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Abstract
Aims/hypothesis Identification of novel biomarkers for type 2
diabetes and their genetic determinants could lead to improved
understanding of causal pathways and improve risk prediction.
Methods In this study, we used data from non-targeted meta-
bolomics performed using liquid chromatography coupled
with tandem mass spectrometry in three Swedish cohorts
(Uppsala Longitudinal Study of Adult Men [ULSAM],
n= 1138; Prospective Investigation of the Vasculature in

Uppsala Seniors [PIVUS], n= 970; TwinGene, n= 1630).
Metabolites associated with impaired fasting glucose (IFG)
and/or prevalent type 2 diabetes were assessed for associations
with incident type 2 diabetes in the three cohorts followed by
replication attempts in the Cooperative Health Research in the
Region of Augsburg (KORA) S4 cohort (n = 855).
Assessment of the association of metabolite-regulating genet-
ic variants with type 2 diabetes was done using data from a
meta-analysis of genome-wide association studies.
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Results Out of 5961 investigated metabolic features, 1120
were associated with prevalent type 2 diabetes and IFG and
70 were annotated to metabolites and replicated in the three
cohorts. Fifteen metabolites were associated with incident type
2 diabetes in the four cohorts combined (358 events) following
adjustment for age, sex, BMI, waist circumference and fasting
glucose. Novel findings included associations of higher values
of the bile acid deoxycholic acid and monoacylglyceride 18:2
and lower concentrations of cortisol with type 2 diabetes risk.
However, adding metabolites to an existing risk score im-
proved model fit only marginally. A genetic variant within
the CYP7A1 locus, encoding the rate-limiting enzyme in bile
acid synthesis, was found to be associated with lower concen-
trations of deoxycholic acid, higher concentrations of
LDL-cholesterol and lower type 2 diabetes risk. Variants in or
near SGPP1, GCKR and FADS1/2 were associated with
diabetes-associated phospholipids and type 2 diabetes.
Conclusions/interpretation We found evidence that the
metabolism of bile acids and phospholipids shares some
common genetic origin with type 2 diabetes.
Access to research materials Metabolomics data have been
deposited in the Metabolights database, with accession
numbers MTBLS93 (TwinGene), MTBLS124 (ULSAM)
and MTBLS90 (PIVUS).

Keywords Genetic .Metabolomics . Prediction . Type 2
diabetes

Abbreviations
CerPE Ceramide phosphoethanolamine
FDR False discovery rate
GWAS Genome-wide association study
IFG Impaired fasting glucose
KORA Cooperative Health Research in the

Region of Augsburg
LysoPC Lysophosphatidylcholine
PC Phosphatidylcholine
PIVUS Prospective Investigation of the

Vasculature in Uppsala Seniors
SM Sphingomyelin
ULSAM Uppsala Longitudinal Study of Adult Men
UPLC Ultra-performance liquid chromatography

Introduction

Recent advances in metabolite profiling technology have en-
abled discovery of novel biomarkers of type 2 diabetes devel-
opment. It is worthwhile to better characterise these metabolic
alterations since they could be of pathogenic importance.
Elevated concentrations of branched-chain and aromatic amino
acids and lower concentrations of glycine and various lipid

species, such as lysophosphatidylcholine (LysoPC) 18:2 are
reported to be associated with incident type 2 diabetes, but
the causal role of these early aberrations in diabetes pathophys-
iology is not clear [1–3]. It has been proposed that the identifi-
cation of genetic determinants of metabolite concentrations
would assist in enabling the functional understanding of asso-
ciations between metabolite concentrations and clinical end-
points [4]. So far, more than 150 associations between genetic
variants and various metabolite concentrations are reported
from large genome-wide association studies (GWAS), often
with large effect sizes [5]. Reported variants affecting metabo-
lite concentrations are often located within genes encoding
enzymes or transporters, with a function related to the biochem-
ical nature of the associated metabolites [6]. Some of these
genetic variants have recently been used as instrumental
variables to study the causal effect of lipid metabolites on
cardiovascular risk [7, 8]. The underlying idea of this approach
is that a genetic variant determining metabolite concentration
could be used as an unbiased proxy to predict the effect of
metabolite perturbation on clinical phenotypes of interest.

The primary aim of the present study was to identify metab-
olites associated with incident type 2 diabetes, using a
non-targeted metabolomics approach in four population-based
cohort studies, and to investigate whether such metabolites
share a common genetic background with type 2 diabetes. A
secondary aim was to explore whether the addition of metabo-
lites to the Framingham diabetes risk score [9] would improve
prediction of type 2 diabetes.

