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Abstract
Aims/hypothesis Administration of anti-CD40 ligand
(CD40L) antibodies has been reported to allow long-term
islet allograft survival in non-human primates without the
need for exogenous immunosuppression. However, the use
of anti-CD40L antibodies was associated with thromboembolic
complications. Targeting downstream intracellular components
shared between CD40 and other TNF family co-stimulatory
molecules could bypass these complications. TNF receptor
associated factor 2 (TRAF2) integrates multiple TNF receptor

family signalling pathways that are critical for T cell activation
and may be a central node of alloimmune responses.
Methods T cell-specific Traf2-deficient mice (Traf2TKO)
were generated to define the role of TRAF2 in CD4+ T cell
effector responses that mediate islet allograft rejection in vivo.
In vitro allograft responseswere tested usingmixed lymphocyte
reactions and analysis of IFN-γ and granzyme B effector
molecule expression. T cell function was assessed using
anti-CD3/CD28-mediated proliferation and T cell polarisation
studies.
Results Traf2TKO mice exhibited permanent survival of full
MHC-mismatched pancreatic islet allografts without exogenous
immunosuppression. Traf2TKOCD4+ Tcells exhibited reduced
proliferation, activation and acquisition of effector function
following T cell receptor stimulation; however, both Traf2TKO
CD4+ andCD8+ Tcells exhibited impaired alloantigen-mediated
proliferation and acquisition of effector function. In polarisation
studies, Traf2TKO CD4+ T cells preferentially converted to a
T helper (Th)2 phenotype, but exhibited impaired Th17
differentiation. Without TRAF2, thymocytes exhibited
dysregulated TNF-mediated induction of c-Jun N-terminal
kinase (JNK) and canonical NFκB pathways. Critically,
targeting TRAF2 in T cells did not impair the acute phase of
CD8-dependent viral immunity. These data highlight a specific
requirement for a TRAF2–NFκB and TRAF2–JNK signalling
cascade in T cell activation and effector function in rejecting
islet allografts.
Conclusion/interpretation Targeting TRAF2may be useful as
a therapeutic approach for immunosuppression-free
islet allograft survival that avoids the thromboembolic
complications associated with the use of anti-CD40L
antibodies.
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Abbreviations
CFSE Carboxyfluorescein diacetate succinimidyl ester
H&E Haematoxylin and eosin
JNK c-Jun N-terminal kinase
L Ligand
MLR Mixed lymphocyte reaction
MST Median survival time
siRNA Small interfering RNA
Th T helper
TNFR TNF receptor
TRAF2 TNF receptor associated factor 2
Treg T regulatory cell

Introduction

Allogeneic islet transplantation is emerging as a promising
treatment for type 1 diabetes following the successful
outcomes reported by the Collaborative Islet Transplant
Registry [1]. A major obstacle to islet transplantation is
immune rejection of the transplanted tissue by the recipient’s
immune system, which can only be overcome with the use of
toxic immunosuppression. Greater understanding of the
immune response towards transplanted tissues could lead to
new therapeutic approaches. TNF receptor (TNFR) family
molecules participate in T cell co-stimulation and provide
new therapeutic avenues for transplantation. Blockade of
CD27/CD70 and OX40/OX40 ligand (L) interactions,
together with CD28 blockade, have been reported to prolong
islet allograft survival [2, 3]. Anti-CD40L antibody
administration has been reported to allow long-term
islet allograft survival in non-human primates without the
need for exogenous immunosuppression [4]. However, the
use of a humanised anti-CD40L monoclonal antibody in
human clinical trials was halted because of an increased
incidence of thromboembolic events [5, 6].

Targeting intracellular T cell co-stimulation components
could bypass the complications that occur when targeting
extracellular co-stimulation components. A key intracellular
component of TNFR family signalling is TNFR associated
factor 2 (TRAF2) [7]. TRAF2 mediates downstream
signalling by binding to the cytoplasmic domains of key T
cell surface receptors, including TNFR, CD27, CD30,
CD40, GITR, OX40 and 4-1BB [8]. TNFR family members
play a critical role in allowing optimal T cell responses
through co-stimulation. Without this T cell responses are
impaired [8], thus providing a mechanistic basis for the
efficacy of anti-CD40L antibodies in preclinical islet
transplant studies [4]. T cells from dominant negative Traf2
mutant mice have been reported to exhibit reduced
proliferation and IFN-γ production in response to alloantigens
in vitro, but also show impaired T cell receptor-mediated
proliferation, highlighting the therapeutic potential of

targeting TRAF2 in preventing T cell allograft responses
[9, 10]. While promising, these studies did not test whether
TRAF2 loss impairs islet allograft rejection in vivo [9]. In this
study, we examined whether targeting TRAF2 in T cells
would impact islet allograft rejection.

