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Abstract White adipose tissue (WAT) has key metabolic and
endocrine functions and plays a role in regulating energy ho-
meostasis and insulin sensitivity. WAT is characterised by its
capacity to adapt and expand in response to surplus energy
through processes of adipocyte hypertrophy and/or recruit-
ment and proliferation of precursor cells in combination with
vascular and extracellular matrix remodelling. However, in
the context of sustained obesity, WAT undergoes fibro-inflam-
mation, which compromises its functionality, contributing to
increased risk of type 2 diabetes and cardiovascular diseases.
Conversely, brown adipose tissue (BAT) and browning of
WAT represent potential therapeutic approaches, since dys-
functional white adipocyte-induced lipid overspill can be
halted by BAT/browning-mediated oxidative anti-lipotoxic ef-
fects. Better understanding of the cellular and molecular path-
ophysiological mechanisms regulating adipocyte size, number
and depot-dependent expansion has become a focus of interest
over recent decades. Here, we summarise the mechanisms
contributing to adipose tissue (AT) plasticity and function in-
cluding characteristics and cellular complexity of the various
adipose depots and we discuss recent insights into AT origins,
identification of adipose precursors, pathophysiological
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Abbreviations

AP Adipocyte progenitor

AT Adipose tissue

BAT Brown adipose tissue

BMP Bone morphogenetic protein

CD Cluster of differentiation

Cdh5 Cadherin-5

C/EBP CCAAT/enhancer-binding protein

EC Endothelial cell

ECM Extracellular matrix

FABP4 Fatty acid binding protein 4

FGF-2 Fibroblast growth factor 2

FOXC2 Forkhead box C2

GFP Green fluorescent protein

HFD High-fat diet

MAP4K4 Mitogen-activated protein 4 kinase 4
MMP Metalloproteases

MSC Mesenchymal stem cell

MYF5 Myogenic factor 5

NC Neural crest

PAX3/7 Paired Box 3/7

PDGF Platelet-derived growth factor

PDGFRo/3  Platelet-derived growth factor receptor o/f3
PI3K Phosphoinositide 3-kinase

PPARYy Peroxisome proliferator-activated receptor y
SAT Subcutaneous adipose tissue

SREBP1 Sterol regulatory element binding protein 1
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SVF Stromal vascular fraction

TZD Thiazolidinedione

UCP-1 Uncoupling protein-1

VAT Visceral adipose tissue

VEGF Vascular endothelial growth factor
WAT White adipose tissue

Wtl Wilms’ tumour 1

ZFP423 Zinc finger protein 423
Introduction

Obesity and its metabolic complications (e.g. type 2 diabetes,
cardiometabolic disorders) contributing to the metabolic syn-
drome represent one of the most important public health prob-
lems, with societal and economic implications urging for new
therapeutic strategies and effective social policies. White adi-
pose tissue (WAT) plays a key homeostatic role, not only by
ensuring efficient energy storage but also by its quick
mobilisation (lipids) to ensure peripheral demands. WAT is
highly vascularised and innervated as would be expected from
a sophisticated constituent of a hormonal homeostatic system
[1]. To be able to accommodate the excess energy during the
course of obesity, WAT undergoes various cellular and struc-
tural remodelling processes: (1) tissue expansion through co-
ordination of increased adipocyte size (hypertrophy) and/or
number (hyperplasia) [2]; (2) recruitment of inflammatory
cells [3] and (3) remodelling of the vasculature and the extra-
cellular matrix (ECM) to allow adequate tissue expansion,
oxygenation and mobilisation of nutrients [4, 5]. However,
when obesity and inflammation are sustained, these adaptive
homeostatic mechanisms fail, leading to WAT dysfunction
characterised by impaired secretion of adipokines, abnormal
lipid storage and adipogenesis, exacerbated fibrosis deposi-
tion and insulin resistance.

WAT is organised in discrete anatomical depots identified as
subcutaneous adipose tissue (SAT) and visceral adipose tissue
(VAT); the expansion of SAT and VAT contributes to obesity
and related complications [6]. The ‘adipose tissue expandabil-
ity model’ identifies the limited capacity and dysfunctionality
of WAT, preventing its expansion and accommodation of sur-
plus of energy, as key determinants for the onset and progres-
sion of obesity-associated metabolopathologies as a result of
ectopic deposition of toxic lipid species in metabolic organs
(i.e. muscle or liver [also known as lipotoxic insult]) [7].
Appropriate WAT plasticity and expandability seem to guard
against metabolic disorders [7]. Moreover, promotion of SAT
expansion to act as a buffer of lipids is a strategy that may limit
the deleterious metabolic effects of VAT [8]. Following a sim-
ilar concept, transplantation of SAT or removal of VAT in obese
mice reversed adverse metabolic effects of obesity and im-
proved glucose homeostasis [9, 10].
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There is also evidence that the deleterious effects mediated by
dysfunctional white adipocyte-induced lipid overspill can be
halted by the pro-oxidative anti-lipotoxic effects mediated by
brown adipose tissue (BAT) activation. The sympathetic nervous
system regulates this function through (3-adrenergic stimulation
of brown mature adipocytes’ dissipation of energy in the form of
heat mediated by mitochondrial uncoupling protein-1 (UCP-1)
activation. UCP-1-expressing multilocular adipocytes, termed
‘beige’ or ‘brite’ (brown-in-white) adipocytes, can also be found
interspersed among white adipocytes within SAT under condi-
tions requiring increased heat production (e.g. chronic cold ex-
posure). Increasing BAT/beige mass has been suggested as a
potential therapeutic approach to treat human obesity/diabetes
supported by recent studies reporting that, like rodents, humans
display highly metabolically active BAT [11-13]. BAT atrophy
is observed in obese individuals in association with increased
visceral fat, ageing and hyperglycaemia [11], suggesting that
defective BAT may exacerbate the development of obesity/com-
plications. However, it cannot be discarded that fat-mediated
thermo-insulation may have contributed to BAT regression in
these patients.