Methods

Study population

We used data that had been generated previously from non-
targeted metabolomics analysis [10] in combination with pheno-
typic information from fasting individuals from four population-
based studies. These studies have all been described in detail
previously—the Uppsala Longitudinal Study of Adult Men
(ULSAM) [11], the Prospective Investigation of the
Vasculature in Uppsala Seniors (PIVUS) [12], a case-cohort sub-
set of the TwinGene study [13] and the Cooperative Health
Research in the Region of Augsburg (KORA) [14, 15].
Informed consent was obtained from all participants in the four
studies. Details of the cohorts can be found in the ESMMethods.

Outcome definition

Impaired fasting glucose (IFG) at baseline was defined ac-
cording to the American Diabetes Association criteria as
fasting glucose ≥5.6 and <7.0 mmol/l [16]. Type 2 diabetes
diagnosis at baseline and during follow-up could be based on
biochemical measurement (fasting glucose ≥7.0 mmol/l,
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HbA1c ≥6.5% (48 mmol/mmol) and/or 2 h post-oral glucose
tolerance test glucose ≥11.1 mmol/l) within the study, in ad-
dition to health registries and validated medical records.
Details of diabetes definitions and analytical methods for glu-
cose for each cohort are given in the ESM Methods.
Individuals were censored at date of death or end of study.

Metabolomics analysis

Briefly, plasma samples from the age of 71 years in ULSAM
and serum samples from the baseline of PIVUS and TwinGene
were treated with methanol to precipitate proteins and dissolve
lipids. Non-targeted metabolite profiling was performed using
ultra-performance liquid chromatography (Acquity Ultra-
Performance Liquid Chromatography) (UPLC) directly
coupled to a quadrupole time-of-flight mass spectrometer
(Xevo G2 Q-TOF MS) (Waters Corporation, Milford, MA,
USA) fitted with an electrospray source operating in positive
ion mode. Non-consecutive randomised duplicate samples of
1 μl were injected and separation was performed on a BEH C8
analytical column.Mass analysis was performed in the full scan
mode (mass-to-charge ratio, 50–1200).

Data were processed using the open source XCMS package
in the R statistical environment [17]. Metabolic feature detec-
tion, alignment, grouping, imputation and normalisation were
performed separately for each study as previously described
[10]. In total, 9755, 10,162 and 7522 metabolic features were
detected in the TwinGene, ULSAM and PIVUS cohort,
respectively. A metabolic feature is characterised by a unique
mass-to-charge ratio and retention time, meaning that a single
metabolite can be represented by manymetabolic features due
to phenomena such as in-source fragmentation, neutral losses,
adduct formation and multimer formation. For the present
study, only metabolic features present in TwinGene and
PIVUS and/or ULSAM were included in the analysis. Since
small polar metabolites such as sugars are not well retained by
reverse-phase chromatography, all metabolic features with a
retention time <35 s were excluded.

Annotation of IFG- and diabetes-associated metabolic
features was based on spectral matching against an in-house
spectral library of authentic standards as well as public data-
bases. The level of confidence was categorised in agreement
with theMetabolomics Standard Initiative [18] as level 1–4: 1,
match with accurate mass (±5 ppm), overall fragmentation
pattern and retention time with the in-house spectral library;
2, match based on accurate mass (±5 ppm) and fragmentation
pattern using available spectra in public data bases; 3, match
based on a combination of mass spectra and fragmentation
pattern knowledge; accurate mass and retention time window
to assign the metabolite to a chemical class; 4, unknown.

In KORA, metabolites were extracted using similar
methods as for the Swedish cohorts from baseline serum
samples and a non-targeted metabolomics analysis was

performed by Metabolon (Durham, NC, USA), using three
separate analytical methods GC–mass spectrometry (MS),
UPLC–MS positive mode and UPLC–MS negative mode.
The UPLC–MS platform utilised a Waters Acquity UPLC
and a ThermoFisher LTQ mass spectrometer. The methods
are described in detail elsewhere [19].

For all metabolite features included in the analysis, peak
intensity was transformed to the Log2 scale and then
SD-transformed within each of the four cohorts prior to
statistical analysis.

Statistical analysis

The overall workflow of the study is depicted in Fig. 1. The
study was designed assuming that early markers of type 2
diabetes are also altered in individuals with IFG and overt
type 2 diabetes. All statistical analysis was done using
STATA13 (Stata, College Station, TX, USA) and R v.
3.1.3 (https://www.r-project.org/).