Methods

Mice Traf2lox/lox mice were crossed with Lck-cre (C57BL/6)
mice (Jackson Laboratory, Bar Harbor, ME, USA) [11] to
generate T cell-specific deletion of Traf2 (Traf2TKO).
BALB/c, C57BL/6 and Rag1–/– mice were from Australian
BioResources (Moss Vale, NSW, Australia). Male and female
mice were used for the studies. Mice were housed at 22°C in a
12 h light/dark cycle, and were fed ad libitum and received
humane care in compliance with guidelines from the
Australian National Health and Medical Research Council.
The Garvan/St Vincent’s Hospital Animal Ethics Committee
approved all protocols for animal experiments.

Islet transplantation and histopathology Islets from
female BALB/c mice were transplanted to streptozotocin
(Sigma-Chemical, St Louis, MO, USA)-induced diabetic
floxed, Traf2TKO or Rag1–/– male recipients as previously
described [12]. T regulatory cell (Treg) depletion studies were
performed as previously described [13] using 100 μg PC61.
Graft sections were stained with haematoxylin and eosin
(H&E) or labelled for insulin (1:100; Cell Signaling,
Beverly, MA, USA) using the DAKOCytomation EnVision+
System-HRP kit (DAKOCytomation, Glostrup, Denmark),
and images were captured using a Leica DM 4000microscope
and DCF450 digital microscope camera using Leica
Application Suite software (Leica Microsystems, North
Ryde, NSW, Australia).

Western blot Western blots were performed using standard
approaches [14]. Antibodies were used at 1:1000 dilution
unless otherwise specified: anti-TRAF2 (C-20; Santa Cruz
Biotechnology, Dallas, TX, USA); anti-phospho (p)-p38
MAPK (T180/Y182; Cell Signaling Technologies); p38
MAPK (Cell Signaling Technologies); anti-p-c-Jun
N-terminal kinase (JNK) (T183/Y185) (Cell Signaling
Technologies); SAPK/JNK (Cell Signaling Technologies);
anti-IκBα (9242; Cell Signaling Technologies); anti-β-actin
(1:10,000; Sigma-Aldrich, Castle Hill, NSW, Australia);
anti-rabbit IgG-horseradish peroxidase (1:5000; GE
Healthcare, Rydalmere, NSW, Australia); and anti-mouse
IgG-horseradish peroxidase (1:5000; Thermo Scientific,
Scoresby, VIC, Australia).

Flow cytometry Lymphocyte subpopulations were analysed
using a FACSCanto system (BD Biosciences, San Jose, CA,
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USA) using antibodies and methods as previously described
[12]. Data analysis was performed using FlowJo analysis
software (TreeStar, Ashland, OR, USA). Light-scatter gating
to include live lymphocytes and exclude doublet cells, dead
cells and debris was performed unless otherwise specified.

Lymphocyte BrdU incorporation Floxed control and
Traf2TKO mice (age 6–8 weeks) were given 0.2 ml i.p.
BrdU (Sigma-Aldrich; 10 mg/ml PBS) in five injections at
12 h intervals. Lymphocytes were harvested 12 h after the
final injection and BrdU incorporation was assessed using
the BrdU Flow Kit (BD Biosciences) according to the
manufacturer’s instructions.

T cell proliferation assays Purified T cells (Pan T Isolation
Kit II; Miltenyi Biotec, Macquarie Park, NSW, Australia)
were labelled with carboxyfluorescein diacetate succinimidyl
ester (CFSE) (0.5 μmol/l; Sigma-Aldrich), and 2×105 cells/
well were stimulated with immobilised anti-CD3 (0.1, 0.3, 1
and 3 μg/ml; BD Biosciences) with or without anti-CD28
(5 μg/ml; BD Biosciences) for 72 h. For mixed lymphocyte
reactions (MLRs), T cells were co-cultured with mitomycin C
(Sigma-Aldrich; 25 μg/ml)-treated BALB/c splenocytes in a
1:1 responder to stimulator ratio. T cell proliferation was
assessed by flow cytometry based on CFSE dilution.