Departing from the previous evidence, two therapeutic
strategies have been tested: (1) improving adipose tissue
(AT) plasticity either by expanding anabolic functions of
white adipocytes and/or (2) increasing tissue thermogenesis
through activation of pre-existing brown adipocytes and/or
recruitment and differentiation of brown pre-adipocyte precur-
sors [14]. The success of these strategies may be limited by the
uncertainty regarding the identity and origins of adipocytes
from different depots and the limited information available
about how obesity-associated changes in cellularity/fibro-
inflammation influence WAT plasticity. Thus a better under-
standing of the molecular mechanisms and cellular mediators
that control AT plasticity and expansion is essential.

In this review, we discuss the current understanding of the
origins of WAT, the identity of white/brown/brite adipocyte
progenitors (APs) and how depot-specific vascularisation and
fibro-inflammation interact with adipogenesis/cell hypertro-
phy, including the recent insights highlighted by lineage-
tracing studies in mice and genetic/genomics data obtained
from humans. We will notably highlight the structural/
cellular differences in humans compared with rodent models.
Finally we discuss BAT plasticity and how obesity-associated
environmental cues can be targeted to improve tissue activa-
tion and global metabolic homeostasis.

Structural features involved in remodelling of the AT
depots

In addition to the metabolic/functional differences reported in
numerous studies [1, 15-17], the SAT, VAT and BAT depots
also exhibit differences at cellular and structural levels that
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may have an impact on tissue plasticity and remodelling
(Table 1). For instance, lean individuals display larger adipo-
cytes in SAT than in VAT whereas mouse studies have shown
the presence of smaller adipocytes in SAT than in retroperito-
neal VAT [1]. While this discrepancy between the two species
has yet to be elucidated, cellular heterogeneity in terms of
adipocyte size is also present among human SAT depots de-
pending on body distribution and functional and structural
characteristics (more specifically the ECM properties) [18].

In the context of obesity the fibrous ECM may become a
limiting factor for adipocyte size (discussed later in the re-
view). BAT differs from other fat pads at the morphological/
molecular level (i.e. vascularisation, innervation) and also by
virtue of its unique thermogenic capacity [14] (Table 1). This
depot is the dominant site of non-shivering thermogenesis in
rodents and is also highly present in infants, maintaining body
temperature and warming the blood flow of key organs. Of
note, BAT depots persist in human adults, preferentially

Table 1  Structural and cellular variables involved in AT remodelling: comparison between VAT, SAT and BAT

Variable

SAT vs VAT

BAT vs WAT

Adipogenic potential
Adipogenic genes

Anti-adipogenic genes
MSC markers

Vascularisation
Total vascular density
Capillary density

Vascular sprouting
Innervation

Neurogenic factors
Nervous network

Cellularity

Immune cells

SVF (except APs)

Adipocyte death/CLS
ECM

Tissue expression

Secretion

Higher expression of Cepbd, Ppary (Pparg),
Dkk2, Stat5 (Stat5a), Bmp2, Bmp4 [71T-¢

Lower expression of Gata2, Tgfb2 and Ppary [711*¢

Lower expression of Lif, Igfl, Igfbp7, Ctgf, Mgp,
Trib2, Pgnl/Bgn [T1]*¢

Lower compared with 0 VAT (obese) [110]>¢
Higher than oVAT of (obese) [112]%¢

Greater [112]°¢

Lower mRNA expression of Nnat and Nrg4
than gVAT [114]*¢

NA

Higher CD68" cells (obese adolescent) [109], but
lower compared with m/oVAT of lean [116]
and obese [117] individuals™®

Higher [71]*¢

Lower [78, 117]*?¢

Greater protein expression of type 1 collagen but
lower level of laminin (b/c) and fibronectin
(lean) [697*¢

Higher COL6A43 mRNA expression (lean/obese)
[1191°€

Higher secretion of THSB1/2, type 1 collagen,

SPARC, TIMP1. Lower secretion of laminin,
type 6 collagen and TGFB1 [1201°¢

Lower differentiation potential [106]*¢

Higher Pparg2 mRNA expression
(lean/obese) [107-109]*¢

Lower plasticity, mesenchymal stem
cells [106]*¢

Higher [111]

Greater [1117*, 3 capillaries per adipocytes
in BAT compared with 1 per adipocytes
in WAT [113]*¢

NA

Lower mRNA expression of Nnat than
gVAT but not Nrg4 [114]*¢

Greater number of noradrenergic
parenchymal nerve fibres [115]*¢

Lower haematopoietic population (CD45")
[106]1*¢

Lower F4/80-, CD68- and CD11b" cells

compared with iSAT/eVAT (lean/obese)
[92, 18]

NA

NA

NA

Comparative studies below were performed in WAT/BAT tissues from lean and/or obese rodents and humans or isolated SVF cells from various depots:
SAT (inguinal, iSAT in rodents) and VAT (gonadal [gVAT], epididymal [eVAT] in rodents; omental [0VAT] in humans)

#Rodents
® Humans
¢ WAT/BAT tissues
9Tsolated SVF cells

CLS, crown-like structure; NA, not available; SPARC, secreted protein acidic and cysteine rich; THSB1/2 thrombospondin-1/-2; TIMP1, tissue inhibitor

of metalloproteinase 1
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located in cervical, supraclavicular, mediastinal, paravertebral,
suprarenal and peri-renal areas [14]. Recent reports have
highlighted structural differences between rodents and
humans, where BAT deposits are described as being com-
posed of adipocytes displaying a phenotype more similar to
rodent beige/brite cells than to canonical brown fat [19].