Non-targeted metabolomics of prevalent type 2 diabetes,
IFG and incident diabetes In PIVUS and ULSAM, the
association of each metabolic feature was assessed separately
with normal fasting glucose vs IFG and normal fasting
glucose vs prevalent type 2 diabetes using logistic regression
modelling with feature intensity, age, sex, BMI and waist
circumference as independent variables. In total, 3276
metabolite features were detected in both PIVUS and

Association with 
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Non-targeted LC-MS

ULSAM

PIVUS

TwinGene

KORA

DIAGRAM

Annotation and 
replication

Meta-analysis
Genetic association 
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incident T2D

70 metabolites 
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Fig. 1 Overall workflow of the study. The coloured squares indicate
which studies are being used in the different steps in the workflow.
T2D, type 2 diabetes
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ULSAM and here fixed-effects inverse-variance-weighted
meta-analysis was performed to pool results; 1622 features
were detected only in PIVUS samples and 1063 features were
detected only in ULSAM samples. The Benjamini–Hochberg
procedure [20] was used to correct for multiple testing (5961
tests) at a false discovery rate (FDR) of 5%. Metabolic
features that were identified as being associated with IFG or
type 2 diabetes underwent annotation to metabolites and were
re-assessed for their association with IFG and prevalent type 2
diabetes in the TwinGene subcohort (n=1549). Metabolites
were excluded if only fragments, but not the parent ion, were
found associated with the outcome. A nominal p value cut-off
of 0.05 and consistent direction of effect estimates were
considered as evidence of replication.

Cox proportional hazard models, adjusted for age and sex,
were used to assess the association of IFG- and prevalent type
2 diabetes-associated metabolites with time-to-event to type 2
diabetes in each of the three Swedish cohorts. In TwinGene,
models were fitted and re-weighted for the inverse of the
sampling probability using the Borgan ‘Estimator II’ [21].
Fixed-effects meta-analysis was used to pool the results and
a 5% FDR was applied. We further adjusted models for BMI,
waist circumference and fasting glucose concentrations. We
assessed the association of metabolites available on the
KORA platform with incident type 2 diabetes using the same
model specifications and applied fixed-effects meta-analysis
of all four cohorts. We tested the probability of binomial
probability test (bitest in STATA) for directional replication
using the binomial probability test.

Genetic association of metabolic loci with type 2 diabetes
To identify genetic variants regulating the metabolites identified
as being associated with incident type 2 diabetes, we extracted
results from the GWAS of metabolomics based on the KORA
and TwinsUK cohorts with up to 7824 adults [19]. We meta-
analysed GWAS results from ULSAM, PIVUS and TwinGene
for those metabolites that were not identified or did not have a
GWAS signal in KORA and TwinsUK data. A cut-off of
p<5×10−8 was used to denote genome-wide significance. To
assess the association of these variants with type 2 diabetes, the
publicly available data from the GWAS and Metabochip results
for type 2 diabetes, including up to 34,840 cases and 114,981
controls from the DIAbetes Genetics Replication and Meta-
analysis consortium [22], were accessed and for five genetic
variants we used a proxy in linkage disequilibrium with
r2>0.8. In additional analysis, we addressed the association of
the bile acid-regulating variant within CYP7A1, with other met-
abolic traits using the MR catalogue (www.mrcatalogue.
medschl.cam.ac.uk, accessed 03/03/2016).

Prediction of type 2 diabetes To determine whether metabo-
lites associated with prevalent type 2 diabetes and IFG could
improve type 2 diabetes prediction, we used Lasso penalised

Cox regression implemented via the glmnet package in R by
setting the overall penalty parameterα to 1 to select those with
the highest predictive value. Cohort identity and Framingham
diabetes risk score [9] were forced into the model. Model
choice was based on tenfold internal cross-validation and the
minimum λ achieved by adding exactly five of the 54 metabo-
lite biomarkers that were available in all three cohorts. We used
the combined ULSAM/PIVUS cohorts as a training set to de-
rive an additive β coefficient-weighted 5-metabolite risk score.
For validation in TwinGene, Cox proportional hazards regres-
sion re-weighted for the inverse of the sampling probability was
used to assess incremental improvement of adding the metab-
olite score to the Framingham risk score by likelihood ratio test
and C indices [23]. In TwinGene, information on parental his-
tory of diabetes was not available to include in the Framingham
diabetes risk score; thus, this variable was set to ‘none’.

