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Abstract
Aims/hypothesis Type 2 diabetes is associated with cognitive impairments, but it is unclear whether common genetic factors
influence both type 2 diabetes risk and cognition.
Methods Using data from 1892Mexican-American individuals from extended pedigrees, including 402 with type 2 diabetes, we
examined possible pleiotropy between type 2 diabetes and cognitive functioning, as measured by a comprehensive neuropsy-
chological test battery.
Results Negative phenotypic correlations (ρp) were observed between type 2 diabetes and measures of attention (Continuous
Performance Test [CPT d′]: ρp= −0.143, p= 0.001), verbal memory (California Verbal Learning Test [CVLT] recall: ρp=−0.111,
p= 0.004) and face memory (Penn Face Memory Test [PFMT]: ρp=−0.127, p= 0.002; PFMT Delayed: ρp =−0.148, p= 2 × 10−4),
replicating findings of cognitive impairment in type 2 diabetes. Negative genetic correlations (ρg) were also observed between type 2
diabetes andmeasures of attention (CPTd′: ρg=−0.401, p= 0.001), workingmemory (digit span backward test: ρg=−0.380, p= 0.005),
and face memory (PFMT: ρg=−0.476, p= 2 × 10−4; PFMT Delayed: ρg=−0.376, p= 0.005), suggesting that the same genetic factors
underlying risk for type 2 diabetes also influence poor cognitive performance in these domains. Performance in these domains was also
associatedwith type 2 diabetes risk using an endophenotype ranking value approach. Specifically, onmeasures of attention (CPT d′:β=
−0.219, p= 0.005), working memory (digit span backward: β=−0.326, p= 0.035), and face memory (PFMT: β=−0.171, p= 0.023;
PFMT Delayed: β=−0.215, p= 0.005), individuals with type 2 diabetes showed the lowest performance, while unaffected/unrelated
individuals showed the highest performance, and those related to an individual with type 2 diabetes performed at an intermediate level.
Conclusions/interpretation These findings suggest that cognitive impairment may be a useful endophenotype of type 2 diabetes and,
therefore, help to elucidate the pathophysiological underpinnings of this chronic disease.
Data availability The data analysed in this study is available in dbGaP: www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs001215.v2.p2.
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Abbreviations
CPT d′ Continuous Performance Test
CVLT California Verbal Learning Test
ERV Endophenotype ranking values
GOBS Genetics of Brain Structure and Function
LDSC Linkage disequilibrium score regression
mERV Mean-based endophenotype ranking values
MR Mendelian randomisation
PFMT Penn Face Memory Test
PRS Polygenic risk score
SOLAR Sequential Oligogenetic Linkage Analysis

Routines

Introduction

Over 29 million Americans have diabetes and 90–95% of
these have type 2 diabetes [1]. If current trends continue, as
many as one in three Americans are predicted to have diabetes
by 2050 [1, 2], prompting Zimmet and colleagues to claim
that type 2 diabetes is an ‘epidemic’ with profound societal
consequences [3].

From the prospective of pathophysiology, the sevenfold
increase in type 2 diabetes prevalence over the past 60 years
[2] must be due to environmental factors (or the interaction of
environmental factors with genetic background) since genetic
variation on such a short timescale is relatively constant.
Nevertheless, high concordance rates for type 2 diabetes in

identical twins [4, 5] and aggregation of type 2 diabetes in
families [6, 7] suggest that genetic factors play an important
role in illness liability. However, despite recent progress in
delineating the genetic architecture of type 2 diabetes [8], only
around 10% of the risk attributable to genetic factors has been
identified [9]. A potential reason for the slow progress in
demarcating genomic regions that confer type 2 diabetes risk
is that the genetic architecture of the illness is highly hetero-
geneous [10]. One strategy to reduce this heterogeneity is the
application of allied phenotypes or endophenotypes [11],
defined as traits that are genetically related to, but not a symp-
tom of, an illness. The endophenotype must show shared
genetic aetiology with illness risk, such that the biological
mechanisms underlying the endophenotype overlap with
those that are disrupted in the disease [12]. Yet, despite the
potential utility of the endophenotype strategy, relatively few
studies have attempted to identify potential endophenotypes
for type 2 diabetes.

While there are many potential medical complications of
type 2 diabetes, cognitive impairment and dementia are
increasingly recognised as clinically important [13]. Indeed,
individuals with type 2 diabetes have a 1.5 times increased
risk for Alzheimer’s disease and other dementias [14], with
longitudinal studies consistently reporting that type 2 diabetes
in midlife is associated with increased risk of dementia in later
life [14]. A recent meta-analysis of 2.3 million individuals,
including more than 100,000 with dementia, found a 60%
increased risk of any dementia in men and women with type
2 diabetes (women, pooled relative risk: 1.62; men, pooled
relative risk: 1.58) [15]. Moreover, individuals with type 2
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diabetes have modest, yet reliable, cognitive decrements when
compared with individuals without type 2 diabetes [16, 17].
For example, meta-analyses report small to moderate impair-
ments on measures of processing speed (Cohen’s d −0.43 to
−0.22 [18–20]), verbal declarative memory (d = −0.51 to
−0.27 [18, 20]), visual declarative memory (d = −0.26 [18,
20]), executive functioning (d = −0.52 to −0.25 [18–20]) and
motor functioning (d = −0.36 [18]) in individuals with type 2
diabetes. Cognitive impairments are also present in individ-
uals with recent-onset type 2 diabetes [21], adolescents who
later develop diabetes [22] and in individuals with impaired
glucose tolerance [23]. Thus, at least part of the cognitive
impairment associated with type 2 diabetes appears to precede
onset and may be related to risk for the illness.

Unlike other common sequelae of type 2 diabetes (e.g.
retinopathy or peripheral neuropathy), cognitive impairments
are only weakly associated with peripheral blood glucose
levels or glucose regulation [24], suggesting that these impair-
ments are not entirely due to current metabolic dysfunction
(e.g. insulin resistance). Poor cognitive functioning also
appears to be a risk factor for metabolic dysregulation [13],
such as severe hypoglycaemic episodes [25], suggesting a
bidirectional association between cognition and type 2 diabe-
tes. Moreover, in a systematic review and synthesis of the
literature, Biessels and colleagues [25] noted that effect sizes
of cognitive impairment in type 2 diabetes are consistent
across the lifespan and similar to those reported in individuals
with impaired glucose tolerance [23], suggesting minimal
influence of illness duration and/or age. Given evidence that
cognitive impairments show relatively little association with
clinical state, exist prior to illness onset and show minimal
progression [13, 14], it is possible that at least some of the
cognitive complications of type 2 diabetes reflect subtle
biological changes associatedwith liability for type 2 diabetes.
In other words, cognitive impairment may be an
endophenotype of type 2 diabetes.

