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Abstract

Aims/hypothesis Glucagon-like peptide-1 (GLP-1) analogues reduce the risk of macrovascular disease in diabetes; however,
little is known about their microvascular effects. This research examined the microvascular actions of the GLP-1 analogues
liraglutide and exenatide in individuals with and without type 2 diabetes (study 1). It also explored the involvement of the GLP-1
receptor (study 2) and the nitric oxide pathway in mediating the microvascular effects of the analogues.

Methods Trial design: Studies 1 and 2 had a randomised, controlled, double-blind study design. Study 1 participants, interven-
tion and methods: three participant groups were recruited: individuals with well-controlled type 2 diabetes, and obese and lean
individuals without diabetes (21 participants per group). Liraglutide (0.06 mg), exenatide (0.5 pg) and saline (154 mmol/l NaCl;
0.9%) control were microinjected into separate sites in the dermis (forearm) in a randomised order, blinded to operator and
participant. Skin microvascular perfusion was assessed by laser Doppler perfusion imaging. Outcomes were stabilised response
(mean skin perfusion between 7.5 and 10 min post microinjection) and total response (AUC, normalised for baseline perfusion).
Perfusion response to GLP-1 analogues was compared with saline within each group as well as between groups. Study 2
participants, intervention and methods: in healthy individuals (N = 16), liraglutide (0.06 mg) and saline microinjected sites were
pretreated with saline or the GLP-1 receptor blocker, exendin-(9,39), in a randomised order, blinded to participant and operator.
Outcomes were as above (stabilised response and total perfusion response). Perfusion response to liraglutide was compared
between the saline and the exendin-(9,39) pretreated sites. In vitro study: the effects of liraglutide and exenatide on nitrate levels
and endothelial nitric oxide synthase phosphorylation (activation) were examined using human microvascular endothelial cells.
Results Study 1 results: both analogues increased skin perfusion (stabilised response and total response) in all groups (n =21 per
group, p <0.001), with the microvascular responses similar across groups (p >0.389). Study 2 results: liraglutide response
(stabilised response and total response) was not influenced by pretreatment with exendin-(9,39) (70 nmol/l) (N = 15, one dataset
excluded) (p>0.609). Liraglutide and exenatide increased nitrate production and endothelial nitric oxide synthase (eNOS)
phosphorylation (p <0.020).

Conclusions/interpretation Liraglutide and exenatide increased skin microvascular perfusion in individuals with and without
well-controlled diabetes, potentially mediated, at least in part, by NO.

Trial registration ClinicalTrials.gov NCT01677104.

Funding This work was supported by Diabetes UK (grant numbers: 09/0003955 and 12/0004600 [RW and JM Collins Legacy,
Funded Studentship]).
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What is already known about this subject?

e  Glucagon-like peptide-1 (GLP-1) analogues reduce the risk of macrovascular disease in diabetes

e  Previous macrovascular research suggests that GLP-1 analogues may act as vasodilators in humans; however, little

is known about their microvascular effects

e Research to date suggests that GLP-1 analogues may increase capillary perfusion/recruitment in individuals

without diabetes but not in people with diabetes

What is the key question?

e  Does the local application of the GLP-1 analogues liraglutide and exenatide increase microvascular perfusion and
is this effect preserved in obese individuals and people with type 2 diabetes?

What are the new findings?

e Local delivery of GLP-1 analogues increases skin microvascular perfusion in all groups and the response does not

differ with obesity or type 2 diabetes

e  Ourin vitro experiments suggest that GLP-1 analogues activate the vasodilatory NO pathway in human

microvascular cells

e The vasodilatory actions of the GLP-1 analogues may be independent of the GLP-1 receptor

How might this impact on clinical practice in the foreseeable future?

e These data suggest that treatment with GLP-1 analogues has beneficial actions on the microvasculature; these
positive effects do not appear to be lost with diabetes or obesity

Abbreviations

ACh Acetylcholine

CVD Cardiovascular disease

eNOS Endothelial nitric oxide synthase

GLP-1 Glucagon-like peptide-1

GLP-1R Glucagon-like peptide-1 receptor

LDPI Laser Doppler perfusion imaging

LEADER Liraglutide Effect and Action in
Diabetes: Evaluation of Cardiovascular
Outcome Results

NIHR National Institute of Health Research

NREC-SWE  National Research Ethics Committee

South West — Exeter
ROI Region of interest

SUSTAIN-6  Trial to Evaluate Cardiovascular and
Other Long-term Outcomes with
Semaglutide in Subjects with Type
2 Diabetes

Introduction

Diabetes is associated with vascular complications, which re-
duce the quality of life of individuals. Therapies that reduce
the progression of these vascular complications are critically
needed. Glucagon-like peptide-1 (7,36) amide (hereafter
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referred to as GLP-1) analogues are licensed therapies for type
2 diabetes, aiding glycaemic control by several mechanisms
including stimulating postprandial release of insulin and re-
ducing glucagon secretion [1]. Since there is growing evi-
dence that they have beneficial cardiovascular properties, it
is important to fully elucidate the effect of GLP-1 analogues
on the cardiovascular system in diabetes. This would aid our
understanding of their potential clinical role in protecting the
vasculature, particularly since they are not first or second line
treatments and may guide clinicians in treatment decisions.

