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Exercise training improves mitochondrial respiration and is
associated with an altered intramuscular phospholipid
signature in women with obesity
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Abstract
Aims/hypothesis We sought to determine putative relationships among improved mitochondrial respiration, insulin sensitivity
and altered skeletal muscle lipids and metabolite signature in response to combined aerobic and resistance training in womenwith
obesity.
Methods This study reports a secondary analysis of a randomised controlled trial including additional measures of mitochondrial
respiration, skeletal muscle lipidomics, metabolomics and protein content. Women with obesity were randomised into 12 weeks
of combined aerobic and resistance exercise training (n = 20) or control (n = 15) groups. Pre- and post-intervention testing
included peak oxygen consumption, whole-body insulin sensitivity (intravenous glucose tolerance test), skeletal muscle mito-
chondrial respiration (high-resolution respirometry), lipidomics and metabolomics (mass spectrometry) and lipid content
(magnetic resonance imaging and spectroscopy). Proteins involved in glucose transport (i.e. GLUT4) and lipid turnover (i.e.
sphingomyelin synthase 1 and 2) were assessed by western blotting.
Results The original randomised controlled trial showed that exercise training increased insulin sensitivity (median [IQR]; 3.4
[2.0–4.6] to 3.6 [2.4–6.2] x10−5 pmol l−1 min−1), peak oxygen consumption (mean ± SD; 24.9 ± 2.4 to 27.6 ± 3.4 ml kg−1 min−1),
and decreased body weight (84.1 ± 8.7 to 83.3 ± 9.7 kg), with an increase in weight (pre intervention, 87.8± 10.9 to post
intervention 88.8 ± 11.0 kg) in the control group (interaction p < 0.05). The current study shows an increase in mitochondrial
respiration and content in response to exercise training (interaction p < 0.05). The metabolite and lipid signature at baseline were
significantly associated with mitochondrial respiratory capacity (p < 0.05) but were not associated with whole-body insulin
sensitivity or GLUT4 protein content. Exercise training significantly altered the skeletal muscle lipid profile, increasing specific
diacylglycerol(32:2) and ceramide(d18:1/24:0) levels, without changes in other intermediates or total content of diacylglycerol
and ceramide. The total content of cardiolipin, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) increased with
exercise training with a decrease in the PC:PE ratios containing 22:5 and 20:4 fatty acids. These changes were associated with
content-driven increases in mitochondrial respiration (p < 0.05), but not with the increase in whole-body insulin sensitivity or
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GLUT4 protein content. Exercise training increased sphingomyelin synthase 1 (p < 0.05), with no change in plasma-membrane-
located sphingomyelin synthase 2.
Conclusions/interpretation The major findings of our study were that exercise training altered specific intramuscular lipid
intermediates, associated with content-driven increases in mitochondrial respiration but not whole-body insulin sensitivity.
This highlights the benefits of exercise training and presents putative target pathways for preventing lipotoxicity in skeletal
muscle, which is typically associated with the development of type 2 diabetes.

Keywords Acylcarnitines . Aerobic and resistance training . Cardiolipins . Cardiorespiratory fitness . Ectopic fat .Mitochondrial
biogenesis . Obesity . Phospholipid hydrolysis . Sphingomyelin . Triacylglycerol

Abbreviations
ACC Acetyl-CoA carboxylase
ATGL Adipose triglyceride lipase
BCAA Branched-chain amino acid
CV-ANOVA ANOVA of the cross-validated

OPLS scores
DAG Diacylglycerol
DXA Dual-energy x-ray absorptiometry
EMCL Extra-myocellular lipid content
ER Endoplasmic reticulum
ETF Electron transferring flavoprotein
ETFp Lipid OXPHOS capacity
ETS Electron transport system
GPAT1 Glycerol-3-phosphate acyltransferase 1
HADHSC Hydroxyacyl-CoA dehydrogenase

HRpeak Peak heart rate
HSL Hormone sensitive lipase
IMCL Intra-myocellular lipid content
iPLA2γ Phospholipase A2γ
LeakETF Lipid-induced leak respiration
LeakOly Oligomycin-induced leak respiration
LPC Lysophosphatidylethanolamine
LPCAT Lysophosphatidylethanolamine acyltransferase
LPE Lysophosphatidylethanolamine
MRS Magnetic resonance spectroscopy
mTOR Mammalian target of rapamycin
OPLS Orthogonal partial least squares
OPLS-EP Orthogonal partial least

squares-effect projections
OXPHOS Oxidative phosphorylation
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PC Phosphatidylcholine
PE Phosphatidylethanolamine
PGC-1α PPARG coactivator 1α
SI Insulin sensitivity index
SGMS1 Sphingomyelin synthase 1
SGMS2 Sphingomyelin synthase 2
TAG Triacylglycerol
TCA Tricarboxylic acid cycle
w.w. Wet weight

Introduction

Low levels of physical activity and cardiorespiratory fitness
are two components contributing to the increasing rates of
obesity [1]. Obesity is closely associated with the redistribu-
tion of fatty acids to ectopic sites, such as skeletal muscle,
where a reduced mitochondrial content and function leads to
accumulation of fatty acids and their potentially harmful by-
products [2–4]. Specifically, reduced mitochondrial respirato-
ry capacity with reduced lipid utilisation can lead to the accu-
mulation of ‘toxic’ lipid intermediates in skeletal muscle,
which may be key to the development of insulin resistance
and type 2 diabetes [2, 4, 5]. Nevertheless, the mechanisms of
muscle lipotoxicity remain unclear and are masked by contra-
dictory results relating to the chemical diversity and sub-
cellular localisation of lipids [6–11]. In this, putative influ-
ences of mitochondrial biogenesis and whole-body insulin
sensitivity on skeletal muscle lipid intermediates may play
important roles [8, 12–14].

Lipid intermediates such as diacylglycerols (DAGs) and
ceramides are considered ‘lipotoxic’ and contribute to muscle
insulin resistance [7, 8]. Mechanistically, both DAGs and
ceramides may block important enzymatic pathways that
affect the muscle’s responsiveness to insulin [6, 15].
Notably, DAGs and ceramides are versatile in their chemical
structure, and consist of numerous variants of fatty acyl
combinations that influence their biological activity and their
insulin-desensitising effects [11]. In fact, total DAG levels in
skeletal muscle are comparable between individuals with type
2 diabetes and insulin sensitive athletes [11]. Similar to
DAGs, ceramides’ biological activity and ability to induce
organ/organelle dysfunction lies in their localisation and acyl
composition [10].

