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Abstract
Aims/hypothesis We aimed to identify which surrogate index
of insulin sensitivity has the strongest correlation with the
reference measurement, the hyperinsulinaemic–euglycaemic
clamp (HEC), to determine which surrogate measure should
be recommended for use in large-scale studies.
Methods A literature search (1979–2012) was conducted to
retrieve all articles reporting bivariate correlations between the
HEC and surrogate measures of insulin sensitivity (in fasting
samples or during the OGTT).We performed a random effects
meta-analysis for each surrogate measure to integrate the
correlation coefficients of the different studies.
Results The OGTT-based surrogate measures with the stron-
gest pooled correlations (r) to the HEC were the Stumvoll
metabolic clearance rate (Stumvoll MCR; r=0.70 [95% CI
0.61, 0.77], n=5), oral glucose insulin sensitivity (OGIS;
r=0.70 [0.57, 0.80], n=6), the Matsuda index (r=0.67 [0.61,
0.73], n=19), the Stumvoll insulin sensitivity index (Stumvoll
ISI; r=0.67 [0.60, 0.72], n=8) and the Gutt index (r=0.65
[0.60, 0.69], n=6). The fasting surrogate indices that correlated
most strongly with the HEC and had narrow 95%CIs were the
revised QUICKI (r=0.68 [0.58, 0.77], n=7), the QUICKI
(r=0.61 [0.55, 0.65], n=35), the log HOMA-IR (r=−0.60
[−0.66, −0.53], n=22) and the computer generated HOMA
of insulin sensitivity (HOMA-%S; r=0.57 [0.46, 0.67], n=5).

Conclusions/interpretation The revised QUICKI fasting sur-
rogate measure appears to be as good as the OGTT-based
Stumvoll MCR, OGIS, Matsuda, Stumvoll ISI and Gutt indi-
ces for estimating insulin sensitivity. It can therefore be rec-
ommended as the most appropriate index for use in large-scale
clinical studies.

Keywords Glucose . Hyperinsulinaemic–euglycaemic
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markers
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G0 Fasting glucose
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ISI Insulin sensitivity index
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MLBM Glucose infusion rate (mg/min) per kg
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MLBM/I MLBM/steady state insulin
MLBM/(G×ΔI) MLBM/(steady state glucose concentration ×

increment in insulin concentration)
NGT Normal glucose tolerance
OGIS Oral glucose insulin sensitivity
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Introduction

An estimated 371 million people worldwide have diabetes
mellitus, and the number is rising every year [1]. Impaired
insulin sensitivity is a key abnormality underlying the devel-
opment of type 2 diabetes, and mean insulin sensitivity is
lower in these individuals compared with healthy controls.
Even if there is no cut-off value to distinguish healthy from
insulin-resistant individuals, measuring insulin sensitivity is
of major importance to identify individuals at risk of devel-
oping diabetes and to evaluate diabetes-focused interventions
[2, 3]. ‘Insulin sensitivity’ is an umbrella term for many
different physiological processes. The most important ele-
ments of insulin sensitivity are glucose clearance in peripheral
tissues (i.e. peripheral insulin sensitivity) and insulin-
mediated suppression of hepatic glucose production (i.e. he-
patic insulin sensitivity).

The purpose of this meta-analysis was to compare different
measurements of peripheral insulin sensitivity and determine
which technique is the most appropriate for large-scale clinical
studies. The hyperinsulinaemic–euglycaemic clamp (HEC) is
considered the ‘gold standard’ measure of peripheral insulin
sensitivity, although it does not simulate the physiological
state of continuously changing glucose and insulin levels or
hepatic insulin extraction, nor the feedback mechanism be-
tween glucose and insulin [4].

During the HEC, insulin is infused at a constant rate and the
amount of glucose needed to maintain euglycaemia provides a
measure of insulin sensitivity. Since muscle takes up over
70% of infused glucose, the HEC is the standard test for
peripheral insulin sensitivity [5]. However, HEC is costly,
time consuming and invasive, and requires trained staff; sur-
rogate measures of insulin sensitivity are therefore necessary
in epidemiological or large-scale intervention studies. These
surrogate measures are based on insulin and/or glucose sam-
ples taken either in the fasting state or during the OGTT.

