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Abstract The interactions between c-Kit and its ligand, stem
cell factor (SCF), play an important role in haematopoiesis,
pigmentation and gametogenesis. c-Kit is also found in the
pancreas, and recent studies have revealed that c-Kit marks a
subpopulation of highly proliferative pancreatic endocrine
cells that may harbour islet precursors. c-Kit governs and
maintains pancreatic endocrine cell maturation and function
via multiple signalling pathways. In this review we address
the importance of c-Kit signalling within the pancreas, includ-
ing its profound role in islet morphogenesis, islet vascularisa-
tion, and beta cell survival and function. We also discuss the
impact of c-Kit signalling in pancreatic disease and the use of
c-Kit as a potential target for the development of cell-based
and novel drug therapies in the treatment of diabetes.
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Abbreviations
c-KitWv/+ Heterozygous c-Kit Wv mutant mice
c-KitβTg Transgenic mice with beta cell-specific

c-KIT overexpression
ESC Embryonic stem cell
FasR Fas receptor
GSK3β Glycogen synthase kinase 3β

GWAS Genome-wide association studies
HFD High-fat diet
IR Insulin receptor
MAPK Mitogen-activated protein kinase
NGN3 Neurogenin 3
PDGFR Platelet-derived growth factor receptor
PDX-1 Pancreatic and duodenal homeobox 1
PI3K Phosphoinositide 3-kinase
SCF Stem cell factor (s- soluble m- membrane)
SFK Src family of tyrosine kinases
siRNA Small interfering RNA
SNP Single nucleotide polymorphism
SOCS Suppressor of cytokine signalling
STZ Streptozotocin
VEGF-A Vascular endothelial growth factor-A

Introduction

Diabetes mellitus, characterised primarily by a disturbance in
glucose homeostasis, is widely recognised as a global epidemic.
Type 1 and type 2 diabetes mellitus constitute the two main
types of diabetes. Type 1 diabetes mellitus is associated with
absolute insulin deficiency as a consequence of autoimmune-
mediated destruction of beta cells in the pancreas [1]. In con-
trast, type 2 diabetesmellitus is characterised by a failure of beta
cells to compensate for systemic insulin resistance [1]. In both
diabetic states, beta cells are exposed to a hyperglycaemic en-
vironment that results in the progressive deterioration of beta
cell function and the induction of beta cell apoptosis. Of note,
insulin resistance is neither necessary nor sufficient to cause
diabetes, whereas beta cell dysfunction is the primary cause
of both types of diabetes mellitus. It follows that a major aim
for diabetes research is to determine how to restore and preserve
beta cell function. Therefore, understanding the factors that
govern beta cell expansion and survival in the pancreas is
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essential. One such factor currently under examination is c-Kit,
a receptor tyrosine kinase, and its ligand, stem cell factor (SCF).
The binding of SCF to c-Kit results in its activation, which
mediates survival, migration and proliferation in multiple cell
types, including pancreatic beta cells. This review provides a
brief overview of SCF–c-Kit biochemistry and their role in
organ development. The current understanding of c-Kit in the
developing pancreas, especially with regard to islet formation in
both humans and rodents, is summarised. Furthermore, we dis-
cuss c-Kit as a marker and maintenance factor for pancreatic
stem/progenitor cells, providing new insights into the signal
transduction machinery by which c-Kit regulates beta cell sur-
vival and function under normal and diabetic physiological
conditions.

c-Kit and SCF

Structure of c-Kit and SCF

c-Kit is a cellular homologue of the v-Kit oncogene. It is a
member of the type III group of receptor tyrosine kinases,
encoded by the W locus on chromosome 4 (4q11-21) in
humans, and on chromosome 5 in mice [2, 3]. Structurally,
c-Kit is closely related to platelet-derived growth factor recep-
tor (PDGFR), sharing 63% homology with the tyrosine kinase
sequences and 53% homology with the amino terminus of the
kinase domain [4]. Similar to PDGFR, c-Kit consists of an
extracellular region comprising five Ig-like domains, a single
membrane-spanning region and a cytoplasmic region

containing a hydrophilic kinase insert domain (Fig. 1a). The
first three domains form the ligand-binding pocket, while the
fourth and fifth domains play a critical role in c-Kit monomer
positioning and dimerisation [5]. A similar ligand-binding
mechanism has been proposed for PDGFR. Like PDGFR,
the intracellular portion of c-Kit consists of a juxtamembrane
domain with an ATP-binding region, a phosphotransferase
region split into two domains by a kinase insert and a
COOH-terminal tail. Most of the phosphorylation sites are
located in the cytoplasmic region and are important for trans-
ducing intracellular activation signals.

