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Abstract
Aims/hypothesis Age is known to be one of the most important stratifiers of disease progression in type 1 diabetes. However,
what drives the difference in rate of progression between adults and children is poorly understood. Evidence suggests that many
type 1 diabetes disease predictors do not have the same effect across the age spectrum. Without a comprehensive analysis
describing the varying risk profiles of predictors over the age continuum, researchers and clinicians are susceptible to inappro-
priate assessment of risk when examining populations of differing ages. We aimed to systematically assess and characterise how
the effect of key type 1 diabetes risk predictors changes with age.
Methods Using longitudinal data from single- and multiple-autoantibody-positive at-risk individuals recruited between the ages
of 1 and 45 years in TrialNet’s Pathway to Prevention Study, we assessed and visually characterised the age-varying effect of key
demographic, immune and metabolic predictors of type 1 diabetes by employing a flexible spline model. Two progression
outcomes were defined: participants with single autoantibodies (n=4893) were analysed for progression to multiple autoanti-
bodies or type 1 diabetes, and participants with multiple autoantibodies were analysed (n=3856) for progression to type 1
diabetes.
Results Several predictors exhibited significant age-varying effects on disease progression. Amongst single-autoantibody partic-
ipants, HLA-DR3 (p=0.007), GAD65 autoantibody positivity (p=0.008), elevated BMI (p=0.007) and HOMA-IR (p=0.002)
showed a significant increase in effect on disease progression with increasing age. Insulin autoantibody positivity had a
diminishing effect with older age in single-autoantibody-positive participants (p<0.001). Amongst multiple-autoantibody-
positive participants, male sex (p=0.002) was associated with an increase in risk for progression, and HLA DR3/4 (p=0.05)
showed a decreased effect on disease progression with older age. In both single- and multiple-autoantibody-positive individuals,
significant changes in HR with age were seen for multiple measures of islet function. Risk estimation using prediction risk score
Index60 was found to be better at a younger age for both single- and multiple-autoantibody-positive individuals (p=0.007 and
p<0.001, respectively). No age-varying effect was seen for prediction risk score DPTRS (p=0.861 and p=0.178, respectively).
Multivariable analyses suggested that incorporating the age-varying effect of the individual components of these validated risk
scores has the potential to enhance the risk estimate.
Conclusions/interpretation Analysing the age-varying effect of disease predictors improves understanding and prediction of type
1 diabetes disease progression, and should be leveraged to refine prediction models and guide mechanistic studies.
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Abbreviations
DPTRS Diabetes Prevention Trial Type 1 Risk Score
GADA GAD65 autoantibody
IA-2A Insulinoma-associated protein 2 autoantibody
ICA Islet cell autoantibody
MIAA Insulin autoantibody
NIDDK National Institute of Diabetes and Digestive and

Kidney Diseases
NOD Non-obese diabetic
PTP Pathway to Prevention
ZnT8A Zinc transporter-8 autoantibodies

Introduction

The impact of age on the rate of progression of type 1 diabetes
is now irrefutable. Observations of prospective birth cohorts
have repeatedly demonstrated an inverse relationship between
age of seroconversion and speed of progression to clinical
disease [1, 2]. In addition, the incidence of risk variables has
also been demonstrated to vary with age [3, 4]. In particular,

autoantibodies have shown age-specific incidence patterns
that have themselves been associated with particular rates of
disease progression [5]. In fact, where the relative importance
of risk variables has differed between studies, the age of the
study cohorts can frequently be implicated as the key differ-
ence [6, 7]. At-risk cohorts are commonly analysed for
progression to type 1 diabetes using survival analysis tech-
niques, including Kaplan–Meier plots and Cox proportional
hazards models [8]. Fundamentally, these models rely on the
assumption that the variables being investigated have a
constant impact on risk over time, i.e. that the hazard is
proportional. Without a comprehensive analysis describing
the varying risk profiles of predictors over the age continuum,
researchers and clinicians are susceptible to inappropriate
assessment of risk when examining populations of differing
ages.