Using data from a large sample ofMexican-American indi-
viduals from extended pedigrees, we sought to find evidence
for possible pleiotropy between cognitive functioning and
type 2 diabetes, such that the genetic factors influencing these
two traits overlap. Specifically, our aims were to: (1) estimate
the heritability of type 2 diabetes and cognitive functioning in
this sample; (2) quantify the genetic correlation between these
two traits; and (3) test for the effect of duration of type 2
diabetes on cognitive functioning.

Methods

Sample

Participants were from the Genetics of Brain Structure and
Function (GOBS) study [26, 27],which is part of the San

Antonio Family Heart Study (SAFH). Cognitive data and data
on type 2 diabetes status were available for 1892 participants
from 96 pedigrees (average [mean] family size, 19.2; range,
2–189). The sample was 60.4% female and had a mean age of
49.9 years (SD, 15.6; range, 18–97). GOBS data collection
occurred between 2006 and 2016. Of the 1892 individuals,
402 received a type 2 diabetes diagnosis (see below), 1247
were related to an affected individual and 243 were unrelated
to an affected individual (Table 1).

All participants were randomly selected from the commu-
nity with the constraints that they were of Mexican-American
ancestry, part of a large family, and lived in the San Antonio
(TX, USA) region. All participants provided written informed
consent. The institutional review board (IRB) at the
University of Texas Science Center at San Antonio approved
the study.

Neurocognitive assessment

Participants completed a 90 min neuropsychological test
battery consisting of standard and computerised measures
[28], including measures of attention, executive processing,
working memory, declarative memory, language processing,
intelligence and emotional processing. The vocabulary and
matrix reasoning subtests of the Wechsler Abbreviated Scale
of Intelligence (WASI) [29] provided an estimate of intelli-
gence quotient (IQ). Participants were tested in their choice
of language; 132 (7%) participants were tested in Spanish and
the remainder were tested in English.

Type 2 diabetes diagnosis

Participants were classified as having type 2 diabetes if they
had a fasting glucose concentration ≥7.0 mmol/l and/or a 2 h
glucose level ≥11.1 mmol/l after OGTT. Participants who did
not meet these criteria, but reported current treatment with oral
glucose-lowering agents or insulin, and a history of diabetes,
were also classified as having type 2 diabetes.

Table 1 Basic demographics of the sample by degree of relatedness to
an individual with type 2 diabetes

Degree of relatedness n Age, mean (SD) Sex, % female

Affected 402 54.8 (12.6) 59.6

First degree 561 41.2 (13.4) 63.3

Second degree 337 34.3 (14.9) 57.0

Third degree 222 35.9 (12.7) 57.7

Fourth degree 105 29.4 (9.6) 61.0

Fifth degree 21 24.4 (8.3) 47.6

Sixth degree 1 19 100.0

Unrelated 243 45.5 (15.2) 63.0
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Quantitative genetic analysis

Univariate models All genetic analyses were performed using
the Sequential Oligogenetic Linkage Analysis Routines
(SOLAR) software [30]. SOLAR implements a maximum
likelihood variance decomposition to determine the propor-
tion of variation in a phenotype due to genetic and environ-
mental influences by modelling the covariance amongst fami-
ly members as a function of genetic proximity. This approach
can handle pedigrees of arbitrary size and complexity and,
thus, is optimally efficient with regard to extracting maximal
genetic information. The simplest such decomposition is one
where the additive genetic contribution of a trait is indexed by
the heritability (h2). All cognitive measures and type 2 diabe-
tes underwent univariate decomposition analysis to ensure
they were significantly heritable. Raw continuous traits were
subjected to rank-based inverse-normal transformation to
ensure that they were normally distributed. Residualised traits
were then generated by entering age, age2 and sex, and their
interactions, as well as testing language and years of educa-
tion, as fixed-effect covariates in all models. These
residualised traits were used in all subsequent analyses. To
control for multiple testing, the false discovery rate (FDR)
was set at 5% in all genetic and statistical models [31].

Bivariate models Bivariate polygenic models were used to
decompose the phenotypic covariance between each
neurocognitive measure and type 2 diabetes status into genetic
and environmental constituents to determine the extent by
which they were influenced by shared genetic effects.
Specifically, bivariate polygenic analyses were performed to
estimate phenotypic (ρp), genetic (ρg) and environmental (ρe)
correlations using the following equation: ρp = ρg√(h2eh2i) +
ρe√[(1–h2e)(1–h2i)], where h2e is the heritability of the
endophenotype and h2i is the heritability of the illness. The
significance of these correlations was tested by comparing the
log likelihood for two restricted models (with ρp, ρg or ρe
constrained to equal 0) against the log likelihood for the model
in which these parameters were estimated. A significant
phenotypic correlation is evidence for a phenotypic associa-
tion (i.e. including both genetic and environmental influences)
between neurocognitive measures and a type 2 diabetes diag-
nosis. A significant environmental correlation is evidence for
a non-genetic factor jointly influencing both traits. A signifi-
cant genetic correlation is evidence for pleiotropy suggesting
that a gene or set of genes jointly influences both phenotypes.
It is worth noting that there are multiple possible interpreta-
tions of genetic correlations. While the same genetic variants
may contribute both to type 2 diabetes risk and cognitive
functioning (horizontal pleiotropy), genetic variants related
to type 2 diabetes risk may also have indirect effects on cogni-
tion (vertical pleiotropy) [32]. Nevertheless, the mechanisms
underlying the observed genetic correlations between type 2

diabetes and cognitive impairment do not deter from the
potential use of cognitive functioning as an endophenotype
for type 2 diabetes. We also used bivariate models to decom-
pose the phenotypic covariance between each neurocognitive
measure and BMI, as well as between each neurocognitive
measure and waist circumference.