SCF is a product of the Sl locus, mapped to chromosome
12 in humans and chromosome 10 in mice [6]. There are six
known SCF transcripts in humans and four in mice, but two
alternative transcripts are predominantly synthesised in the
pancreas, as membrane-bound forms of 220 or 248 (mSCF)
amino acids (Fig. 1b). The protein structure of both mSCF
forms includes an extracellular domain, a transmembrane
domain and an intracellular region. In humans, SCF 248 con-
tains a proteolytic cleavage site, possibly accelerating the pro-
duction of soluble SCF (sSCF) 165 by post-transcriptional
modification. However, both SCF 220 and 248 can be cleaved
in mice to generate monomeric sSCF (Fig. 1b) [7].
Dimerisation of mSCF makes it more biologically active than
its monomeric counterpart [8]. mSCF also results in more
persistent c-Kit activation and prolonged receptor lifespan,
whereas sSCF induces relatively transient receptor activation
and enhances receptor degradation [9]. SCF is produced and
released by various cells, including fibroblasts, keratinocytes
and endothelial cells [10, 11]. It has also been reported that
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Fig. 1 Structure of c-Kit and SCF. (a) c-Kit has extracellular, transmem-
brane and intracellular regions. The extracellular region consists of five
Ig-like domains. The transmembrane region keeps c-Kit attached to the
cell membrane. The intracellular region contains two kinase domains split

into two parts by the kinase insert domain [4, 5, 10–13]. (b) sSCF is
generated by cleavage of mSCF (220 or 248) [6–9, 14, 15]. Primary
proteolytic cleavage sites are indicated by the arrows
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both Scf (also known as Kitl) mRNA and protein expression
occur in adult mouse islets [12].

SCF and c-Kit signalling pathways

Receptor activation c-Kit exists as a monomer and is stimu-
lated to form homodimers following binding of SCF to the
first three Ig-like domains of c-Kit [13]. The subsequent inter-
action between Ig-like domains 4 and 5 in adjacent c-Kit
monomers works to further stabilise c-Kit dimerisation,
allowing correct positioning and efficient trans-phosphoryla-
tion of its cytoplasmic kinase domains [14, 15]. The
juxtamembrane domain plays a critical role in regulating
c-Kit activity [16] (Fig. 1a). SCF stimulation promotes the
release of the juxtamembrane domain from the activation
loop, enabling catalytic function of the receptor tyrosine
kinase to transduce its downstream signal [5].

Molecular signal transduction Nine tyrosine phosphorylation
sites have been identified on c-Kit (Fig. 1a). Trans-
phosphorylation occurs on tyrosine kinase residues, which
act as docking sites for signalling kinase molecules containing
a Src homology 2 domain and a phosphotyrosine-binding

domain (Fig. 2). c-Kit phosphorylation at Y721 activates the
phosphoinositide 3-kinase (PI3K) pathway, resulting in
enhanced cell survival and proliferation [17]. Phosphorylation
of c-Kit at Y703 and Y936 activates the mitogen-activated
protein kinase (MAPK) pathway [18], which affects gene
transcription, cell differentiation and proliferation [13]. c-Kit
can be phosphorylated at Y568, Y570 and Y936 to enhance
interaction with the SH2 domain of the Src family of tyrosine
kinases (SFK). Activation of this kinase family is associated
with cell proliferation and survival via Akt phosphorylation.
Also, one of the mechanisms of activation of the Janus ki-
nase–signal transducers and activators of transcription
(JAK–STAT) pathway requires the action of both SFK and
PI3K [13, 19, 20]. There are also reports suggesting that
SFK directly phosphorylates focal adhesion kinase, which is
important for cell migration [21]. The phospholipase C-γ
pathway can interact with the tyrosine kinase residue Y730
of c-Kit [22], and has been found to play an important role in
suppressing cell apoptosis [23]. The phosphorylation of Y823
is a ligand-activated event required for sustaining phosphory-
lation of downstream signalling molecules (e.g. PI3K,
MAPK) of c-Kit. Mutation of Y823 leads to increased c-Kit
internalisation and degradation, suggesting a role for this site
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phospholipase C-γ (PLCγ) and Janus kinase–signal transducers and ac-
tivators of transcription (JAK–STAT) pathways (orange). Activation of
these pathways is implicated in numerous cellular processes, such as gene
transcription, cellular proliferation, differentiation, survival and adhesion
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signals (brown) are involved c-Kit downregulation. BAD, Bcl-2-associ-
ated death promoter; DAG, diacylglycerol; GRB2, growth factor recep-
tor-bound protein 2; MEK1/2, mitogen-activated protein kinase/extracel-
lular-regulated kinase kinase 1/2; mTOR, mechanistic target of
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in stabilising the active kinase conformation [24]. CrkII is an
adaptor protein of the Crk family, which can be phosphorylated
by SCF and can interact with Y900 in c-Kit. However, the
functional consequence of Crk binding with Y900 in c-Kit
via the p85 subunit of PI3K is not clear [25], but may provide
possible link to the c-Jun N-terminal kinase (JNK) pathway.
c-Kit signalling pathways are not simple linear reactions, but,
rather, integrated inputs fromdifferent pathways that determine
the biological consequences in different cellular contexts. For
instance, c-Kit crosstalks with the erythropoietin receptor or
interleukin receptors to recruit common downstream signalling
molecules, creating a method for modulating diverse physio-
logical responses [26–29].