As a step towards determining the age-varying effect of
known risk variables, we used a flexible spline model to test
the validity of the proportional hazards assumption and
describe the nature of the variation of hazards over the age
spectrum. By uncovering age-dependent patterns of risk, this
modelling approach allows a more granular understanding of
the influence of predictors on disease progression, which has
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the potential to deepen our understanding of the differences
between paediatric and adult-onset disease, improve predic-
tion models, and inform mechanistic studies designed to
understand disease heterogeneity.

Methods

Study population

TrialNet’s Pathway to Prevention (PTP) study (ClinicalTrials.
gov identifier: NCT00097292) recruits at-risk first-degree
relatives (ages 1–45 years) and second- or third-degree rela-
tives (ages 1–20 years) of individuals with type 1 diabetes, and
prospectively follows these individuals for the development of
islet autoantibodies and/or progression to clinical disease; it is
conducted across sites in USA, Canada, UK, Germany, Italy,
Australia and New Zealand [9]. Open access to the data from
TrialNet’s PTP study is available at the National Institute of
Diabetes and Digestive and Kidney Diseases (NIDDK) repos-
itory (https://repository.niddk.nih.gov/studies/tn01-nh/?
query=TrialNet). Participants were included in this analysis
if they completed at least two follow-up visits and had
confirmed single or multiple autoantibody positivity.
Informed consent was obtained from all study participants
and the study was approved by the responsible ethics commit-
tee. From March 2004 to April 2019, the PTP study screened
219,718 individuals, of whom 49,617 participants had at least
two visits, and 8176 of these individuals had at least one
confirmed positive islet autoantibody.

Study protocol

The PTP study protocol initially tested each participant for
autoantibodies to insulin (MIAA), GAD65 (GADA) and
insulinoma-associated antigen (IA-2A). If at least one of these
autoantibodies was considered positive on the first test, tests
for islet cell antibodies (ICA) and zinc transporter 8 antibodies
(ZnT8A; available from 2012 onwards) were subsequently
performed on the same sample. After confirmed autoantibody
positivity, participants had 6–12-monthly assessments that
included HbA1c, OGTTs and repeat autoantibody testing.

Laboratory measures

Metabolic measures An OGTT was performed after an over-
night fast. Glucose and C-peptide measurements were obtain-
ed at baseline, 30, 60, 90 and 120 min after the glucose load
(oral glucose dose 1.75 g/kg, maximum 75 g). Calculations
made from these variables included AUC for C-peptide using
the trapezoid method; early C-peptide response (defined as the
difference between 30 min and baseline C-peptide values);
and HOMA-IR, which is the product of fasting insulin (mU/

l) and fasting glucose (mmol/l), divided by 22.5. Index60 [10]
and the Diabetes Prevention Trial Type 1 Risk Score
(DPTRS) [11] are type 1 diabetes risk scores developed from
Diabetes Prevention Trial Type 1 data (see electronic supple-
mentary material [ESM] Methods).

Autoantibody assay ICA was measured by indirect immuno-
fluorescence at the University of Florida, Gainesville, FL (cut-
off for positive ≥10 JDF units) [12]. GADA, MIAA, IA-2A
and ZnT8A were measured by RIA at the Barbara Davis
Center for Childhood Diabetes [13, 14]. ZnT8A testing was
introduced to TrialNet’s PTP study in 2012. From June 2010,
GADA and IA-2A harmonised assays for NIDDK Consortia
were used [15, 16]. Cut-off values to define a positive result
for the standard assays performed at the Barbara Davis Center
were GADA >0.032, IA-2A >0.049, MIAA >0.01 and
ZnT8A >0.020, and those for the harmonised assays were
GADA >20 NIDDK units/ml and IA-2A >5 NIDDK units/
ml. If results from both the standard and the harmonised
assays were available at a particular time point, results from
the harmonised assay were used.

HLA typing

HLA genotyping for class II DRB1, DQA1 and DQB1 alleles
was performed at the Barbara Davis Center using DNA-based
typing with oligonucleotide probes, as previously described
[17].