Results

Non-targeted metabolomics of prevalent type 2 diabetes,
IFG and incident diabetes

Baseline characteristics of the included cohorts and the num-
ber of individuals with prevalent diabetes and IFG are shown
in Table 1. We found 338 metabolite features to be associated
with IFG and 975 features to be associated with prevalent type
2 diabetes in models adjusted for age, sex, BMI and waist
circumference in PIVUS and ULSAM combined. In the an-
notation step, these 1120 features were determined to originate
from at least 115 metabolites, of which 69 could be annotated
to key adducts of a single unique metabolite and were taken
forward to replication in TwinGene. Further, 17 additional
metabolites had high-quality spectra but no matching metab-
olite in our data bases and were labelled as ‘missing retention
time’ and taken forward to replication. Of the 86 metabolites
taken forward to replication, 70 were associated with at least
one of the two outcomes in TwinGene: 13 with both IFG and
prevalent type 2 diabetes, 53 with type 2 diabetes only and
four with IFG only (ESM Tables 1 and 2).

There were 78 incident events of type 2 diabetes in the
ULSAM cohort, 70 in the PIVUS cohort, 122 in the
TwinGene cohort and 88 in the KORA cohort. Of the 70 metab-
olites found to be associated with prevalent type 2 diabetes and
IFG, 36 were also associated with incident type 2 diabetes in the
meta-analysis of the three Swedish cohorts in crude models ad-
justed for age and sex at a 5% FDR and 15 metabolites in ‘fully
adjusted models’ additionally adjusted for waist circumference,
BMI and fasting glucose (p<0.05) (ESM Table 3). Of those 15,
deoxycholic acid, monoacylglyceride 18:2 and cortisol represent
a novel finding with the highest level of annotation confidence.
The comparison of analytical spectra to standard spectra is
shown in ESM Figs 1 and 2.
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Five of these 15 compounds (cortisol, γ-glutamyl-leucine,
2-methylbutyroylcarnitine, L-tyrosine and deoxycholic acid)
were part of the panel tested in the KORA cohort. The associa-
tion of 2-methylbutyroylcarnitine and tyrosine with incident type
2 diabetes in the age- and sex-adjusted models was confirmed,
although none of the fivemetabolites were associated in the fully
adjusted models (ESM Table 4). For all five metabolites, the
directions of effect estimates were the same in KORA as in the
Swedish cohorts and, when formally tested, the probability for
this distribution was significantly different from the null (bino-
mial probability test for 10/10 to be in the same direction,
p=0.002). A post hoc power calculation for replication at an
α of 0.05 is shown in ESM Fig. 3 and ESM Table 4.

All five metabolites assessed in KORA showed p<0.05 in
the combined meta-analysis (Table 2). In a sensitivity analy-
sis, we re-ran the meta-analysis excluding the male sex-only
cohort ULSAM (ESM Table 5) and obtained similar results.

Genetic association of metabolic loci with type 2 diabetes

Using published GWAS from KORA and TwinsUK [19], as
well as from a meta-analysis from ULSAM, PIVUS and
TwinGene, we identified a total of 12 metabolite-regulating ge-
netic variants for eight of the 15 metabolites at a genome-wide
significance level (p<5×10−8). The association of these genetic
variants with type 2 diabetes was assessed using published sum-
mary statistics from a large meta-analysis of GWAS for type 2

diabetes [22]. Four of the 12 genetic variants were found to be
associated with type 2 diabetes at a nominal p value threshold
(Table 3). First, a variant in the gene encoding cholesterol
7α-hydroxylase (CYP7A1)was found to be associated with both
decreased concentrations of the bile acid deoxycholic acid and
decreased risk of type 2 diabetes. We further investigated the
association ofCYP7A1with other metabolic traits using the larg-
est available GWAS results and found associations with higher
LDL-cholesterol and higher triacylglycerol levels (Table 4).
Second, genetic variants associated with lower concentrations
of sphingomyelin (SM) 33:1 (a variant within SYNE2 [upstream
SGPP1]) and ceramide phosphoethanolamine (CerPE) 38:2 (a
variant within GCKR), respectively, identified in ULSAM,
PIVUS and TwinGene), were found to be associated with lower
risk of type 2 diabetes. Third, a variant in MYRF (upstream of
FADS2) identified in ULSAM, PIVUS and TwinGene was
found to be associated with lower LysoPC 20:2 and increased
risk of type 2 diabetes.