Receptor downregulation Tight regulation of c-Kit signalling
is crucial for maintaining proper cellular function. c-Kit sig-
nalling can be attenuated through several routes, including
receptor internalisation, tyrosine dephosphorylation and ki-
nase domain inactivation by serine phosphorylation. It has
been shown that c-Kit internalisation can be initiated by the
association of the E3 ubiquitin ligase, Casitas b-lineage lym-
phoma (c-Cbl) at Y568 and Y936 on c-Kit [30, 31]. The
signalling proteins, suppressor of cytokine signalling isoforms
1 (SOCS1) and 6 (SOCS6), can also induce c-Kit endocytosis
and its subsequent lysosomal degradation [32]. Furthermore,
protein kinase C signalling may exert negative feedback on c-
Kit activity through serine phosphorylation at S741 and S746
in the receptor, which results in shedding of the c-Kit extra-
cellular domain from the cell surface [13, 33]. Lymphocyte-
specific adaptor protein Lnk also plays an important role in
c-Kit downregulation. Lnk preferentially binds to the
juxtamembrane region of c-Kit, suppressing the intrinsic
c-Kit catalytic activity [34]. In addition, c-Kit signalling can
be negatively regulated by Src homology region 2 domain-
containing phosphatase-1 (SHP-1) through receptor tyrosine
dephosphorylation [35].

c-Kit function in organ development

A strong correlation between c-Kit expression and the
pluripotency of embryonic stem cells (ESCs) indicates that
c-Kit is a critical factor for the differentiation and survival of
these cells. c-Kit-null murine ESCs die when induced to dif-
ferentiate, and apoptosis also occurs upon differentiation of
normal ESCs treated with a c-Kit-neutralising antibody [36].
Similarly, combinations of SCF and other growth factors have
been reported to promote efficient haematopoietic differentia-
tion from human ESCs [37], and other reports indicate that
SCF-c-Kit interactions are essential for haematopoietic stem
cell proliferation, survival and adhesion via the PI3K pathway
[38]. Indeed, investigation of the physiological roles of SCF
and c-Kit in mice with various naturally occurring mutations
in theW and Sl loci, revealed that SCF-c-Kit interactions play

a crucial functional role in a wide variety of tissues.
c-Kit signalling plays an indispensable role in melanocyte
survival and pigmentation, demonstrated by a lack of hair
pigmentation, associated with loss of melanocytes, in W or
Sl mutant mice [39]. SCF-c-Kit interactions are important
for gametogenesis, as evidenced in men by an SCF mutation
that causes idiopathic male infertility [40]. Furthermore, W
and Slmutant mice display increased germ cell apoptosis, with
a corresponding degree of sterility [41]. More importantly,
accumulating evidence suggests that c-Kit expression is also
linked to the development of the endocrine pancreas, as well as
to beta cell survival and function [11, 12, 42–53].

c-Kit expression and function in the pancreas

c-Kit in the developing rodent pancreas

c-Kit expression was first detected in RINm5F rat insulinoma
cell lines and fetal rat islets (Table 1) [43]. Subsequent immu-
nohistochemistry studies revealed c-Kit localisation to pancre-
atic ducts [42], and c-Kit (also known as Kit) mRNA was
detectable by embryonic day 13 in the fetal rat pancreas
[48]. One cell lineage tracing study utilising lacZ transgenic
murine embryos showed that c-Kit expression was restricted
in a subpopulation of endocrine and epithelial cells [46]. The
abundance of c-Kit expression in early rodent pancreatic de-
velopment indicates that it may be involved in maintaining the
endocrine cell precursor pool in fetal rodents. We investigated
c-Kit expression in the rodent pancreas during the transition
from prenatal to postnatal life at our laboratory. c-Kit was
localised to the ductal region and in 40% of beta cells at
embryonic day 18, but c-Kit+ cells progressively declined in
the pancreas postnatally [47]. These observations suggest that
decreased c-Kit expression may correlate with islet endocrine
cell maturation. Two distinct putative stem cell-like popula-
tions expressing either c-Kit or Sca-1, another stem cell anti-
gen, in the developing rodent pancreas were recently
characterised. Flow cytometry analyses revealed that the iso-
lated c-Kit+ cell population co-expressed markers related to
islet differentiation, including pancreatic and duodenal ho-
meobox 1 (PDX-1) and neurogenin 3 (NGN3), but isolated
Sca-1+ cells lacked expression of these markers [54]. These
findings imply that c-Kit can be used as a marker to identify a
putative islet precursor cell population in the developing
rodent endocrine pancreas.