Diagnosis of diabetes

TrialNet protocol definitions to diagnose type 1 diabetes were
used, which encompass the ADA criteria [18]. Clinical (stage
3) diabetes was defined as having unequivocal symptoms of
hyperglycaemia, including diabetic ketoacidosis, with at least
one of random or 2 h glucose ≥11.1 mmol/l, or fasting glucose
≥7.0 mmol/l. If symptoms were not present, two separate
consecutive glucose measures were required from separate
days within one year.

Statistical methods

Outcome events were classified as the occurrence of multiple
autoantibodies or a diagnosis of type 1 diabetes within single-
autoantibody-positive individuals, or a diagnosis of type 1
diabetes within multiple-autoantibody-positive individuals.
Baseline descriptive summary statistics for variables use
counts and percentages for categorical variables, and means
and standard deviations for continuous variables. These
summaries were produced for the overall population and for
each outcome group.

Risk is measured by the hazard rate, and modelled using a
particular structure of the binary logistic regression model
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[19], implemented in the casebase R package [20]. The logis-
tic regression model was fitted using the mgcv R package [21,
22], which allows the incorporation of spline terms that
employ automatic smoothness selection. Each risk predictor
of interest is modelled individually, and select groups of vari-
ables are combined in multivariable models. Variable effects
are decomposed into constant mean proportional hazards
terms and potentially time-varying smooth effects, and the
significance of these time-varying effects are interpreted.
Where the time-varying effect (HRt) p value was ≤0.05, the
variable was considered to have a significant age-dependent
variation in risk. Encounters during the first year of life were
excluded due to potential confounding maternal autoanti-
bodies. Model-based estimates after 45 years of age are not
presented due to a paucity of observations (ESM Fig. 1). The
standard Cox proportional hazards model was fitted to the
same data to provide a comparator with the mean effect from
the time-varying effect model. Further details on the statistical
methods are given in ESM Methods. The analysis code for
this study is available upon request via email to the primary
author.

Results

Time-dependent analysis applied to TrialNet Pathway
to Prevention

From the 8176 relatives with confirmed autoantibodies on at
least two occasions, 47,029 participant encounters were avail-
able for analysis. Demographic and baseline variables are
detailed in ESM Table 1. Two progression outcomes were
considered: (1) a single autoantibody to a composite endpoint
of multiple autoantibodies or type 1 diabetes, and (2) multiple
autoantibodies to type 1 diabetes. Of the 4893 single-
autoantibody-positive individuals, 743 met the composite
endpoint of multiple autoantibodies or type 1 diabetes; of
the 3856 individuals with multiple autoantibodies, 896 devel-
oped type 1 diabetes. The mean HR and the estimated signif-
icance of the variation of hazard as a function of age for each
of these risk variables (HRt p value) are summarised in
Table 1.

Sex and time-dependent effect on disease
progression

The Cox proportional hazard model suggested that male sex
was not strongly associated with an increased risk of progres-
sion to type 1 diabetes in single-autoantibody-positive indi-
viduals (HR 1.25, 95% CI 1.08, 1.45) and multiple-
autoantibody-positive individuals (HR 0.90, 95% CI 0.78,
1.02) (ESM Table 2). Additionally, there was no age-
varying effect of male sex on risk of disease progression for

those with a single autoantibody (p=0.414). However, in
multiple-autoantibody-positive individuals, male sex was
associated with an increase in risk for progression to type 1
diabetes as age increased (p=0.002) (Fig. 1a). The effect of
male sex was relatively protective in younger multiple-
autoantibody-positive children, with the HR rising to a
point estimate >1.5 in adults with multiple autoantibodies.
Hazard rates plotted by sex as a function of age in
multiple-autoantibody-positive individuals showed that
the increase in HR with male sex was due to a decreasing
hazard rate for female participants with increasing age,
compared with a relatively stable hazard rate in male
participants (Fig. 1b).