Endophenotype Ranking Values Parameters from these bivar-
iate models were used to calculate endophenotype ranking
values (ERVs). The ERV objectively prioritises potential
endophenotypes for use in molecular genetics analyses [33].
The ERV represents the standardised genetic covariance
between an endophenotype and an illness, defined as:
ERV = √(h2eh2i)|ρg|, where h2e is the heritability of the
endophenotype, h2i is the heritability of the illness and ρg is
their genetic correlation. The ERV provides a measure
between 0 and 1, with higher values indicating a stronger
combination of genetic signal and relationship to disease.

Mean-based ERV calculation Themean-based ERV (mERV) is
an extension of the ERV. For details on the derivation of the
mERV, see Glahn et al [34]. Briefly, the mERV leverages the
many coefficients of relationship that exist in extended-
pedigree data. The coefficient of relationship refers to the
average (mean) number of alleles held in common between
individuals. For example, first-degree relatives (e.g. full
siblings or parents) share, on average, 50% of their alleles,
whilst second-degree relatives (e.g. grandparents or aunts/
uncles) share 25%, third-degree relatives (e.g. great-
grandparents or great aunts/uncles) share 12.5% and so on.
Thus, it is possible, given an individual with a disease, to
index all other pedigree members by their degree of related-
ness to that individual. For non-affected individuals with more
than one relative with type 2 diabetes, the highest degree of
relatedness is used. This scalar can then be used to perform a
fixed-effect single-degree-of-freedom test within the univari-
ate variance components analysis outlined above, providing
an estimate of the standardised genetic covariance between the
potential endophenotype and illness risk. The mERV can then
be used in the same way as the ERV to rank potential
endophenotypes by their degree of standardised genetic over-
lap with illness risk. In the present paper, the mERV was
applied to type 2 diabetes and all neurocognitive measures
with statistically significant genetic correlations.

Statistical analyses

We used ANOVA models, implemented in the statistical
programming language R [35], to test for the effect of duration
of type 2 diabetes on neurocognitive functioning. Participants
with type 2 diabetes were categorised into two illness duration
groups: (1) duration of less than 10 years; and (2) duration of
10 or more years. Neurocognitive scores were residualised in
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SOLAR for sex and testing language, then subsequently for
sex, testing language and age. Finally, the three groups (unaf-
fected, duration <10 years, duration ≥10 years) were matched
by age using the ‘MatchIt’ package in R.

We also examined the effect of duration of type 2 diabetes
on neurocognitive functioning using linear regression models.
Duration in years was modelled onto cognitive functioning,
both as linear and quadratic functions, the latter to account for
potential nonlinearity in the association between type 2 diabe-
tes duration and cognitive functioning.

Results

Evidence for pleiotropy between type 2 diabetes
and neurocognition

Table 2 shows results of univariate and bivariate genetic anal-
yses of type 2 diabetes on neurocognitive functioning. All
neurocognitive measures were significantly heritable (h2

range, 0.17–0.59), as was type 2 diabetes (h = 0.59; p = 6 ×
10−14). Significant phenotypic correlations were observed
between type 2 diabetes and measures of attention
(Continuous Performance Test [CPT d′]: ρp = −0.143, p =
0.001), verbal memory (California Verbal Learning Test

[CVLT] recall: ρp = −0.111, p = 0.004), and face memory
(Penn Face Memory Test [PFMT]: ρp = −0.127, p = 0.002;
PFMT Delayed: ρp = −0.148, p = 2 × 10−4). These statistically
significant phenotypic correlations were in line with
standardised mean difference effect sizes (Fig. 1). Significant
genetic correlations were observed between type 2 diabetes
and CPT d′ (ρg = −0.401, p = 0.001), digit span backward
(ρg = −0.380, p = 0.005), PFMT (ρg = −0.476, p = 2 × 10−4)
and PFMTDelayed (ρg = −0.376, p = 0.005), suggesting over-
lap between the genetic factors influencing type 2 diabetes and
performance on measures of attention, working memory and
face memory, respectively.

Figure 2 shows results of mERV analyses. Standardised
genetic covariances were statistically significant for all cogni-
tive measures: CPT d′ (β = −0.219, p = 0.005), digit span
backward (β = −0.326, p = 0.035), PFMT (β = −0.171, p =
0.023) and PFMT Delayed (β = −0.215, p = 0.005).
However, the effect of relatedness on cognition differed
between these measures; for CPT d′, individuals with type 2
diabetes had the lowest scores, followed by their first-degree
relatives and then their second- to sixth- degree relatives,
while unaffected/unrelated individuals scored the highest.
For the digit span backward, individuals with type 2 diabetes
and their first-degree relatives had the lowest scores, followed
by their second- to sixth- degree relatives, and unaffected/

Table 2 Results of genetic analyses of diabetes and cognitive measures

Heritability Phenotypic correlation Environmental correlation Genetic correlation

Cognitive measure h2 p ρp p ρe p ρg p ERV

Semantic fluency 0.219 1 × 10−7* −0.043 0.277 0.022 0.821 −0.153 0.310 0.141

Verbal fluency 0.390 1 × 10−18* −0.045 0.254 0.056 0.609 −0.152 0.219 0.187

Digit symbol substitution 0.320 5 × 10−13* −0.018 0.668 −0.144 0.167 0.127 0.333 0.158

Trail-Making A 0.167 2 × 10−5* 0.023 0.561 0.027 0.778 0.024 0.888 0.048

CPT d′ 0.380 1 × 10−17* −0.143 0.001* 0.087 0.402 −0.401 0.001* 0.296

Digit span forward 0.424 2 × 10−22* −0.055 0.170 0.007 0.949 −0.115 0.327 0.171

Digit span backward 0.307 1 × 10−13* −0.044 0.275 0.223 0.029 −0.380 0.005* 0.262

Letter number sequencing 0.272 8 × 10−12* −0.045 0.259 0.066 0.496 −0.203 0.133 0.180

PCET correct 0.241 4 × 10−10* −0.076 0.047 −0.072 0.447 −0.095 0.501 0.117

Spatial working memory 0.272 2 × 10−12* −0.059 0.122 0.027 0.773 −0.186 0.167 0.172