Few studies have focused on the effects of c-Kit mutations
with regard to pancreatic endocrine morphogenesis. One
study reported that islets were still present in the absence of
c-Kit in WlacZ/WlacZ embryos, although few morphometric
details were examined, and there was no indication of func-
tional status [55]. These data raise two possibilities: (1) c-Kit
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is not critical for the determination and specification of islet
formation, but is more involved in islet survival and function;
or, more likely, (2) there are redundant pathways, such as
PDGFR signalling, compensating for the loss of c-Kit during
pancreatic development in rodents.

c-Kit in the developing human pancreas

The developing human pancreas and multiple human pancre-
atic cancer cell lines express both c-Kit and SCF (Table 1) [11,
49, 53, 56]. c-Kit+ cells were detected at the earliest stage of
human pancreatic development, as single endocrine cells dif-
ferentiated from ducts [49]. The expression of c-Kit was
restricted to ductal regions and adjoining neogenic islet clus-
ters, whereas SCF expression was scattered throughout the
developing human pancreas [11]. The majority of c-Kit+ cells
displayed the ductal cell marker, cytokeratin 19, and transcrip-
tion factors associated with islet differentiation, including

PDX-1, sex determining region Y-box 9 (SOX9), NGN3,
and homeobox protein Nkx6.1, between 8 and 12 weeks of
human fetal age. However, as age progressed to 19–21 weeks,
co-expression between c-Kit and these markers declined [11].
These results coincide with the findings of studies in rodents,
indicating that cell populations expressing c-Kit may: (1) rep-
resent endocrine precursors participating in islet neogenesis;
and/or (2) serve as an instructive signal, directing islet differ-
entiation and proliferation in the developing human pancreas.

SCF–c-Kit in islet differentiation

SCF–c-Kit interactions mediate beta cell differentiation and
proliferation and have been demonstrated across multiple spe-
cies in vitro. Stimulation of c-Kit activity promoted gene tran-
scription and proliferation in INS-1 rat insulinoma cells [12,
46, 51]. Furthermore, treatment by exogenous SCF induced
differentiation of human pancreatic carcinoma, epithelial-like

Table 1 c-Kit expression in the pancreatic tissues and cell lines of different species

Tissue/cell line
(species)

Age period Description Ref.

RINm5F cell line (rat) – A PCR product using a nucleotide sequence coding for c-Kit was found in two
clones

[43]

INS-1, INS-1 832-13
cell line (rat)

– Strong signal specific to c-Kit was detected in INS-1 cells by northern blot
analysis, real-time RT-PCR and western blot

[12, 46, 48, 51]

Fetal pancreas (rat) Embryonic day E13 c-Kit mRNAwas found predominantly in E13 pancreatic epithelium, but was
absent in E13 pancreatic mesenchyme

[48]

Fetal pancreas (rat) Embryonic day E21 Immunohistochemical studies revealed specific staining of c-Kit in the duct cells
adjacent to the islets

[42]

Postnatal pancreas
(rat)

Embryonic day E18
to postnatal day 28

Morphometric analysis of c-Kit expression in the endocrine compartment of the
pancreas showed that c-Kit was expressed in 25% of cells at E18, 10% at birth,
and 3% at 28 days of postnatal life. Forty per cent of insulin+ cells expressed
c-Kit at E18; 10% of insulin+ cells and 11% of glucagon+ cells expressed c-Kit
at birth. Both duct cells (16%) and acinar cells (5%) contained c-Kit at E18,
but this percentage dropped significantly during postnatal development.
Interestingly, a twofold increase in c-Kit mRNA expression was observed in
the rat pancreas between E18 and 1 month of postnatal life

[47, 57]

Fetal pancreas
(mouse)

Embryonic day E13
to birth

A few β-galactosidase+ cells were found in epithelial collector ducts at E12.5,
but at birth, most collector tubes and most cells of the islet of Langerhans
contained β-galactosidase, indicating these cells were expressing c-Kit in
the developing pancreas of WlacZ/WlacZ mouse embryos

[55]

Fetal pancreas
(mouse)

Embryonic day
E14.5 to E18.5

c-Kit mRNAwas predominately enriched in fetal islets rather than in fetal pancreatic
mesenchyme. c-Kit expression (β-galactosidase activity) was mainly found in
pancreatic duct cells at E14.5, but was only detected in insulin-expressing cells,
and rarely in glucagon-expressing cells, at E18.5