The Liraglutide Effect and Action in Diabetes: Evaluation
of Cardiovascular Outcome Results (LEADER) and the Trial
to Evaluate Cardiovascular and Other Long-term Outcomes
with Semaglutide in Subjects with Type 2 Diabetes
(SUSTAIN-6) outcome trials demonstrated that GLP-1 ana-
logues, compared with placebo, increased time to cardiovas-
cular event in individuals with type 2 diabetes [2, 3]. The
underlying mechanisms are not fully known, although a po-
tential contributing mechanism is a direct action of GLP-1
analogues on the macrovasculature [4].

The impact of GLP-1 analogues on the microvasculature is
even less understood, partly due to the scarcity and lack of
concordance of available research. An exploratory objective
of the LEADER cardiovascular trial was to examine the im-
pact of liraglutide on incidence of microvascular events; re-
sults suggest that liraglutide may have differential
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microvascular effects, reducing the incidence of nephropathy
events but with no significant effect on retinopathy [2]; similar
observations were seen in SUSTAIN-6 [3].

There are few studies examining the microvascular actions
of GLP-1 and its analogues. It has been shown that acute,
systemic administration of GLP-1 (physiological and
supraphysiological levels) increases muscle and cardiac
microvessel recruitment in young, healthy, lean individuals
[5, 6]. Additionally, acute, systemic infusion of the GLP-1
analogue exenatide (therapeutic levels) increases the number
of perfused dermal capillaries at rest and during reactive
hyperaemia in young, healthy, overweight men [7].
Conversely, neither acute administration of exenatide nor
short-term liraglutide (12 weeks) influenced capillary perfu-
sion in individuals with type 2 diabetes (fasting and postpran-
dial states) [8]. Interestingly, changes in vasomotion in the
skin (dorsal surface of middle finger) were observed in these
acute exenatide studies by Smits and colleagues; however, it is
difficult to differentiate the systemic effects of exenatide (e.g.
increase in heart rate and BP, and reduction in plasma glucose
levels) from the local skin microvascular effects. For example,
exenatide-induced perfusion changes in the vasomotion neu-
rogenic domain in the fasting state were correlated with glu-
cose, diastolic BP and heart rate in individuals with diabetes
[8].

Systemic administration is a widespread impediment to
interpreting GLP-1 analogue-related vascular studies, making
it difficult to differentiate any direct vascular actions of the
analogues from effects due to systemic endocrine (e.g. in-
creased insulin levels), haemodynamic and glycaemic chang-
es. For example, GLP-1 analogues increase circulating levels
of insulin, which is known to influence microvascular func-
tion [9]. For instance, Tesauro et al [10] observed that acute
administration of GLP-1 enhanced endothelial (in)dependent
forearm blood flow responses in hyperinsulinaemic condi-
tions in individuals with the metabolic syndrome but had no
effect in the absence of hyperinsulinaemia. These difficulties
can be overcome by the local, direct administration of the
analogues. The skin microvasculature, associated with the cor-
onary circulation [11] and risk of CHD [12], presents an ac-
cessible, relevant microvascular bed for examination.

Our limited understanding of the mechanisms underlying
the vascular responses to GLP-1 analogues is complicated by
the diverse models used and complexity of the potential
incretin-influenced vascular pathways. Previous human-
based research (macrovascular cells and digital reactive
hyperaemia) proposed that GLP-1 analogue actions are
GLP-1 receptor (GLP-1R) dependent [13, 14], as well as
NO dependent [13—18] and/or independent [19]. Other pro-
posed mediators in humans include Krp channels [20] and
endothelin-1 pathways [15].

The only available study investigating the microvascula-
ture suggested that an exenatide-induced increase in the

number of perfused capillaries in healthy, overweight men
(n=10) was NO independent [7]. Thus, further research is
needed to fully elucidate the effect of GLP-1 analogues on
the microvasculature in diabetes to aid our understanding of
their potential clinical role in protecting the microcirculation.

Primary aims of this study were to (1) examine the direct,
local effect of the GLP-1 analogues, exenatide and liraglutide,
on microvascular function; and (2) assess whether the micro-
vascular effects of exenatide and liraglutide differ in lean and
obese individuals and in individuals with type 2 diabetes. A
secondary aim was to examine whether the GLP-1R and the
NO pathways mediate the microvascular actions of GLP-1
analogues. A further aim was to explore whether the micro-
vascular response to liraglutide is associated with clinical
characteristics, which may help to identify which individuals
show the greatest microvascular benefit.