Trail-Making B 0.305 2 × 10−11* 0.052 0.195 0.030 0.765 0.085 0.530 0.124

CVLT learning 0.373 6 × 10−16* −0.086 0.027 0.043 0.678 −0.229 0.070 0.224

CVLT recall 0.355 1 × 10−16* −0.111 0.004* −0.062 0.529 −0.173 0.160 0.191

PFMT 0.337 3 × 10−18* −0.127 0.002* 0.159 0.108 −0.476 2 × 10−4* 0.305

PFMT Delayed 0.354 2 × 10−16* −0.148 2 × 10−4* 0.034 0.742 −0.376 0.005* 0.270

Emotion recognition 0.212 1 × 10−7* −0.058 0.130 0.103 0.271 −0.341 0.029 0.202

Matrix reasoning 0.334 1 × 10−17* −0.058 0.142 −0.031 0.751 −0.095 0.448 0.137

Vocabulary 0.585 8 × 10−34* −0.053 0.187 0.064 0.605 −0.137 0.209 0.216

IQ 0.576 5 × 10−35* −0.049 0.228 0.030 0.810 −0.106 0.327 0.189

*Significant after correction for multiple testing (FDR = 0.05)

IQ, intelligence quotient; PCET, Penn Conditional Exclusion Test
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unrelated individuals scored the highest. For PFMT and
PFMT Delayed, individuals with type 2 diabetes had the
lowest scores, unaffected/unrelated individuals had the

highest scores, and those related to an individual with type 2
diabetes had intermediate scores.

No evidence for pleiotropy between BMI or waist
circumference and neurocognition

Bivariate genetic analyses of BMI and waist circumference on
cognitive functioning are shown in the electronic supplemen-
tary material (ESM) Table 1 and Table 2, respectively.
Phenotypic, environmental and genetic correlations did not
reach significance for any neurocognitive measure after
correction for multiple testing, except for the phenotypic
correlation between CPT d′ and waist circumference (ρp =
−0.084; ESM Table 2).

Deleterious effects of illness duration
on neurocognition are confounded by age

Demographic characteristics of the unmatched and matched
samples grouped by duration of type 2 diabetes (unaffected,
duration <10 years, duration ≥10 years) are shown in ESM
Table 3. ESM Fig. 1 shows age distributions for the age-
matched groups. In the unmatched sample, the groups sepa-
rated by type 2 diabetes duration differed significantly by age
(p < 0.001); in the matched sample, there was no statistically
significant difference in age (p = 0.714; ESM Table 3).

Analyses of illness duration group status on neurocognitive
functioning are shown in Fig. 3 and ESM Table 4. When
adjusting for sex, the duration <10 years group had lower
cognitive scores than the unaffected individuals for 13 out of
the 19 cognitive measures, while the duration ≥10 years group
showed lower scores than the unaffected individuals for 16 out
of the 19 measures (ESM Table 4). Moreover, the duration
≥10 years group showed lower scores than the duration
<10 years group for digit symbol substitution (ß = −0.24,
p = 0.017), Trail-Making A (ß = −0.36, p = 0.001), digit span
forward (ß = −0.32, p = 0.003), Trail-Making B (ß = −0.24,
p = 0.041), CVLT recall (ß = −0.26, p = 0.018) and emotion
recognition (ß = –0.28, p = 0.013). Matching the groups by
age attenuated most of these group differences, with the dura-
tion <10 years group performing worse than the unaffected
individuals for CPT d′ (ß = −0.30, p = 0.006), PFMT (ß =
−0.27, p = 0.015) and PFMT Delayed (ß = −0.27, p = 0.014),
the duration ≥10 years group performing worse than the unaf-
fected individuals for CPT d′ (ß = −0.26, p = 0.026), digit span
forward (ß = −0.23 p = 0.047), CVLT recall (ß = −0.23, p =
0.049) and PFMT Delayed (ß = −0.23, p = 0.049), and the
duration ≥10 years group performing worse than the duration
<10 years group for digit span forward (ß = −0.34, p = 0.010).
Adjusting additionally for age further attenuated these group
differences, with the duration <10 years group performing
worse than the unaffected individuals for PFMT (ß = −0.18,
p = 0.042) and PFMT Delayed (ß = −0.22, p = 0.009), the
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duration ≥10 years group performing worse than the unaffect-
ed individuals for CVLT recall (ß = −0.20, p = 0.011), and no
statistically significant differences between the duration
≥10 years and duration <10 years groups.

Analyses of illness duration on cognitive functioning, with
illness duration years as linear and quadratic functions, are
shown in ESM Table 5 and ESM Table 6, respectively.
Results were similar to above, with a significant effect of
duration (linear function) on digit symbol substitution (ß =
−0.019, p = 0.001), Trail-Making A (ß = −0.023, p = 0.002),
digit span forward (ß = −0.016, p = 0.021), digit span back-
ward (ß = −0.013, p = 0.046), letter number sequencing (ß =
−0.014, p = 0.021), Trail-Making B (ß = −0.021, p = 0.006),
CVLT learning (ß = −0.014, p = 0.023), CVLT recall (ß =
−0.014, p = 0.031) and emotion recognition (ß = −0.015, p =
0.021) (ESM Table 5 and ESM Fig. 2). A significant effect of
duration as a quadratic function, was also seen on digit symbol
substitution (ß = −0.0006, p = 0.001), Trail-Making A (ß =
−0.0007, p = 0.014), digit span forward (ß = −0.0005, p =
0.034), letter number sequencing (ß = −0.0005, p = 0.011),
Trail-Making B (ß = −0.0007, p = 0.011), CVLT learning
(ß = −0.0005, p = 0.014), and emotion recognition (ß =
−0.0005, p = 0.043) (ESMTable 6 and ESM Fig. 3). No statis-
tically significant effect of illness duration was seen when
groups were matched for age, except for digit span forward
(ß = −0.019, p = 0.009 for effect of duration as a linear func-
tion [ESM Table 5]; ß = −0.0005, p = 0.032 for effect of dura-
tion as a quadratic function [ESM Table 6]). There were no
statistically significant effects of illness duration after further
adjustment for age.