Treg suppression assay FACS-purified floxed control
CD4+CD25– (Teffector) cells were CFSE-labelled and
co-cultured with FACS-purified floxed or Traf2TKO
CD4+CD25+ (Treg) cells at various ratios. Proliferation was
calculated as a percentage of suppression vs proliferation of
T cells alone (100 × [1–%CFSElowCD4+CD25– T cells in
co-culture/%CFSElowCD4+CD25– T cells alone]).

T cell polarisation assay FACS-sorted floxed or Traf2TKO
CD4+-naive T cells (CD3+CD4+CD25–CD62L+CD44–) were
seeded at 1× 105 cells/well in a flat-bottom, 96-well plate
pre-coated with 1 μg/ml anti-CD3 (BD Biosciences) and
co-cultured with 3 μg/ml anti-CD28 or 4 × 105 irradiated
(3000 cGy) autologous antigen-presenting cells at 37°C with
5%CO2 for 68 h under the following conditions: N (media), T
helper (Th)0 (5 μg/ml anti-IFN-γ, 5 μg/ml anti-IL-4), Th1
(5 μg/ml anti-IL-4, 3.5 ng/ml IL-12), Th2 (5 μg/ml
anti-IFN-γ, 3.5 ng/ml IL-4), Th17 (5 μg/ml anti-IFN-γ,
5 μg/ml anti-IL-4, 1 ng/ml TGF-β, 10 ng/ml IL-6) and Treg
(5 μg/ml anti-IFN-γ, 5 μg/ml anti-IL-4, 1 ng/ml TGF-β).
Cells were treated with phorbol 12-myristate-13-acetate
(PMA)/ionomycin and GolgiStop (BD Biosciences) for 4 h
prior to intracellular cytokine labelling.

Inhibition of signalling Purified floxed control T cells were
incubated with pyrrolidine dithiocarbamate (NFκB inhibitor;
Sigma-Aldrich), SP600125 (JNK inhibitor; Sigma-Aldrich) or

SB203580 (p38 inhibitor; Cell Signaling) for 1 h at 37°C and
5% CO2, and then stimulated with 3 μg/ml immobilised
anti-CD3 for 72 h.

Influenza infection model Floxed and Traf2TKO mice were
infected with 1 × 104 plaque-forming units of the HKx31
(H3N2) strain of the influenza A virus intranasally, and
lymphocytes were harvested for staining with phycoerythrin
(PE)-conjugated DbNP366 or DbPA224 tetramers, peptide
stimulation and intracellular cytokine staining as previously
described [15].

Statistical analysis Kaplan–Meier survival curve analysis
using a logrank (Mantel–Cox) test and Dunnett’s multiple
comparison or unpaired t tests (Mann–Whitney) were
performed using GraphPad Prism v6.0b for Macintosh
(GraphPad Software, La Jolla, CA, USA). Results were
considered statistically significant when p<0.05.

Results

T cell-specific deletion of Traf2 promotes long-term
allograft survival BALB/c (H-2d) islets were transplanted
under the kidney capsule of streptozotocin-induced diabetic
Traf2TKO or littermate floxed control (both H-2b) mice. All
floxed control recipient mice rejected their islet allograft, with
a median survival time (MST) of 20.5 days (n=4). In contrast,
approximately 77% of Traf2TKO recipient mice accepted an
islet allograft long term (e.g. >100 days; p=0.0012; n=13)
(Fig. 1a). Graft function was demonstrated by nephrectomy at
postoperative day 100 (Fig. 1b). Mononuclear cells were
abundant in rejecting grafts from floxed control mice and early
(postoperative day <20) islet allografts in Traf2TKO mice
(Fig. 1c), whereas long-term surviving islet allografts were
characterised by reduced mononuclear cell infiltrate, normal
islet morphology and robust insulin production in situ
(Fig. 1d). The prolongation of allograft survival in Traf2TKO
mice also extended to models of vascularised allografts.
Compared with controls, Traf2TKO mice exhibited prolonged
skin allograft survival (MST 19 vs 14 days; p=0.0201) and
heterotopic heart allograft survival (MST 9.5 vs 7 days;
p=0.017; Table 1). Thus, targeted deletion of Traf2 on T cells
allowed long-term islet allograft survival across a full MHC
barrier without the need for exogenous immunosuppression.

In another set of experiments, streptozotocin-induced
diabetic Rag1– /– mice transplanted with BALB/c
islet allografts received purified T cells from either floxed or
Traf2TKO mice 14 days post-transplant. All recipients
receiving floxed control T cells rejected the islet allograft
(MST 19 days; n=4); however, approximately 83% of mice
receiving Traf2TKO T cells exhibited intact and functional
islets by histological analysis (MST >100 days; n = 6;
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p=0.0046; Fig. 1e, f), indicating that Tcell intrinsic TRAF2 is
required for islet allograft rejection.