Methods

All studies followed the principles of the Declaration of
Helsinki. Written, informed consent was obtained from all
participants. Microvascular assessments were performed the
morning following an overnight fast in a temperature-
controlled laboratory with the participant in a relaxed, supine
position within the National Institute of Health Research
(NIHR) Exeter Clinical Research Facility. Participants were
recruited via the Peninsula Research Bank, part of the NIHR
Exeter Clinical Research Facility.

Study 1: Examining the microvascular actions
of exenatide and liraglutide in health and whether
this response is altered by obesity and diabetes

Participants Three participant groups were recruited (n=21
per group): lean individuals (BMI <25.0 kg/m?); obese indi-
viduals (BMI >30.0 kg/m?); individuals with type 2 diabetes.
For the lean and obese groups, exclusion criteria included:
diabetes; cardiovascular disease (CVD); Raynaud’s disease;
current treatment with any antihypertensive or lipid-lowering
therapies.

For the type 2 diabetes group, individuals on stable diabe-
tes medication (minimum of 3 months) or diet control only
were recruited. Exclusion criteria included: insulin or sulfo-
nylurea treatment; known CVD; proliferative retinopathy; ad-
vanced nephropathy (macroalbuminuria); uncontrolled diabe-
tes (HbA . >8.5%/69 mmol/mol); previous GLP-1 analogue
or dipeptidyl peptidase-4 inhibitor treatment. The study was
approved by the National Research Ethics Committee South
West — Exeter (NREC-SWE) (11/SW/0195) and was regis-
tered on ClinicalTrials.gov (NCT01677104).
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Methods The study had a randomised, controlled, double-
blind study design.

Participant characterisation and biochemical assessment
methods Participant characterisation: Body composition as-
sessments included height, weight and waist-to-hip ratio.
Waist circumference was measured (end of expiration) mid-
way between the costal margin and iliac crest. Hip circumfer-
ence was measured at the widest horizontal circumference. All
measurements were repeated three times and the mean value
taken. BP was taken using a semi-automatic device (Dinamap,
Critikon, FL, USA) five times at 1 min intervals; the mean of
the last three measurements represented BP. A timed, over-
night urine sample was collected by all participants to assess
for microalbuminuria (AER >20 pg/min). Neuropathy was
assessed using monofilaments (Semmes Weinstein 10 g
monofilament, Owen Mumford, Woodstock, UK) over six
sites on each foot. A score of <3 out of 6 in either foot was
classed as significant neuropathy.

Biochemical assessments: Plasma glucose, creatinine, tri-
acylglycerols, total cholesterol and HDL levels, and urinary
albumin were determined using Modular Analytics, Roche
P800 (Roche Diagnostics, Mannheim, Germany). LDL was
calculated using the Friedewald formula. HbA . was deter-
mined with the gold standard ion-exchange method (Tosoh
G8 HPLC Analyzer, Tosoh Bioscience, San Francisco, CA,
USA). Insulin samples were analysed using the Roche E170
chemiluminescent immunoassay (Roche Diagnostics).
HOMA insulin resistance was calculated using fasting blood
glucose and plasma insulin (HOMA calculator V 2.2.3, 2004,
University of Oxford, Diabetes Trial Unit, Oxford, UK).
eGFR was calculated using the Modification of Diet in
Renal Disease (MDRD) equation [21].

Microvascular assessment Participants with diabetes abstained
from medication on the study morning. Fasting blood samples
were taken upon arrival.

Microinjection protocol The GLP-1 analogues (one-tenth of
the lowest treatment dose, exenatide [0.5 pg; Lilly,
Basingstoke, UK] and liraglutide [0.06 mg; Novo Nordisk,
Gatwick, UK]), acetylcholine (ACh, 1% [10 mg/ml];
Miochol-E, Bausch & Lomb, Kingston-Upon-Thames, UK)
(positive endothelial function control) and 0.9% saline
(154 mmol/l NaCl; Fannin, Dublin, UK) (injection trauma
control) were delivered by microinjection on the same visit.
Exenatide was diluted (1:5) with saline to obtain 0.5 pg. The
order of test sites was blinded and randomised using a random
number generator (http://www.stattrek.com).

A black adhesive collar was attached to the volar aspect of
the forearm to delineate the region of interest (ROI) (1.54 cm?)
for each microinjection site. Each site was at least 2 cm apart,
avoiding visible veins, skin lesions, freckles and hair. A
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sterile, disposable insulin syringe (30G, BD Microfine,
Becton Dickinson, Dublin, Ireland), bent 90°, was used to
deliver 10 pl of the test substance into the dermis of the
ROI. The skin perfusion response was assessed by laser
Doppler perfusion imaging (LDPI) (PIM 3.0, Perimed,
Jarfalla, Sweden) at baseline (resting perfusion) and then ev-
ery 30 s for 10 min post injection. The skin perfusion response
is reported as the stabilised response (mean perfusion 7.5—
10 min post injection) and total response (AUC, normalised
for resting perfusion). The stabilised response examines the
response to the substance of interest following the resolution
of the injection trauma perfusion response. Intraparticipant
CV for the stabilised response was 9.7% (mean + SD: 1.40
+0.13 V) for liraglutide and 8.7% (1.00+0.09 V) for
exenatide, calculated from one lean individual on three sepa-
rate occasions. This protocol (doses and assessment time) was
informed by preliminary experiments. Blood glucose was reg-
ularly monitored throughout the study.