Surrogate indices based on fasting glucose and fasting
insulin primarily reflect hepatic insulin sensitivity [6, 7]. In
most individuals, hepatic insulin sensitivity is closely related
to peripheral insulin sensitivity. Therefore, fasting surrogate
measures show at least moderate correlations (r>0.5) with the
HEC [7, 8].

Surrogate indices based on changes in insulin and
glucose during the OGTT incorporate both peripheral
and hepatic insulin sensitivity: hepatic glucose produc-
tion changes most during the first hour of the OGTT,
and peripheral glucose uptake is best measured during
the second hour [7]. Gastric emptying, glucose absorp-
tion, insulin secretion and incretin hormones also influ-
ence OGTT results.

We undertook a meta-analysis to determine which surro-
gate measure(s) of insulin sensitivity should be used in clinical
studies. We also aimed to establish whether fasting surrogate

measures can be used instead of the more time-consuming
OGTT-based measures.

Methods

Data sources and searches We searched Medline from 1979
until 2 March 2012 via PubMed. We chose 1979 as the start
date because the HEC was first described by DeFronzo in that
year [4]. We used the following Medical Subject Headings in
our search: glucose clamp technique; insulin resistance; and
humans. We identified other potentially eligible studies by
browsing the reference lists of suitable articles.

Study selection We read the abstracts of all articles and then
read the entire article if the study seemed eligible.We included
studies that reported bivariate correlation coefficients between
the HEC reference method and surrogate measures for insulin
sensitivity based on blood samples. The article was included
in our analysis if the HEC glucose infusion rate M value was
reported as MBW, MBW/I, MLBM, MLBM/I, MBW/(G×ΔI),
MLBM/(G×ΔI), MBW/I, MBW/G or MBSA (see main abbrevia-
tions list for definitions). We included studies that reported
surrogate measures based on the OGTT or on fasting samples
(fasting glucose, fasting insulin or both). We excluded articles
not published in English, animal studies and studies conduct-
ed in children. Some of the relevant articles were intervention
studies. If the articles contained correlation coefficients before
and after the intervention, we used the mean of both for our
meta-analysis. If a study reported correlation coefficients for
two different insulin doses, we used the stronger of the coef-
ficients. In several articles, the authors reported correlation
coefficients with an opposite sign to the one expected (e.g. r=
0.5 instead of r=−0.5). If the opposite correlation coefficients
were significant or stronger than 0.2, we contacted the authors
(n=12) via email. Four authors replied that they wanted only
to describe the strength of the correlation (i.e. without the sign)
or that the reported sign was incorrect. In those cases, we
changed the sign in the relevant meta-analyses. The remaining
eight authors did not respond. We therefore also performed a
separate subgroup analysis excluding the correlation coeffi-
cients with signs opposite to those expected.

Data extraction and quality assessment We extracted the
following information from each retrieved article: (1) name
of the first author; (2) year of publication; (3) country in which
the study was performed; (4) subject category (type 2 diabetes,
impaired glucose tolerance, normal glucose tolerance, other
disease, healthy); (5) number of study participants; (6) pro-
portion of men and women; (7) age (mean and SD); (8) BMI
(mean and SD); (9) insulin dose of the HEC; (10) target blood
glucose of the HEC; (11) duration of the HEC; (12) how
insulin sensitivity measured by the HEC was expressed (e.g.
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MLBM/I); (13) the method of determining correlation
(Pearson’s r or Spearman’s ρ); and (14) the correlation coef-
ficients between the HEC and the different surrogate measures
(see electronic supplementary material [ESM] Table 1). We
used the following questions to assess the quality and identify
possible confounders of the different studies: (1) Is the study
population evenly distributed between both sexes? (2) Are
study participants with different levels of insulin sensitivity
included? (3) Do study participants have medical conditions
that might interfere with the measurement of insulin sensiti-
vity? (4) Is diabetes diagnosed using OGTT, fasting glucose or
medical history? (5) Is the insulin dose of the HEC appropriate
for the study population? (6) How long was the HEC? (7)Was
glucose during OGTT/fasting samples analysed as blood
glucose or plasma/serum glucose (ESM Table 1)?