An important regulator of bioactive DAG and ceramide
tissue levels is phospholipid hydrolysis [16]. Phospholipid
hydrolysis is partly regulated through the action of
sphingomyelin synthases, which transfer a phosphocholine
group from phosphatidylcholine (PC) into ceramides, with
the release of sphingomyelin and DAG [17]. Two
sphingomyelin synthase isoforms are expressed in muscle

cells, with sphingomyelin synthase 1 (SGMS1) predominately
localised in the Golgi apparatus and sphingomyelin synthase 2
(SGMS2) at the plasma membrane. Notably, SGMS1-null
mice present with insulin secretion deficiencies and mitochon-
drial dysfunction [18], whereas SGMS2 knockout mice are
protected against high-fat diet-induced obesity and insulin
resistance [19]. Accordingly, SGMS1 is the dominant
sphingomyelin synthase at the Golgi apparatus and produces
DAGs that pool in the endoplasmic reticulum (ER)/Golgi
network to produce phospholipid intermediates [20].
Research in mammals suggests that phospholipids in the
ER/Golgi network are transported to the mitochondria for
the synthesis of cardiolipins and phosphatidylethanolamine
(PE) [21], which can have direct repercussions on mitochon-
drial function and content [22, 23]. Altogether, phospholipid
hydrolysis, mediated via sphingomyelin synthase, provides an
interesting link between mitochondrial function, insulin sensi-
tivity and skeletal muscle lipid homeostasis.

Exercise training improves whole-body and skeletal
muscle insulin sensitivity, which is further coupled with mito-
chondrial biogenesis [24–26]. Changes in specific intermedi-
ates of phospholipids, DAGs and ceramides may therefore
provide further insight into mechanisms of improved mito-
chondrial function and insulin sensitivity in response to exer-
cise training. We sought to determine putative relationships
among mitochondrial function, insulin sensitivity and altered
skeletal muscle lipids and metabolites in response to an exer-
cise intervention in black South African women with obesity.
Young black South African women were selected for this
study due to their high risk of excessive weight gain and
associated decline in insulin sensitivity [27]. We hypothesised
that combined aerobic and resistance exercise training would
induce improvements in mitochondrial respiration and insulin
sensitivity associated with altered skeletal muscle lipid signa-
ture, including changes in sphingomyelin synthases, phospho-
lipids, DAGs and ceramides.

Methods

Study design

This study is a secondary analysis from a randomised control
trial, for which information on recruitment, retention, methods
and sample size determination have previously been reported
[28]. Primary and secondary endpoints (insulin sensitivity,

peak oxygen consumption [V̇O2peak ] and body composition)
from the original randomised control trial have been previous-
ly reported [29] and additional measures of mitochondrial
respiration, skeletal muscle lipidomics, metabolomics and
protein content not determined in the original study were
analysed by the authors of this paper. All participants were
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recruited from a low socioeconomic urban area in Cape Town
between July 2015 and December 2016. One hundred and
eighteen women were screened and assessed for eligibility,
of whom 45 obese sedentary black South African women
were eligible and block (2–4 participants) randomised into
control (no exercise, n = 22) or experimental (exercise, n =
23) groups. Block randomisation and group allocation were
performed by the project manager after participants completed
pre-intervention testing to ensure that investigators
performing the testing were blinded to group allocation. Ten
participants dropped out or were lost to follow-up in the exer-
cise (n = 3) and control groups (n = 7). The study was
approved by the Human Research Ethics Committee at the
University of Cape Town (HREC REF: 054/2015) and is a
secondary analysis of a registered trial in the Pan African
Clinical Trial Registry (No. 201711002789113; https://pactr.
samrc.ac.za/). The study was performed in accordance with
the principles of the Declaration of Helsinki as revised in
2008, ICH Good Clinical Practice (GCP), and the laws of
South Africa. Participants provided written informed consent
before participation.

Participants

Participant recruitment ensured the following inclusion
criteria: black South African women (based on the isiXhosa
ancestry of both parents), 20–35 years of age, BMI of 30–
40 kg/m2, weight stable (weight not changed more than 5 kg
over the past 6 months), sedentary (completing <1 session of
exercise <20 min per week within the last 12 months).
Different hormonal contraceptives have differential effects
on fasting glucose and insulin levels [30]. We standardised
the contraceptive method as the most commonly prescribed
in a South African cohort (depot medroxyprogesterone
acetate, 400 mg) [31] for a minimum of 2 months. Exclusion
criteria included known metabolic or inflammatory diseases,
hypertension (≥140/90 mmHg; Omron 711, Omron Health
Care, Hamburg, Germany), diabetes (random plasma glucose
concentration of >11.1 mmol/l, and/or HbA1c [liquid chroma-
tography, D-10 Hemoglobin Testing System, BIO-RAD,
Johannesburg, South Africa] result >48 mmol/mol [>6.5%]),
HIV positive (rapid anti-HIV [1&2]) test, Advanced quality,
InTec Product, Xiamen, China), or anaemia (haemoglobin
<120 g/l), taking medications, smoking, orthopaedic or medi-
cal problems that may prevent exercise participation, and
surgical procedures within the last 6 months.

12 week intervention

A schematic overview of testing timeline, procedures and
intervention has been described previously [28] and is
summarised in Fig. 1. The exercise intervention consisted of
12 weeks of supervised aerobic and resistance training at a

moderate-vigorous intensity for 40–60 min, 4 days/week by
a trained facilitator, which included a 50% time split between
the two modalities [29]. Aerobic exercises included dance,
running, skipping and stepping at a moderate-vigorous inten-
sity (75–80% peak heart rate [HRpeak]). Resistance exercises
included body weight exercise that progressed to the use of
equipment (i.e. bands and free weights). These exercises
included squats, lunges, bicep curls, push-ups and shoulder
press with a prescribed intensity of 60–70%HRpeak. Heart rate
monitors (Polar A300, Kempele, Finland) were worn to
ensure the prescribed exercise intensity was maintained.
Both groups were instructed to maintain their normal dietary
intake and physical activity patterns, which were objectively
quantified at baseline and weeks 4, 8 and 12. Following post-
intervention testing, the control participants were provided
with the opportunity to participate in the 12 week supervised
exercise programme.

