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Abstract Metabolomics is instrumental in the analysis of
disease mechanisms and biomarkers of disease. The human
metabolome is influenced by genetics and environmental
interactions and reveals characteristic signatures of disease.
Population studies with metabolomics require special study
designs and care needs to be taken with pre-analytics. Gas
chromatography coupled to mass spectrometry, liquid
chromatography coupled to mass spectrometry or NMR are
popular techniques used for metabolomic analyses in human
cohorts. Metabolomics has been successfully used in the
biomarker search for disease prediction and progression, for
analyses of drug action and for the development of companion
diagnostics. Several metabolites or metabolite classes
identified by metabolomics have gained much attention in
the field of diabetes research in the search for early disease
detection, differentiation of progressor types and compliance
withmedication. This review summarises a presentation given
at the ‘New approaches beyond genetics’ symposium at the
2015 annual meeting of the EASD. It is accompanied by
another review from this symposium by Bernd Mayer (DOI:
10.1007/s00125-016-4032-2) and an overview by the Session
Chair, Leif Groop (DOI: 10.1007/s00125-016-4014-4).
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Scope of metabolomics

The metabolites in a living system or a given sample are
termed the metabolome [1]. Metabolites analysed by
metabolomics are in the molecular mass range of
80–1200 Da. Metabolomics identifies a multitude (ideally
all) of the metabolites in a given biological sample. In this
way it provides a snapshot of the metabolites involved in
distinct processes.

Whereas many functional features can be bioinformatically
computed from the genome (e.g. RNA variants, splicing,
protein sequences), the metabolome has to be analysed
empirically and cannot be predicted from the genome. This
is mainly due to the fact that metabolomics reflects input from
the genome and the very dynamic environmental interaction
with biochemical homeostasis. Furthermore, metabolomics is
very closely linked to the functional phenotype, since the
metabolites mirror dynamic processes that have been already
performed or were happening at the moment of sample
collection.

Metabolomics has been successfully used in the search for
biomarkers for disease prediction and progression [2, 3], for
analyses of drug action [4, 5] and for the development of
companion diagnostics [6, 7]. Furthermore, metabolomics
has been instrumental in discovering the impact of the
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genome on metabolic subtypes of human physiology [8, 9].
The metabolome in humans is influenced by sex [10], age
[11], BMI [12], hormonal status [13], medication [14],
nutrition [15], lifestyle (alcohol [16], smoking [17], coffee
[18]) and diurnal rhythm [19], just to name the most penetrant
confounders. However, the human metabolome is very stable
over months [20] and even years [21] and deviations from
conserved patterns may reflect a disease, environmental
challenge or lifestyle change.

Several metabolites or metabolite classes have gained
much attention in the field of diabetes research in the search
for a method for early disease detection, differentiation of
progressor types and compliance with medication. Among
these metabolites, branched-chain amino acids [22],
lysophosphatidylcholines, acylcarnitine and glycine [17], 2-
amino adipic acid [23] and 1,5-anhydroglucitol [24] are being
investigated for diagnostic clinical use. There are several ex-
cellent reviews dedicated to metabolic biomarkers in diabetes
discovered by metabolomics [25–28].

Generic processes in metabolomics

Metabolomics profits from the experience with other omics
approaches, especially with respect to study design and
biostatistics and bioinformatics. Table 1 depicts major
elements of contemporary metabolomics. Projects in
metabolomics have several requirements in terms of study
design, since they generate a large amount of data [29].
Therefore, detailed documentation of phenotypes
associated with samples has to be prepared and maintained.
Human studies involve samples of urine, serum, plasma
and saliva, which have very different metabolite spectra
[25, 30–32]. The identification of controls appropriate to
the aims of the project poses a special challenge. This is

because of the fact that the human metabolome is
influenced by many confounders with a known impact. In
an ideal situation all samples in a large metabolomics
experiment should be matched for confounders. As this is
often not possible, a sample randomisation might
improve the outcome of analytical procedures, and
confounder effects must be corrected for during data
analyses. Preparation and adherence to standard operating
procedures (SOPs) is essential to maintain a cohort dataset
as a sustainable resource. Pre-analytical issues could create
a substantial component of variance prohibiting reliable
biostatistical processing and interpretation of the data
[33]. The common issues (e.g. multicentre study with
different collection procedures, confused sample identity,
insufficient sample volume) are known and should
be avoided [34]. Handling of the liquid sample should in-
clude use of robots to improve both throughput and
precision. Separation of metabolites prior to their identifi-
cation has been proven to increase the resolution and
sensitivity of analytics. Gas chromatography (GC) or
liquid chromatography (LC) can be coupled to analytical
instruments and improve the overall performance. Progress
in analytical methods (especially in mass spectrometry) has
made metabolomics possible and efficient in the last
decade. Data evaluation is an integral part of metabolo-
mics. Sophisticated biostatistics models are needed to
interpret the collected data. As metabolomes of different
species (e.g. human, plant or bacteria) are in part distinct
but equally easily accessible in databases, care has to be
taken to assign metabolites to pathways of health and dis-
ease. Quality control and quality management are essential
in all steps of metabolomics, because without these proce-
dures it is impossible to make decisions on outliers,
metabolite identity and concentration bias/distribution
and confidence intervals.