Data synthesis and analysis Combining Pearson’s r with the
more conservative Spearman’s ρ could have introduced bias
into the meta-analysis. We therefore converted Spearman’s ρ
into Pearson’s r according to Rupinski and Dunlap using the
following formula: r=2sin(ρ×π/6) [9]. If a study reported R2

(together with a graph indicating the direction) or a
standardised (beta) coefficient instead of a correlation coeffi-
cient, we calculated the correlation coefficient. We combined
the following ways of measuring correlation into a single
meta-analysis: (1) x; (2) logx; and (3) 1/x (the sign of the
correlation coefficient was converted for the latter). The loga-
rithmic base used was not known in all studies. Stumvoll and
Mari used regression analysis to derive the Stumvoll insulin
sensitivity index (Stumvoll ISI), the Stumvoll metabolic clear-
ance rate (Stumvoll MCR) and oral glucose insulin sensitivity
(OGIS) indices [10, 11]. We did not include these correlation
coefficients in our meta-analysis because using the same
population for both the development and validation of the
index would introduce bias. Both of these papers report addi-
tional correlation coefficients based on a validation analysis,
and we used these for our meta-analysis.

To assess the differences between types of clamp measure-
ment (MBW, MLBM, MBW/I and MLBM/I), we performed a
separate subgroup analysis for each. To compare these differ-
ent measures, we identified all surrogate measures (fasting and
OGTT based) that were reported in 15 or more articles and in
which the pooled correlation with the HEC was at least
moderate (r>0.5 or <−0.5). For those surrogate measures
(Matsuda, AUC insulin, QUICKI, fasting insulin and
HOMA-IR), we conducted separate meta-analyses for all
clamp measurements reported in at least two articles.

In another subgroup analysis, we compared surrogate mea-
sures in individuals with normal glucose tolerance (NGT),
impaired glucose tolerance (IGT) and type 2 diabetes. For this
comparison, we report surrogate measures only when corre-
lation coefficients were available in at least one article for each
of the subgroups.

We used the random effects model of DerSimonian and
Laird for our random effects meta-analyses [12]. Before
conducting the meta-analyses, we transformed all correlation
coefficients to Fisher’s z scale (zr) to stabilise the variances
[13]. After the meta-analyses, we transformed the z-values
back to correlation coefficients before plotting them in the
graphs. We considered the random effects model to be most
appropriate because characteristics (e.g. age and weight) dif-
fered among the study participants. Therefore, we were unable
to assume that the effect size would be the same across studies,
which is a required assumption for the fixed effect meta-
analysis.

We used the Q-statistic, which follows a χ2 distribution, to
test for heterogeneity [14]. If there is significant heterogeneity,
then a fixed effect meta-analysis is not recommended.We next
used the I2 statistic to quantify heterogeneity. A high I2

(>75%) indicates that a large proportion of the observed
variance is caused by a genuine difference between the corre-
lation coefficients of the included studies, and a low I2 (<25%)
means that most of the observed variance is the result of
random error.

We used Begg and Mazumdar’s rank correlation test [15]
and funnel plots [16] to estimate publication bias. In the funnel
plots, we plotted z-transformed correlation coefficients (zr) on
the x-axis and SE on the y-axis. Asymmetry in a funnel plot
reveals publication bias if small studies (i.e. with large SEs)
exhibit strong correlation coefficients and there is a lack of
small studies with weak correlation coefficients.

We conducted the meta-analysis, the heterogeneity test and
Begg and Mazumdar’s rank correlation test in IBM SPSS
Statistics for Mac, Version 20.0 (Armonk, NY, IBM Corp.)
using a syntax written by Field and Gillett [17, 18]. The funnel
plots were produced in R (version 2.15.1, R Foundation for
Statistical Computing, Vienna, Austria) using a code written
byVevea andWoods [19] and applying a script from Field and
Gillett to feed SPSS data into R [18]. We visualised meta-
analysis results using PRISM 5.0b (GraphPad Software, San
Diego, CA).

Results

We retrieved 1,753 articles from our database search and
included 120 of these in our meta-analysis. ESM Fig. 1 shows
details of the selection process. Characteristics of the studies
included in the meta-analysis are summarised in ESM Table 1.