Pre- and post-intervention testing

Body composition assessment Basic anthropometry measure-
ments included weight, as well as height, waist circumference
(level of umbilicus) and hip circumference (largest protrusion of
the buttocks), measured to the nearest 0.1 cm. Whole-body
composition, including subtotal (excluding the head) fat mass
and fat-free soft tissue mass, were measured by dual-energy x-
ray absorptiometry (DXA; Discovery-W, software version
12.7.3.7; Hologic, Bedford, MA, USA) according to standard
procedures. Regional body fat distribution, including gynoid
and android fat mass, was characterised as previously described
[32].

Cardiorespiratory fitness A walking, treadmill-based (C,
Quasar LE500CE, HP Cosmos, Nussdorf-Traunstein,
Germany) graded exercise test until volitional exhaustion was

conducted. V̇O2peak and HRpeak (Polar A300, Kempele,
Finland) was reported. Pulmonary gas exchange was measured
by determining O2 and CO2 concentrations and ventilation to

calculate V̇O2 using a metabolic gas analysis system (CPET,
Cosmed, Rome, Italy). A two-point calibration was conducted
prior to each test, as previously described [28].

Intravenous glucose tolerance test Participants stayed over-
night at the laboratory and were provided a standardised meal
(energy 2456 kJ, 21 g protein, 49 g carbohydrate and 32 g fat) at
20:00 h followed by an overnight fast (10–12 h). At post
intervention, this testing was completed 72 h following the last
exercise training session (Fig. 1). Baseline samples were
collected at −5 and −1 min before a bolus of glucose (50%
dextrose; 11.4 g/m2 body surface area) was infused intravenous-
ly over 60 s beginning at time 0. At 20 min, human insulin
(0.02 U/kg; NovoRapid, Novo Nordisk, Kalundborg,
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Denmark) was infused over 5 min at a constant rate (HK400
Hawkmed Syringe Pump, Shenzhen HawkMedical Instrument,
Shenzhen, China) and samples were collected up to 240 min for
the subsequent analysis of serum insulin (IMMULITE 1000
immunoassay system, Siemens Healthcare, Midrand, South
Africa) and plasma glucose (Randox, Gauteng, South Africa)
concentrations. Bergman’s minimal model of glucose kinetics
was used to calculate the insulin sensitivity index (SI) [33].

Ectopic lipid content After a standardised meal and drink
(energy 2553 kJ, protein 21 g, carbohydrate 83 g, fat 22 g),
MRI and magnetic resonance spectroscopy (MRS) were used
to determine skeletal muscle (soleus, tibialis anterior) fat
content, and intra-myocellular (IMCL) and extra-myocellular
lipid content (EMCL), respectively. These investigations were
completed using a 3 Tesla whole-body human MRI scanner
(MAGNETOM Skyra, Siemens Medical Solutions, Erlangen,
Germany) as described previously [3, 29].

Skeletal muscle biopsiesMuscle samples were collected after a
4–6 h fast and at least 48–72 h after the last exercise session.
After local anaesthesia (2% lidocaine hydrochloride, Intramed,
Port Elizabeth, South Africa), a skeletal muscle biopsy was
collected from m. vastus lateralis using a 5 mm Bergstrom
needle. A subsample of tissue was placed in ice-cold BIOPS
relaxation buffer [34] for immediate analysis of mitochondrial
respiration. The remaining samples were frozen immediately in
liquid nitrogen and stored at −80°C for the analysis of metabo-
lomics, lipidomics and proteins involved in mitochondrial
respiration, phospholipid metabolism, glucose transport and
insulin signalling.

Muscle preparation and western blotting Details of muscle
preparation and western blotting are reported in the electronic
supplementary material (ESM) Methods. The following
primary antibodies were used for protein quantification and
diluted according to the manufacturer’s instructions; mito-
chondrial oxidative phosphorylation (OXPHOS) cocktail
(Mitosciences, Eugene, OR, USA, #MS601), hormone sensi-
tive lipase (HSL; Cell Signaling Technology, Danvers, MA,
USA, #CS4107), hydroxyacyl-CoA dehydrogenase
(HADHSC; Abcam, Cambridge, MA, USA, #ab154088),
mammalian target of rapamycin (mTOR; Cell Signaling,
Danvers, MA, USA, #CS2983), acetyl-CoA carboxylase
(ACC; Cell Signaling, Danvers, MA, USA, #CS3676), phos-
pholipase A2γ (iPLA2γ; Abcam, #ab154233), SGMS1
(Abcam, #ab135365), SGMS2 (Abcam, #ab87214), IRS1
(Millipore, Darmstadt, Germany, #06-248), citrate synthase
(Abcam, #ab96600), adipose triglyceride lipase (ATGL;
Abcam, #ab109251), glycerol-3-phosphate acyltransferase 1
(GPAT1; Abcam, #ab69990), lysophosphatidylcholine acyl-
transferase (LPCAT)3 (Abbexa, Cambridge, UK,
#abx104290), GLUT4 (Millipore, #07-1404) and PPARG
coactivator 1α (PGC-1α; Cell Signaling, #CS2178). Based
on antibody manufacturer’s instructions, the lower band was
quantified (band predicted at 42 kDa) for SGMS2 and the top
band was quantified (band predicted at 94 kDa) for GPAT1.