Common metabolomics methods

There are a variety of analytical approaches that can
successfully be used for metabolomics analysis [35, 36]
(Table 2). The key element in the success of population-
based metabolomics over the last decade is the availability
of the quadrupole tandem mass spectrometer. Contemporary
instruments are very robust, fast and sensitive, although they
have a lower mass resolution. AnMS/MS unit can be coupled
to GC or LC to increase metabolite coverage. The GC-MS/
MS requires laborious on-the-fly chemical derivatisation of
metabolites prior to analysis. Because of the high temperatures
in the GC unit, thermic labile metabolites cannot be identified.
Highly polar metabolites are also identified by GC-MS/MS.
Nevertheless, the GC-MS/MS is very popular in diagnostic
laboratories for analyses of drugs and steroids and further

Table 1 Essential elements of metabolomics experiments

Element Specific requirements

Study design Large-scale data collection, control definition,
randomisation, project documentation, quality
management, SOPs, ethical issues, ethnicity

Pre-analytics Sample collection, storage, transport and identity,
adherence to SOPs, multicentre standardisation
of SOPs, automatisation

Metabolite
separation

Automatisation, stability, resolution, coverage,
recovery, throughput, quality control

Analytics Automatisation, stability, resolution, sensitivity,
precision, range and limits of quantification,
coverage, throughput, quality control

Data evaluation Large-scale data computation, biostatistic models
of evaluation, species-specific bioinformatics
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for fatty acids, sugars or tricarboxylic acid cycle metabolites in
the discovery labs. LC-MS/MS does not require metabolite
derivatisation (but, for example, amino acids benefit from this
process) and allows the detection of a broad range of mole-
cules (molecular mass <2000 Da) not covered by GC-MS/
MS, such as amino acids, biogenic amines, organic acids
and lipids. NMR or LC-NMR do not require any metabolite
derivatisation and samples might be re-used for other analytics
after the NMR analysis. Other advantages of NMR are its very
high measurement stability and its resolution of lipids.
However, NMR still reveals a major drawback in terms of
sensitivity as only a few hundreds of metabolites can be
quantified.

Two analytical approaches can be used for metabolomics:
targeted and non-targeted. The features of these approaches
are compared in Table 3. The experiments with GC-MS/MS
are mostly targeted, whereas the LC-MS/MS could be
performed either in targeted or non-targeted mode. These
different approaches require distinct sample preparation and
equipment tuning.

In the targeted mode only a select set of metabolites (often
a complete metabolite family, e.g. eicosanoids) can be
quantified during the MS/MS analysis. The simplest version
of a targeted assay is the flow injection analysis (FIA), where
the sample is directly injected into the mass spectrometer. FIA
may work for many applications, including quantification of

amino acids and lipids, but will not resolve certain isobaric
compounds, such as leucine and isoleucine or lipids with the
same total chain length. Therefore, in addition to FIA, further
LC-MS/MS approaches are also popular. The analysis of the
pre-selected metabolites is based on the characteristic frag-
mentation pattern that allows their unequivocal identification
and quantification. For absolute quantification purposes,
known concentrations of a set of internal standards with
identical/similar chemical properties to the metabolites of in-
terest (often isotopically labelled metabolites) are added to the
sample and analysed together. Apparatus that is properly
tuned and operating in the targeted mode can be very fast,
robust and automated (Fig. 1).

In the non-targeted approach the analytical procedures
are optimised to cover the entire metabolome present in the
sample without focusing on a specific metabolite class.
Logically, quantification is difficult as it is not possible to
provide internal standards for all molecules. Instead, the
differences in ion count for every metabolite analysed are
used for semi-quantitative comparison. Non-targeted
metabolomics requires instruments with high and very
high mass accuracy to allow identification of the measured
metabolites. This may include the use of quadrupole
time-of-flight (Q-TOF), orbitrap, Fourier transform ion
cyclotron resonance (FTICR), or quadrupole linear ion trap
(Q-TRAP) instruments. The throughput and sensitivity in

Table 2 Analytics for metabolomics

Approach Metabolite coverage Sensitivity Throughput Robustness Present in clinical chemistrya Apparatus cost Sample cost