OGTT-based and fasting surrogate measures compared with
the HEC We pooled a total of 120 studies that included
correlations between surrogate measures and the HEC. We
report in detail only meta-analyses based on five or more
articles. ESM Fig. 2 shows the random effects meta-analyses
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for correlations between the HEC and surrogate measures
based on the OGTT. ESM Fig. 3 depicts correlations between
fasting surrogate measures and the HEC. Details of study
participants and their characteristics can be found in ESM
Table 1. Results of meta-analyses of fewer than five articles
are included in ESM Tables 2 and 3. Table 1 contains the
mathematical formulas of the relevant surrogate indices.

Each meta-analysis resulted in a pooled correlation coeffi-
cient. Of the OGTT-based surrogate measures, the Stumvoll
MCR, OGIS, Matsuda, Stumvoll ISI and Gutt indices exhib-
ited the strongest correlations with the HEC (ESM Fig. 2).
Other OGTT-based indices exhibited weaker correlations with
the HEC [e.g. insulin (120 min)]. Figure 1 summarises the
results of all meta-analyses (based on more than five studies)
in a single graph to compare the pooled correlation coeffi-
cients and their respective 95% CIs.

Of the fasting surrogate measures, the pooled correlation
coefficients of the QUICKI, revised QUICKI, HOMA-IR,
computer generated HOMA of insulin sensitivity (HOMA-%S)
and fasting insulin exhibited the strongest correlations with the
HEC and narrow 95% CIs (Fig. 1 and ESM Fig. 3). The
QUICKI exhibited a stronger correlation than the HOMA-
IR with the HEC. A separate meta-analysis revealed that the
QUICKI and the log-transformed HOMA-IR had equally
strong pooled correlations with the HEC (log HOMA-IR
r=−0.60 [95% CI 0.66, −0.53], n=22; QUICKI r=0.61
[0.56, 0.66], n=36). Similarly, the correlation between

fasting insulin and the HEC was stronger if log-transformed
insulin was used (log fasting insulin r=−0.56 [−0.60, −0.51],
n=17; fasting insulin r=−0.53 [−0.49, −0.56], n=71).

When we compared fasting surrogate measures to OGTT-
based measures, we observed that only the correlation between
the revised QUICKI and the HEC was as strong as those of
HEC with the OGTT-based surrogate indices Stumvoll MCR,
OGIS, Matsuda, Stumvoll ISI and Gutt (Fig. 1).

Heterogeneity analysis There was significant heterogeneity
(p<0.05) in all meta-analyses based on five or more articles,
except for correlation coefficients between the Gutt index and
the HEC (p=0.85). We therefore did not continue with fixed
effect meta-analyses, but relied on the random effects meta-
analyses. The reasons for such high levels of heterogeneity
may be the different insulin doses used for the HECs, hetero-
geneous study populations with different levels of insulin
sensitivity and, in some meta-analyses, outliers with correla-
tion coefficients with signs opposite to those expected.

Publication bias The Begg and Mazumdar rank correlation
test did not reveal a statistically significant publication bias,
except for meta-analyses between the HEC and the fasting
insulin/fasting glucose (I0/G0) and Gutt (p=0.02 and p=0.04,
respectively). Although the funnel plot of the Gutt meta-
analysis was slightly asymmetrical, this was caused by the
inclusion of several small studies with weaker correlation

Table 1 Mathematical formulas
of surrogate measures of insulin
sensitivity based on the oral glu-
cose tolerance test and fasting
blood samples

a The base for logarithmic trans-
formation was not reported in
these studies
b AUC insulin is calculated ac-
cording to the trapezoidal rule;
however, the formula can differ
if other measurement times are
available
c The natural logarithm to base e
was used in this calculation

I30/I60/I90/I120, insulin 30, 60, 90
and 120 min after the administra-
tion of 75 g glucose; G30/G60/G90/
G120, glucose 30, 60, 90 and
120 min after the administration
of 75 g glucose; BW, body
weight; Imean, mean insulin during
OGTT; Gmean, mean glucose dur-
ing OGTT