Mitochondrial respiratory capacityMeasures of mitochondrial
respiration were performed using high-resolution respirometry
(Oxygraph-2k; Oroboros, Innsbruck, Austria). The multiple
SUIT protocol included [25, 35]: (1) the addition of malate
(2 mmol/l) and octanoyl-carnitine (0.2 mmol/l) represents
lipid-induced leak respiration through the electron transferring
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Fig. 1 Schematic overview of testing timeline and procedures.
Abbreviations: FSIGT, frequently sampled intravenous glucose tolerance
test; STD, standard; TA, tibialis anterior. This figure is adapted from

Goedecke et al [28], licensed under a Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/)

1646 Diabetologia  (2021) 64:1642–1659

https://creativecommons.org/licenses/by/4.0/


flavoprotein (ETF) in the absence of adenylates (LeakETF); (2)
lipid OXPHOS capacity was induced with the addition of ADP
(5 mmol/l) (ETFp); (3) state 3 respiration capacity (complex I)
with the addition of pyruvate (5 mmol/l) and glutamate
(10 mmol/l); (4) maximal state 3 respiration (complex I + II)
OXPHOS capacity (succinate, 10 mmol/l); (5) state 4o respira-
tion (oligomycin-induced leak respiration [LeakOly]), through
inhibition of ATP synthase using oligomycin (2.5 μmol/l); (6)
electron transport system (ETS) capacity with the titration of
carbonyl cyanidem-chlorophenyl hydrazone (0.5μmol/l titration
steps); (7) the inhibition of complex I with the addition of rote-
none (0.5 μmol/l); (8) the inhibition of complex III with the
addition of antimycin A (2.5 μmol/l). All respiration data are
reported relative to mass in wet weight (pmol s−1 [mg w.w.]−1)
and citrate synthase protein content as a marker of mitochondrial
content (pmol s−1 [mg w.w.]−1/citrate synthase protein content
[arbitrary units (AU)]). Citrate synthase protein content was
divided into mass-specific respiration to calculate content-
specificmitochondrial respiration,which is termed intrinsicmito-
chondrial respiration. See ESM Methods for further detail.

Metabolomic and lipidomic analyses Multi-platform
metabolomic and lipidomic analyses were performed on skel-
etal muscle samples, including gas chromatography time-of-
flight mass spectrometry (GC-TOF/MS) and liquid chroma-
tography time-of-flight mass spectrometry (LC-TOF/MS,
operating in positive and negative ion modes). A complete
description of metabolomics and lipidomics mass spectrometry
methods are described in ESM Methods. Sample preparation
procedures have been described previously [36, 37]. All lipids
were annotated according to standard lipid nomenclature set by
the Lipid Maps Lipidomics Gateway (lipidmaps.org), i.e. lipid
class, total number of carbons in the attached fatty acids and total
number of double bonds. Further information on lipid-specific
fatty acid composition is provided for cases where a clear mass
spectra fragmentation pattern was obtained, i.e. phosphatidylcho-
line(40:5) contains C18:0 and C22:5 fatty acids and was thus
denoted as phosphatidylcholine(18:0/22:5). Notably, no differen-
tiation could be made between isomers such as sn-1 and sn-2
positions of fatty acids. Of note, due to the high content of high-
abundant lipids such as triacylglycerols (TAGs) and phospho-
lipids in the skeletal muscle samples, a number of low-abundant
DAG species were not possible to quantify. Further details on
metabolomic and lipidomic analyses of skeletal muscle extracts,
including relative abundance of detected lipid classes (ESM Fig.
1 and ESM Table 1) and data processing methods, are shown in
ESM Methods.

Physical activity and dietary intake Physical activity was
measured using accelerometery (ActiGraph GTX3+,
ActiGraph, Pensacola, FL, USA), at baseline and at week
12. The ActiGraph was worn on the hip for 24 h a day over
a 7 day period. Total habitual time physical activity

(≥100 cpm) and sedentary time (≤100 cpm) are reported on
all days in the control group and non-training days in the
exercise group (ActiLife software; Version 6, Pensacola, FL,
USA). At the same time-points dietary intake was estimated using
a 24 h recall and a 3 day dietary record, including 2 weekdays and
1 weekend day. Nutrient intake was calculated using the South
African Food Composition Database System (SAFOOD, the
South African Food Composition Database, South African
Medical Research Council, Cape Town, South Africa).

Statistical analyses

Data relating to mitochondrial respiration, protein expression, SI,
body composition and muscle fat content was analysed using
IBM SPSS statistics (Version 25, Statistical Package for the
Social Sciences, Chicago, IL, USA). Incomplete data on several
participants occurred and was treated as missing data for the
analysis. Final participant numbers for baseline analysis (n =
40) represents pooled groups at pre-intervention. Analysis of
the intervention report n= 20 for exercise and n = 15 for control
groups unless otherwise specified in figure captions and table
legends. Normally distributed data are expressed as mean ± SD
and non-normally distributed data are expressed asmedian (IQR)
and transformed prior to analysis. Response to the intervention
was analysed using repeated measures ANOVA, with Fisher’s
least significant difference post hoc test.Missing datawithin each
variable excluded the respective participant/s. Statistical signifi-
cance (α) was set at p < 0.05.

Multivariate analysis was used for all lipidomic and
metabolomic data by MATLAB R2016a (The MathWorks,
Natick, MA, USA) and SIMCA 16 software (Sartorius,
Umetrics, Umeå, Sweden). Multivariate analyses included prin-
cipal component analysis to first inspect data in terms of group-
ings, outliers and general trends. The intervention-specific skel-
etal muscle metabolite and lipid signatures were calculated in
orthogonal partial least squares-effect projections (OPLS-EP)
models [38]. OPLS-EP is a variant of OPLS and highly suitable
for investigating the intervention-related response since it is
calculated from each individual’s delta values, where each partic-
ipant’s pre-intervention skeletal muscle metabolite measure is
subtracted from its post-intervention measure. By using this
approach, we can evaluate the intervention-specific effect on
the metabolites and lipids with minimal influence from instru-
mental drift and inter-individual variation. In addition, OPLS
analysis was applied to explore associations between changes
in mitochondrial respiratory capacity (complex I + II-linked
mitochondrial respiration) and insulin sensitivity with changes
in skeletal muscle lipids and metabolites. Separate OPLSmodels
were calculated for control and exercise training groups. Prior to
multivariate analyses, all included metabolites and lipids were
scaled to unit variance to prevent low-abundant compounds
being masked by high-abundant ones. All discussed metabolite
profiles, if not stated, are significant based on the latent
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significant criteria using a 95% confidence level [39] and all
models were validated based on the ANOVA of the cross-
validated OPLS scores (CV-ANOVA) [40]. Jack-knifing-based
confidence intervals were calculated from cross-validation to
display significance of unique variables (metabolites) in multi-
variate models [41].

Results

Compliance and participant characteristics in
response to the 12 week intervention

Of the 48 exercise sessions, participants attended 79 ± 13%
(range 52–100%) at a mean intensity of 79.7 ± 4.0% (range
71–85%) HRpeak [42]. There was no change in total habitual
physical activity or sedentary time in response to the intervention
(Table 1). Daily energy intake and macronutrient consumption
throughout the intervention have been previously reported [43].