GC-MS/MS Hundreds High High Very good Yes Medium Low

LC-MS/MS Thousands High Very high Very good Yes Medium Low

LC-NMR Few hundreds Low Medium Extremely good No Very high High

ELISA/RIA Less than hundred Very high Low Good Yes Low High

a These methods are already applied in clinical chemistry laboratories for the quantification of selected metabolites for diagnostic purposes

Table 3 Comparison of features of targeted and non-targeted analytics

Feature Targeted Non-targeted

Metabolite coverage Only selected All possible

Number of metabolites 10–200 Thousands

Quantification Absolute (e.g. μmol/l) Comparative
(e.g. fold change)

Processing speed Very fast (e.g. 200
samples a day)

Slow (e.g. ten
samples a day)

Comparability of results
worldwide

Excellent Limited

Stability Excellent Good

Running workload Low High

Throughput

Coverage

Targeted

Non-targeted

Fig. 1 Comparison of throughput and coverage in targeted and
non-targeted metabolomics. Specialised targeted approaches can be very
fast but will not be able to provide comprehensive metabolome coverage.
On the other hand, non-targeted approaches provide large coverage at
slower throughput
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the non-targeted mode is lower than that in the targeted
mode. A common problem associated with metabolomics
analysed by LC-MS/MS is that the mass spectra are
hardware-dependent. Therefore, the same metabolite may
have different features, such as retention time or fragmen-
tation spectra. As a consequence, it is still a challenge to
compare data from different sources containing unknown
(not annotated) metabolites.

It has to be said that for the quantification of a small num-
ber of metabolites, any ELISA or RIA would be superior to
mass spectrometry or NMR analyses in terms of sensitivity.
However, the antibody-based quantification of metabolites
has the drawbacks that it has low throughput and is limited
to a couple of metabolites. Furthermore, antibody cross-
reactivity limits the selectivity of assays.

If the same sample were to be subjected to different
analyses available for metabolomics, some metabolites
would be detected by only one approach, whereas others
would be identified by more than one. In the example shown

in Fig. 2 the serum sample underwent analyses by targeted
LC-MS/MS, non-targeted LC-MS/MS and LC-NMR, and
altogether 482 metabolites were detected [37]. In targeted
and non-targeted LC-MS/MS 39 metabolites were found to
overlap, and using all three approaches only nine metabo-
lites (glucose, proline, alanine, valine, tyrosine, methionine,
phenylalanine, histidine, lysine) overlapped. This example
clearly shows that multiple approaches could be used to
increase the coverage of the metabolome. Recently, human
serum and urine metabolomes have been analysed with
different mass spectrometry methods applied in parallel
and revealed 4229 and 2206 metabolites, respectively
[38, 39].

Future developments

The area of metabolomics is developing very fast and
several issues have been already identified as limitations.
The study design may benefit from the rules regarding
procedures already defined for clinical trials. The same
applies to requirements for pre-analytical procedures,
including collection, storage and transport. SOPs on
pre-analytical procedures are present in public records but
compliance is not high among different laboratories
because there is no binding agreement on usage, or the
elements of SOPs cannot be realised in the same way.
Standardisation is a very large issue. Proposed approaches
for standardisation, currently being investigated by many
laboratories, include provision of reference substances and
their mass spectra, as well as formats for data deposition in
public repositories for metabolomics. In contrast to geno-
mics or transcriptomics, metabolomics does not cover
the whole metabolome. Therefore technological ap-
proaches, freely accessible mass spectrometrical analysis
algorithms and data analysis resources (Table 4) are be-
ing developed worldwide to increase coverage of the
metabolome.

Targeted
LC-MS/MS

201

Non-targeted
LC-MS/MS

257

LC-NMR
24

161 208

4

1
9

10

482

30

Fig. 2 Comparison of the coverage of the metabolome with different
methods. The number of all detected metabolites is given in the circle
with the dotted line. Distinct metabolomic analytical methods reveal
different unique but also common metabolites as indicated in the Venn
diagram. Modified from [37]

Table 4 Useful resources for metabolite analyses

Resource Focus Link

HMDB (Human Metabolome Database) Identity and biological description of metabolites, reference
spectra of GC-MS, LC-MS and NMR, metabolic maps

www.hmdb.ca

LIPID MAPS Nomenclature, structure and biological annotation of lipids www.lipidmaps.org

KEGG (Kyoto Encyclopedia of Genes
and Genomes)

Identity of genes and metabolites, description of pathways
and reactions, chemical formulas

www.genome.jp/kegg

SMPDB (Small Molecule Pathway Database) Annotated metabolic maps, data on disease involvement,
drug characterisation

smpdb.ca

Standardisation (initiative by the
Metabolomics Society)

Forum on different aspects of standardisation in metabolomics www.metabolomics-msi.org/
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