AT progenitors and development

In humans, WAT forms during the second trimester of pregnan-
cy [20] and develops (like in other species) in an anterior to
posterior, rostral to caudal and dorsal to ventral direction [21].
The recently developed ‘AdipoChaser’ mouse model [2] pre-
cisely elucidated the SAT/VAT developmental timing in mice
enabling temporally controlled detection of mature adipocytes
and identification of newly formed adipocytes. This model re-
vealed that SAT adipocyte commitment and differentiation oc-
curs early during embryogenesis, in E14-E18, in both sexes
and that the number of adipocytes remains very stable postna-
tally. In contrast, epididymal adipocytes preferentially differen-
tiate postnatally. This process occurs gradually over a relatively
long period of time, after birth recruitment of brown-like-
adipocytes in SAT has occurred at approximately P10, at room
temperature, and disappears spontaneously at around P30.
Interestingly, these cells can re-emerge in response to cold or
to treatment with a 33-adrenergic agonist [22].

With respect to BAT development, lineage-tracing studies
using Engrailed-1 (En/)-CreERT-inducible mice crossed with
Rosa-floxed Stop-LacZ mouse, revealed that E14.5 is the
stage at which BAT becomes visible in mouse embryos [23].
However, the divergence between myoblast and BAT precur-
sors already occurs between stage E9.5 and 11.5 in mice [24].
In humans, BAT is detectable at birth, in early childhood and
also in adult individuals [11, 12], but the exact embryonic
stage at which it makes its first appearance is still unknown.

Embryonic origins of adipocytes Lineage-tracing studies
have shown that brown adipocytes and myocytes share com-
mon myogenic factor 5 (MYF5)", paired box 3 (PAX3)" and
paired box 7 (PAX7)" progenitors that originate in the paraxial
mesoderm [14, 25]. Given the absence of this myogenic sig-
nature in white adipocytes and their progenitors, it was con-
cluded that white adipocytes would originate preferentially
from MYFS5™ precursors. This assertion was recently chal-
lenged by a study in which the conditional deletion of Pten
driven by Myf5-Cre caused an overgrowth of BAT and also a
paradoxical overgrowth of specific WAT pads and the loss of
others [26]. Subsequent lineage-tracing studies have con-
firmed the presence of some MYF5" and PAX3" adipocyte
progenitors in WAT, indicating that white APs can derive from
both MYF5"/PAX3" and MYF5 /PAX3". Following on from

@ Springer

these studies, the adipocyte origin from MYF5 /PAX3™ line-
ages is still not clear.

In addition to a mesodermal origin for adipocytes, the neu-
ral crest (NC) also seems to give rise to a subset of adipocytes
localised in the salivary gland and ears. An in vivo lineage-
tracing approach using a Sox/0-Cre/Rosa26-YFP model,
where NC-derived cells are constitutively labelled, has pro-
vided evidence for the contribution of the NC to the adipocyte
lineage during normal development [27]. Similarly, another
cell fate mapping strategy in mice showed that the earliest
wave of mesenchymal stem cells (MSCs) in the embryo is
generated from sex-determining region Y-Box 1 (SOX1)"
neuroepithelium, in part through a NC intermediate stage [28].

Adipocyte progenitors in adult AT Determination of cell
surface markers of APs has been a priority in most studies
attempting to elucidate the developmental origin of the adipo-
cyte lineage and identify distinct cellular intermediates be-
tween MSCs and mature adipocytes. FACS technology has
been used extensively to isolate cell subpopulations from
WAT stromal vascular fraction (SVF) based on various cell
surface markers, which were then tested for their adipogenic
potential in vitro and in vivo after transplantation in
lipoatrophic A-Zip mice [29]. Following this strategy, APs
were identified as Lin /CD34/CD29"/Sca-1"/CD24" cells
able to form white fat when subcutaneously transplanted.

Recent investigations of the close temporal-spatial associa-
tion between angiogenesis and adipogenesis suggested that the
adipose niche is located adjacent to the growing vasculature
and that adipocytes may have endothelial origins. In particular,
lineage-tracing studies using the endothelial marker VE-
cadherin or the pre-adipocyte marker zinc finger protein 423
(ZFP423) also suggested that some brown and white adipo-
cytes could originate from endothelial progenitors [30, 31].
Similarly, Shan et al identified aP2-expressing progenitors in
SVF of both WAT and BAT [32]. In a more recent study,
perilipin“/adiponectin” pre-adipocytes were found to emerge
at embryonic day 16.5 in WAT and proliferated to form clusters
interacting with growing adipose vasculature until birth while
co-expressing stem cell markers such as cluster of differentia-
tion (CD)24, CD29 and platelet-derived growth factor receptor
« (PDGFRx) [33]. Some pre-adipocytes derived from
PDGFR 3" mural cells. This study indicates that the endothelial
origin of adipocytes is also embryonal. However, the view of
an endothelial source of adipocytes is challenged by some
lineage-tracing studies using other endothelial markers (i.e.
cadherin-5 [Cdh5] and tyrosine kinase with immunoglobulin-
like and EGF-like domain 2). Cdh5-expressing cells were
traced by using Cdh5-Cre:mT/mG and failed to show any
Cdh5-derived adipocyte precursors within the SVF. Analysis
performed with receptor tyrosine kinase 7ie2-Cre produced
similar negative results [34].
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Specific origins for VAT and SAT One major gap in adipo-
cyte biology is the incomplete understanding of the develop-
mental origins of WAT. A recent study showed that VAT but
not SAT arises from cells expressing the Wilms’ tumour 1
gene (Wtl) late in mouse gestation [35]. Wtl continues then
to be expressed in VAT progenitors into adult life. The authors
of this study also showed that VAT is lined by mesothelium
and provided evidence that this structure is the source of adi-
pocytes. Conversely, another study showed that the majority
of the precursor and mature subcutaneous white adipocytes in
adult C57BIl/6 mice are labelled by Prx/-Cre whereas few to
no brown adipocytes or visceral white adipocytes are labelled
[36].