Changes in body composition, V̇O2peak, SI and skeletal muscle
lipid content in response to the intervention are presented in

Table 1, with several variables previously published [29]. The

exercise training group showed increases in V̇O2peak and SI
(p< 0.05), with no changes in the control group. Body weight
decreased in the exercise group, and increased in the control
group (interaction effect, p = 0.003).

Mitochondrial respiration in response to the 12 week
intervention

Changes in absolute (mg w.w. adjusted) mitochondrial respira-
tion and protein content of citrate synthase in response to the
intervention are presented in Fig. 2. With the exception of
LeakETF and ETFp, all other respiratory states and citrate
synthase protein content increased in response to the exercise
training (interaction p < 0.05), without changes in the control
group. When adjusted for the increase in citrate synthase protein
content as a marker of mitochondrial content, there were no
changes in mitochondrial respiration across all respiratory states
in the exercise and control groups (ESM Fig. 2). Protein content
for all mitochondrial complexes (I-V) increased in response to
exercise training (Fig. 3).

Table 1 Body composition, SI and skeletal muscle lipid content at baseline and in response to the 12 week intervention

Variable Exercise Control Group Time Interaction

Pre Post Pre Post p value p value p value

Age (years) 23±3 – 24±4 –

BMI (kg/m2) 34.1±2.8 33.8±3.1* 33.4±2.7 33.8±2.8* 0.430 0.038 0.003

Weight (kg) 84.1±8.7 83.3±9.7* 87.8±10.9 88.8±11.0* 0.267 0.030 0.003

V̇O2peak (ml kg−1 min−1) 24.9±2.4 27.6±3.4* 23.9±2.8 22.9±2.6 0.291 0.195 <0.001

V̇O2peak (ml/min) 2078±211 2278±231* 2099±282 2032±196 0.447 0.144 <0.001

SI×10
−5 (pmol l−1 min−1) 3.4 (2.0–4.6) 3.6 (2.4–6.2)* 4.2 (2.1–6.8) 3.4 (2.4–6.2) 0.094 0.711 0.037

Physical activity

Total physical activity (min/day) 352.6±50.8 401.9±61.4 398.8±97.2 378.6±104.6 0.561 0.459 0.081

Total sedentary (min/day) 515.6±59.8 478.3±86.5 467.6±69.8 509.4±102.7 0.910 0.677 0.054

DXA

Fat mass (%) 49.9 (48.5–51.6) 49.9 (48.3–51.0) 49.8 (46.7–52.7) 50.9 (47.7–52.9) 0.981 0.480 0.471

FFSTM (kg) 37.1 (33.5–39.5) 37.1 (33.7–39.9) 37.7 (34.6–40.8) 38.2 (35.2–40.9) 0.293 0.223 0.324

MRI and MRS

Soleus IMCL (%) 2.95 (2.57–4.39) 2.73 (2.36–3.63) 2.83 (2.23–3.89) 2.57 (1.87–4.44) 0.283 0.353 0.893

Soleus EMCL (%) 4.49 (3.24–5.72) 3.64 (2.83–5.02) 4.35 (3.61–7.35) 5.38 (3.68–9.00) 0.059 0.485 0.387

Soleus fat (%) 10.4 (7.4–12.7) 9.9 (8.4–11.2) 9.7 (8.5–10.8) 9.5 (8.6–11.3) 0.478 0.682 0.522

Tibialis anterior IMCL (%) 0.44 (0.24–0.64) 0.47 (0.30–0.56) 0.40 (0.29–0.47) 0.38 (0.19–0.46) 0.088 0.785 0.320

Tibialis anterior EMCL (%) 1.54 (1.43–3.72) 2.14 (1.89–3.51) 2.93 (1.97–5.14) 2.87 (1.67–5.34) 0.150 0.865 0.588

Tibialis anterior fat (%) 5.0 (2.9–6.3) 4.2 (3.3–5.4) 3.4 (2.7–3.9) 4.0 (32.7–4.7) 0.674 0.979 0.554

Data reported as mean ± SD for normally distributed variables and as median (IQR) for skewed variables

Repeated measures ANOVA identified main effect of time (pre and post), group (exercise and control), and interaction (group × time) in exercise and
control groups

Significant change within the group, *p < 0.05. MRI and MRS data represents n = 13 in control and n = 20 in exercise groups

FFSTM, fat-free soft tissue mass
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Skeletal muscle metabolomics and lipidomics

All detected and annotated skeletal muscle metabolites and
lipids are listed in ESM Table 1. The intervention resulted in
significantly altered skeletal muscle metabolite and lipid
profiles in the control and exercise groups (Fig. 4; OPLS-

EP, CV-ANOVA p < 0.001). Exercise training increased total
content of cardiolipins and phospholipids, with no changes in
total DAG, ceramide and TAG (Fig. 4e); however, the
increase in cardiolipins was no longer significant when
adjusting for mitochondrial content (citrate synthase; data
not shown). Subtypes of lipid intermediates showed an
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Fig. 2 Mitochondrial respiration
across all respiratory states
(pmol s−1 [mg w.w.]−1). (a) Lipid-
induced leak respiration through
the ETF in the absence of
adenylates (LeakETF). (b) State 4o
respiration, oligomycin-induced
leak respiration (LeakOly) through
inhibition of ATP synthase. (c)
Lipid OXPHOS capacity (ETFp).
(d) State 3 OXPHOS capacity
specific to ETF and complex I
(CIp). (e) Maximal state 3
OXPHOS capacity (CI+IIp). (f)
ETS capacity. (g) ETS capacity
through complex II (CIIETS). (h)
Citrate synthase protein
expression with representative
blots in response to the 12 week
intervention. Repeated measures
ANOVA identified main effect of
time (pre and post), group
(exercise and control), and
interaction (group × time) in
exercise (n = 18) and control (n =
14) groups. The dashed line
represents the median. Significant
difference between pre and post
intervention *p < 0.05.
Significant group × time
interaction †p < 0.05
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increase in ceramide(d18:1/24:0), DAG(32:2) and
cardiolipins in response to exercise training. Exercise training
increased PEs containing polyunsaturated fatty acyls more
than PCs, which resulted in a decrease in respective PC:PE
ratios (Fig. 4a), a process indicative of phospholipid remodel-
ling and the generation of deacylated lysoforms [44]. We
found that exercise increased the remodelling-linked
lysophosphatidylethanolamine(22:5), whereas the non-
remodelled LPE i.e. LPE(18:1) decreased. In contrast to
LPEs, all lysophosphatidylcholines (LPCs) decreased in
response to exercise training, with no change in the control
group. Exercise training also increased skeletal muscle
acylcarnitines linked to fatty acid mobilisation and availability
of tricarboxylic acid cycle (TCA) intermediates and decreased
catabolic intermediates of branched-chain amino acids
(BCAAs; Fig. 4c).