To dissect the role of individual T cell subsets in
islet allograft rejection, purified CD4+ or CD8+ T cells were
adoptively transferred to Rag1–/– transplant recipients. All
mice receiving floxed control CD4+ T cells rejected their
islet allograft (MST 14 days; n=4), whereas 80% of mice

receiving Traf2TKO CD4+ T cells maintained their
islet allograft for >100 days (n=6; p=0.0011; Fig. 1g). In
contrast, adoptive transfer of floxed control or Traf2TKO
CD8+ T cells resulted in approximately 50% islet allograft
rejection (n=5–7; p=0.6884; Fig. 1h). These data suggest
that CD4+ T cells have a specific requirement for TRAF2 to
mediate the in vivo islet allograft response.

Fig. 1 Long-term islet allograft survival in Traf2TKO mice. (a)
Islet allograft survival in floxed control (black circles, n = 4) and
Traf2TKO (white circles, n = 13) mice; p = 0.0012. (b) Blood glucose
readings from the Traf2TKO cohort (n = 4; each symbol reflects an
individual mouse) followed for 100 days post transplantation and after
survival nephrectomy on postoperative day 100 (arrow). (c) H&E
staining of islet allografts in floxed control (left) and Traf2TKO (right)
mice (n = 3) at postoperative day <20; scale bars, 100 μm. (d) H&E (left)
and insulin labelling (brown; right) of >100 day surviving islet allografts
in Traf2TKO mice; scale bars, 100 μm. (e) Islet allograft survival in

transplanted Rag1–/– mice receiving 2 × 106 floxed control (black circles;
n = 4) or Traf2TKO (white circles; n= 6) T cells; p = 0.0046. (f) H&E
(left) and insulin labelling (brown; right) of >100 day surviving
islet allografts in Rag1–/– mice receiving Traf2TKO T cells; scale bars,
100 μm. (g) Islet allograft survival in transplanted Rag1–/–mice receiving
2 × 106 floxed control (black circles; n = 4) or Traf2TKO (white circles;
n= 6) CD4+ T cells; p= 0.0011. (h) Islet allograft survival in transplanted
Rag1–/– mice receiving 2 × 106 floxed control (black circles; n = 5) or
Traf2TKO (white circles; n = 7) CD8+ T cells; p= 0.6536

Table 1 Prolonged survival of
vascularised allografts in
Traf2TKO mice.

Group Experiment Allograft rejection days MST
(days)

n p valuea

1a Floxed + BALB/c skin allograft 10, 12, 12, 12, 14, 14, 14, 17,
17, 17, 17

14 11 0.0201

1b Traf2TKO + BALB/c skin allograft 12, 12, 14, 19, 19, 19, 21, 23 19 8

2a Floxed + BALB/c HHTx 6, 7, 7, 7, 7, 9, 10 7 7 0.0170

2b Traf2TKO + BALB/c HHTx 7, 7, 8, 8, 8, 11, 11, 12, 12, 14 9.5 10

a Logrank Mantel–Cox test comparing group a vs b

HHTx, heterotopic heart transplant

682 Diabetologia (2017) 60:679–689



Without TRAF2, CD4+ Tcells fail to proliferate after Tcell
receptor stimulation Floxed and Traf2TKO total T cells
exhibited comparable proliferation following anti-CD3 alone
(Fig. 2a); however, Traf2TKO total T cells showed
approximately 20% reduced proliferation at lower anti-CD3
concentrations (0.1 μg/ml) with anti-CD28 (Fig. 2b). In
addition, anti-CD3 stimulated Traf2TKO CD4+ T cells
proliferated less than floxed controls (Fig. 2c). CD28
co-stimulation boosted Traf2TKO CD4+ T cell proliferation,
but it still failed to reach floxed control levels (Fig. 2d). When
anti-CD3/CD28-mediated proliferation was compared with
anti-CD3 stimulation alone, Traf2TKO CD4+ T cells
exhibited a similar proliferation fold-change compared with
floxed controls (data not shown), suggesting that TRAF2 loss
maintained CD28-mediated responses. In contrast to CD4+ T
cell proliferation, we have previously shown that Traf2TKO
CD8+ T cells showed normal proliferative responses to