Prediction of type 2 diabetes

In 1763 individuals comprising the PIVUS andULSAM cohorts
(70 and 78 incident events, respectively), a LASSO predictor
selection adjusted for cohort and Framingham diabetes risk score
resulted in a five-metabolite score that included tyrosine,
barogenin, LysoPC/phosphatidylcholine (PC)(O-16:1/0:0),
PC(O-18:1/0:0)/PC(P-18:0/0:0) and LysoPC(20:2). In the

Table 1 Baseline characteristics
of the four cohorts used in this
study

Characteristic TwinGenea ULSAM PIVUS KORA S4b

N (total) 1549 (subcohort)
81 (case-cohort)

1138 970 855

Prevalent diabetes 192 (12) 220 (19) 113 (12) –

IFG 444 (29) 249 (22) 337 (35) 325 (38)

No. of incident events of type 2 diabetes 122 78 70 88

Age (years) 68.0 ± 8.1 71.0 ± 0.6 70.2 ± 0.2 63.1 ± 0.4

% female sex 42 0 50 49

% current smoker 13 20 10 49

BMI (kg/m2) 26.0 ± 3.9 26.3 ± 3.4 27.1 ± 4.3 28.1 ± 4.0

Waist circumference (cm) 92.8 ± 11.8 94.9 ± 9.6 91.2 ± 11.6 94.5 ± 11.1

Fasting glucose (mmol/l) 5.7 ± 1.3 5.8 ± 1.5 5.9 ± 1.8 5.5 ± 0.5

HDL-cholesterol (mmol/l) 1.4 ± 0.4 1.3 ± 0.3 1.5 ± 0.4 1.5 ± 0.4

LDL-cholesterol (mmol/l) 3.7 ± 1.0 3.9 ± 0.9 3.4 ± 0.9 4.0 ± 1.0

Triacylglycerol (mmol/l) 1.3 ± 0.7 1.5 ± 0.8 1.3 ± 0.6 1.5 ± 0.8

Systolic blood pressure (mmHg) 141.0 ± 19.8 146.8 ± 18.7 149.1 ± 22.6 133.0 ± 19

Diastolic blood pressure (mmHg) 81.7 ± 10.5 83.7 ± 9.4 78.6 ± 10.2 80.0 ± 10

% taking antihypertensive medication 25 35 31 31

% taking lipid-lowering medication 17 9 16 11

Data are shown as mean± SD for continuous variables and as n (%) for binary variables
a Baseline characteristics are given for subcohort of TwinGene
b Replication cohort, individuals with prevalent type 2 diabetes are excluded

2118 Diabetologia (2016) 59:2114–2124



validation sample of 1394 fasting individuals without prevalent
diabetes and 122 incident events in TwinGene, the metabolite
score improved the Framingham diabetes risk model’s fitting
(χ2=7.371, p=0.007) and marginally improved discrimination
of incident diabetes events (C index for the Framingham diabetes
risk score of 0.848 [95% CI 0.793, 0.903] improved to 0.855
[95% CI 0.800, 0.910]). One SD increase in the five-metabolite
score, when added to the Framingham diabetes model, increased
the 10 year risk of type 2 diabetes by 29% (HR 1.294, 95% CI
1.071, 1.564).

Discussion

Using a non-targeted metabolomics approach, our study con-
firmed several known metabolites to be associated with incident
type 2 diabetes and also identified novel associations for three
compounds annotated with the highest level of confidence—
deoxycholic acid, monoacylglyceride 18:2 and the steroid hor-
mone cortisol. For fourmetabolites, we identified genetic variants
associated with both metabolite concentrations (at a genome-
wide significance level) and type 2 diabetes (at a nominal level).

Bile acid synthesis

The main finding of our study is the phenotypic and genetic
correlation of bile acid concentrations with type 2 diabetes. In