The control group increased total TAG, ceramides and
sphingomyelin (Fig. 4f) and increased remodelled PC:PE

r a t i o s w i t h no change i n t h e i r co r r e spond ing
lysophospholipids (Fig. 4b). Acylcarnitines, fatty acids and
TCA intermediates were not altered in controls (Fig. 4d).

Skeletal muscle metabolite and lipid association with
SI, GLUT4 and mitochondrial respiration

The muscle metabolite and lipid signatures were not associat-
ed with SI or GLUT4 protein content at baseline or in response
to exercise training (OPLS CV-ANOVA p > 0.05). Instead,
mitochondrial respiratory capacity (mg w.w.) was significant-
ly associated with a metabolite and lipid signature at baseline
(OPLS, CV-ANOVA p = 0.001, Fig. 5a) and in response to
exercise training (OPLS, CV-ANOVA p = 0.045, Fig. 5b). No
significant association was found between the changes in skel-
etal muscle lipids and metabolites with changes in mitochon-
drial respiratory capacity in the control group (OPLS, CV-
ANOVA p > 0.05). At baseline, higher mitochondrial
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respiratory capacity was associated with higher total
lysophospholipids and acylcarnitines, and lower DAG(38:4),
ceramide(d18:1/18:1), ceramide(d18:1/22:1) and phospho-
lipids. Increased total content of cardiolipins and

phospholipids with exercise training were significantly asso-
ciated with increased mitochondrial respiratory capacity (Fig.
5b). The increase in mitochondrial OXPHOS capacity was
associated with a decrease in PC:PE ratios that contain fatty
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acids with more double bonds, and an increase in cardiolipins,
DAG(32:2), ceramide(d18:1/24:0), and galactose-
ceramide(d18:1/20:3). When adjusting mitochondrial respira-
tory capacity for mitochondrial content (citrate synthase),
there were no significant associations with altered metabolite

and lipid signatures (OPLS-EP, CV-ANOVA p > 0.05).
Suggesting that the aforementioned relationships between
mitochondrial respiratory capacity and lipid intermediates
were driven by changes in mitochondrial content.

Protein expression

SGMS1 increased in the exercise group only (interaction p =
0.001; Fig. 6a), with no changes within or between groups for
SGMS2 (interaction, p = 0.251; Fig. 6b). There was a signif-
icant time effect (p = 0.008) for ACC, such that ACC
increased in the exercise group, without changes in HSL,
ATGL, GPAT1, LPCAT3 or HADHSC in either group (Fig.
7). GLUT4 showed a significant time effect (p = 0.034) with
an increase in response to exercise training (p < 0.05; Fig. 8).
There were no changes within or between groups for mTOR,
PGC-1α, IRS1 and iPLA2γ (Fig. 8).

�Fig. 4 The intervention-specific multivariate response in skeletal muscle
lipids and metabolites from 12 weeks of (a, c, e,OPLS-EP, CV-ANOVA
p < 0.05) exercise training (n = 19) and (b, d, f, OPLS-EP, CV-ANOVA
p < 0.05) control participants (n = 14). Metabolites/lipids that are
significantly altered with exercise training are highlighted by an asterisk
(*) using confidence intervals that indicate a 95% confidence level (jack-
knifing statistics) and w[1] defines the calculated latent OPLS-EP
variable. A complete table of all detected metabolites and lipids
included in models can be found in ESM Table 1. Annotation of
metabolites and lipids: cardiolipin (CL); carnitine (Carn); ceramides
(Cer); diacylglycerol (DAG); fatty acid (FA); galactose (Gal);
lysophosphatidylcholine (LPC); lysophosphatidylethanolamine (LPE);
phosphatidylcholine (PC); phosphatidylethanolamine (PE);
sphingomyelin (SM); triacylglycerol (TAG); tricarboxylic acid cycle
(TCA)

OPLS w[1]OPLS w[1]

Carnitine

Carn(2:0)

Carn(5:1-iso)
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a bFig. 5 Multivariate association
between (a) baseline skeletal
muscle lipids and metabolites
with mitochondrial respiratory
capacity (n = 40 pooled exercise
and control groups; OPLS, CV-
ANOVA p = 0.001), and (b)
change in response to exercise
training in skeletal muscle lipids
and metabolites with changes in
mitochondrial respiratory
capacity (n = 19; OPLS, CV-
ANOVA p = 0.045). All shown
metabolites are significant on a
95% confidence level and w[1]
defines the latent OPLS variable.
Annotation of metabolites and
lipids: cardiolipin (CL); carnitine
(Carn); ceramides (Cer);
diacylglycerol (DAG); galactose
(Gal); lysophosphatidylcholine
(LPC);
lysophosphatidylethanolamine
(LPE); phosphatidylcholine (PC);
phosphatidylethanolamine (PE);
triacylglycerol (TAG); tot, total
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Discussion

The major findings of our study were that exercise training
altered specific intramuscular lipid intermediates, which were
associated with content-driven increases in mitochondrial
respiration, and not whole-body insulin sensitivity. Notably,
exercise training did not alter total skeletal muscle lipid
content (measured by MRI and MRS), but instead altered
specific phospholipids, DAGs, ceramides and acylcarnitines.
Additionally, we show increased SGMS1 protein content, not
SGMS2, which may indicate increased phospholipid hydroly-
sis in the Golgi apparatus, rather than at the plasma membrane
(Fig. 9). These findings highlight new mechanisms whereby

combined aerobic and resistance exercise training may
prevent lipotoxicity in skeletal muscle, with putative protec-
tion against future type 2 diabetes.