[46]

Mature pancreas
(mouse)

8 weeks old c-Kit expression was detected in the islets by western blot, and confirmed by
real-time RT-PCR and immunofluorescence staining

[12, 51, 52]

PANC-1 cell line
(human)

– Immunofluorescence studies revealed that 97% of PANC-1 cells expressed
c-KIT, and the expression was confirmed by western blot

[53]

Fetal islet–epithelium
(human)

First to second
trimesters

c-KIT expression was detectable at 8 weeks of fetal age, not only within the
ductal epithelium but also in small islet clusters. Phenotypic analysis of
expression patterns revealed that c-KIT expression declined in the ductal
regions of the developing pancreas from 8 weeks (70%) to 21 weeks (30%)
of fetal age. The number of c-KIT+ cells in islet cell clusters increased from
8 weeks (18%) to 14–16 weeks (30%), but declined by 19–21 weeks (20%)
of fetal age. c-KIT mRNAwas slightly increased at 14–16 weeks vs.
8–12 weeks of fetal age

[11, 49]
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cells (PANC-1) into islet-like clusters [53]. Using isolated pri-
mary rodent islet cultures, fetal islet clusters treated with SCF
exhibited augmented insulin and total DNA content [42]. Our
previous study demonstrated that rat islet epithelial mono-
layers that were expanded on collagen I were highly prolifer-
ative, with 45% of cells expressing c-Kit [57]. These c-Kit+

cells co-expressed PDX-1, NGN3, paired box 4 (PAX4), and
multiple undifferentiated cell markers, and could form islet-
like clusters under specific culture conditions [57]. SCF–c-Kit
interactions also have a direct physiological effect on neonatal
porcine islets. SCF released from microencapsulated Sertoli
cells significantly accelerated the differentiation and matura-
tion of neonatal porcine islets in vitro [58]. Our group has
demonstrated, by SCF and Wortmannin inhibition experi-
ments, that SCF enhances the differentiation of c-Kit-
expressing immature endocrine cells in the human fetal pan-
creas, likely through stimulation of the PI3K pathway [11].
These findings suggest the potential importance of c-Kit in
promoting early beta cell differentiation and survival.

c-Kit in the regenerating pancreas

Although there is no consensus on the identity and origin of
pancreatic stem/progenitor cells, c-Kit-expressing cells exhib-
it many stem/progenitor cell features in the regenerating pan-
creas. In a study of islet regeneration performed with the pan-
creatic duct-ligated rat model, we found that c-Kit expression
was activated only in the ductal cells of the ligated tail portion
during islet neogenesis, along with upregulation of PDX-1
and Nkx2.2 expression, suggesting that islet neogenesis may
arise from these ductal progenitor cells [59]. Increased c-Kit
and PDX-1 expression was also observed in islets of the
streptozotocin (STZ)-induced diabetic rat pancreases, suggest-
ing that c-Kit may play a role during beta cell regeneration
[60]. In a model of rat pancreatitis in which extensive pancre-
atic cellular damagewas induced by cerulean, beta cell replen-
ishment occurred due to replication of the highly proliferative
pre-existing c-Kit-expressing beta cells [61]. c-Kit-expressing
cells from other cell sources may also be involved in promot-
ing beta cell regeneration. Transplanted adult bone marrow-
derived c-Kit-expressing cells reduce hyperglycaemia in dia-
betic mice [62]. The frequency of insulin co-expression with
bone marrow-derived c-Kit+ cells was low, and there was no
evidence of an increase in PDX-1 expression in these cells.
This suggests that the bone marrow-derived c-Kit+ cells did
not, themselves, immediately replace the damaged beta cell
population. However, they may play a paracrine role in pro-
moting proliferation of the existing beta cells and differentia-
tion of precursor cells. This observation was verified by trans-
plantation of purified (ALDHhighc-Kit+CD133+CD34+)
multipotent stromal cells, which showed significantly
enhanced islet cell proliferation, insulin production and
revascularisation in vivo [63].