Discussion

Using a large sample of Mexican-American individuals from
extended pedigrees, we established evidence for pleiotropy
between cognitive impairment and type 2 diabetes.
Significant genetic correlations were observed between type
2 diabetes and measures of attention, working memory and
face memory, suggesting genetic overlap between type 2
diabetes and these cognitive domains. Moreover, significant
genetic correlations were not observed between either BMI or
waist circumference and cognitive performance, suggesting
that the genetic overlap between type 2 diabetes and cognitive
functioning is specific to the illness and not seen with general
obesity factors. Finally, although there was an effect of dura-
tion of type 2 diabetes on magnitude of cognitive impairment,
with individuals with a longer duration of illness showing
larger impairments than individuals with a shorter duration
of illness, these group differences were confounded by age.
Our findings add to current knowledge about the pathophys-
iology of type 2 diabetes in several important ways.

First, the finding of pleiotropy between cognitive function-
ing and type 2 diabetes may be an important step forward in
delineating the genetic underpinnings of type 2 diabetes,
which affects an exponentially increasing number of individ-
uals worldwide. While there has been progress in delineating
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the genetic architecture of type 2 diabetes [8], some argue that
the illness remains ‘a geneticist’s nightmare’ [9]. One strategy
for identifying risk genes for type 2 diabetes is the application
of endophenotypes [11, 36], i.e. traits that are genetically relat-
ed to the illness. However, while there is strong evidence to
suggest that individuals with type 2 diabetes show cognitive
impairments, few studies have sought to establish whether
these impairments are genetically correlated with the illness.
Our finding of genetic overlap between type 2 diabetes and
measures of memory, working memory and attention is in line
with evidence that the most consistent impairments in individ-
uals with type 2 diabetes are in the domains of memory and
executive function [18–20]. Moreover, this finding provides
evidence for one of the principle criteria of endophenotypes:
that the same genes that convey risk for the illness also influ-
ence the endophenotype [36]. Similarly, analyses of data from
the UK Biobank and 24 international genome-wide associa-
tion studies (GWAS) consortia showed that higher polygenic
risk for type 2 diabetes was associated with decreased likeli-
hood of obtaining a college degree [37]. However, a higher
polygenic risk score (PRS) for type 2 diabetes was not asso-
ciated with verbal reasoning, reaction time or memory in this
sample [37], and no significant genetic correlations were
reported between type 2 diabetes and any of the cognitive or
education phenotypes when using linkage disequilibrium
score regression (LDSC) [37]. Moreover, Mendelian
randomisation (MR) analyses in the same sample provided
no evidence for a causal association between type 2 diabetes
and cognitive ability or educational attainment [38]. However,
the methods used in the UK Biobank (PRS, LDSC and MR)
primarily capture common genetic variance, while the genetic
correlations observed in our study may be driven, at least in
part, by rare genetic variants. In an ageing cohort, genetic risk
of type 2 diabetes was positively associated with fluid intelli-
gence, but no association was detected between type 2 diabe-
tes PRS and verbal intelligence, memory or processing speed
[39]. Thus, while our findings suggest that cognitive impair-
ment may be a useful endophenotype of type 2 diabetes, future
studies are needed to disentangle the genetic overlap between
these traits at different ages, as well as across different cogni-
tive domains. It is also worth noting that there are multiple
possible interpretations of genetic correlations. While the
same genetic variants may contribute both to type 2 diabetes
risk and cognitive functioning, genetic variants related to type
2 diabetes riskmay also have indirect effects on cognition, and
genetic variants related to cognition may even have indirect
effects on type 2 diabetes [32]. Nevertheless, the mechanisms
underlying the observed genetic correlations between type 2
diabetes and cognitive impairment do not deter from the
potential utility of cognitive functioning as an endophenotype
for type 2 diabetes.

Second, we did not find evidence for a genetic association
between cognitive function and either BMI or waist

circumference. Previous evidence from twin and molecular
genetic models indicate inconsistent findings regarding the
genetic association between BMI and cognitive functioning,
with reports of medium [40], small [41] and null [42] genetic
correlations between the two traits. Even at the phenotypic
level, the association between BMI and cognitive functioning
is unclear, with reports of no association [43], cognitive
impairment [44, 45] and even improved cognitive perfor-
mance [46, 47] with higher BMI. We found null to small
phenotypic and genetic correlations between neurocognition
and both BMI and waist circumference, and none of these
reached statistical significance after correction for multiple
testing. Thus, any association between obesity indices and
cognitive impairment may be due to environmental, rather
than genetic, risk factors. Alternatively, genetic risk factors
may interact with environmental changes throughout the life
course, such that obesity-related pathology leading to cogni-
tive impairment and/or decline may develop gradually over
the course of many years [48]. Future studies are needed to
determine whether this potential association between obesity
indices and cognitive performance is moderated by age.

Finally, we found greater cognitive impairment in individ-
uals with a longer duration of type 2 diabetes, but also that this
group difference was attenuated when adjusting for age. Since
age increases with duration of type 2 diabetes, adjusting for
age undoubtedly attenuates part of the effect of duration on
cognitive functioning. Nevertheless, this finding is in line with
evidence that the magnitude of cognitive impairment associ-
ated with type 2 diabetes remains relatively stable throughout
the lifespan [25]. Similarly, cognitive impairments are already
present in individuals with recent-onset type 2 diabetes [21]
and even in adolescents who later develop diabetes [22].
Moreover, a negligible effect of illness duration on cognition
aligns with the finding of genetic overlap between type 2
diabetes and cognitive impairment, as well as the notion of a
bidirectional relationship between these traits [13]. However,
there have also been reports of an association between dura-
tion of type 2 diabetes andmagnitude of cognitive dysfunction
[49, 50]. Future longitudinal studies, which include individ-
uals throughout premorbid and post-onset stages of type 2
diabetes, as well as repeating cognitive assessments, are need-
ed to fully disentangle the complex mechanisms underlying
the relationship between type 2 diabetes and poor cognitive
outcomes. Moreover, future studies that use additional
measures, such as blood glucose level and family history of
type 2 diabetes, to examine whether some portion of the
cognitive impairment associated with type 2 diabetes arises
as a consequence of the illness, may also help elucidate these
mechanisms.