In between white and brown: origins of beige adipocytes
Considering that beige adipocytes can arise from white APs by
in vitro chronic exposure to peroxisome proliferator-activated
receptor Y (PPARY) agonists, it is likely that they may share the
same origin as most white adipocytes [37]. Recent evidence
from adults suggests that beige adipocytes may form either
by interconversion from white adipocytes or by proliferation
and differentiation from specific precursors [2, 38]. Using mice
in which UCP-1-expressing cells are constitutively or transient-
ly labelled with fluorescent markers, beige adipocytes recruited
after cold exposure were found to originate directly from white
adipocytes. Although cold exposure has not yet been proven to
induce SAT browning in humans [39], a recent study showed
the presence of beige adipocytes in SAT of burns victims [40].
This is probably due to the chronically elevated circulating
levels of noradrenaline (norepinephrine) found in their blood
as part of a severe adrenergic stress response. Progressive re-
cruitment of UCP-1" multilocular adipocytes was observed in
serial SAT biopsies obtained from these patients, possibly
resulting from transdifferentiation of mature white cells.
Results supporting the ‘specific precursor hypothesis’ come
from a study using the ‘AdipoChaser model’ indicating that
cold-recruited beige cells are produced by clonal expansion of
a precursor cell [2]. This is consistent with reports that beige
adipocytes arise de novo in WAT in response to adrenergic
stimulation as indicated by tracking beige adipogenesis using
BrdU accumulation [41]. Similar lineage-tracking approaches
identified self-renewing PDGFRo" precursors as a significant
source of newly formed beige adipocytes; these PDGFRo"
progenitors are ‘bi-potential’, having the ability to produce both
beige and white adipocytes when cultured in vitro [41]. In
humans, native CD45/CD34"/CD31™ cells were identified ini-
tially as human white APs [42, 43]. However, when addition-
ally selected for the cell surface marker MSC antigen 1 they
showed potential to become both white and beige in response
to specific stimuli [44]. Beige adipocytes may also derive from
dedicated beige adipocyte precursors, as indicated by a study
characterising the in vitro adipogenic potential of immortalised
WAT- and BAT-derived precursors showing that some of the

WAT precursors differentiated preferentially into beige adipo-
cytes [19]. This suggests the existence of different types of
adipocyte precursors in WAT, differing in their potential to
produce beige adipocytes perhaps due to their lineage origins.
For example, PAX3™ or MYF5 ™ adipocyte precursors isolated
from WAT possess a higher potential to differentiate into
brown-like cell genes compared with PAX3" or MYF5" pre-
cursors, respectively [45, 46].

In adult humans, inducible ectopic brown-like/beige depots
have been observed in WAT surrounding the adrenal gland
when the medulla develops a catecholamine-secreting tumour
(i.e. phacochromocytoma) [47]. Brown adipose stem cells
were isolated from this peri-adrenal fat depot, which expresses
brite/classical BAT markers and high levels of UCP-1, and
their properties were compared with those of SAT precursors
from the same patients. The findings demonstrated that BAT
developing in peri-adrenal WAT derives from adult stem cells,
unlike WAT precursors, suggesting an independent origin of
the two fat depots.

SAT and BAT adipogenesis occurs during embryogenesis
while VAT adipocytes preferentially differentiate postna-
tally. While BAT originates from paraxial mesoderm, WAT
can have mesodermal and NC origins. White/brown adi-
pogenesis can be reinitiated in adults in response to posi-
tive energy balance by differentiation of APs located
within the vasculature. Whether the origin of a third class
of adipocytes, ‘beige/brite’ adipocytes, is the result of
white adipocyte trans-differentiation or differentiation of
specific precursors is still a matter of debate

Molecular and structural factors regulating
adipogenesis

Adipogenic cascade and molecular regulation White and
brown adipogenesis are complex processes requiring coordi-
nation of multiple regulatory and signalling pathways. One
family of proteins that contributes to the commitment of pre-
cursor cells (i.e. MSCs) to the white adipocyte programme is
represented by the bone morphogenetic proteins (BMPS).
While BMP4 induces differentiation of progenitor cells to
white adipocytes in both humans [48] and mice [49], BMP2
does this in mice only [49]. Conversely, other factors such as
fibroblast growth factor 2 (FGF-2) and activin A maintain
MSCs in an undifferentiated proliferating state. White adipo-
genesis is also characterised by cell cycle arrest and the induc-
tion of mature white adipocyte machinery involving three key
transcription factors: PPARYy2 [50], CCAT/enhancer-binding
proteins (C/EBPs) and sterol regulatory element binding
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protein 1 (SREBP1). This has been extensively described in
the literature [14] and is summarised in Fig. 1a.

As for white fat, brown adipocytes also need the induction
of PPARY2 and C/EBP« to reach their terminal differentiation.
However, differentiation of brown adipocytes requires the pres-
ence of BMP7. Interestingly, BMP7 alone can stimulate the
differentiation of brown pre-adipocytes and commit mesenchy-
mal precursors to a brown adipocyte cell fate in mice [51].
BMP7 upregulates brown fat-specific markers, such as UCP-
1, PRDM16 and PGC-10/f3, inhibiting the expression of anti-
adipogenic molecules, such as PREF-1, WNT10a or nectin. A
similar role has been described for BMP6 in both mice and

BAT WAT
a Brown pre-adipocyte
commitment
BMP7  MyF5+ MSCs /7
ZNF423, FGF2, ¢
PPARY2 activin, TGFB

= &% Wnt signalling commitment

BMP2/4
ZNF423,
PPARY2

Pre-adipocyte

differentiation

C/EBPa, PPARY2
FOXC2

PDRM16

MYF5~MSCs White pre-adipocyte

humans [52]. Moreover, BMP7 and BMP8b are known to act
as sensitisers of adrenergic signalling in mature brown adipo-
cytes, leading to an increase in the sympathetic tone [53]. There
are also other factors that direct the process toward a brown vs
white adipocyte cell fate. For example, forkhead box C2
(FOXC2) modulates the expression and activity of adrenergic
signalling molecules and PGCl« coordinates expression of
both mitochondrial and thermogenic genes [54].