the present study, increased concentrations of three
12α-hydroxylated bile acids (deoxycholic acid, glycocholic
acid and glycodeoxycholic acid) were associatedwith incident
diabetes in the age- and sex-adjusted models. One of these,
deoxycholic acid, remained significant in the model adjusted
for BMI, waist circumference, age, sex and concentration
of fasting glucose. In a previous study, increased
12α-hydroxylated bile acid concentrations were linked to
worse insulin resistance [24]. Another study found elevated
concentrations of deoxycholic acid, but lower concentrations
of cholic acid, when persons with prevalent diabetes were
compared with healthy controls [25]. We note that out of four
12α-hydroxylated bile acids captured on our metabolomics
platform, three were associated with prevalent and incident
diabetes. The results from the current study highlight the com-
plex interactions between lipid metabolism, type 2 diabetes
and bile acid concentrations. In the liver, the enzyme choles-
terol 7α-hydroxylase (encoded by CYP7A1) is the rate-
limiting enzyme in the conversion of cholesterol to primary
bile acids (Fig. 2). Using a genome-wide approach, we found
that a genetic variant within CYP7A1 was associated with
decreased deoxycholic acid concentrations, decreased risk of
type 2 diabetes and increased concentrat ions of
LDL-cholesterol and triacylglycerols, which supports our ob-
servational findings.

The higher level of LDL-cholesterol in carriers of the bile
acid-increasing variant is likely due to a lower activity of the

Table 2 Metabolites associated with incident diabetes mellitus in the combined analysis with TwinGene, ULSAM, PIVUS and KORA S4

Metabolitea Annotation
confidence

Adduct form HR (95% CI) for
age- and sex-adjusted
models

p value I2 HR (95% CI)
for fully adjusted
models

p value No. of
cohorts

I2

Cortisol 1 M+H 0.85 (0.77, 0.94) 1.2 × 10−3 80 0.84 (0.76, 0.92) 4.1 × 10−4 4 78

γ-Glutamyl-leucine 2 M+H 1.48 (1.32, 1.67) 3.5 × 10−11 69 1.25 (1.10, 1.41) 4.1 × 10−4 4 68

LysoPC/PC(O-16:1/0:0) 3 M+H 0.69 (0.61, 0.78) 2.3 × 10−9 66 0.81 (0.71, 0.93) 2.8 × 10−3 3 0

2-Methylbutyroylcarnitine 2 M+H 1.38 (1.24, 1.53) 2.5 × 10−9 0 1.20 (1.06, 1.35) 3.7 × 10−3 4 30

Barogenin 2 M+H 1.38 (1.22, 1.57) 2.4 × 10−7 0 1.21 (1.05, 1.38) 6.4 × 10−3 3 0

L-Tyrosine 1 M+H 1.46 (1.30, 1.64) 3.4 × 10−10 3 1.17 (1.04, 1.32) 8.4 × 10−3 4 0

SM (33:1) 2 M+Na 0.83 (0.74, 0.92) 4.2 × 10−4 0 0.87 (0.77, 0.97) 0.01 3 0

LysoPC (20:2) 2 M+H 0.78 (0.70, 0.88) 2.8 × 10−5 19 0.85 (0.74, 0.97) 0.01 3 0

Monoacylglycerol (18:2) 1 M+Na 1.43 (1.24, 1.65) 8.2 × 10−7 62 1.23 (1.04, 1.46) 0.02 2 0

CerPE (38:2) 2 M+H 0.87 (0.77, 0.97) 1.3 × 10−2 0 0.87 (0.77, 0.99) 0.03 3 0

missing@tg43 4 1.55 (1.31, 1.83) 2.7 × 10−7 0 1.21 (1.01, 1.45) 0.03 2 0

SM (d18:2/18:1) 2 M+H 0.86 (0.77, 0.97) 1.0 × 10−2 0 0.88 (0.78, 0.99) 0.04 3 0

SM (34:2) 2 M+H 0.88 (0.79, 0.98) 2.2 × 10−2 0 0.89 (0.80, 1.00) 0.04 3 0

Deoxycholic acid 1 M+Na 1.27 (1.14, 1.41) 1.1 × 10−5 31 1.13 (1.00, 1.27) 0.04 4 0

PC (42:7) 2 M+H 0.80 (0.72, 0.90) 1.5 × 10−4 30 0.87 (0.77, 1.00) 0.04 3 0

HR per SD-unit of Log2-transformed metabolite increase and 95% CI are given for age- and sex-adjusted and fully adjusted (age, sex, BMI, waist
circumference and fasting glucose at baseline) models for 1-SD increase of log2-scaled metabolite increase. Only metabolites with p < 0.05 in the fully
adjusted models are shown
a For metabolites annotated at level 4, the metabolite is named ‘missing@retention time’ measured in TwinGene
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cholesterol 7α-hydroxylase, which will clear less cholesterol
from the circulation. The effect of the CYP7A1 variant on
LDL-cholesterol and type 2 diabetes is consistent with recent
findings that LDL-increasing variants in the gene encoding
3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and a
polygenic LDL-cholesterol risk score are both associated with
lower risk of diabetes [26, 27]. A variant in CYP7A1 decreas-
ing LDL-cholesterol has previously been linked to lower
fasting glucose [28]. The direction of effects, with higher