Study 2: Examining the role of the GLP-1R
in mediating the microvascular actions of liraglutide

Participants Sixteen healthy (no diabetes, hypertension or
CVD), lean individuals (BMI <25 kg/mz), >18 years, were
recruited. The exclusion criteria were the same as for the lean
group in study 1. No participants took part in both study 1 and
study 2. The study was approved by the NREC-SWE (14/SW/
0093).

Study design The study had a randomised, controlled, double-
blind study design. Participant characterisation, biochemical
assessments and study conditions were as for study 1.

Microinjection protocol To examine the impact of GLP-1R
inhibition on microvascular response to liraglutide, the
ROI was pretreated with exendin-(9,39) (70 nmol/l)
(Bachem, Bubendorf, Switzerland) using a double micro-
injection protocol. Exendin-(9,39) (10 ul) was initially
microinjected (first microinjection), followed 60 s later
by liraglutide (10 ul, 0.06 mg) (second microinjection)
~1 mm from the first microinjection site (referred to as
Exendin-(9.39) liraglutide site). Three further sites were
treated with (1) saline (0.9%) followed by liraglutide (re-
ferred to as liraglutide site); (2) exendin-(9,39) followed by
saline (referred to as exendin-(9,39) site); and (3) saline
followed by saline (microinjection trauma control, referred
to as saline site). The order of test sites was blinded and
randomised as above.

Microinjection, data acquisition and analysis were per-
formed as described for study 1. The skin perfusion response
of each site was assessed by LDPI at baseline, immediately
after the first microinjection and every 30 s for 10 min follow-
ing the second microinjection.
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In vitro study: Examining the role of NO in mediating
the microvascular actions of GLP-1 analogues

The role of NO in mediating the microvascular actions of
GLP-1 analogues was examined in cultured human microvas-
cular endothelial cells (HCMEC/D3 cell line) [22] by
assessing the effects of exenatide (100 pmol/l) (Isca
Biochemicals, Exeter, UK) and liraglutide (10 nmol/l) (Isca
Biochemicals) on endothelial nitric oxide synthase (eNOS)
activation (phosphorylation) and nitrate levels.

eNOS phosphorylation Cells were treated with medium only
(control), exenatide or liraglutide for 10 min (n = 8 per condi-
tion) and eNOS phosphorylation was determined using a com-
mercially available ELISA kit (eNOS Phospho-Ser 1176 [cat-
alogue No.: OKAGO01931], Aviva Systems Biology, San
Diego, CA, USA). Phosphorylated levels were normalised to
total eNOS and data are expressed as percentage of control.

Nitrate levels Cells were treated with medium only (control),
exenatide or liraglutide for 24 h (n=9 per condition).
Supernatants were then collected and stored for nitrate analy-
sis using a Sievers Nitric Oxide Analyzer (Sievers NOA 280,
Analytix, Tyne & Wear, UK) [23]. Results are expressed as
percentage of control (medium only).

Statistical analysis

Data are presented as mean + SD or as median (25th—75th
percentile) if data were not normally distributed.
Significance was defined as p <0.05. In keeping with
Cupples et al [24] and Rothman [25], significance is reported
without adjustment for multiple testing.

Study 1: 21 individuals per group were recruited, enabling
the study to detect a 1 SD difference between groups and a
0.70 SD within-participant difference at 90% power. For
within-group analysis, ANOVAs for repeated measures or
Friedman’s test, depending on normality, were initially used.
Post hoc testing used either paired ¢ tests or Wilcoxon signed
rank tests to determine where the difference(s) were (saline vs
exenatide, liraglutide or ACh). For between-groups analysis,
one-way ANOVAs or Kruskal-Wallis test were initially per-
formed. Post hoc testing used either a Student’s 7 test or a
Mann—Whitney U test.

Study 2: 16 individuals were recruited, enabling the study
to detect a 0.8 SD within-participant difference at 90% power.
Paired ¢ test or Wilcoxon signed rank test, depending on nor-
mality of data, was used to determine whether the GLP-1R
inhibition altered the microvascular response to liraglutide
(liraglutide site vs exendin-(9,39) liraglutide site).

To examine whether the microvascular actions of
liraglutide are associated with clinical and metabolic charac-
teristics (age, body composition, BP, glycaemic control and

lipid profile), data from both study 1 and study 2 were merged.
The stabilised response to liraglutide across the merged co-
horts was initially examined using Spearman’s correlation
test. Significant associations from univariate analysis, using
the variable with the strongest  for each class of characteris-
tics (e.g. BP or lipid profile variable), were further explored
using linear regression, adjusting for potential confounding
factors (sex and stabilised response to saline control site).

In vitro study: the Mann—Whitney U test was used to com-
pare the responses to exenatide and liraglutide with the re-
sponses to control in the in vitro experiments.