Concerning beige adipocytes, regardless of whether they are
derived from transdifferentiation of white adipocytes or from
specific precursors [41, 55], their commitment towards a
brown-like phenotype is promoted in vivo and in vitro by cold

b c
Pericytes ECM
Pre-adipocytes;
Quiescent N ( Coll apg er:ll ) Degradation
endothelial cells Collagen Ill MMPs
Basement Tenascin ADAMT
membrane Fibronectin Cathepsins

Fibronectinn r \
'

Pre-adipocyte
differentiation
C/EBPB/3

Collagen ® ¢

Adipokines
FABP4

C/EBPa, PPARY2

LPL
C/EBP¢, SREBP1c

/% Mesenchymal

stem cells (MSCs)

Vascular
cells/precursors

Vascularisation
(endothelial cells)

- /White/brown jjéQNExtracellularmatrix
¥~ adipocyte precursors 21 (ECM)

£
%‘ Basement membrane

Fig. 1 BAT/WAT adipogenesis and associated tissue remodelling. (a)
Adipogenesis consists of a two-step process involving, successively, mes-
enchymal precursors, committed pre-adipocytes, growth-arrested pre-ad-
ipocytes, mitotic clonal expansion, terminal differentiation and mature
adipocytes. The first step of white adipocyte differentiation is the gener-
ation of pre-adipocytes from mesenchymal precursors (MSCs) MYF5™
(grey arrow) or MYF5" (brown arrows), driven by BMP4. By promoting
dissociation of the WISP2—ZNF423 complex, BMP4 allows nuclear en-
try of ZNF423 and PPARYy induction. Repression of ZNF521, which
negatively regulates ZNF423 by repressing EBF1, also constitutes an
early event in induction of white adipogenesis. The second step of adipo-
genesis is the differentiation of pre-adipocytes into mature adipocytes
(green arrow), a process that involves the activation of transcription fac-
tors C/EBP{3 and C/EBPS, first during mitotic clonal expansion of pre-
adipocytes and subsequently induction of C/EBP«x and PPARYy2, which
maintains the terminal differentiation of the adipocyte. Finally, SREBP1
is considered to be the third key transcription factor for adipogenesis,
inducing expression of adipocyte-specific genes such as FABP4,
adiponectin, GLUT4 (also known as SLC2A44), and LPL. C/EBP(, a
dominant inhibitor of C/EBP« and f3, is induced in late adipocyte differ-
entiation and has been proposed as an inhibitor of adipogenesis. Both
canonical and non-canonical Wnt signalling pathways negatively regulate
adipogenesis. 3-Catenin mediates canonical Wnt signalling by activating
cyclin D1, conversely with inhibition of PPARy and C/EBP«, causing a
further decrease in adipogenesis. Similar to WAT, commitment of brown
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pre-adipocytes from MYF5™ MSCs (brown arrows) and differentiation
into brown adipocytes (orange arrow) involves transcriptional control by
C/EBPs and PPARY2 while some transcription factors, such as FOXC2,
PGCla and PDRM16, are specific to brown cell fate leading to brown-
specific thermogenic markers such as UCP-1. Recent evidence suggests
that both brown and white adipocytes may derive from endothelial pre-
cursors (red arrows). (b) Angiogenesis is driven by angiogenic factors
produced by adipocytes and vascular cells. VEGF-A is considered the
main pro-angiogenic factor of AT. VEGF-A binds to VEGF receptors 1
and 2 to drive the migration of so-called ‘tip cells’, the ECs at the tip of a
new capillary. Other growth factors such as ANGPTL4 and FGF-2 drive
the migration and proliferation of stalk cells, the endothelial cells between
the tip cells and the existing vessel that drive elongation. The new vessel
is stabilised by the production of ECM components, forming the base-
ment membrane, and the recruitment of pericytes. (¢) Pre-adipocytes are
surrounded by a fibrous ECM enriched in collagen I, collagen III and
fibronectin replaced by the basement membrane, a specialised ECM sur-
rounding mature adipocytes composed of collagen IV, collagen XVIII,
entactin and laminin. ECM remodelling during adipogenesis involves
degradation of pre-adipocyte ECM by proteases (MMPs, ADAMT and
cathepsins). This liberates growth factors and matricellular proteins that
are important for the synthesis of the new mature adipocyte basement
membrane. ADAMT, a disintegrin and MMP with thrombospondin mo-
tifs; ANGPTLA4, angiopoietin-like 4; EBF1, early B-cell factor 1; LPL,
lipoprotein lipase
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stimulation and/or (3; agonist or T3 similarly to brown cells.
The exception is that beige adipogenesis does not require
C/EBPx [56]. Furthermore, a study performed in humans re-
cently showed that, in addition to regulate white adipogenesis,
BMP4 promotes the induction of a beige phenotype [57]. Other
members of the BMP family have been reported to promote
WAT browning in mice (i.e. BMP7 and BMP9) and humans
(i.e. BMP7) [58, 59].

Some adipokines and adipocytokines such as adiponectin
[60] are described to regulate BAT adipogenesis. Others such
as IL-6 seem to be required for cold-induced UCP-1 expression
in SAT [61]. Moreover, apelin promotes differentiation of brown
adipocytes and browning of white fat by interacting with the APJ
(apelin) receptor, which activates phosphoinositide 3-kinase
(PI3K)/Akt and AMP-activated protein kinase signalling [62]
while suppressing white adipogenesis [63].

Vascular and ECM remodelling in adipogenesis Appropriate
vascularisation is required to ensure the development and growth
of AT. Concomitantly with adipogenesis, angiogenic factors,
such as FGF-2, vascular endothelial growth factor (VEGF) and
human growth factor, are produced, mostly by APs, inducing a
robust angiogenic response. AT growth requires an interaction
between endothelial cells (ECs) and pre-adipocytes guiding cell
migration via FGF- and VEGF-dependent pathways. The newly
formed vessel is finally stabilised by the production of ECM and
the recruitment of pericytes [4] (Fig. 1b). Overexpression of a
dominant-negative form of PPARy or the blockade of VEGF
receptor 2 signalling by neutralising antibodies inhibits adipo-
genesis through impairment of both AT growth and angiogene-
sis. Conversely, pro-adipogenic factors such as PPARy activa-
tion also promotes angiogenesis and EC motility and boosts
expression levels of VEGF, VEGF-B, angiopoietin-like factor-
4 [64] and BMPs, which promote endothelial specification and
subsequent venous differentiation during embryonic develop-
ment [65].