We propose that improved mitochondrial respiratory
capacity and content in response to exercise training alters
specific phospholipids, DAGs and ceramide, independent of
the improvements in insulin sensitivity and GLUT4 protein
expression (Fig. 9). This altered lipid signature might, in part,
occur via an increase in the sphingomyelin synthase pathway
in the Golgi apparatus [9], which is supported by the simulta-
neous increase in SGMS1 in the exercise group, with no
change in SGMS2. SGMS1 is localised in the Golgi apparatus
and has previously been related to cell growth, whereas
SGMS2 is mainly found at the plasma membrane and has
been linked to obesity and insulin resistance [17, 19, 45].
Since the mitochondria rely on lipid influx to maintain
membrane integrity and overall cellular function [46], we
hypothesise that exercise training increases lipid utilisation
in the more bioenergetically active organelles andmembranes.
Specifically, SGMS1 produces DAGs that pool in the ER/
Golgi network and produce phospholipid intermediates [20].
We propose that these phospholipid intermediates are
imported into the mitochondria (via unknown mechanisms)
and used as substrates for the synthesis of cardiolipins and
PE [21]. This may be a pathway responsible for content-
driven improvements in mitochondrial function, while
preventing the build-up of DAGs at the plasma membrane
where insulin signalling may be perturbed [10, 11, 47] (Fig.
9). Notably, the high content of TAGs and phospholipids
meant that we were only able to detect a low number of
DAGs, with only one, DAG(32:2), changing in response to
exercise. Identification of additional DAG species, phospho-
lipid intermediates and organelle-specific proteins involved in
the sphingomyelin synthase pathway and the movement of
phospholipids to the mitochondria may increase our under-
standing on potential links between sphingolipid metabolism
and mitochondrial respiratory capacity and content (Fig. 9).

Sphingomyelin synthases, via their function in phospho-
lipid hydrolysis, are one of many important regulators of
DAGs and ceramides in the tissue [48]. We found that an
increase in specific ceramide and DAG species, rather that
total content, was associated with increased mitochondrial
respiratory capacity, but not with increased whole-body insu-
lin sensitivity or GLUT4 protein content. Ceramides are
composed of a sphingosine base, which often contain a
d18:1 acyl group, and an amide-linked fatty acyl chain that
varies fromC14:0–C26:0, with different saturation levels. The
variation in fatty acyl composition of ceramides depends on
the combination of fatty acyl-CoAs availability and activity of
specific ceramide synthases within tissues [10]. Data from
human skeletal muscle are sparse, but C24:0 and C24:1-
ceramides have been linked to cell proliferation [45], whereas
C18-ceramides are linked to increased mitophagy and cell
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death [45]. Correspondingly, we show that higher concentra-
tions of ceramide(d18:1/18:1) and ceramide(d18:1/22:1) were
related to lower mitochondrial respiratory capacity at baseline,
and the upregulation of ceramide(d18:1/24:0) with exercise
training related to mitochondrial biogenesis. Given that
ceramides and PCs are substrates for sphingomyelin synthase,
the increase in only ceramide(d18:1/24:0) indicates that other
organelle-specific sphingolipid efflux pathways are altered
with exercise training [11, 49]. We propose that linking
organelle-specific sphingolipid metabolismwith mitochondri-
al biogenesis may assist in finding target mechanisms for the

prevention of skeletal muscle lipotoxicity and ensuing type 2
diabetes (Fig. 9).

Sphingolipid metabolism via SGMS1 and SGMS2 occurs
through the transfer of a phosphocholine residue from PC to
ceramide yielding a sphingomyelin and DAG [17]. Together
with PCs, PEs are the most abundant phospholipids in mito-
chondrial membranes, with the removal of PE causing dimin-
ished mitochondrial respiratory capacity in rodents [12, 13].
The PC:PE ratio has shown to be closely linked to skeletal
muscle lipid mobilisation and associated with lower insulin
sensitivity in overweight men [50, 51]. The current study
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shows that the increase in PCs and PEs were associated with
content-driven changes in mitochondrial function. Moreover,
we showed a more prominent increase in PEs that contain
20:4 and 22:5 fatty acyl groups (Fig. 4). This resulted in
decreased PC:PE ratios with these fatty acyl groups, which
were associated with increased mitochondrial respiratory
capacity (Fig. 5). Higher levels of polyunsaturated fatty acyls
in phospholipids increase the permeability and fluidity of the
cell membrane, which can have direct repercussions on mito-
chondrial function [22, 23]. Other studies indicate an associa-
tion between skeletal muscle phospholipids that contain poly-
unsaturated fatty acyls and insulin sensitivity [52].
Furthermore, 12 weeks of aerobic and resistance training in
normal-weight men showed that improved insulin sensitivity
was associated with increased total content of skeletal muscle
PC (21%) and PE (42%) and reduced total PC:PE ratio (16%)
[14]. However, we show no association between altered
PC:PE ratios (total content and specific intermediates) and
whole-body insulin sensitivity. These discrepancies in
outcomes may involve methods used tomeasure insulin sensi-
tivity and/or differences in exercise training modes.

Interestingly, we showed that exercise training increased
the PC:PE(18:1/18:0) ratio, driven by an increase in
PC(18:1/18:0). Since de novo synthesis only produces satu-
rated and monounsaturated phospholipids [44], these results
may reflect increased demand and de novo synthesis of PCs

[53]. The incorporation of polyunsaturated fatty acyls into
phospholipids occurs through phospholipid remodelling in
the Lands pathway, via their deacylated lyso-form (i.e. LPE
and LPC) by PLA2, followed by reacylation and incorpora-
tion of a polyunsaturated fatty acid via LPCAT [44]. In addi-
tion to the observed increase in PE(18:0/22:5) following exer-
cise training, we show an increase in its corresponding lyso-
form, LPE(22:5). This implies that exercise training impacts
phospholipid remodelling, and specifically remodelling of
PEs, which occurs via various PLA2s and LPCATs [44].
Although we show no changes in iPLA2γ and LPCAT3
protein content, there are a vast number of unexplored
organelle-specific phospholipase and acyltransferases that
could be affected and stimulate changes in phospholipid acyl
composition. Further research is important to understand the
role of specific phospholipases and acyltransferases in regu-
lating specific skeletal muscle phospholipid intermediates and
potentially also insulin sensitivity.