High-risk HLA alleles and time-dependent effect on
disease progression

The Cox proportional hazard model found that single-
autoantibody-positive individuals with high-risk HLA alleles
had a greater risk of disease progression (ESM Table 2).
However, the age-varying effect model found that the
effect of HLA-DR3+/DR4- on disease progression was
not constant with age in single-autoantibody-positive
individuals, with a relatively small effect in children
rising to a slightly increased hazard beyond adolescent
years (p=0.007) (ESM Fig. 2a). HLA-DR3-/DR4+ and
HLA-DR3+/DR4+ did not show an age-varying effect
in single-autoantibody-positive individuals (p=0.704 and
p=0.379, respectively) (Table 1). For those with multiple
autoantibodies, the Cox proportional hazard model
demonstrated a mild increase in risk with HLA-DR3+/
DR4- (HR 1.30; CI 1.01–1.67), HLA-DR3-/DR4+ (HR
1.38; CI 1.10–1.73) and HLA-DR3+/DR4+ (HR 1.49; CI
1.18–1.90) (ESM Table 2). In contrast to single-
autoantibody-positive individuals, HLA-DR3+/DR4+
demonstrated an age-varying effect, with an increased
hazard for progression in children that declined with
increasing age (p=0.05) (ESM Fig. 2b). No age-varying
effect on disease progression was found for HLA-DR3+/
DR4- or HLA-DR3-/DR4+ in multiple-autoantibody-
positive individuals (p=0.738 and p=0.373, respectively)
(Table 1). GADA is often reported to be present at
higher rates in older individuals with HLA-DR3, and
MIAA is often reported to be present in very young
individuals with HLA-DR4 [23, 24]. Therefore, to deter-
mine whether these specific autoantibodies contributed to
the age-dependent effects seen with HLA, the age-
varying effect of HLA-DR3 was adjusted for GADA
positivity and that of HLA-DR4 was adjusted for
MIAA positivity. There was no significant change to
the age-dependent effect of these high-risk HLA alleles
in either cohort (data not shown).
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Islet autoantibodies and time-dependent effect on
disease progression

Amongst single-autoantibody-positive individuals, all the islet
autoantibodies (GADA, ZnT8A, IA-2A and ICA) except
MIAA were associated with an increased risk of disease
progression using the Cox proportional hazard model (ESM
Table 2). Using the age-varying effect model, the effect of

GADA and MIAA, but not IA-2A or ICA, was found to vary
significantly with age in single-autoantibody-positive individ-
uals (Table 1). The effect of GADA on disease progression
increased with increasing age, with the point estimate at
45 years of age being over four times that seen in children
(p=0.008) (Fig. 2a). The HR of MIAA, on the other hand,
decreased with increasing age; the presence of MIAA had a
protective effect on progression in adults (p<0.001) (Fig. 2b).

Table 1 Mean HR for progres-
sion and the estimated signifi-
cance of the variation of hazard as
a function of age (HRt) for type 1
diabetes risk variables