levels of bile acids in the circulation linked to increased risk
of diabetes, seems however counterintuitive, as bile acids are
increasingly being recognised as hormones that regulate
various metabolic processes in beneficial ways, including
increasing incretin secretion in the gut [29], although different
classes of bile acids affect downstream receptor signalling in
different ways, not all of which may promote glucose homeo-
stasis [30]. However, with regards to pharmaceutical applica-
tions, bile acid sequestrants such as colesevelam (approved for

Table 4 Association of the T allele CYP7A1 variant rs8192870 or its corresponding C allele of the proxy rs2326077 (r2 = 0.881) with metabolic traits

Phenotype Study Year β SE p value No. of controls No. of cases Unit

Type 2 diabetesa Morris et al (2012) [22] 2012 −0.033 0.012 8.1 × 10–3 114,981 34,840 log(OR)

Fasting glucosea Dupuis et al (2010) [36] 2010 −0.004 0.002 0.07 133,010 0 mmol/l

Log(fasting insulin)a Dupuis et al (2010) [36] 2010 −0.002 0.003 0.41 108,557 0 pmol/l

2 h fasting glucosea Dupuis et al (2010) [36] 2010 −0.010 0.011 0.37 42,854 0 mmol/l

LDL-cholesterola Global Lipids Genetics
Consortium (2013) [41]

2013 0.034 0.004 5.0 × 10−17 172,996 0 IVNT

Triacylglycerolsa Global Lipids Genetics
Consortium (2013) [41]

2013 0.018 0.003 5.4 × 10−7 177,766 0 IVNT

HDL-cholesterola Global Lipids Genetics
Consortium (2013) [41]

2013 0.004 0.004 0.22 187,069 0 IVNT

BMI Locke et al (2015) [42] 2015 0.001 0.004 0.88 235,991 0 INVT

Waist-to-hip ratio Shungin et al (2015) [43] 2015 0.006 0.004 0.19 144,548 0 INVT

Results are extracted from the largest available GWAS datasets
aMetabochip proxy rs2326077

IVNT, inverse normal transformed trait

Cholesterol

CA

Deoxycholic acid*

CYP7A1*

Intermediates 
(liver)

Tauro-CA

Glycodeoxy-
cholic acid*

Taurodeoxy-
cholic acid

Glyco-CA*

Primary bile acids

Secondary bile acids

Conjugated bile acids

Dehydroxylation in gut by bacteria

Conjugation in liver

CYP8B1

CDCA

LCA

Tauro-CDCA

Glyco-LCA Tauro-LCA
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12α-
hydroxylated 
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Fig. 2 Overview of bile acid
metabolism. Metabolites with
name in bold indicates that these
were measured on the platform.
*p< 0.05 for incident type 2
diabetes in sex- and age-adjusted
models. CA, cholic acid; CDCA,
chenodeoxycholic acid; LCA,
lithocholic acid
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lipid-lowering purposes) bind to bile acids in the gut and thus
increase CYP7A1 expression through feedback systems. The
drug results in lowered LDL-cholesterol through increased
bile acid production and has been approved for glucose-
lowering treatment in hyperglycaemia [31], although the
underlying mechanism for this effect is little explored and
stands in contrast to our results. To our knowledge, we present
the largest human sample establishing a possible common ge-
netic origin between dyslipidaemia, reduced 12α-hydroxylated
bile acid synthesis and lower risk of type 2 diabetes.

Phospholipid metabolism

Circulating concentrations of different LysoPC species have
been found to be reduced in diabetes, impaired glucose toler-
ance and coronary heart disease [2, 3, 8, 32, 33]. In the present
study, lower LysoPC(20:2) and its associated genetic variant
near FADS1/2 were found to be associated with higher risk of
type 2 diabetes. Fatty acid desaturases (encoded by fatty acid
desaturases gene family) introduce double bonds into saturat-
ed fatty acids and variants in this locus has previously been
linked to blood lipid concentrations [34], fatty acid concentra-
tions [35] and fasting glucose [36]. In our genetic analysis, the
direction of the effect was consistent with the observational
analysis, where an increased level of LysoPC(20:2) was asso-
ciated with a lower risk of type 2 diabetes. We speculate that
decreased expression of FADS genes likely increases the con-
centrations of saturated fatty acids in different lipids, which
may affect insulin sensitivity and insulin secretion and hence
diabetes risk.