This study has some limitations. First, due to the cross-
sectional nature of this study, it is not possible to draw
inferences about timing. While we found evidence for
pleiotropy between type 2 diabetes and cognitive
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impairment, it remains unclear how these overlapping
genetic factors might interact with other genetic and envi-
ronmental risk factors over the lifecourse. Future longitu-
dinal studies will help elucidate the complex mechanisms
underlying risk for both type 2 diabetes and cognitive
impairment, as well as potential developmental periods
for optimal intervention and prevention. Second, the aim
of this study was to examine pleiotropy between type 2
diabetes and cognitive impairment, but other potential
explanations for the association between type 2 diabetes
and cognitive impairment warrant further examination. As
outlined above, future studies that are able to examine
whether some portion of the cognitive impairment associ-
ated with type 2 diabetes arises due to the illness, or even
whether some portion of type 2 diabetes risk is conse-
quential to poor cognitive functioning, may yield interest-
ing results.

Using a large sample of Mexican-American individuals
from extended pedigrees, we established evidence for pleiot-
ropy between impairment on measures of attention, working
memory and memory, and type 2 diabetes. Thus, cognitive
impairment may be a useful endophenotype of type 2 diabetes
and may help elucidate the pathophysiological underpinnings
of this chronic illness, which affects an large number of indi-
viduals worldwide. Future longitudinal studies will help
disentangle these pathophysiological mechanisms over the life
course in order to inform treatment strategies and intervention
efforts.

Acknowledgements We are very grateful to all the participants of the
GOBS study. We thank M. Woolsey (Research Imaging Institute,
University of Texas Health Science Center at San Antonio, TX, USA)
for her role in data collection.

Data availability The data analysed in this study is available in dbGaP:
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs001215.v2.p2.

Funding Financial support for this study was provided by the National
Institutes of Health grants MH059490 (principal investigator [PI]: JB),
MH078143 (PI: DCG), MH078111 (PI: JB), MH083824 (PIs: DCG/JB)
and AG058464 (PIs: DCG/JB). The sponsors had no role in the design
and conduct of the study; collection, management, analysis and
interpretation of the data; and preparation, review or approval of this
manuscript.

Duality of interest The authors declare that there is no duality of interest
associated with this manuscript.

Contribution statement JEC, JB and DCG designed and conceptualised
the study. JM performed statistical analysis. DCG and JM wrote the first
and successive drafts of the manuscript. All authors contributed to acqui-
sition, analysis or interpretation of data, and drafting or critical revision of
the manuscript for important intellectual content. All authors approved
the final version of the paper to be published. JB and DCG obtained
funding. DCG attests that all listed authors meet authorship criteria and
that no others meeting the criteria have been omitted. JM and DCG are
responsible for the integrity of the work as a whole.

References

1. Centers for Disease Control and Prevention (2014) National diabe-
tes statistics report: estimates of diabetes and its burden in the
United States. CDC, Atlanta

2. Menke A, Casagrande S, Geiss L, Cowie CC (2015) Prevalence of
and trends in diabetes among adults in the United States, 1988-
2012. JAMA 314(10):1021–1029. https://doi.org/10.1001/jama.
2015.10029

3. Zimmet P, Alberti K, Shaw J (2001) Global and societal implica-
tions of the diabetes epidemic. Nature 414(6865):782–787. https://
doi.org/10.1038/414782a

4. Kyvik KO, Green A, Beck-Nielsen H (1995) Concordance rates of
insulin dependent diabetes mellitus: a population based study of
young Danish twins. BMJ 311(7010):913–917. https://doi.org/10.
1136/bmj.311.7010.913

5. Willemsen G, Ward KJ, Bell CG et al (2015) The concordance and
heritability of type 2 diabetes in 34,166 twin pairs from internation-
al twin registers: the discordant twin (DISCOTWIN) consortium.
Twin Res Hum Genet 18(6):762–771. https://doi.org/10.1017/thg.
2015.83

6. Almgren P, Lehtovirta M, Isomaa B et al (2011) Heritability and
familiality of type 2 diabetes and related quantitative traits in the
Botnia Study. Diabetologia 54(11):2811–2819. https://doi.org/10.
1007/s00125-011-2267-5

7. Meigs JB, Cupples LA,Wilson PW (2000) Parental transmission of
type 2 diabetes: the Framingham Offspring Study. Diabetes 49(12):
2201–2207. https://doi.org/10.2337/diabetes.49.12.2201

8. Fuchsberger C, Flannick J, Teslovich TM et al (2016) The genetic
architecture of type 2 diabetes. Nature 536(7614):41–47. https://
doi.org/10.1038/nature18642

9. Rich SS (2016) Diabetes: still a geneticist’s nightmare. Nature
536(7614):37–38. https://doi.org/10.1038/nature18906

10. McClellan J, King MC (2010) Genetic heterogeneity in human
disease. Cell 141(2):210–217. https://doi.org/10.1016/j.cell.2010.
03.032

11. Gottesman II, Gould TD (2003) The endophenotype concept in
psychiatry: etymology and strategic intentions. Am J Psychiatr
160(4):636–645. https://doi.org/10.1176/appi.ajp.160.4.636

12. Knowles EE, Meikle PJ, Huynh K et al (2017) Serum phos-
phatidylinositol as a biomarker for bipolar disorder liability.
Bipolar Disord 19(2):107–115. https://doi.org/10.1111/bdi.12468

13. Stoeckel LE, Arvanitakis Z, Gandy S et al (2016) Complex mech-
anisms linking neurocognitive dysfunction to insulin resistance and
other metabolic dysfunction. F1000Res 5:353. https://doi.org/10.
12688/f1000research.8300.2

14. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P
(2006) Risk of dementia in diabetes mellitus: a systematic review.
Lancet Neurol 5(1):64–74. https://doi.org/10.1016/S1474-
4422(05)70284-2

15. Chatterjee S, Peters SA, Woodward M et al (2016) Type 2 diabetes
as a risk factor for dementia in women compared with men: a
pooled analysis of 2.3 million people comprising more than 100,
000 cases of dementia. Diabetes Care 39(2):300–307. https://doi.
org/10.2337/dc15-1588

16. van den Berg E, Kloppenborg RP, Kessels RP, Kappelle LJ,
Biessels GJ (2009) Type 2 diabetes mellitus, hypertension, dyslip-
idemia and obesity: a systematic comparison of their impact on
cognition. Biochim Biophys Acta 1792(5):470–481. https://doi.
org/10.1016/j.bbadis.2008.09.004