anti-CD3 and anti-CD3/CD28 [11]. Furthermore, the reduced
anti-CD3/CD28-mediated proliferation of Traf2TKO CD4+ T
cells was not due to decreased CD4+ T cell numbers as
Traf2TKO and floxed control mice harboured comparable
numbers of peripheral CD4+ T cells, as shown in previous
studies [11, 16]. T cell activation marker analysis over a 96 h
period following anti-CD3 stimulation indicated a reduced
ability of Traf2TKO CD4+ T cells to upregulate CD25,
CD44 and CD69 as effectively as floxed controls; however,
CD62L downregulation was normal (Fig. 2e–h). In contrast to
CD4+ T cells, our previous studies demonstrate that
activation-induced changes in Traf2TKO CD8+ T cells were
equivalent to those of floxed controls [11]. Therefore CD4+ T
cells, but not CD8+ T cells, require TRAF2 for optimal
activation and proliferation after T cell receptor engagement
in vitro.

TRAF2 is necessary for in vitro Tcell effector responses to
alloantigen We next measured proliferation and IFN-γ and
granzyme B expression following co-culture with allogeneic
BALB/c splenocytes to determine T cell effector function.
Traf2TKO CD4+ T cells exhibited approximately 40%
reduced proliferation to alloantigen compared with floxed
CD4+ T cells (Fig. 3a, b). Furthermore, Traf2TKO CD4+

T cells showed impaired IFN-γ (Fig. 3c, d) and granzyme B
(Fig. 3e, f) expression relative to floxed control CD4+ T cells.
The impaired effector molecule expression was particularly
evident in a small proportion of Traf2TKO CD4+ T cells that
underwent extensive proliferation but lacked expression of
either IFN-γ or granzyme B, an effect that was not observed
in the corresponding floxed control MLR. For CD8+ T cells,
Traf2TKO CD8+ T cell proliferation was reduced by
approximately 50% (p < 0.0001) compared with floxed
controls (Fig. 3g, h), with impaired IFN-γ (Fig. 3i, j) and
granzyme B expression (Fig. 3k, l) also observed following
in vitro alloantigen exposure. Thus, for in vitro alloresponses,
TRAF2 is required for full acquisition of CD4+ and CD8+

T cell effector function.

Loss of TRAF2 does not alter Tcell sensitivity to apoptosis
To assess whether impaired alloresponses in Traf2TKO mice
could be due to reduced peripheral T cell turnover, floxed
control and Traf2TKO mice were treated with the thymidine
analogue BrdU. Analysis of BrdU incorporation revealed no
discernible differences in BrdU+CD4+ and BrdU+CD8+

T cells between floxed control and Traf2TKO mice (see
electronic supplementary material [ESM] Fig. 1a, b).
Furthermore, no differences were observed in Bcl-2
expression between floxed control and Traf2TKO CD4+ mice
(ESM Fig. 1c), or in CD8+ Tcells [11] or lymphocyte viability
(ESM Fig. 2). These data suggest that the impaired T cell
alloresponse seen in Traf2TKO mice is not due to reduced
peripheral T cell turnover or T cell survival.
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Fig. 2 Reduced anti-CD3-mediated proliferation and activation of
Traf2TKOCD4+ Tcells. (a, b) Tcell proliferation in floxed control (black
bars) and Traf2TKO (white bars) mice after (a) anti-CD3 stimulation and
(b) anti-CD3/CD28 stimulation. Bars represent means ± SEM. (c, d)
CD4+ T cell proliferation in floxed control (black bars) and Traf2TKO
(white bars) mice after (c) anti-CD3 stimulation and (d) anti-CD3/CD28
stimulation. Bars represent means ± SEM. (e–h) Expression of (e) CD25,
(f) CD44, (g) CD69 and (h) CD62L in anti-CD3 proliferated floxed
control (black circles) and Traf2TKO (white squares) CD4+ T cells
analysed at 24 h intervals by flow cytometry as the percentage change
from baseline (unstimulated) expression. Cumulative data from n = 3–5
mice over three to five independent experiments. Error bars show SEM.
*p< 0.05, **p< 0.01, ***p < 0.001
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There is a specific requirement for the TRAF2–JNK and
TRAF2–NFκB signalling cascades for T cell activation
Following receptor ligation of TNFR family members,
TRAF2 mediates signalling through the canonical NFκB,