Single to multiple/type 1
diabetes

Multiple to type 1 diabetes

Variable Group HR

(95% CI)a
p value

HRt

HR

(95% CI)a
p value

HRt

Genetic data

Sex Male vs female 1.30 (1.10, 1.53) 0.414 0.95 (0.83, 1.09) 0.002

Relationship to
proband

2nd vs 1st 0.54 (0.28, 1.02) 0.707 0.81 (0.51, 1.30) 0.536

3rd vs 1st 0.01 (0.00, 47.9) 0.423 0.55 (0.24, 1.24) 0.062

HLA DR3+/DR4- vs
DR3-/DR4-

2.18 (1.63, 2.92) 0.007 1.27 (0.99, 1.64) 0.738

DR3-/DR4+ vs
DR3-/DR4-

2.57 (1.94, 3.41) 0.704 1.35 (1.07, 1.69) 0.373

DR3+/DR4+ vs
DR3-/DR4-

3.22 (2.33, 4.45) 0.379 1.31 (1.01, 1.70) 0.05

Autoantibodies

GADA Positive vs
negative

2.71 (2.17, 3.37) 0.008 0.54 (0.43, 0.68) 0.112

IA-2A Positive vs
negative

2.41 (1.77, 3.28) 0.492 2.64 (2.26, 3.09) 0.677

MIAA Positive vs
negative

0.49 (0.35, 0.68) < 0.001 1.06 (0.91, 1.23) 0.014

ZNT8Ab Positive vs
negative

3.96 (2.71, 5.80) 1.73 (1.47, 2.04) 0.728

ICA Positive vs
negative

2.17 (1.62, 2.89) 0.645 1.70 (1.44, 2.00) 0.316

Metabolic variables

BMI (z score) 1.16 (1.02, 1.32) 0.007 1.2 (1.11, 1.31) 0.405

HbA1c (mmol/mol or
%)

1.42 (1.26, 1.60) 0.451 2.54 (2.30, 2.82) 0.198

log2 fasting glucose
(mmol/l)

1.20 (1.10, 1.31) < 0.001 1.62 (1.48, 1.78) < 0.001

log2 fasting insulin
(pmol/l)

1.09 (0.96, 1.24) 0.003 1.02 (0.93, 1.12) 0.402

log2 HOMA-IR 1.12 (0.99, 1.28) 0.002 1.10 (1.00, 1.21) 0.465

log2 C-peptide AUC
(nmol/l)

0.79 (0.68, 0.91) 0.083 0.65 (0.59, 0.72) 0.003

log2 total C-peptide
(nmol/l)

0.83 (0.73, 0.96) 0.006 0.71 (0.64, 0.78) 0.013

Early C-peptide
secretion (nmol/l)

0.86 (0.81, 0.90) 0.113 0.47 (0.41, 0.53) 0.027

Risk scores

Index60 2.15 (1.84, 2.51) 0.007 3.89 (3.49, 4.33) < 0.001

DPTRS 2.35 (2.07, 2.67) 0.861 3.64 (3.34, 3.97) 0.178

a For continuous variables, HR represents one SD increase. See ESM Table 1 for the SD for each variable
b Small numbers of single-ZnT8A-positive individuals limited the inferences that could be made regarding the
age-varying effect
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The small number of single-ZnT8A-positive individuals limit-
ed the inferences that could be drawn regarding the age-
varying effect. Amongst multiple-autoantibody-positive indi-
viduals, using the Cox proportional hazards model, MIAA
had no effect on progression (HR 1.00; 95% CI 0.87, 1.15),
GADA had a protective effect (HR 0.48; 95% CI 0.40, 0.56)
and the remaining islet autoantibodies (IA-2A, ZnT8A and
ICA) were associated with an increased risk of disease
progression (ESM Table 2). No age-dependent risk for
progression from multiple autoantibody positivity was found
for any of the autoantibodies except MIAA (Table 1).
However, the slight increase in the effect of MIAA with
increasing age was not significant when adjusted for the
number of autoantibodies.

Metabolic variables and time-dependent effect on
disease progression

BMI z score and measures of blood glucose levels and insulin
resistance were positively associated, and measures of beta

cell secretory capacity were negatively associated with disease
progression using the Cox proportional hazards model for
single- and multiple-autoantibody-positive individuals (ESM
Table 2). Using the age-varying effect model, BMI z score had
an age-dependent increase in risk of progression in single-
autoantibody-positive adults compared with children
(p=0.007) (Fig. 3a). A similar increase in the effect on risk
of progression with increasing age was seen for HOMA-IR
(p=0.002) (Fig. 3b). To explore this relationship, a multivari-
able model with BMI z score and HOMA-IR was used, and it
was found that the age-dependent risk seen with BMI z score
was no longer significant when adjusted for HOMA-IR
(p=0.271) (Fig. 3c). However, the age-dependent risk seen
with HOMA-IR was unaffected by adjusting for BMI z score.
An age-varying effect was not seen for BMI z score and
HOMA-IR in multiple-autoantibody-positive individuals
(Table 1).