Surrogate measure Formula

OGTT-based indices

Stumvoll MCR [10] 18.8 − 0.271 × BMI − 0.0052 × I120 − 0.27 × G90

Gutt [34]a [75,000 + (G0-G120) × 0.19 × BW]/(120 × log [(I0 + I120)/2] × [(G0 + G120)/2])

Stumvoll ISI [10] 0.226 − 0.0032 × BMI − 0.0000645 × I120 − 0.00375 × G90

OGIS [11] http://webmet.pd.cnr.it/ogis/

Belfiore [35] 2/[(AUC insulin + AUC glucose) + 1] (AUC glucose = 0.25 × G0 + 0.5
× G30 + 0.5 × G60 + 0.5 × G90 + 0.25 × G120)

Cederholm [36] [75,000 + (G0-G120) × 1.15 × 180 × 0.19 × BW]/(120 × log Imean × Gmean)

Insulin (120 min) I120
Glucose (120 min) G120

AUC insulinb 0.25 × I0 + 0.5 × I30 + 0.5 × I60 + 0.5 × I90 + 0.25 × I120
Matsuda [26] 10; 000=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G0 � I0 � Gmean � Imean
p

Fasting indices

HOMA-IR [30] (G0 × I0)/22.5

QUICKI [41]a 1/(log G0 + log I0)

Revised QUICKI [40]a 1/(log G0 + log I0 + log NEFA)

HOMA-%S [30] www.dtu.ox.ac.uk/homacalculator/index.php

FIRI [42] (G0 × I0)/25

McAuley [43]c e 2:63−0:28�lnI0−0:31�lnTGð Þ

I0/G0 [46] Fasting insulin/fasting glucose

G0/I0 [44] Fasting glucose/fasting insulin
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coefficients, which argues against publication bias. Even the
funnel plot for the meta-analysis between the HEC and I0/G0

exhibited clear asymmetry, which in this case was caused by
three studies that reported positive correlation coefficients.
Outliers of this type also caused clear asymmetry in other
funnel plots [HOMA-IR, fasting insulin resistance index
(FIRI), G0/I0, insulin (120 min)], but we did not interpret this
as publication bias. There was some evidence of publication
bias in the funnel plots of the revised QUICKI, HOMA-%S
and glucose (120 min) meta-analyses. However, the Begg test
did not reveal publication bias in these three meta-analyses.
All funnel plots are shown in ESM Fig. 4.

Quality assessment Because of interference with the measure-
ment of insulin sensitivity, we removed study participants
with type 1 diabetes, insulinoma and renal failure (ESM
Fig. 1). Furthermore we found the insulin dose used during
the HEC to substantially influence the study quality. In our
opinion, eight studies report an insulin dose that is too low for
the population studied (ESM Table 1). However, we decided
to keep these studies in our meta-analysis because all other
studies that examined individuals with different levels of
insulin sensitivity had used an inappropriate insulin dose for
part of their study population.

We assessed whether the quality of the eight studies includ-
ed in the meta-analysis of the revised QUICKI differed from
the quality of all 120 studies combined (ESM Table 1). The
only difference was that more studies in the revised QUICKI
meta-analysis had an even sex distribution in the study popu-
lation (i.e. as many men as women in four of seven studies).
Only 33% of all 120 studies had evenly distributed study
populations. The studies included in the revised QUICKI

meta-analysis were comparable with the combined group of
120 studies in all other aspects of quality assessment.

Subgroup analyses After our attempts to contact the relevant
authors, several meta-analyses still included outliers (the sign
of the correlation coefficient was opposite to that expected,
e.g. r=0.5 instead of r=−0.5). We therefore conducted addi-
tional meta-analyses without these outliers (data not shown).
The pooled correlation coefficients did not change for
QUICKI or fasting insulin when the outliers were removed.
However, the removal of outliers resulted in slightly larger
pooled correlation coefficients for HOMA-IR, insulin
(120 min), FIRI, fasting glucose, I0/G0 and G0/I0. The remain-
ing meta-analyses did not contain outliers.