p38/MAPK and JNK pathways [17]. Compared with floxed
controls, Traf2TKO thymocytes displayed reduced
TNF-α-induced p38 phosphorylation, whereas the kinetics
of canonical NFκB (IκBα degradation) and JNK
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Fig. 3 Impaired Traf2TKO
CD4+ T effector responses to
alloantigen in an MLR.
Proliferation of CFSE-labelled
floxed control or Traf2TKO T
cells (both H-2b) co-cultured with
mitomycin-C-treated BALB/c
splenocytes (H-2d) for 3 days. (a)
Representative CD4+ T cell
proliferation FACS plots. Shaded
histogram represents
unstimulated T cells. Cumulative
data are shown in (b). (c)
Representative CD4+ T cell
IFN-γ+ expression FACS plots.
(d) Cumulative data from (c) of
CFSE–IFN-γ+ CD4+ T cells. (e)
Representative CD4+ T cell
granzyme B expression FACS
plots. (f) Cumulative data from (e)
of CFSE–granzyme B+ CD4+ T
cells. (g) Representative CD8+ T
cell proliferation FACS plots.
Shaded histogram represents
unstimulated T cells. Cumulative
data are shown in (h). (i)
Representative CD8+ T cell
IFN-γ+ expression FACS plots.
(j) Cumulative data from (i) of
CFSE–IFN-γ+ CD8+ T cells. (k)
Representative CD8+ T cell
granzyme B expression FACS
plots. (l) Cumulative data from
(k) of CFSE–granzyme B+ CD8+

T cells. Bars represent means
± SEM; n = 3 mice over two
independent experiments;
*p< 0.0001
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phosphorylation were significantly delayed (Fig. 4a). Thus,
TRAF2 governs the timing of intracellular signalling
pathways following TNF-α stimulation.

Pharmacological inhibition of these signalling pathways
demonstrated that both JNK and NFκB activation, but not
p38, were critical for CD4+ T cell blasting (Fig. 4b), as well
as for high expression levels of CD25 and CD44 (Fig. 4c, d).
For CD8+ T cells, blasting and high CD44 expression was
dependent upon NFκB and JNK signalling but not p38
signalling, whereas CD25 expression was most dependent
upon NFκB signalling (Fig. 4e–g). These data suggest a
specific requirement for the TRAF2–JNK and TRAF2–NFκB
signalling cascades in T cell activation and islet allograft
rejection.

TRAF2 deficiency promotes Th2 and suppresses Th17 T
cell differentiation Because CD4+ T cells were found to rely
upon TRAF2-dependent signals, the ability of Traf2TKO
CD4+ T cells to differentiate into effector subsets was
examined. Purified naive CD4+ T cells from floxed control
and Traf2TKO mice were cultured under different
Th-polarising conditions, and T cell fate (N, Th0, Th1, Th2,
Th17 and Treg) was determined by flow cytometry (Fig. 5).
Under Th1 conditions, Traf2TKO and floxed control naive

CD4+ T cells showed comparable frequencies of IFN-γ+

Th1-type cells (Fig. 5a, c). Under Th2 conditions,
Traf2TKO naive CD4+ T cells showed an approximately
sevenfold increase in IL-13+ Th2-type cells compared with
controls (Fig. 5a, d). Under Th17 polarising conditions,
Traf2TKO naive CD4+ T cells failed to differentiate into
IL-17+ Th17-type cells to floxed control levels (Fig. 5b, e);
however, under the same Th17 conditions, Traf2TKO cells
preferentially expressed the Treg marker FOXP3 (Fig. 5b, f).
The increased propensity towards FOXP3+ differentiationwas
also observed under Treg conditions, although this was not
statistically significant (Fig. 5g). The differentiation profile
of Traf2TKO cells favouring Th2-type and Treg cells and
Th17-type inhibition was also observed following polarisation
using anti-CD3 with autologous antigen-presenting cells (data
not shown). These data indicate that under specific
Th-polarising conditions, loss of TRAF2 strongly skews
CD4+ Tcells towards Th2 differentiation, but strongly inhibits
Th17 cell differentiation.