HOMA-IR is a product of fasting glucose and fasting insu-
lin. In single-autoantibody-positive individuals, the effect of
fasting glucose and fasting insulin on disease progression was
found to increase with increasing age (p<0.001 and p=0.003,
respectively) (ESM Fig. 3a, b). Fasting glucose had an even
more pronounced effect on progression with age in multiple-
autoantibody-positive individuals compared with single-
autoantibody-positive individuals, increasing by close to
threefold by 45 years of age (p<0.001) (ESM Fig. 3c). In
contrast, fasting insulin did not demonstrate an age-
dependent change in hazard in multiple-autoantibody-
positive individuals.

Early C-peptide secretion and C-peptide AUC demonstrat-
ed no age-varying effect on disease progression in single-
autoantibody-positive individuals (p=0.113 and p=0.083,
respectively). However, in multiple-autoantibody-positive
individuals, a pattern of a greater protective effect on disease
progression in adults compared with children was seen for
both higher early C-peptide secretion and C-peptide AUC
(p=0.027 and p=0.003, respectively) (ESM Fig. 4a,b).

Testing disease prediction risk estimates for an age-
varying effect

As we found a significant variation of effect with age for a
number of variables that contribute to established prediction
risk models (Index60 and DPTRS), we sought to understand
whether incorporating the age-dependent effects of the indi-
vidual components would enhance these risk scores. Index60
is calculated using measures of fasting C-peptide, 60 min
glucose and 60 min C-peptide. It was found to have a
diminishing predictive capacity with increasing age for both
single- and multiple-autoantibody-positive individuals
(p=0.007 and p<0.001, respectively) (ESM Fig. 5a,b). Using
a multivariable model, we tested the age-varying effects of the
individual components of Index60 to determine whether they
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improved performance of risk prediction beyond that attribut-
ed through Index60 alone. It was found that the age-dependent
effect of 60 min C-peptide contributed significantly to risk
even after accounting for Index60 in single-autoantibody-
positive individuals (p<0.001). This was not found to be the
case for fasting C-peptide or 60 min glucose. On the other
hand, fasting C-peptide and 60 min glucose had a significant
contribution to risk after accounting for Index60 amongst
multiple-autoantibody-positive individuals (p=0.01 and
p<0.001, respectively). This suggests that the predictive
capacity of Index60 has the potential to be enhanced by incor-
porating into the risk estimate the age-varying effect of 60min
C-peptide amongst single-autoantibody-positive individuals,
and fasting C-peptide and 60 min glucose amongst multiple-
autoantibody-positive individuals.

DPTRS comprises BMI, age, total glucose, fasting C-
peptide and total C-peptide, where total glucose (sum of 30–
120 min) and total C-peptide (sum of 30–120 min) are used as
surrogates for glucose AUC and C-peptide AUC, respective-
ly. The risk predicted by DPTRS did not vary significantly
with age in either single- or multiple-autoantibody-positive
individuals (p=0.861 and p=0.178, respectively) (ESM Fig.
5c,d). Of the individual components, the time-dependent
effects of fasting C-peptide and total glucose were found to
contribute significantly to risk of progression after accounting
for DPTRS in single-autoantibody-positive individuals
(p=0.002 and p<0.001, respectively). For multiple-
autoantibody-positive individuals, only the time-varying
effect of BMI was found to have the potential to enhance risk
prediction additional to the DPTRS (p<0.001).

Discussion

The effects of disease predictors are often assumed to be
proportional across the age spectrum, despite age being a

key stratifier for disease progression. Here, we systematically
tested the proportional hazards assumption in type 1 diabetes
prediction modelling, and demonstrated that multiple disease
predictors have age-dependent effects. In particular, the
effects of sex, HLA, and a number of islet autoantibodies
and metabolic variables change across the age spectrum in
both single- and multiple-autoantibody-positive individuals.