Another subgroup analysis showed that the Matsuda, AUC
insulin, QUICKI and fasting insulin exhibited stronger corre-
lations with M values normalised to insulin (MBW/I and
MLBM/I) than with those not normalised to insulin (MBW and
MLBM; ESM Figs 5–8). Only for HOMA-IR was the MLBM

value correlation stronger than that of the MLBM/I estimate
(ESM Fig. 9). However, when we conducted a meta-analysis
without the outliers (i.e. positive signs for all correlation
coefficients), both M values for HOMA-IR normalised to
insulin exhibited stronger correlations with the HEC com-
pared with M values not normalised to insulin (data not
shown).

We also conducted meta-analyses to test our hypothesis
that the HEC correlates more strongly with surrogate mea-
sures for insulin sensitivity in individuals with IGT than in
those with NGT or type 2 diabetic patients (ESM Table 4).
According to our analyses, this is the case for several surrogate
measures (e.g. Matsuda, Stumvoll MCR, Stumvoll ISI,
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Fig. 1 Summary of all meta-
analyses. The figure shows the
strength of the pooled
correlations; negative pooled
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positive side to facilitate
comparison. Figures in
parentheses indicate the papers
that first described the surrogate
measure (e.g. Matsuda) or that
first measured the correlation with
the HEC (e.g. fasting insulin)
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revised QUICKI), but not for others (e.g. OGIS, QUICKI,
HOMA).

Discussion

Several surrogate markers for insulin sensitivity have been
developed for use in clinical studies when the accepted refer-
ence method, HEC, is not practicable. We have correlated
these surrogate measures of insulin sensitivity with the HEC
in a meta-analysis. Based on this analysis, we recommend that
the primary choice of surrogate index for estimating insulin
sensitivity should be the revised QUICKI. This index is easy
to perform because only fasting blood samples are needed and
the correlation with the HEC is approximately as strong as that
of OGTT-based indices. However, NEFA analyses are needed
to construct this index. If NEFA analyses are not available,
then any of the following OGTT-based indices could be
employed as a second-choice measurement: Stumvoll MCR,
OGIS, Matsuda, Stumvoll ISI and Gutt. If estimations must
rely on fasting levels without NEFA analysis, then the best
choice would be the QUICKI, the log-transformed HOMA-IR
or the HOMA-%S.

However, the strength of correlation of the different surro-
gate measures with the HEC is moderate at best. This leads us
directly to cost–benefit considerations. When conducting a
small study, the HEC reference method should be used.
However, in epidemiological or large-scale intervention stud-
ies, practical considerations will determine which of the afore-
mentioned indices should be used. The overlapping CIs of the
different meta-analyses suggest that there is no difference in
correlation strength between these indices.

Some surrogate measures show a poor correlation with the
HEC [e.g. I0/G0, G0/I0, insulin (120 min) and fasting glucose].
When using the I0/G0 or G0/I0 ratio, high insulin and high
glucose levels will cancel each other out, so indices containing
G0×I0 or G0+I0 are always preferred. Although insulin during
the OGTT [e.g. insulin (120 min)] exhibits a fairly good
correlation with the HEC in a healthy population, it is of less
value in a diabetic population because it is strongly influenced
by islet dysfunction (ESM Table 4). Fasting glucose shows
only a very limited variation in a healthy population and is
regulated by several factors besides insulin sensitivity, such as
islet function and hepatic glucose release. It is therefore a poor
index to distinguish between various degrees of insulin sensi-
tivity among healthy subjects.

After excluding study participants with medical conditions
that might interfere with the measurement of insulin sensitiv-
ity, the quality of the remaining studies was still variable. This
was probably caused by a disproportionately low insulin dose
being administered during the HEC. During the HEC, the aim
is to completely suppress hepatic glucose production to enable
an accurate estimation of peripheral insulin sensitivity.

Incomplete suppression will lead to the underestimation of
insulin sensitivity. If the same dose of insulin is used for
healthy/normal weight and type 2 diabetic individuals, then
some participants will be examined with an inappropriate dose
(because overweight and diabetic individuals need higher
insulin doses to suppress hepatic glucose production)
[4, 20], which indirectly affects correlations with surrogate
indices. Furthermore, despite the assumption of a steady state
condition, the amount of infused glucose continues to rise
even at the end of the examination [21–23]. This means that
the same participant may exhibit better insulin sensitivity
during a longer HEC than during a shorter one, which makes
comparisons difficult among clamp examinations of different
durations. In addition, the glucose infusion rate is higher at the
second examination than at the first within the same individual
[22]. One possible explanation is that reduced stress causes the
increase in insulin sensitivity.