During adipogenesis, formation and expansion of the lipid
droplet requires a morphological change of the fibroblastic pre-
adipocyte involving remodelling of both actin cytoskeleton
[66] and ECM (Fig. 1c). This process requires enzymes such
as metalloproteases (MMPs) that catalyse the degradation of
collagen. Deficiency in MMP 9/10/12 does not affect adipo-
genesis, whereas single allele deficiency of MMP14/2 impairs
it. Moreover, knockout mice for Mmp3/11/19, fed a high-fat
diet (HFD) display marked hypertrophy of AT [67, 68].
Given that several growth/angiogenic factors such as VEGF
are sequestered in the ECM, MMPs also seem to control pre-
adipocyte differentiation and microvessel maturation by regu-
lating degradation of the ECM.

Insulin also contributes to ECM turnover through regulation
of the expression of enzymes involved in the post-
transductional modification of some proteoglycans such as sul-
fatase-2. Moreover, insulin acts at a post-transcriptional level to

increase production of mature type I collagen, collagen V frag-
ment and C-terminal peptides of type I, II and III collagen.
Insulin also increases the expression of prolyl-4-hydroxylase,
involved in collagen stabilisation. Finally, COL6A2 and TSP1
have been identified as PPARYy target genes. Of note, the com-
position of ECM and its evolution during adipogenesis differs
among fat depots. For example, expression levels of collagen
IV and fibronectin are higher in VAT than in SAT, while in
contrast, SAT is highly enriched in type I collagen [69]
(Table 1).

Differences in adipocyte precursor pool and adipogenesis
in AT depots Anatomical localisation influences adipogenesis
in both humans and rodents with respect to proliferation and
differentiation of SVF or APs. SVF cells isolated from human
and rodent SAT display greater differentiation capacity com-
pared with those from VAT (Table 1). This has been linked to
higher gene expression of regulators of adipogenesis such as
CEBP« or fatty acid binding protein 4 (FABP4), as well as
greater response to PPARYy agonists, thiazolidinediones
(TZDs). Consistently, TZD treatment enhanced fat storage pref-
erentially in SAT [70]. Similarly to SVF cells, APs from SAT
display higher expression levels of pro-adipogenic genes
(PPAR~y [PPARG], CEBPA, BMP2, BMP4 and DKK?) and dif-
ferentiate better than those from VAT depot in response to clas-
sical adipogenic stimulus, the VAT requiring additional
adipogenic factors such as BMP2/4 [71]. This might be partly
explained by intrinsic differences of VAT APs exhibiting a ‘mes-
enchymal stem cell’-like phenotype with higher expression of
MSC markers (leukaemia inhibitory factor, connective tissue
growth factor and matrix Gla protein) and adipogenic inhibitors
such as GATA-binding protein 2 and TGFB2. Finally,
clonogenic assays and in vivo BrdU studies in adult C57BL/6
mice showed that APs are eightfold more abundant in SAT than
VAT [72, 73].

Adipogenesis and subsequent AT expansion require ap-
propriate plasticity ensured by efficient remodelling of
vasculature and ECM, both processes orchestrated by
angiogenic/growth factors and ECM proteases. These
processes are also influenced by the anatomical
localisation and differentiation capacity of the precursor
pools of the different AT depots

Difference in AT plasticity between depots in obesity

WAT expandability: hypertrophy vs hyperplasia in different
fat depots Adipocyte hypertrophy is a hallmark of WAT en-
largement in obesity and is typically associated with metabolic
alterations and increased risk of developing type 2 diabetes,
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independently from total fat mass. In humans, adipocyte size
is positively correlated with glucose intolerance and
hyperinsulinaemia [74]. Moreover, inflammation and suscep-
tibility to cell death are both increased in adipose depots with
larger adipocytes [75]. Given the differences in adipocyte
size/AP pool between SAT and VAT, it is not unexpected that
plasticity is also differently affected, particularly when
stressed by positive energy balance (Fig. 2a). Similarly, the
percentage of small cells is higher in SAT and omental VAT in
non-diabetic individuals than in diabetic obese individuals
[76]. Recently, an HFD challenge time course experiment in
mice revealed intra-depot differences in immune cell compo-
sition in relation to WAT expandability [77]. This study also
indicated that gonadal VAT is the primary fat depot that ex-
pands during the initial phase of obesity, followed by the SAT
and mesenteric VAT. Once the mice had reached a body
weight of 40 g, gonadal VAT stopped expanding further, in
contrast to SAT and mesenteric VAT. Reaching this maximal