SMs have also previously been linked to type 2 diabetes
[2]; however, to the best of our knowledge, their analogues,
CerPEs, have not. In our study, SM d18:2/18:2, SM 34:2,
SM (33:1) and CerPE 38:2 were all found to be inversely
associated with incident type 2 diabetes. CerPEs are pro-
duced in trace amounts together with SMs and are located
in the plasma membrane, but their functions are largely
unknown [37]. We found a genetic variant within SYNE2
just upstream of the sphingosine-1-phosphate phosphatase 1
gene (SGPP1) that was associated with SM(33:1) and type
2 diabetes, but in a direction different from that revealed by
the observational results. The sphingosine-1-phosphate
phosphatase 1 protein regulates sphingosine and long-
chain ceramide metabolism [38] and has previously been
associated with SM concentrations [39] and may play a role
in insulin secretion [40]. We further found that a variant in
the glucokinase regulator gene (GCKR) was associated with
lower CerPE 38:2 levels and lower risk of type 2 diabetes.
The encoded protein regulates the activity of glucokinase (a
key enzyme in glucose homeostasis) in the liver. Variants
within this locus are well-known markers for diabetes and
lipid traits.

Prediction

Addition of five metabolites to the established Framingham risk
score for diabetes did increase model fit significantly but added
very little (less than 1%) to discrimination. Future studies includ-
ing also the monosaccharides and polar amino acids that could
be detected by GC–MS would have the potential to define a
larger set of metabolites that also might increase discrimination.

Strengths and limitations

Strengths of the present study include the use of a non-targeted
metabolomics approach in four prospective cohorts and its
integration with genetics data to provide evidence for shared
causal pathways between several metabolites and type 2 dia-
betes. However, since some of the genetic variants (e.g.
GCKR, FADS2) were commonly associated with several me-
tabolites, a basic assumption for a Mendelian randomisation
study (non-pleiotropic effects of genetic instruments) was
violated, precluding analysis for causal directions. For
CYP7A1 and its association with our main findings on bile
acids, although its encoded enzyme is specific to bile acid
biosynthesis, it not suitable to disentangle the effect of bile
acids from those of their immediate precursor, cholesterol.

Only five of the 15 candidate metabolites could be analysed
in KORA due to different analysis methods. The KORA sam-
ple had limited power to detect true effect sizes, especially in the
fully adjusted models. Nevertheless, the magnitudes and direc-
tions of the associations found in the Swedish meta-analysis
and in KORA were similar, supporting the validity of the re-
sults. The KORA S4 cohort with targeted metabolite profiles
analysed on a different metabolomics platform from that used
in the present study was previously used to assess the associa-
tion of a limited number of metabolites (3 and 14, respectively)
with incident type 2 diabetes [2, 3], but the metabolites did not
overlap with the five assessed in KORA in the current study.

A limitation concerning generalisability is the inclusion of
mostly elderly white persons. Another limitation is that
ULSAM is a male sex-only cohort and this could have biased
the results if there were different concentrations of metabolites
in men and women. However, our sensitivity analysis where
we exclude ULSAM from the meta-analysis shows similar
results. Degradation of analytes is likely to reduce the power
to detect differences between groups but as long as there are no
differences in degradation among diabetes controls and those
with events, there will be no bias causing false-positive find-
ings. Again, results from the meta-analysis without ULSAM
(which was the study with the longest freezer storage time)
were similar to those of the full meta-analysis. Further, only
liquid chromatography was used for separation of metabolites
in the three Swedish cohorts; this limits the correct detection
and identification of monosaccharides and polar amino acids,
which have been highlighted in type 2 diabetes [1, 3]. It is
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therefore likely that a combination with other methods such as
GC–MS would have increased the number of metabolites dis-
covered, especially from glucose-related pathways, which in-
deed are of great interest for the present research topic. Finally,
we were not able to include family history of type 2 diabetes in
the Framingham diabetes risk score, which may have
overestimated the contribution of the metabolite risk score.

Conclusions

We identified novel metabolites that were associated with inci-
dent type 2 diabetes. A genetic variant linked to bile acid me-
tabolism was associated with type 2 diabetes and LDL-
cholesterol, suggesting shared causal pathways. Non-targeted
metabolomics linked with genetic data is a powerful approach
to discover new pathophysiological mechanisms linked to type
2 diabetes development.
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