c-Kit in pancreatic disease and other metabolic disorders

Despite the necessity of c-Kit as a developmental regulator, it
is also characterised as a proto-oncogene [3]. Indeed, inappro-
priate expression of SCF or c-Kit leads to a wide range of
pancreatic diseases, ranging from chronic pancreatitis to pan-
creatic cancer [64]. It was reported that SCF-c-Kit interactions
had an influential effect onmast cells, in which increased mast
cell presence correlated with inflammation and fibrosis in
chronic pancreatitis [65]. c-Kit is found in ducts during chron-
ic pancreatitis, consistent with other studies reporting in-
creased ductal c-Kit expression after pancreatic ductal ligation
in rodents [59]. Pancreatic cancer is amongst the most lethal
and least common human cancers and has been linked to
diabetes and chronic pancreatitis [66]. High levels of c-Kit
expression are also found on pancreatic neoplastic cells and
throughout the duct of the cancerous pancreas [67], indicating
that SCF–c-Kit interactions have profound implications for
pancreatic cancer cell proliferation and invasiveness. While
cancer aetiology is varied, both somatic and germline muta-
tions in the SCF allele have been linked to testicular cancer.
The findings of these genome-wide association studies
(GWAS) are notable because it is unusual to find these risk
alleles with per-allele odds ratios larger than 2 [68]. The
single nucleotide polymorphism (SNP) variants in signalling
events mediated by SCF were also associated with advanced
cirrhosis, indicating that SCF–c-Kit interactions could play a
role in other complex metabolic diseases [69]. SH2B1 was
identified as a SH2 domain-containing adaptor protein and
directly associates with the Y568 binding site in c-Kit. Inter-
estingly, the SH2B1 risk alleles are genetically associated with
human obesity in GWAS on large populations [70, 71]. Aside
from SH2B1 SNPs, several SH2B1 non-synonymous variants
were also genetically linked to insulin resistance and type 2
diabetes [72], implying that SCF–c-Kit pathways may be one
of the causal factors for the development of diabetes in
humans.

Altered c-Kit expression affects islet function
and survival

c-Kit mutation and overexpression in islets

The first reported in vivo evidence linking c-Kit with beta cell
survival and function utilised mice carrying the viable domi-
nant spotting (Wv) mutation [50]. The Wv point mutation
causes a threonine to methionine substitution at the first cata-
lytic region of the c-Kit kinase domain, greatly diminishing its
kinase activity to ~10–20% of that observed in normal c-Kit
monomers. More importantly, the c-Kit Wv mutant monomer
can act in a trans-dominant manner to prevent tyrosine
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phosphorylation of normal c-Kit by dimerisation, reflected by
a ~60% reduction in c-Kit transduction activity [73]. Pheno-
typic analysis of mice heterozygous for the Wv mutation
(c-KitWv/+) showed impaired glucose tolerance and a marked
insulin secretory defect by 8 weeks of age [50]. The develop-
ment of a diabetic phenotype, particularly in male mice, was
due to a severe loss of beta cell mass and reduced proliferative
capacity. Interestingly, these changes were not observable in
female mice until 40 weeks of age, indicating that the delay of
diabetes was possibly due to differences between sexes in sex
hormone function [50]. Furthermore, downregulation of the
PI3K–Akt–glycogen synthase kinase 3β (GSK3β) pathway,
which connects c-Kit activity to physiological changes in beta
cells of c-KitWv/+ mice, was demonstrated [52]. Inhibition of
activated GSK3β with 1-azakenpaullone, a GSK3β inhibitor,
was shown to rescue c-KitWv/+ mice from defective glucose
metabolism and increase islet cyclin D1 and PDX-1 expres-
sion [52]. This observation suggests that dysregulation of the
Akt–GSK3β pathway, downstream of c-Kit, is responsible for
the onset of diabetes in c-KitWv/+ mice.

The most convincing evidence supporting the importance
of the impact of c-Kit on beta cell function and survival was
determined using a transgenic mouse model with overexpres-
sion of the human c-KIT gene specifically in beta cells direct-
ed by the rat insulin promoter (c-KitβTgmice) [12]. Our group
showed that c-KitβTgmice displayed improved glucose toler-
ance, which was associated with expansion of beta cell mass
as a result of increased beta cell proliferation. Overexpression
of c-KIT also led to a profound effect on insulin secretion in
response to glucose challenge, and insulin content in beta cells
of these mice was increased compared with that in their con-
trol littermates [12]. Increased c-Kit activity upregulated the
Akt–GSK3β–cyclin D1 pathway, which was associated with
enhanced expression of islet-specific transcription factors,
including PDX-1 andMafA [12]. Notably, c-KitβTgmice also
counteracted the detrimental effects of a 4 week high-fat diet
(HFD) challenge, in which beta cell function and mass were
maintained. Furthermore, overexpression of c-KIT in beta
cells of c-KitWv/+ mice could partially reverse the diabetic
phenotype, demonstrating that c-Kit has a beneficial effect
on beta cells and directly influences beta cell health [12].