Results
Study 1

Sixty-three participants completed the study. In the type 2
diabetes group, diabetes was controlled by diet alone in five
(24%) and by metformin in 16 (76%) participants. Median
duration of diabetes was 7 (25th—75th percentile: 3-9) years,
and 86% of participants with diabetes were taking cholesterol-
lowering tablets and 57% antihypertensive treatment. None of
the participants (all groups) showed any evidence of
microalbuminuria, advanced retinopathy or significant
neuropathy.

HbA,. and fasting glucose levels were within the normal
range for all participants in the obese group. Insulin and
HOMA levels were significantly higher in participants with
obesity and diabetes than in lean participants (Table 1). BMI
in the obese group was also significantly higher than in the
diabetes group.

The direct, local effect of GLP-1 analogues, exenatide and
liraglutide, on skin perfusion All microinjections, including
saline, caused an initial increase in skin perfusion due to the
injection trauma. The response to saline decays over time,
presumably due to resolution of this trauma response
(representative graph in Fig. 1). Exenatide, liraglutide and
ACh significantly increased skin perfusion compared with
control in all participant groups (p values <0.001). The micro-
injection protocol was well tolerated by all participants. Blood
glucose remained in the normal range throughout the micro-
injection protocol.

The effects of obesity and diabetes on the microvascular ef-
fects of exenatide and liraglutide The microvascular re-
sponses to exenatide, liraglutide and ACh (stabilised response
and total response) were comparable between the three groups
of participants (stabilised and total response to exenatide and
liraglutide: p values > 0.456 and > 0.389, respectively;
stabilised and total response to ACh: p=0.332 and 0.250,
respectively) (Fig. 2).
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Table 1 Clinical characteristics of the lean, obese and type 2 diabetes groups in study 1

Characteristic Lean group Obese group Type 2 diabetes group p value®
Sample size (% male) 21 (57) 21 (29) 21 (43)

Age (years) 65 (54-70) 67 (52-70) 70 (64-71) 0.064
BMI (kg/m?) 23.00 (22.00-24.00) 33.00 (31.50-38.00)% 30.00 (26.25-33.00)# 11T <0.001
Waist circumference (cm) 81.69 +6.64 104.93 + 10.55%3 99.73 49,99 <0.001
Waist/hip ratio 0.83 (0.80-0.88) 0.86 (0.83-0.97)* 0.91 (0.86-0.99)* <0.001
Systolic BP (mmHg) 127 (118-138) 140 (134-154)* 141 (134-155)* 0.037
Diastolic BP (mmHg) 76 (70-87) 81 (75-88) 77 (71-86) 0.221
Mean arterial pressure (mmHg) 92+10 99+10 99+12 0.082
HbA . (mmol/mol) 39.00+2.02 38.8+3.6 48.9 + 6.9 1T <0.001
HbA . (%) 5.7+2.3 57425 6.6 2 g Tl

Fasting blood glucose (mmol/l) 4.80 (4.60-5.33) 5.30 (5.05-5.50)* 7.03 (6.01-7.74)y*# 11T <0.001
Fasting plasma insulin (pmol/l) 29.33 (22.59-37.19) 64.20 (54.64-176.80)%* 84.50 (49.30-122.00)*: <0.001
HOMA (insulin resistance) 0.60 (0.40-0.75) 1.20 (1.00-2.05 ) 1.60 (1.00-2.30)*3 <0.001
Fasting total cholesterol (mmol/l) 5.68+1.01 5.38+0.90 4.15+0.96+TTT <0.001
HDL (mmol/l) 1.67 (1.50-2.11) 1.38 (1.10-1.70)* 1.41 (1.26-1.74)* 0.016
LDL (mmol/l) 3.22+0.86 3.02+£0.99 2.07+0.89%# T 0.002
Fasting triacylglycerols (mmol/l) 0.83 (0.66—1.09) 1.30 (1.03-1.76)** 1.14 (0.87-1.69)* 0.004
eGFR (ml/min/1.73 m?) 84.0 (71.0-86.0) 71.0 (62.0-82.0) 81.5 (68.3-89.0) 0.552

Data presented as mean (SD) or median (25th—75th percentile)
? p value for between-group analysis across all three groups
*p<0.05, **p<0.01, ***p<0.001 vs lean group

T p<0.01, 77 p<0.001 vs obese group

Study 2

Fifteen participants completed the study (one excluded owing to
technical issues) (Table 2). Liraglutide significantly increased
skin perfusion (stabilised response and total response median
[25th—75th percentile]: 1.84 [1.72-2.36] V and 708 [630-853]
V x's, respectively) compared with the saline control site (0.93
[0.82—-1.35] Vand 395 [320-506] V xs) (p values =0.001) and

—5— Saline

—6— Exenatide

(0.5 ug)
1.20 —e— Liraglutide
(0.06 mg)

Skin perfusion (V)

0 2.00 4.00 6.00 8.00 10,00
Time (min)

Fig. 1 Representative skin perfusion response to microinjection of the

GLP-1 analogues exenatide and liraglutide, compared with saline control,

in a lean individual; the graph represents a typical pattern of response that

was observed across all participants (n=63). The arrow denotes time of

microinjection
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the response to liraglutide was not altered by pretreatment with
exendin-(9,39) (exendin-(9,39) liraglutide site stabilised and total
response: 1.82 [1.55-2.27] Vand 761 [640-854] V x s, respec-
tively, p>0.609) (Fig. 3).