Subcutaneous WAT

expansion coincides with increased adipocyte death rate and
formation of crown-like structures, inflammation and tissue
dysfunction associated with insulin resistance and liver dam-
age [78]. Similarly, another study has suggested that increased
visceral mass predominantly results from adipocyte hypertro-
phy whereas hyperplasia is predominantly seen in SAT [73].
The resistance to differentiation observed in VAT APs and the
fact the cells are more prone to cell death than those from SAT,
may explain why hypertrophy preferentially occurs in VAT
while SAT expands through hyperplasia as a result of the
higher progenitor number and/or activity. Consistently, the
number of small, early differentiated adipocytes, isolated from
human SAT-derived SVF, correlates positively with subcuta-
neous adiposity (particularly in the femoral SAT), and nega-
tively with VAT accumulation [79]. These data indicate that
the abundance of adipocytes/APs in the SAT depots is an
important determinant of SAT expandability and functionality.
MSCs and pre-adipocytes with proliferative and adipogenic
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Fig. 2 SAT and VAT pathological remodelling in obesity and potential
strategies. (a) WAT undergoes cellular and structural remodelling in obe-
sity, characterised by the following: (1) adipocyte hypertrophy associated
with production of inflammatory factors (VAT > SAT); (2) accumulation
of immune cells such as macrophages organised around dead adipocytes
(VAT > SAT); (3) decreased capillary density associated with EC dys-
function (i.e. activation, inflammation and senescence) (VAT > SAT); (4)
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activation of fibroblasts and APs (SAT > VAT) leading to fibrosis depo-
sition and decreased tissue plasticity (SAT > VAT). (b) Differential strat-
egies between WAT and BAT depots to prevent obesity-related disorders,
targeting tissue plasticity/remodelling and response to sympathetic tone,
to promote healthy SAT expansion and browning, conversely with limited
VAT expansion and lipotoxic action, and BAT activation and recruitment
of APs
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capacity in adult WAT have recently been observed. For in-
stance, while '*C birth-dating experiments suggest that the
number of adipocytes in SAT is relatively fixed in adulthood
independently of BMI, there is now evidence for AP prolifer-
ation in human obesity [80]. Specifically, the number of adi-
pocytes is higher in obese than in lean individuals, even after
severe weight loss, indicating that increased adipocyte forma-
tion in obesity has lifelong effects on AT homeostasis and
WAT mass. In mice, an HFD increases adipogenesis in SAT/
VAT of young animals but only in VAT of adults. Thus, a
reduction in self-renewing division primarily in SAT might
explain this phenomenon and suggests that metabolic disease
ensues due to a primary failure of SAT plasticity [81].
However, it has been demonstrated recently that increased
VAT mass in obese humans is primarily determined by adipo-
cyte number rather than adipocyte hypertrophy [82]. Two in-
dependent studies using cell lineage tracing supported human
data highlighting higher hyperplasic capacity in VAT compared
with SAT during the development of obesity [2, 72]. In the
murine model ‘AdipoChaser’, Wang et al showed that the main
contributor to tissue expansion is hypertrophy during the first
month of an HFD [2]. After prolonged exposure (i.e. <l month)
to HFD, a wave of adipogenesis is initiated preferentially in
epididymal AT, whereas only negligible levels of adipogenesis
occur in SAT depots. Similarly, Jeffery et al observed increased
formation of adipocytes exclusively in VAT after 8 weeks of
HFD, using the adiponectin-CreER;mT/mG mouse model to
track newly formed adipocytes [72]. This was associated with
increased proliferation of APs after the first week on HFD in
VAT, but not in SAT, according to BrdU analysis. Timing dif-
ferences between these studies could have contributed to these
discrepancies considering that BrdU analysis of the study in-
volving the AdipoChaser mouse on mice fed HFD was for an
extended period of 12 weeks in comparison with the
adiponectin-CreER;mT/mG mouse. Taken together, this data
suggests that despite characteristically increased cellular prolif-
eration in SAT, adipogenesis may be restricted to VAT at the
onset of diet-induced obesity (Fig. 2a).

Origin of newly formed adipocytes in obesity In a study in
mice, an 8 week HFD led to formation of new adipocytes in
VAT, associated with activation and proliferation of
Lin Scal 'CD29"CD34" (CD24" and CD24") adipose pro-
genitors through the PI3K—Akt2 dependent pathway [72].
Interestingly, adipogenesis in response to the HFD did not
require Akt2 suggesting a distinct molecular mechanism in
obesogenic adipogenesis. This study also showed that APs
begin to proliferate only 1 week after the start of the HFD
suggesting that AP activation and proliferation in obesity oc-
cur before signals produced in response to hypertrophic adi-
pocytes that have reached their maximal storage capacity, at
least in the visceral depot. Moreover, the process of forming
the mouse fat pad during development can be very different

from the route by which new adipocytes are recruited in re-
sponse to overnutrition.

A subset of bone-marrow-derived circulating progenitors
can contribute to adipogenesis as suggested by the small pop-
ulation (2—7%) of green fluorescent protein-expressing
(GFP") adipocytes resulting from transplantation of (GFP™")
bone-marrow-derived cells into mice [83]. This adipogenic
process could be optimised (up to 8-25%) in the presence of
pro-adipogenic compounds or an HFD. Lineage analysis
using LysMcreROSAflox/STOP mice in which LacZ expres-
sion is restricted to the myeloid lineage revealed the presence
of labelled mature adipocytes, suggesting that bone-marrow-
derived adipocytes arise from myeloid progenitor cells [84]. A
recent study of 65 individuals who underwent allogeneic bone
marrow or peripheral blood stem cell transplantation showed,
by taking advantage of genomic differences inherent to donor
and recipient cells and performing both bulk and single-cell
analyses, that ~10% of bone marrow serves as a reservoir for
AP in SAT, a contribution that increases up to 2.5-fold in
obese individuals [85]. However, the haematopoietic origin
of adipocytes remains controversial since another lineage-
tracing study using a Vav/-Cre; R26R-mTmG knock-in mod-
el, where Vavl is a proto-oncogene expressed in the
haematopoietic and lymphoid systems, revealed that adipo-
cyte precursors and mature adipocytes from the different
WAT depots were negative for the fluorescence [34].

Hypertrophy preferentially occurs in VAT, while hyper-
plasia is more characteristic of SAT expansion due to
higher progenitor number and/or activity in both human
and rodents. However, in chronic states of obesity it is
common that SAT adipogenesis is impaired while VAT still
expands and contributes to metabolic alterations. Although
still controversial, some studies have reported the contri-
bution of haematopoietic precursors to newly formed adi-
pocytes in obesity

Pathological regulation of adipogenesis

Impaired adipogenesis in obesity Failure of molecular effec-
tors of lipid metabolism could at least partly explain dysregu-
lated lipid storage and mobilisation. In obesity, expression of
adipogenic genes (i.e. PPARY2, FABP4, FAS) is decreased and
this is further exacerbated in insulin resistance and type 2
diabetes [86]. Among the different studies highlighting the
impairment of adipocyte differentiation in obesity one showed
a reduced proportion of committed pre-adipocytes in SVF
cells from SAT in obese individuals [87]. Interestingly, low
SAT adipogenic rates are strongly associated with visceral
obesity, omental adipocyte hypertrophy and metabolic
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dysregulation, independent of BMI [88]. Also of interest, SAT
pre-adipocytes express high levels of mitogen-activated pro-
tein 4 kinase 4 (MAP4K4), a kinase induced by TNF« which
is known to inhibit PPARYy and subsequent adipogenesis [89].