17. Allen KV, Frier BM, Strachan MW (2004) The relationship
between type 2 diabetes and cognitive dysfunction: longitudinal
studies and their methodological limitations. Eur J Pharmacol
490(1–3):169–175. https://doi.org/10.1016/j.ejphar.2004.02.054

Diabetologia (2020) 63:977–986 985

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001215.v2.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001215.v2.p2
https://doi.org/10.1001/jama.2015.10029
https://doi.org/10.1001/jama.2015.10029
https://doi.org/10.1038/414782a
https://doi.org/10.1038/414782a
https://doi.org/10.1136/bmj.311.7010.913
https://doi.org/10.1136/bmj.311.7010.913
https://doi.org/10.1017/thg.2015.83
https://doi.org/10.1017/thg.2015.83
https://doi.org/10.1007/s00125-011-2267-5
https://doi.org/10.1007/s00125-011-2267-5
https://doi.org/10.2337/diabetes.49.12.2201
https://doi.org/10.1038/nature18642
https://doi.org/10.1038/nature18642
https://doi.org/10.1038/nature18906
https://doi.org/10.1016/j.cell.2010.03.032
https://doi.org/10.1016/j.cell.2010.03.032
https://doi.org/10.1176/appi.ajp.160.4.636
https://doi.org/10.1111/bdi.12468
https://doi.org/10.12688/f1000research.8300.2
https://doi.org/10.12688/f1000research.8300.2
https://doi.org/10.1016/S1474-4422(05)70284-2
https://doi.org/10.1016/S1474-4422(05)70284-2
https://doi.org/10.2337/dc15-1588
https://doi.org/10.2337/dc15-1588
https://doi.org/10.1016/j.bbadis.2008.09.004
https://doi.org/10.1016/j.bbadis.2008.09.004
https://doi.org/10.1016/j.ejphar.2004.02.054


18. Palta P, Schneider AL, Biessels GJ, Touradji P, Hill-Briggs F (2014)
Magnitude of cognitive dysfunction in adults with type 2 diabetes: a
meta-analysis of six cognitive domains and the most frequently
reported neuropsychological tests within domains. J Int
Neuropsychol Soc 20(3):278–291. https://doi.org/10.1017/
S1355617713001483

19. Vincent C, Hall PA (2015) Executive function in adults with type 2
diabetes: a meta-analytic review. Psychosom Med 77(6):631–642.
https://doi.org/10.1097/PSY.0000000000000103

20. Monette MC, Baird A, Jackson DL (2014) A meta-analysis of
cognitive functioning in nondemented adults with type 2 diabetes
mellitus. Can J Diabetes 38(6):401–408. https://doi.org/10.1016/j.
jcjd.2014.01.014

21. Ruis C, Biessels GJ, Gorter KJ, van den Donk M, Kappelle LJ,
Rutten GE (2009) Cognition in the early stage of type 2 diabetes.
Diabetes Care 32(7):1261–1265. https://doi.org/10.2337/dc08-
2143

22. Ryan C, Vega A, Drash A (1985) Cognitive deficits in adolescents
who developed diabetes early in life. Pediatrics 75(5):921–927

23. Yates KF, Sweat V, Yau PL, Turchiano MM, Convit A (2012)
Impact of metabolic syndrome on cognition and brain: a selected
review of the literature. Arterioscler ThrombVasc Biol 32(9):2060–
2067. https://doi.org/10.1161/ATVBAHA.112.252759

24. Geijselaers SL, Sep SJ, Stehouwer CD, Biessels GJ (2015) Glucose
regulation, cognition, and brain MRI in type 2 diabetes: a system-
atic review. Lancet Diabetes Endocrinol 3(1):75–89. https://doi.org/
10.1016/S2213-8587(14)70148-2

25. Biessels GJ, StrachanMW, Visseren FL, Kappelle LJ, Whitmer RA
(2014) Dementia and cognitive decline in type 2 diabetes and predi-
abetic stages: towards targeted interventions. Lancet Diabetes
Endocrinol 2(3):246–255. https://doi.org/10.1016/S2213-8587(13)
70088-3

26. Olvera R, Bearden C, Velligan D et al (2011) Common genetic
influences on depression, alcohol, and substance use disorders in
Mexican-American families. Am J Med Genet Part B 156(5):561–
568

27. McKay DR, Knowles EE, Winkler AA et al (2014) Influence of
age, sex and genetic factors on the human brain. Brain Imaging
Behav 8(2):143–152. https://doi.org/10.1007/s11682-013-9277-5

28. Glahn D, Almasy L, Barguil M et al (2010) Neurocognitive
endophenotypes for bipolar disorder identified in multiplex multi-
generational families. Arch Gen Psychiatry 67(2):168–177. https://
doi.org/10.1001/archgenpsychiatry.2009.184

29. Wechsler D (1999) Wechsler abbreviated scale of intelligence. The
Psychological Corporation, San Antonio

30. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage
analysis in general pedigrees. Am J Hum Genet 62(5):1198–1211.
https://doi.org/10.1086/301844

31. Benjamini Y, Yekutieli DJTaos (2001) The control of the false
discovery rate in multiple testing under dependency. 29(4): 1165–
1188

32. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW (2013)
Pleiotropy in complex traits: challenges and strategies. Nat Rev
Genet 14(7):483–495. https://doi.org/10.1038/nrg3461

33. Glahn DC, Curran JE, Winkler AM et al (2012) High dimensional
endophenotype ranking in the search for major depression risk
genes. Biol Psychiatry 71(1):6–14. https://doi.org/10.1016/j.
biopsych.2011.08.022

34. Glahn DC, Williams JT, McKay DR, et al (2015) Discovering
schizophrenia endophenotypes in randomly ascertained pedigrees.
77(1): 75–83

35. R Development Core Team R (2011) R: a language and environ-
ment for statistical computing. R Foundation for Statistical
Computing, Vienna

36. Glahn DC, Knowles EE,McKay DR et al (2014) Arguments for the
sake of endophenotypes: examining commonmisconceptions about
the use of endophenotypes in psychiatric genetics. Am JMedGenet
Part B 165(2):122–130

37. Hagenaars SP, Harris SE, Davies G et al (2016) Shared genetic
aetiology between cognitive functions and physical and mental
health in UK Biobank (N=112 151) and 24 GWAS consortia. Mol
Psychiatry 21(11):1624–1632. https://doi.org/10.1038/mp.2015.
225