We showed that an increase in skeletal muscle cardiolipins
were associated with an increase in content-driven changes in
mitochondrial function. Cardiolipins play a central role in
mitochondrial respiration and energy production and are
uniquely located in the mitochondrial membranes [23, 54].
Interestingly, alterations in the phospholipid composition
can also affect membrane integrity, permeability and trans-
port, and the cardiolipin acyl groups may be important when
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understanding this link [23, 54]. The cardiolipins that
increased in the current study occurred predominately in those
with a higher degree of unsaturation (total double bonds >7)
and correlated with the increase in mitochondrial respiratory
capacity. Similarly, cell culture studies have shown correla-
tions between increased cardiolipins with a higher degree of
unsaturation, and improved mitochondrial activity and
reduced inflammation [22]. Regardless, the increase in
cardiolipins with a high degree of unsaturation observed in
response to exercise training may indicate an improved
membrane permeability and transportation, which is essential
for stimulating mitochondrial biogenesis.

The long-term exposure to a build-up of fatty acids and
BCAA intermediates is considered ‘lipotoxic’ and has been
shown to contribute to skeletal muscle insulin resistance and

the pathogenesis of type 2 diabetes [55]. At baseline, our study
showed higher hydroxylated acylcarnitines related to higher
mitochondrial respiratory capacity and not whole-body insu-
lin sensitivity or GLUT4. Hydroxylated acylcarnitines have
been previously observed during dysfunctional mitochondrial
fatty acid oxidation and may simply reflect an oversupply of
fatty acids to the peripheral tissue prior to the intervention
[56]. Alternatively, skeletal muscle acylcarnitines increase in
response to exercise training and relate to mitochondrial
remodelling and cardiometabolic fitness [57]. Similarly, we
found that exercise training stimulated an increase in the
fatty-acid-related acylcarnitines (C12- to C20-carnitines),
and a concomitant decrease in acylcarnitines related to
BCAA catabolism (C3-, C5-carnitines). These changes were
associated with improved mitochondrial respiration (Fig. 5)

Fig. 9 Schematic overview of proposed skeletal muscle pathways affect-
ed by the 12 week intervention. (1) Combined aerobic and resistance
exercise training resulted in increased SGMS1; sphingolipid metabolism
via SGMS1 occurs at the Golgi apparatus through the transfer of a
phosphocholine headgroup from PC to ceramide yielding a
sphingomyelin (SM) and DAG [17]. (2) Exercise training results in
content-driven increases in mitochondrial respiratory capacity that were
associated with increases in DAG(32:2), cardiolipins and phospholipids.
The increase was more prominent in PE compared with PC, resulting in
decreased PC:PE ratios. Both PEs and cardiolipins are highly abundant
mitochondrial lipids that contribute to mitochondrial respiratory capacity
and content [23, 46, 54]. (3) Exercise training also increased medium-to-
long chain acylcarnitines that were associated with increased mitochon-
drial respiration. Acylcarnitines shuttle fatty acids towards the mitochon-
dria for beta-oxidation. (4) GLUT4 protein expression and whole-body
insulin sensitivity increased with exercise training but were not related to
change in muscle lipid signatures. (5) The SGMS2 isoform located at the

plasma membrane was not affected by the exercise training intervention.
The control group increased skeletal muscle total lipid levels of (6)
ceramides and SM and (7) TAG, which may have future implications
for insulin-desensitising mechanisms [6]. There was no change in mito-
chondrial respiration or content in the control group. We hypothesise that
exercise training increases lipid utilisation in the more bioenergetically
active organelles and membranes. Specifically, increased mitochondrial
respiration with exercise training may stimulate increases in SGMS1 at
the Golgi. SGMS1 produces DAGs that pool in the ER/Golgi network
and produce phospholipid intermediates [20]. We propose that these
phospholipid intermediates are imported into the mitochondria (via
unknown mechanisms) and used as substrates for the synthesis of
cardiolipins and PE [21]. This may be a pathway responsible for
content-driven improvements in mitochondrial function, while
preventing the build-up of DAGs at the plasma membrane where insulin
signalling can be perturbed [10, 11, 47]. Created with BioRender.com
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rather than changes in insulin sensitivity. Accordingly, we
suggest that the increased capacity for mitochondrial fatty acid
oxidation and content may prevent the accumulation of
BCAA catabolic intermediates. Altered BCAA metabolism
in the liver and adipose tissue contributes to an obesity-
related elevation in circulating BCAA that ultimately inter-
feres with lipid oxidation in the skeletal muscle [58, 59].
Accordingly, tissue-specific measures of insulin sensitivity
(hepatic and/or peripheral) in relation to skeletal muscle
BCAAs may be of interest to explore.

The high risk for weight gain in young South African
women [27] was further supported by the results in the control
group, who gained weight (±1 kg) over the 12 week period.
The control group also showed an increase in skeletal muscle
lipid intermediates, such as TAGs, ceramides and
sphingomyelins (Fig. 9). Although the exact mechanism is
unclear, we hypothesise that the increase in ACC protein
expression, with no increases in mitochondrial respiration or
content, may favour the formation of fatty acids through
malonyl-CoA and the overall storage of lipids. A build-up of
NEFA can lead to the inhibition of GLUT4 and contribute to
the development of skeletal muscle insulin resistance [60].
The current study shows no association at baseline or in
response to the intervention between the lipid signature and
GLUT4; we suggest that an inverse relationship may be
evident in a cohort with insulin resistance or diabetes.

In conclusion, exercise training in women with obesity
altered intramuscular phospholipid, cardiolipin, acylcarnitine,
DAG and ceramide subtypes that were associated with
content-driven changes in mitochondrial respiration, but not
whole-body insulin sensitivity. We propose that exercise
training increases lipid utilisation in the more bioenergetically
active organelles and membranes, which may prevent future
skeletal muscle lipotoxicity and this may relate to hepatic and/
or peripheral estimates of insulin sensitivity. Further interven-
tions designed to specifically manipulate muscle lipids and/or
mitochondrial function (i.e. diet and/or different exercise
training modes) are required to understand whether changes
in muscle lipids are fundamental to support the growth and
morphology of a mitochondrial network (interdependent
geometrical feature and their dynamics), rather thanmitochon-
drial function per se.
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