c-Kit and Fas receptor interplay in islets

Accumulating evidence has demonstrated that Fas receptor
(FasR) signalling contributes to cell apoptosis, which is
accompanied by the absence of c-Kit signalling in melano-
cytes [74], gametes [75], oocytes [76] and haematopoietic stem
cells [77]. FasR is known as apoptosis antigen 1, CD95, or
tumour necrosis factor receptor superfamily member 6. Fas
ligand binding and subsequent activation of FasR leads to
programmed cell death in many systems via activation of the
caspase 8-mediated downstream cell death machinery. We

recently reported that deficient c-Kit signalling resulted in
increased beta cell death in c-KitWv/+ mice, which was associ-
ated with upregulation of p53 levels and induction of FasR
activity in c-KitWv/+ mouse islets [51] (Fig. 3). It is clear that
p53 is an important checkpoint protein that promotes cell
cycle arrest [78]. Several lines of evidence have indicated that
FasR expression can be upregulated by p53 activation through
promotion of FasR gene transcription and trafficking of FasR
to the cell surface via the Golgi apparatus [79, 80]. The inter-
play between c-Kit and FasR signalling in beta cell survival
was further verified by a double mutant mouse model
(c-KitWv/+ mice with the lymphoproliferation [lpr] mutation,
which disrupts expression of the cell surface FasR). Lack of
functional FasR in c-KitWv/+ mice reduced the extent of beta
cell apoptosis via downregulation of the caspase 8-mediated
extrinsic apoptotic pathway, and enhanced FLICE-like inhib-
itor protein/nuclear factor κB pro-survival signalling [51].
These in vivo results were further supported by in vitro obser-
vations using INS-1 cells, whereby c-Kit activation negatively
modulated both p53 and FasR in a PI3K-dependent manner. In
particular, knockdown of c-Kit in INS-1 cells led to increased
p53 and FasR levels, reversed by treatment with a p53 inhibitor
or Fas small interfering (si)RNA, ultimately resulting in a
reduction in apoptosis [51]. These data imply that a balance
between c-Kit and FasR signalling is instrumental in maintain-
ing proper beta cell mass turnover.

c-Kit and insulin receptor crosstalk in islets

It has been documented that c-Kit is able to crosstalk with
many growth factor and cytokine receptors [26–28, 81]. For
example, erythropoietin and SCF have synergistic effects on
erythropoiesis. In fact, erythropoietin appears to stimulate c-
Kit dimerisation and tyrosine phosphorylation in human he-
matopoietic cell lines [81]. Recently, treatment with recombi-
nant human erythropoietin was shown to provide protection
against the development of diabetes in STZ-induced and
db/db mice. This was associated with a significant up regula-
tion of c-Kit and vascular endothelial growth factor-A
(VEGF-A) protein expression [82]. It is well established that
insulin signalling pathways can participate in crosstalk with
other receptors [83, 84]. Insulin, secreted from beta cells in
response to glucose stimulation, activates the beta cell insulin
receptor (IR) and the downstream signalling transducer, IRS.
This, in turn, triggers the PI3K–Akt pathway, which is an
important mediator of beta cell proliferation, function and sur-
vival. Overexpression of c-KIT leads to increased IR protein
expression and tyrosine phosphorylation of IRS1 and -2, and
treatment of INS-1 cells with exogenous SCF leads to en-
hanced co-localisation of c-Kit and IR, as revealed by double
immunofluorescence [12]. The effect of c-Kit and IR signal-
ling was suppressed by wortmannin (PI3K inhibitor) or c-Kit
siRNA, suggesting an interaction between these two upstream

660 Diabetologia (2015) 58:654–665



pathways through: (1) physical association between two
receptors, (2) common pathway components downstream of
c-Kit and IR (e.g. PI3K/Akt or GSK3β [45]), or (3) enhanced
insulin biosynthesis and autocrine feedback of insulin effects
on IR function, as seen in dose- and time-dependent models,
where positive signals were observed in juvenile c-KitβTg
islets and negative signals were seen in aged c-KitβTg mice
(Fig. 3) [12].

c-Kit induces beta cell VEGF-A secretion thereby modulating
islet vascular formation

Pancreatic islets are richly vascularised and feature highly
permeable capillaries. In the mature islet, every beta cell is
located adjacent to a capillary. This spatial organisation pro-
vides an access point for insulin to enter circulation, and prop-
er vascular formation is essential for the normal development
and function of the islet [85, 86]. The formation of islet vas-
culature relies on VEGF-A secretion primarily from beta cells.
VEGF-A binding to VEGF receptor 2 on neighbouring endo-
thelial cells promotes endothelial cell proliferation and

migration, eventually resulting in islet vessel formation [86].
By deleting VEGF-A, either in the whole pancreas or in beta
cells, the fenestration of islet capillaries, required for fine-
tuning blood glucose regulation, was severely impaired [86],
and led to beta cell dysfunction [87, 88].