Relationship between the response to liraglutide and clinical
and metabolic characteristics As the response to GLP-1 ana-
logues was not altered by diabetes or obesity in study 1, all of
the participants from studies 1 and 2 were collated to examine
whether the response to liraglutide was associated with clini-
cal and metabolic characteristics. This resulted in a cohort of
78 participants (44% male) with an age range of 21-85 years
(Table 3).

The stabilised response to liraglutide was negatively associat-
ed with age (Spearman’s correlation: 7, =—0.679, p < 0.001), BP
(systolic BP: r,=-0.422, p <0.001; diastolic BP: »;,=-0.312,
p=0.005; mean arterial pressure: r,=—0.382, p=0.001),
body composition (waist circumference: r,=—0.302, p=
0.007; waist/hip ratio: r,=—0.251, p=0.026) and glycaemic
control (fasting glucose: r,=—0.298, p=0.010; HbA.: rs=
—0.494, p <0.001). There was no association between response
to liraglutide and the lipid profile.

The observed associations of liraglutide (stabilised re-
sponse) with age, body composition (waist circumference),
BP (systolic) and glycaemic control (HbA,.), adjusting for
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Fig.2 Skin perfusion response to microinjection of exenatide, liraglutide,
ACh and saline in the lean, obese and type 2 diabetes groups (n=21 in
each group). (a) Stabilised response and (b) total perfusion response to
saline (squares), exenatide (circles), liraglutide (diamonds) and ACh (tri-
angles). Data are presented as median (25th—75th percentile). The saline
response was significantly lower than the responses to exenatide,
liraglutide and ACh, respectively (stabilised response [a] and total re-
sponse [b]) in all participant groups (***p<0.001, Wilcoxon signed rank
tests). There was no difference in the response to exenatide, liraglutide or
ACh between the participant groups. T2DM, type 2 diabetes

Table 2 Characteristics of participants in study 2

Variable Value
Sample size (% male) 16 (53)
Age (years) 32 (22-36)
BMI (kg/m?) 2.1+12
Waist circumference (cm) 80.7+£7.0
Waist/hip ratio 0.82+0.05
Systolic BP (mmHg) 115£10
Diastolic BP (mmHg) 66£6
Mean arterial pressure (mmHg) 82+7
HbA |, (mmol/mol) 33.6+3.0
HbA . (%) 52+0.3
Fasting blood glucose (mmol/l) 4.93+0.31
Fasting total cholesterol (mmol/l) 4.05+0.51
HDL (mmol/l) 1.60+£0.35
LDL (mmol/l) 2.05+0.62

Fasting triacylglycerols (mmol/l)

0.85 (0.73-1.20)

Data are presented as mean + SD or median (25th—75th percentile)

liraglutide

Fig. 3 GLP-IR inhibition does not alter the skin microvascular response
to liraglutide in healthy individuals. Each participant (n=15) had 4 treat-
ment sites, each receiving two microinjections: saline site (saline followed
by saline); exendin-(9,39) (exendin-(9,39) followed by saline); liraglutide
(saline followed by liraglutide); exendin-(9,39) liraglutide (exendin-(9,
39) followed by liraglutide). (a) Stabilised response, data presented as
median (25th—75th percentile). (b) Total response, data presented as mean
(SD). The skin perfusion response at the saline site was significantly
lower than the response (stabilised and total) at the liraglutide site
(**p<0.01 by Wilcoxon signed rank test for stabilised response; by paired
t test for total response). Pretreatment by microinjection of exendin-(9,39)
did not alter the microvascular response to liraglutide (liraglutide site vs
exendin-9,39 liraglutide site, p>0.609 by Wilcoxon signed rank test for
stabilised response; by paired ¢ test for total response)

sex and response to saline control, were separately explored
using linear regression (Table 4). Both age and HbA, after
adjustment for saline response and sex, were individually as-
sociated with the response to liraglutide (Table 4). When age,
HbA, ., sex and response to saline control were included in the
model (combined model) they accounted for 50.3% of the
variance of the response to liraglutide (adjusted R*=0.503,
F=20.496, p <0.001). Age but not HbA . was independently
associated with the stabilised response to liraglutide in this
combined model (Table 4).

In vitro study

Liraglutide and exenatide significantly increased eNOS phos-
phorylation compared with control (liraglutide median [25th—
75th percentile]: 116 [103—119]%, p =0.001; exenatide: 106
[101-110]%, p =0.020; control: 100%) and nitrate levels
compared with control (liraglutide median [25th—75th
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Table 3 Characteristics of participants merged from both study 1 and
study 2

Variable Value

Sample size (% male) 78 (44%)

Age (years) 64 (46, 70)

BMI (kg/m?)