Sex

Epidemiological studies in children have consistently reported
a male-to-female ratio of 1 for the incidence of type 1 diabetes
[25]. However, less appreciated is the higher incidence of
disease inmen that has been repeatedly demonstrated amongst
older individuals [26]. Our results suggest that this difference
in incidence of type 1 diabetes between men and women in
older individuals begins early in the disease process and is due
to a declining hazard rate in women compared with a constant
rate in men. Differences between sexes have long been
observed in the most common type 1 diabetes animal model,
the non-obese diabetic (NOD) mouse. Autoimmune diabetes
disproportionately affects female NOD mice, with more rapid
immune infiltration of the islets in the female mice [27]. Our
results may be supportive of a more aggressive, female-
predominant endotype, as modelled by the NODmouse, driv-
ing paediatric type 1 diabetes. While interesting work in NOD
mice suggests an impact of sex hormones on disease progres-
sion [28], the mechanisms underlying the age-varying effect
of sex is unknown, and human studies are clearly warranted.

Islet autoantibodies and high-risk HLA alleles

GADA and MIAA have been identified as key primary auto-
antibodies in the early stages of type 1 diabetes. GADA has
been associated with increased risk of disease progression
predominantly in older cohorts [15, 29], and a slower rate
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Age-dependent HR for BMI (z score) adjusted for log2(HOMA-IR) for
progression from single autoantibody positivity to multiple autoanti-
bodies/type 1 diabetes (p=0.271). Grey shading indicates 95% CI
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amongst younger cohorts [30, 31]. Using age-varying effect
modelling, we demonstrated an increasing HRwith increasing
age for single-GADA-positive individuals, which accelerated
amongst older adults to greater than four times that of the
youngest children. In contrast, althoughMIAA has been iden-
tified as a key predictor of progression in prospective birth
cohort studies [30, 31], independent risk has not been demon-
strated in cross-sectionally recruited cohorts [29, 32]. By
modelling risk across the age spectrum, we have shown an
increased hazard of progression from single autoantibody
positivity in the MIAA-positive paediatric population that is
lost with increasing age. This granularity is typically obscured
when proportional hazards are used, explaining the conflicting
results in studies with differing age ranges. It is interesting to
note that none of the islet autoantibodies demonstrated an age-
varying effect for progression from multiple autoantibody
positivity to clinical disease. This suggests that once multiple
autoantibodies have developed, the drivers of the age-varying
effect of GADA and MIAA seen in single-autoantibody-
positive individuals are no longer relevant to disease
progression.

We found that the risk of disease progression conferred by
HLA alleles varies with age, independent of which autoanti-
body is present. HLA-DR3 was found to have a relatively
greater effect on disease progression in adults with a single
autoantibody compared with children; notably this was inde-
pendent of GADA positivity. We also found that HLA-DR3/
4, independent of MIAA positivity, has a relatively greater
effect on disease progression in multiple-autoantibody-
positive children compared with multiple-autoantibody-
positive adults. Not only does this hold relevance for predic-
tion models, but it points to the possibility of age-varying
effects of other type 1 diabetes risk genes.

Metabolic variables

Increased insulin resistance has long been implicated in accel-
erating beta cell stress and promoting diabetes onset [33–35].
However, studies have not been consistent [36–39]. Of note,
studies often did not model single- andmultiple-autoantibody-
positive individuals separately, and/or only used peri-
diagnostic BMI. Here, we found that BMI and the insulin
resistance surrogate, HOMA-IR, have an increasing effect
on disease progression with increasing age only in single-
autoantibody-positive but not multiple-autoantibody-positive
individuals. Furthermore, we found the age-varying effect of
BMI was no longer significant when HOMA-IR was account-
ed for. Conversely, the age-varying effect of HOMA-IR
remained significant when adjusting for BMI. Although
HOMA-IR is not validated for assessing insulin resistance in
pre-clinical type 1 diabetes, these results suggest that BMI
alone cannot simply be used as a surrogate for insulin resis-
tance. Hence, the diverse conclusions regarding the role of

BMI on disease progression may be confounded by both its
age-varying effect in single-autoantibody-positive individuals
and the differences in the degree of correlation between BMI
and insulin resistance amongst study cohorts.