Islet allograft survival in Traf2TKO mice is Treg
independent Traf2TKO mice showed increased frequencies
of naturally occurring Tregs (CD4+CD25+FOXP3+)
compared with floxed control mice (Fig. 6a, b) but normal
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Fig. 4 Specific requirement for
TRAF2–JNK and TRAF2–NFκB
signalling cascades for T cell
activation. (a) Western blot
analysis of TRAF2, p-p38, p38,
IκBα, pJNK, JNK and β-actin in
floxed control and Traf2TKO
thymocytes following 200 U
TNF-α stimulation. Data are
representative of three
independent experiments. (b–g)
Purified floxed control T cells
pretreated with pyrrolidine
dithiocarbamate (NFκB inhibitor
[i]), SB203580 (p38i), SP600125
(JNKi) or vehicle control
(DMSO) and anti-CD3-mediated
lymphocyte blasting and
activation assessed by flow
cytometry after 72 h. (b) CD4+ T
cell blasting; (c) CD4+CD25+ T
cell percentage; (d) CD4+CD44+

T cell percentage; (e) CD8+ T cell
blasting; (f) CD8+CD25+ T cell
percentage; (g) CD8+CD44+ T
cell percentage; n= 3 mice. Bars
represent means ± SEM.
***p< 0.001
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Treg absolute numbers (Fig. 6c) and normal levels of
well-characterised Treg-associated activation markers, with
the exception of reduced CD44 expression (Fig. 6d)
suggestive of Treg suppressive activity [18]. However,
Traf2TKO Tregs exhibited normal in vitro T cell suppression
(Fig. 6e). Furthermore, in vivo Treg depletion with the
anti-CD25monoclonal antibody PC61 (Fig. 6f) did not impact
islet allograft survival in Traf2TKOmice (Fig. 6g). These data
indicate that islet allograft acceptance in Traf2TKO mice is
Treg independent and suggest impaired T cell effector
function. Indeed, in an MLR, purified Traf2TKO effector
(CD4+CD25–) T cells showed markedly reduced proliferation
(Fig. 6h) and activation (CD44 expression) (Fig. 6i, j)
compared with their floxed control counterparts, supporting
this conclusion.

Maintenance of protective immunity in Traf2TKO mice
Our study shows that functional TRAF2 is necessary for
T cell-mediated islet allograft rejection, and highlights
targeting TRAF2 as a possible therapeutic approach. To
address the critical question of whether TRAF2 deletion
impairs protective immune responses, we used a

well-studied model of viral immunity. Following infection
with HKx31 influenza A (H3N2), both floxed and
Traf2TKO mice demonstrated similar antigen-specific CD8+

T cell responsiveness during the acute phase (day 10) of
infection, with no differences observed in splenic and
bronchoalveolar lavage DbNP366- and NbPA244-specific
CD8+ T cell numbers (ESM Fig. 3a, b) or viral-specific
CD8+IFN-γ+ cell numbers (ESM Fig. 3c, d). Therefore,
CD8+ T cell-dependent acute influenza-specific responses
remained intact following T cell-specific deletion of Traf2.
Thus, targeting TRAF2 allowed islet allograft survival but
did not impair the acute antiviral CD8+ T cell response.

Discussion

The impaired islet allograft rejection in Traf2TKO mice was
not due to absolute immune anergy, since lymphocyte
migration during the early islet allograft response was intact
and regulatory T cell numbers and function were maintained.
Loss of TRAF2 impaired in vitro CD4+ and CD8+ T cell
alloreactivity; however, the requirement for TRAF2 for
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Fig. 5 Loss of TRAF2 strongly
enhances Th2 and inhibits Th17 T
cell differentiation. FACS-sorted
naive CD4+ T cells
(CD4+CD25–CD62L+CD44–)
were cultured with anti-CD3/
CD28 for 72 h under N, Th0, Th1,
Th2, Th17 and Treg polarising
conditions. (a, b) Representative
FACS plots of (a) Th1 and Th2
and (b) Th17 and Treg
polarisation. (c, d) Cumulative
data of (c) IFN-γ+ and (d) IL-
13+CD4+ T cells in Th1 and Th2
conditions. (e–g) Cumulative data
of (e) IL-17+ and (f)
FOXP3+CD4+ T cells in Th17
conditions and (g) FOXP3+CD4+

T cells Treg conditions. Data are
from n= 3–4 mice pooled over
two independent experiments
shown as means ± SEM.
**p< 0.01, ***p< 0.001
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in vivo alloresponses was specific for CD4+ Tcells. In addition,
while loss of TRAF2 limited CD4+ anti-CD3-mediated
proliferation and T effector function, Traf2TKO CD8+ T cells
maintained normal T cell activation and proliferation to
CD3/CD28 signals, and were able to mount an effective
acute-phase response to viral antigen, a naive CD8+ T
cell-dependent process [19]. In contrast to Traf2TKO CD8+ T
cells, Traf2TKO CD4+ T cells displayed a reduced activation
status (i.e. reduced CD25 and CD44 expression but normal
CD62L expression) and decreased CD3/CD28-mediated

proliferation. The activation defects of Traf2TKO CD4+ Tcells
may reflect the involvement of TRAF2 with TNFR family
co-stimulation molecules (i.e. OX40 and 4-1BB) that enhance
their expression on T cells after initial activation [20, 21].