The causal link between c-Kit and VEGF-A production has
been documented previously in multiple cancer pathologies
[89, 90], leading to the question of whether or not c-Kit reg-
ulates islet vascular formation via VEGF-A production. In a
recent study we provided evidence that VEGF-A production
in INS-1 cells was augmented by SCF treatment; an effect
mediated by the PI3K-mammalian target of rapamycin
(mTOR) pathway [91]. Substantial loss of islet vasculature
was discovered in c-KitWv/+mice, which was reversed by beta
cell-specific c-KIT overexpression. These data suggest that
c-Kit-induced VEGF-A production is critical for normal islet
vascularisation. Interestingly, endothelial–beta cell interactions
may not always result in a positive outcome, as islet endothe-
lial cells have been shown to contribute to islet destruction
following an inflammatory response during HFD treatment
[92]. Inflammatory factor expression was increased in islets,
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which resulted in a decrease in beta cell function and led to
hyperglycaemia [92]. These findings indicate that c-Kit can be
a therapeutic target that promotes revascularisation during islet
replacement procedures. However, c-Kit activity must be tight-
ly regulated in order to control the VEGF-A concentration of
the microenvironment, for the purpose ofmaintaining a normal
and stable islet vascular network and proper beta cell function
and survival.

c-Kit, stem cell and cell-based therapies for diabetes
treatment

A significant limitation of cell-based therapies for diabetes
treatment is the lack of donor cell sources. To circumvent this,
research has been dedicated to isolating pancreatic islet pre-
cursors and applying differentiation protocols to obtainmature
functional islets [93]. To accomplish this, the identification of
cell types with the potential to differentiate into islets is of
critical importance. Multiple studies have attempted to differ-
entiate c-Kit+ cells gathered from different organs into beta
cells or beta-like cells. In humans, a population of pancreatic
progenitor cells containing multiple stem cell markers, includ-
ing c-Kit+ cells purified from the early trimester fetal pancreas,
were shown to adopt a pancreatic phenotype ex vivo by dif-
ferentiating into insulin-expressing cells [94]. Human exfoli-
ated deciduous teeth expressing c-Kit were capable of differ-
entiation towards functional pancreatic endocrine cells when
exposed to serum-free conditions [95]. Furthermore, another
study used human adipose tissue-derived mesenchymal stem
cells, initially expressing c-Kit, to induce pancreatic endocrine
cell differentiation under stringent in vitro conditions [92]. In
mice, PDX-1 and NGN3 overexpression induced formation of
immature insulin/C-peptide-producing cells from mouse em-
bryonic stem cell-derived c-Kit+ endoderm populations [96].
In addition, c-Kit+ cells isolated from the salivary gland of
adult mice were differentiated into pancreatic endocrine line-
ages under glucagon-like peptide 1 treatment [97, 98]. Isolated
Thy1+ cells from mouse liver, which expressed c-Kit and
other stem cell markers, generated islet-like clusters that
expressed islet differentiation markers and endocrine hor-
mones under high glucose conditions [99]. Taken together,
these studies provide evidence of the plasticity of c-Kit+ cells
in non-pancreatic tissues and their potential to become or sup-
port beta cells. The major consideration is the functional rele-
vance of these differentiated clusters and their potential for
inducing tumorigenesis. Thus, before these c-Kit+ progenitors
can be used in a therapeutic setting, a feasible differentiation
protocol must be developed to study their functional status
and tumorigenic properties. These risks would seemingly be
lessened if terminally differentiated cells were used during
transplantation.

Summary and perspectives

Data obtained within the past decade have provided insights
into the biological role of c-Kit in the pancreas, particularly
with respect to beta cell growth and function. c-Kit is detect-
able not only in the pancreatic ductal region, but also in a
subpopulation of beta cells with a high proliferative capacity.
c-Kit-expressing cells participate in the reversal of pancreatic
damage and diabetes by assisting in pancreatic endocrine re-
generation, suggesting that c-Kit may be required for main-
taining the pancreatic stem/progenitor cell population. More
recent studies have uncovered the mechanism by which ma-
nipulation of these c-Kit-expressing cells in vitro can result in
their ability to proliferate, differentiate and secrete insulin in
response to glucose. In addition, animal studies have provided
detailed information on the functional role of c-Kit in vivo. c-
Kit influences FasR and IR signalling such that, because of
convergence of these pathways, it can affect the dynamic bal-
ance of beta cell turnover and appropriate function of beta
cells under basal and glucose-stimulated conditions. Further-
more, the connection between c-Kit signalling and VEGF-A
production suggests a paracrine regulatory role of pancreatic
endocrine cells in the formation of islet vasculature and auto-
crine signalling that promotes beta cell differentiation and
proliferation. These findings are particularly valuable in un-
derstanding the underlying mechanisms responsible for beta
cell loss and dysfunction, and, to a greater extent, will con-
tribute to new and more physiologically relevant cell replace-
ment therapies for the treatment of diabetes.
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