Waist circumference (cm)

24.9 (23.0-32.0)
90.3 (81-103)

Waist/hip ratio 0.86 (0.81-0.92)
Systolic BP (mmHg) 135 (124-147)
Diastolic BP (mmHg) 77+9

Mean arterial pressure (mmHg) 97+11

HbA . (mmol/mol) 39 (37-44)
HbAlc (%) 5.7 (5.5-6.2)
Fasting blood glucose (mmol/l) 5.3 (4.8-6.0)
Fasting total cholesterol (mmol/l) 491+1.13
HDL (mmol/l) 1.56 (1.33-1.91)
LDL (mmol/l) 2.66+0.99

Fasting triacylglycerols (mmol/l)

1.06 (0.75-1.47)

Data are presented as mean = SD or median (25th—75th percentile)

percentile]: 201 [178-302]%, p = 0.002; exenatide: 169 [140—
2721%, p = 0.002; control: 100%) (Fig. 4).

Discussion

Here, we provide the first evidence of a direct vasodilatory
action of GLP-1 analogues in the microcirculation in lean
individuals in vivo. Importantly, we also demonstrate that this
response is not attenuated in obesity and type 2 diabetes, con-
ditions associated with microvascular impairments [26, 27].
Furthermore, this research suggests that this increase in mi-
crovascular perfusion may be mediated, at least partially, by
NO but not via the GLP-1R.

These data suggest that the GLP-1 analogues have a direct
vasodilatory effect on the microvasculature (arterioles, ve-
nules and capillaries). In contrast, the only previously reported
research in this area examined the systemic effects of
exenatide or liraglutide on microvascular perfusion in

humans, in vivo [7, 8]; an increase in the number of perfused
capillaries at rest and during post-occlusive reactive
hyperaemia was observed in response to exenatide (continu-
ous i.v. infusion resulting in therapeutic levels) in young (20—
27 years), overweight, male participants [7]. Whether this in-
crease in capillary perfusion resulted from a direct action of
exenatide is unclear, but results from our study would suggest
that this is the case.

We also showed that the microvascular actions of
exenatide and liraglutide are maintained in obesity and type
2 diabetes. In contrast, Smits et al [8] observed no changes
in capillary perfusion with either acute or short-term treat-
ment with GLP-1 analogues in individuals with relatively
well-controlled diabetes (HbA ;. mean = SEM: 7.3+0.3%
[mean: 56.3 mmol/mol]; age: 62.8 £ 6.9 years). The partic-
ipants with type 2 diabetes in the current study (study 1)
were slightly older (mean [25th—75th percentile]: 70 [64—
71] years) with marginally better glycaemic control (6.6 +
2.8% [48.9 = 6.9 mmol/mol]) than those recruited by Smits
et al [8]. Since HbA . was not related to the microvascular
responsiveness to GLP-1 analogues and participants were
slightly older in our study, when age was negatively related
to response, it is unlikely that these variations in participant
characteristics could explain the discrepancies between the
current study and that of Smits et al [8].

Potential reasons for the observed differences between the
diabetes groups in our study and the study by Smits et al [8]
may be the delivery route (local vs systemic) and dose (local,
dermal delivery at one-tenth minimal treatment dose vs sys-
temic, i.v. administration of therapeutic levels). As detailed
earlier, systemic application of GLP-1 analogues at therapeu-
tic doses may result in systemic endocrine, haemodynamic
and glycaemic changes, potentially influencing microvascular
function including vasomotion [7, 8]. In study 1, there was a
small drop in blood glucose and insulins levels across the
study visit (glucose: ~2%; insulin: 18-33%), reflecting the
participants’ fasting state. Importantly, glucose remained in
the normal glycaemic range for all participants. Additionally,
the site and imaging techniques differed between the two stud-
ies (i.e. direct visualisation of digital dermal capillaries vs
LDPI of forearm skin microcirculation).

Table 4 Linear regression analy-

sis of stabilised response to Variable Unstandardised 3 coefficient (SE) Standardised 3 coefficient p value
liraglutide and clinical and meta-
bolic characteristics Univariate analysis adjusting for sex and response to saline control
Age —0.016 (0.003) —0.568 <0.001
Waist —0.004 (0.003) —0.125 0.230
SBP —0.003 (0.002) —0.144 0.178
HbA, . —0.019 (0.006) —-0.285 0.003
Combined model (age, HbA ., sex and response to saline control)
Age —0.015 (0.003) —0.542 <0.001
HbA, . —0.003 (0.007) —0.040 0.687
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Fig. 4 Exenatide and liraglutide increase eNOS phosphorylation and ni-
trate levels. (a) eNOS phosphorylation: after initial starvation, human
microvascular endothelial cells (HCMEC/D3s) were treated with
exenatide and liraglutide for 10 min. Controls were treated with 0.1%
BSA medium only. Phosphorylation data were normalised to total
eNOS (n=8). (b) Nitrate levels: HCMEC/D3s were treated with exenatide
and liraglutide for 24 h (n=9). Controls were treated with medium only.
For both (a) and (b), data are expressed as percentage of control, with
control set at 100%, and are presented as median (25th—75th percentile).
*p<0.05, **p<0.01 vs control, Wilcoxon sign rank test.