The dysregulated downstream signalling pathways in the
absence of TRAF2 may consequently result in the altered T
cell activation status observed in this study. Traf2 deletion
preferentially skewed T cells towards a Th2-like profile—a
possible consequence of aberrant JNK signalling since
JNK2-knockout T cells are highly Th2-like [22]. Th2
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Fig. 6 Prolonged allograft
survival in Traf2TKOmice is Treg
independent. (a–e) Flow
cytometric analysis of floxed and
Traf2TKO CD4+CD25+FOXP3+

Treg (a, b) frequency, (c) cell
number and (d) cell surface
activation markers. Black solid
line, Traf2TKO; grey area, floxed;
black dotted line, isotype control;
n=9–11 mice over three
independent experiments. (e)
Treg-mediated suppression of
floxed (black circles) orTraf2TKO
(white circles) CD4+CD25+ Tcells
co-cultured with CFSE-labelled
floxed CD4+CD25– T cells. Error
bars show SEM. Statistical
analysis using unpaired t test;
pooled cells from n=14–16 mice
over three independent
experiments. (f) Peripheral blood
CD4+CD25+FOXP3+ T cell
percentage of floxed (black
circles) and Traf2TKO (white
circles) mice after 100 μg PC61.
Error bars show SEM; n=5 mice.
(g) BALB/c islet allograft survival
in floxed or C57BL/6 wild-type
and Traf2TKO mice treated with
PC61 or isotype control 3 days
before receiving allografts.
Statistical analysis using logrank
(Mantel–Cox) test; black squares,
C57BL/6 untreated (n= 4); white
squares, Traf2TKO untreated
(n=3); black circles, floxed PC61
treated (n=6); white circles,
Traf2TKO PC61 treated (n= 5).
(h, i) CFSE-labelled floxed or
Traf2TKO CD4+CD25– T cells
co-cultured with mitomycin-C-
treated BALB/c splenocytes, with
(h) proliferation and (i, j) CD44
expression analysed by flow
cytometry after 3 days. Line,
Traf2TKO; grey area, floxed; n=5
mice over three independent
experiments; ***p< 0.001
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cytokines such as IL-13 and IL-4 are coordinately regulated
[23] and are associated with prolonged allograft survival.
Impaired cardiac allograft rejection has previously been
observed, with long-term surviving cardiac allografts
exhibiting high expression of IL-4 [24, 25] and following
IL-13 administration in rodents [26], whereas impaired
donor-derived IL-13 levels have been correlated with an
increased severity of graft-vs-host disease [27]. Furthermore,
similar toCD30–/– CD4+ Tcells [28], Traf2TKOCD4+ Tcells
were unable to differentiate into IL-17+ Th17 cells. Blockade
of IL-17 has been shown to prolong cardiac allograft survival
[29, 30]. These studies suggest that Th17 inhibition and an
increased Th2 phenotype propensity of Traf2TKO CD4+

T cells could contribute to impaired islet allograft rejection.
Our studies highlight TRAF2 as a potential drug target to

improve islet transplant outcomes. While complete ablation of
TRAF2 is embryonic-lethal, due to the critical and
non-redundant role of TRAF2 in embryogenesis [31],
postpartum TRAF2 blockade may not carry these risks.
Furthermore, whether transient inhibition of TRAF2 prior to
transplantation would promote delayed allograft rejection is
also unknown. Future studies could potentially harness the use
of small interfering (si)RNA technologies to block TRAF2
specifically on T cells, similar to the T cell-specific siRNA
treatment that is used to reduceHIV infection [32]. The natural
biology of TRAF2 may also offer up potential therapeutic
opportunities. New drugs targeting ubiquitin-editing enzymes
such as lenalidomide, which targets the E3 ubiquitin ligase
cereblon, are in clinical trials [33]. Furthermore, simultaneous
targeting of canonical NFκB and JNK signalling may
replicate TRAF2 blockade and offer an alternative therapeutic
avenue [34, 35]. The information gathered here about the
processes in which TRAF2 is critical for T cell-mediated
islet allograft destruction can be used to identify targets for
immune modulation that could be applied in the clinical
setting of islet transplantation.
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