Surrogate measures of insulin sensitivity (both fasting and
OGTT based) have previously been validated mostly by de-
termining their correlation coefficients to the HEC, in line
with our analysis [24, 25]. However, it should be emphasised
that fasting indices mainly measure hepatic insulin sensitivity
and the HEC mainly measures muscle insulin sensitivity,
while OGTT-based indices measure both types of insulin
sensitivity [7, 26]. There are other differences among these
three methods of measuring insulin sensitivity. For example,
although the HEC is the accepted reference measurement for
insulin sensitivity, it does not reflect physiological conditions.
Furthermore, arterialised blood is used during the HEC to
measure glucose, while venous blood samples are taken for
the surrogate measures. The same amount of glucose is always
administered during the OGTT, in contrast to the fixed insulin
dose but variable glucose infusion administered during the
HEC. Although some consider the OGTT to be a more phys-
iological examination in which the glucose load mimics that
of a meal, this is disputed [27]. All of these factors help to
explain why the correlation strength between surrogate mea-
sures and HEC is moderate at best.

Furthermore, there are several sources of error in insulin
concentrations, which form part of most surrogate indices. For
example, insulin assays show varying degrees of cross-
reactivity with proinsulin and its partially processed products.
While this is an important source of error in a radioimmuno-
assay, cross-reactivity to proinsulin is as low as 5.3% in the
newer, specific insulin assays [28]. Insulin assays seem to
exhibit most variability at low insulin levels, which could
cause lower correlation coefficients in healthy individuals vs
type 2 diabetic patients [29].

Matthews and collaborators originally recommended that
three blood samples should be obtained for insulin analyses
(one every 5 min, to account for the periodicity in insulin
secretion) [30]. However, few of the studies included in our
meta-analysis collected more than one sample for insulin
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analysis. This methodology may therefore introduce an error,
especially for normal weight subjects, because pulsatile insu-
lin decreases with IGT and diabetes [31, 32]. Finally, insulin
levels are also regulated by beta cell and liver function (via
effects on insulin clearance), in addition to insulin sensitivity.

It has been suggested that surrogate measures of insulin
sensitivity show weaker correlations with the HEC in healthy
normal weight individuals than in insulin-resistant individuals
[27]. In our meta-analysis, that was true for some of the
surrogate indices but not for all. Generally, the strength of
the correlation between a surrogate measure and the HEC in
individuals with different levels of insulin sensitivity (NGT,
IGT and type 2 diabetes) depends on the insulin dose admin-
istered during the clamp [29]. Lower insulin doses favour
strong correlations for individuals with NGT, and higher
insulin doses increase the correlation coefficient for insulin-
resistant individuals. In many of the studies included in our
meta-analysis, a lower insulin dose was used for all study
participants. This favours stronger correlations for insulin-
sensitive groups. Furthermore, lower insulin doses will mea-
sure hepatic insulin sensitivity instead of peripheral glucose
uptake, which strengthens correlations with the fasting
surrogate measures relative to OGTT-based indices [33].
We therefore cannot draw conclusions from our meta-
analyses about the NGT, IGT and type 2 diabetes
subgroups.

Our analysis did not reveal a difference between the M
value normalised to body weight and theM value normalised
to lean body mass. However, M values normalised to insulin
(MBW/I and MLBM/I) exhibited stronger correlations with all
tested surrogate measures compared with M values not nor-
malised to insulin (MBW and MLBM). Related to this,
Bokemark et al showed that clamp examinations 2 weeks
apart in the same individual exhibit a stronger correlation if
insulin sensitivity is calculated using M values normalised to
insulin and not M values without normalisation [22]. In addi-
tion, the distribution of insulin sensitivity in the population
studied increases if the M value is normalised to insulin
because it then becomes possible to detect small differences
in insulin sensitivity [2].

In summary, we recommend that either the revised
QUICKI fasting surrogate measurement or the OGTT-based
indices (Stumvoll, OGIS, Matsuda and Gutt) should be used
in future clinical studies. However, these indices need further
validation against the HEC and should be compared in a
single study.
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