38. Hagenaars SP, Gale CR, Deary IJ, Harris SE (2017) Cognitive
ability and physical health: a Mendelian randomization study. Sci
Rep 7(1):2651. https://doi.org/10.1038/s41598-017-02837-3

39. Luciano M, Mottus R, Harris SE et al (2014) Predicting cognitive
ability in ageing cohorts using type 2 diabetes genetic risk. Diabet
Med 31(6):714–720. https://doi.org/10.1111/dme.12389

40. Marioni RE, Yang J, Dykiert D et al (2016) Assessing the genetic
overlap between BMI and cognitive function. Mol Psychiatry
21(10):1477–1482. https://doi.org/10.1038/mp.2015.205

41. Frazier-Wood AC, Carnell S, Pena O et al (2014) Cognitive perfor-
mance and BMI in childhood: shared genetic influences between
reaction time but not response inhibition. Obesity 22(11):2312–
2318. https://doi.org/10.1002/oby.20862

42. Benyamin B, Wilson V, Whalley LJ, Visscher PM, Deary IJ (2005)
Large, consistent estimates of the heritability of cognitive ability in
two entire populations of 11-year-old twins from Scottish mental
surveys of 1932 and 1947. Behav Genet 35(5):525–534. https://doi.
org/10.1007/s10519-005-3556-x

43. Yesavage JA, Kinoshita LM, Noda A et al (2014) Effects of body
mass index-related disorders on cognition: preliminary results.
Diabetes Metab Syndr Obes 7:145–151. https://doi.org/10.2147/
DMSO.S60294

44. Sabia S, Kivimaki M, Shipley MJ, Marmot MG, Singh-Manoux A
(2008) Body mass index over the adult life course and cognition in
late midlife: the Whitehall II Cohort Study. Am J Clin Nutr 89(2):
601–607. https://doi.org/10.3945/ajcn.2008.26482

45. Cournot M, Marquie J, Ansiau D et al (2006) Relation between
body mass index and cognitive function in healthy middle-aged
men and women. Neurology 67(7):1208–1214. https://doi.org/10.
1212/01.wnl.0000238082.13860.50

46. Santos NC, Costa PS, Cunha P et al (2014) Clinical, physical and
lifestyle variables and relationship with cognition and mood in
aging: a cross-sectional analysis of distinct educational groups.
Front Aging Neurosci 6:21

47. Smith E, Bailey PE, Crawford J et al (2014) Adiposity estimated
using dual energy X-ray absorptiometry and body mass index and
its association with cognition in elderly adults. J Am Geriatr Soc
62(12):2311–2318. https://doi.org/10.1111/jgs.13157

48. Kirton JW, DotsonVM (2016) The interactive effects of age, educa-
tion, and BMI on cognitive functioning. Neuropsychol Dev Cogn B
AgingNeuropsychol Cogn 23(2):253–262. https://doi.org/10.1080/
13825585.2015.1082531

49. West RK, Ravona-Springer R, Schmeidler J et al (2014) The asso-
ciation of duration of type 2 diabetes with cognitive performance is
modulated by long-term glycemic control. Am J Geriatr Psychiatry
22(10):1055–1059. https://doi.org/10.1016/j.jagp.2014.01.010

50. Yogi-Morren D, Galioto R, Strandjord SE et al (2014) Duration of
type 2 diabetes and very low density lipoprotein levels are associ-
ated with cognitive dysfunction in metabolic syndrome. Cardiovasc
Psychiatry Neurol 2014:656341. https://doi.org/10.1155/2014/
656341

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

986 Diabetologia (2020) 63:977–986

https://doi.org/10.1017/S1355617713001483
https://doi.org/10.1017/S1355617713001483
https://doi.org/10.1097/PSY.0000000000000103
https://doi.org/10.1016/j.jcjd.2014.01.014
https://doi.org/10.1016/j.jcjd.2014.01.014
https://doi.org/10.2337/dc08-2143
https://doi.org/10.2337/dc08-2143
https://doi.org/10.1161/ATVBAHA.112.252759
https://doi.org/10.1016/S2213-8587(14)70148-2
https://doi.org/10.1016/S2213-8587(14)70148-2
https://doi.org/10.1016/S2213-8587(13)70088-3
https://doi.org/10.1016/S2213-8587(13)70088-3
https://doi.org/10.1007/s11682-013-9277-5
https://doi.org/10.1001/archgenpsychiatry.2009.184
https://doi.org/10.1001/archgenpsychiatry.2009.184
https://doi.org/10.1086/301844
https://doi.org/10.1038/nrg3461
https://doi.org/10.1016/j.biopsych.2011.08.022
https://doi.org/10.1016/j.biopsych.2011.08.022
https://doi.org/10.1038/mp.2015.225
https://doi.org/10.1038/mp.2015.225
https://doi.org/10.1038/s41598-017-02837-3
https://doi.org/10.1111/dme.12389
https://doi.org/10.1038/mp.2015.205
https://doi.org/10.1002/oby.20862
https://doi.org/10.1007/s10519-005-3556-x
https://doi.org/10.1007/s10519-005-3556-x
https://doi.org/10.2147/DMSO.S60294
https://doi.org/10.2147/DMSO.S60294
https://doi.org/10.3945/ajcn.2008.26482
https://doi.org/10.1212/01.wnl.0000238082.13860.50
https://doi.org/10.1212/01.wnl.0000238082.13860.50
https://doi.org/10.1111/jgs.13157
https://doi.org/10.1080/13825585.2015.1082531
https://doi.org/10.1080/13825585.2015.1082531
https://doi.org/10.1016/j.jagp.2014.01.010
https://doi.org/10.1155/2014/656341
https://doi.org/10.1155/2014/656341

	Neurocognitive impairment in type 2 diabetes: evidence for shared genetic aetiology
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Sample
	Neurocognitive assessment
	Type 2 diabetes diagnosis
	Quantitative genetic analysis
	Statistical analyses

	Results
	Evidence for pleiotropy between type 2 diabetes and neurocognition
	No evidence for pleiotropy between BMI or waist circumference and neurocognition
	Deleterious effects of illness duration on neurocognition are confounded by age

	Discussion
	References


