAD antibody.
As shown in our analyses using the type 1 diabetes PRS, we
cannot exclude the possibility that a small proportion of partic-
ipants may have autoimmune-related diabetes. Third, we used
the triacylglycerol/HDL-cholesterol ratio instead of HOMA
indices to cluster the validation cohort for the lipidomics
study. Although this may be considered a reasonable
approach, as shown by a comparable cardio-renal risk profile
(ESM Fig. 6), the concordance of subgroup assignments
derived from two sets of classifying variables is moderate
(Cohen’s kappa 0.72, ESM Table 11), especially for the
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MOD and MARD-II subgroups. Finally, we have not
performed an external validation. Hence, the generalisability
of our findings should be assessed in future studies.

In summary, cluster analysis identified three subgroups of
patients with recent-onset type 2 diabetes in our South East
Asian cohort. These subgroups demonstrate not only distinct
clinical phenotypes but also differences in genetic aetiology,
pathophysiology features and cardio-renal risks. Together
with previous studies in other populations, our data suggest
that cluster analysis on clinically available variables may be
used as a starting point to stratify the heterogeneous diabetic
population into subgroups for precision medicine.
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