Adipogenesis and fibro-inflammation The effect inflamma-
tion has of inhibiting adipogenesis is relatively well characterised
[90]. Chronic production of inflammatory factors in obesity re-
sults from infiltration and accumulation of immune cells. Among
them, pro-inflammatory macrophages are recognised as main
effectors, impairing adipogenesis in WAT [91]. The role of im-
mune cells in mediating impairment of brite adipogenesis has
also been reported [44]. In fact, inflammation also occurs in BAT
from obese mice [92] and inflammatory factors produced by
macrophages may inhibit brown adipogenesis [93].

The first wave of WAT accumulation of macrophages dur-
ing early phases of obesity is essential for healthy tissue ex-
pansion and remodelling [94] and if these macrophages be-
come inflammatory they disrupt ECM homeostasis, particu-
larly when the inflammatory insult is sustained, leading to
fibrosis deposition. Several studies have reported that the
overexpression of ECM components observed in AT from
obese individuals and genetically/nutritionally induced obese
mice, is linked to metabolic dysfunction causing insulin resis-
tance and liver damage [5, 95]. In addition, fibrosis has a
direct negative influence on AT tissue expansion in obesity
through impairment of adipogenesis. Several pro-fibrotic fac-
tors have been shown to impair human pre-adipocyte differ-
entiation. TGF-f3 and related members such as activin A are
induced in obesity and negatively regulate adipogenesis.

PDGFR«" APs have also been suggested to promote WAT
fibrosis [96]. The platelet-derived growth factor (PDGF) is an
important profibrotic signal that binds the receptor tyrosine
kinases PDGFR«x and PDGFR{ [97]. A Nes-Cre strategy
used to lineage trace pericytes and adventitial cells in WAT
showed that despite little contribution of Nes-Cre/Tomato™
cells to WAT development in young mice, an HFD challenge
significantly increases recruitment of PDGFR" cells [96].
Moreover, in vitro these cells were able to differentiate into
adipocytes. However, in vivo activation of PDGFR« signal-
ling causes fibrosis [96]. The importance of PDGFR« signal-
ling in obese WAT fibrosis remains to be tested, but it is
tempting to speculate that PDGFR« activation could cause
cell-autonomous fibrosis by perturbation of progenitor
function.

Fibrosis limits AT expansion Fibrosis may also play a direct
central role in the expandability of WAT by physically limiting
adipocyte hypertrophy [95] (Fig. 2a). In obese mice, WAT
fibrosis precedes development of other metabolic complica-
tions such as liver damage [78]. Other studies, essentially
based on mouse models deficient for ECM or related proteins,
support this hypothesis. For instance, increased type VI
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collagen deposits can be seen in SAT of obese individuals in
association with insulin resistance [98, 99]. Genetic ablation
of collagens or remodelling enzymes profoundly affects adi-
pocyte size and leads to metabolic consequences. Adipocyte
hypertrophy in the absence of fibrotic deposits and inflamma-
tion develops in ob/ob mice lacking collagen VI in WAT
[100]. Despite their severe obesity, these mice are protected
from metabolic complications. This suggests that in addition
to limiting adipocyte hypertrophy, fibrosis might also impair
adipocyte functionality [95, 101].

If accumulation of pericellular fibrosis in SAT is deleteri-
ous, there is some recent evidence showing that the fibrotic
process in VAT of obese mice limits tissue expansion and
related metabolic disorders [102]. In particular, this study re-
vealed that HFD-fed mice with /rf5 deletion in macrophages
display WAT remodelling with accumulation of non-
inflammatory macrophages (i.e. involved in ECM remodel-
ling) in VAT leading to fibrosis deposition and limitation of
tissue expansion. However, in this case these changes were
associated with improved insulin sensitivity.

Given that the amount and activity of BAT also decreases
with excess nutrients and fibro-inflammation, fibrotic BAT
may exacerbate the development of obesity/complications.
Recent evidence also suggests that inflammation and fibrosis
negatively affect BAT functions highlighting the role of some
molecular candidates involved in vasculature (e.g. VEGF) and
ECM turnover, such as TGF-f3, endotrophin and microfibril-
associated glycoprotein-1 [103—105].

Adipogenesis is impaired in obesity as a result of a chronic
fibro-inflammatory environment where the increase of
cytokines and ECM proteins disrupts AP differentiation
and promotes activation of fibrotic signalling. In addition,
fibrosis mechanically limits tissue plasticity, contributing
to metabolic alterations

Concluding remarks and future perspectives

Bearing in mind interspecies differences, we suggest that the
pathological effects of obesity and related metabolic complica-
tions maybe ameliorated by the following: (1) improving the
nutrient storage capacity of SAT and simultaneously limiting
the storage capacity of VAT by targeting the AT fibro-
inflammatory environment; (2) increasing the recruitment ca-
pability of WAT precursors and, as a consequence, WAT’s ex-
pandability potential and/or (3) increasing BAT mass/activity
and SAT browning/beige adipocyte recruitment (Fig. 2b).
These strategies will allow the maximisation of the energy-
dissipating potential of thermogenic brown and beige adipo-
cytes. In our opinion, this achievement will only be possible
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with a better understanding of the developmental origins, as
well as molecular and physiological nature and plasticity, of
adipocytes forming different AT depots in humans during the
onset of obesity. This will provide a rationale for translational
strategies to improve WAT expandability and brown/beige cell
recruitment and activation, moving from rodent models to a
clinical context and later on success.
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