Interestingly, fasting glucose, a major component of the
HOMA-IR calculation, had a large increase in effect with
increasing age in both single- and multiple-autoantibody-
positive individuals. This is consistent with a study showing
an association between higher fasting glucose at diagnosis and
older age of type 1 diabetes diagnosis [40]. C-peptide AUC
also demonstrated a significant age-varying effect for both
single- and multiple-autoantibody-positive individuals. It is
worth noting there is still minimal data available regarding
what constitutes ‘normal’ beta cell function across the age
spectrum and how this compares with autoantibody-positive
relatives. What is clear from this data is that glucose and
surrogate measures for beta cell function derived from the
OGTT should not be interpreted with the same weight across
children and adults.

Risk prediction scores

Both Index60 and DPTRS have been shown to be excellent
predictors of disease progression [41, 42]. However, we found
that both scores had the potential to be enhanced by incorpo-
rating the age-varying effect of particular covariates. This
demonstrates that, even when age is a component of a calcu-
lated score, as is the case with the DPTRS, it does not encap-
sulate the changing hazard that its component covariates may
have with age. In particular, the age-varying effect of
measures of C-peptide was found to have the potential to
enhance prediction in single-autoantibody-positive individ-
uals for both Index60 and DPTRS. These results suggest the
possibility that, when developing future risk scores, investiga-
tors may improve prediction by incorporating the age-varying
effects of covariates, particularly those covariates that demon-
strate a significant change of hazard across the ages.

Limitations

This study was restricted to relatives of people with type 1
diabetes, and may not represent the general population.
However, population studies suggest that once autoimmunity
is established, the progression rate to clinical disease is
comparable to that for genetically at-risk cohorts [43]. The
recruitment design of the PTP study enabled a wide capture
of ages, a feature that is important for assessing age-varying
effects; a similarly wide age range would require decades of
follow-up in studies that begin recruitment from birth.
However, the recruitment strategy limited the data available
from time of seroconversion to current autoantibody status
and the contribution that this data may have had to risk, as
well as the number of children under 2 years of age. In
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addition, there was a paucity of individuals between 20 to
30 years of age – a common clinical trial accrual pattern
[44]. These limitations may have led to an underestimation
of the age-varying effects seen. The time-varying effects
modelling used the assumption common to survival analyses
that, during ages where follow-up is not available for a given
individual, individuals with similar covariates are representa-
tive. A composite endpoint of multiple autoantibody positivity
and clinical disease was used for progression of single-
autoantibody-positive individuals to maximise the number of
events available to study. However, when clinical disease
alone was used as the endpoint, the age-varying effects seen
did not change significantly. As with all retrospective analyses
of data, the statistical significance of the results needs to be
interpreted in context, and clinically relevant time-varying
effects may have been overlooked.

Concluding remarks

Analysing type 1 diabetes predictors using an age-varying
effect model provides a novel approach for understanding
disease progression. Accounting for the age-varying effect
of disease predictors has the potential to improve the accuracy
of prediction models, even for well-established estimates.
Moreover, this approach could be applied to any disease
predictor to shed light on how age may contribute to conflict-
ing conclusions regarding its role in disease risk. In particular,
the age-varying effects of sex, HLA, islet autoantibodies and
glycaemic measures of islet function on disease progression
observed in this study provide new insights into the heteroge-
neity of type 1 diabetes, and demand further investigation for
understanding biological mechanisms. Identifying risk vari-
ables with age-varying effects may be used to guide studies
that take advantage of the different effects seen at different
ages, and uncover the causal mechanisms behind these differ-
ences, leading to greater insights into disease aetiology.
Finally, building risk estimates using the age-varying effects
of covariates will allow disease prediction to be guided by the
risk factors that are most relevant at that individual’s age. This
will improve the accuracy of disease prediction, ensure that
intervention trials target the most rapidly progressing individ-
uals, and by better defining an individual’s projected rate of
progression, help determine intervention efficacy.
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