The strength of the current study is that GLP-1 ana-
logues were delivered locally, ensuring direct microvascu-
lar actions without the complication of systemic effects.
However, it is important to note that the participants with
diabetes had well-controlled glycaemia, no evidence of
clinical microvascular complications and good endothelial
function, as assessed by ACh microinjection. Whether this
conserved response to exenatide and liraglutide in obesity
and diabetes reflects that this pathway is intact in these
populations, or whether this is partially explained by the
relative healthiness of our participants, is unclear.
However, the results of the LEADER cardiovascular study
[2], which observed vascular benefits in individuals with
type 2 diabetes and established, or risk factors for, CVD,
may imply that this vascular pathway is intact, although
further research is needed to confirm this.

Age was negatively associated with the response to
liraglutide. Microvascular function declines with age
[28]; however, whether the observed association is due to
age-related impairment of microvascular function or spe-
cifically due to the GLP-1 pathway is unclear. Since
liraglutide is an effective glycaemic treatment in the elder-
ly (>65 years) [29], the observed relationship may relate
more to a natural decline in microvascular function with
age. This is supported by the association between age and
response to ACh (unstandardised (3 [SE]: —0.011 [0.005];
standardised f: —0.294, p=0.003) in this study.
Collectively, these data highlight the need to take age into
account in human, in vivo studies.

GLP-1Rs have been described in human microvascular
endothelial cells [30, 31]. However, the current study sug-
gests that the local microvascular actions of the GLP-1
analogues are GLP-1R independent in healthy humans.
This is in contrast to observations by Koska et al [13],
who observed an impaired exenatide-induced increase in
digital reactive hyperaemia with systemic blockade of the
GLP-1R with exendin-(9,39) in participants with impaired
glucose tolerance or diet-controlled diabetes. However, the
70 nmol/l concentration used in study 2 was similar to
plasma levels of exendin-(9,39) previously shown to abol-
ish GLP-1-induced insulin secretion and reduce plasma
glucose levels in the hyperglycaemic state in healthy par-
ticipants (plasma mean [SE]: 53 [4] nmol/l) [32].

The NO pathway was upregulated (activation/phosphory-
lation of eNOS and increased production of nitrate) in human
microvascular endothelial cells by both exenatide and
liraglutide, suggesting NO involvement in their microvascu-
lar actions. This is in agreement with previous studies on the
human macrovasculature [14, 16], e.g. Koska et al observed a
comparable increase in eNOS phosphorylation in human cor-
onary artery endothelial cells [13], but this is the first dem-
onstration in human microvascular endothelial cells.
Interestingly, Smits et al observed that exenatide-induced in-
creases in capillary perfusion in healthy, overweight individ-
uals [7] were not modulated by NOS blockade. Since both
studies used GLP-1 analogues within their therapeutic ranges,
this may reflect differences between in vivo and in vitro stud-
ies and/or the heterogeneity of endothelial cells [33]. It is
unlikely that the acute nature of the intervention influenced
the observations by Smits et al [8] as the current study dem-
onstrated that acute treatment (10 min) with GLP-1 analogues
increased eNOS activation. The NO pathway may be im-
paired with obesity [26], raising the possibility that this path-
way was downregulated and thus unresponsive in the over-
weight group recruited by Smits et al [7]. However, the ob-
servation that microvascular endothelial function was not im-
paired in the obese group in the current study suggests that
this is not the case. Further research is needed to clarify the
involvement of the GLP-1R and the NO pathway in
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mediating the microvascular actions of GLP-1 analogues,
particularly in different populations in vivo.

Study limitations: This study may not be applicable to
the general diabetes population as only individuals with
uncomplicated, well-controlled diabetes were recruited.
Additionally, study 2 could have benefited from the inclu-
sion of a control to demonstrate successful GLP-1R inhi-
bition and/or systemic delivery of exendin-(9,39). This re-
search would also be strengthened by extending the NO
investigations to examine the effect of NOS blockade in
humans, in vivo.

Collectively, our data show that local administration of
liraglutide and exenatide increases skin perfusion in lean
and obese individuals as well as those with well-controlled,
complication-free, type 2 diabetes. It seems likely that this
increase in skin perfusion is mediated, at least partially, by
an NO-dependent mechanism and independently of the
GLP-1R. However, further research is needed to determine
whether such local microvascular benefit is preserved in
individuals with type 2 diabetes and established microvas-
cular complications or with a systemic increase in GLP-1
levels, such as with clinical treatment with GLP-1
analogues.
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