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Good news for the ageing beta cell
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Abbreviations
GLP1 Glucagon-like peptide-1
GPCR G-protein-coupled receptor
MAPK Mitogen-activated protein kinase
MTOR Mammalian target of rapamycin
PDGF Platelet-derived growth factor
PDK1 PIP3-dependent kinase
PI3K Phosphatidylinositol-3-kinase
PIP2 Phosphatidylinositol-4,5-bisphosphate
PIP3 Phosphatidylinositol-3,4,5-trisphosphate
PKB Protein kinase B
PKC Protein kinase C
PTEN Phosphatase and tensin homologue
Raf Rapidly accelerated fibrosarcoma
Ras Rat sarcoma protein
Rheb Ras homologue enriched in brain
TSC1/2 Tuberous sclerosis proteins 1 and 2

The clinical problem

All agree that marked reductions in absolute beta cell mass are
associated with both types 1 and 2 diabetes. For this reason,
there is great interest in identifying methods to create and/or
expand functional human beta cells either in vivo or ex vivo
for replacement therapy. Unfortunately, experimental induc-
tion of human beta cell proliferation has proven frustratingly
difficult and, to date, no group has been able to induce human
beta cells to proliferate at high rates in a therapeutically

feasible manner. This is in contrast to rodent models, in which
induction of robust proliferation and beta cell expansion has
been accomplished using many different growth factors, nu-
trients, biologics, small molecule agonists and surgical/
physiological manoeuvres. Painfully, it has been very chal-
lenging to demonstrate that any of these can drive rapid
expansion of human beta cells. In part, this no doubt reflects
human–rodent interspecies differences, but it is also clear that
much of this is also an age-related issue. Age is an important
issue because most studies in rodent models are performed in
juvenile animals (2–3 months of age, equivalent to early
adolescence in humans), whereas the main source of human
beta cells for research is from cadaveric pancreas donors in the
40–50 year age range. For example, Teta et al have shown that
an age-related decline in beta cell proliferation and respon-
siveness to mitogens occurs in rodents [1], similar to the age-
related loss of proliferation that starts in humans in early
childhood [2–7]. Simply stated, it is easy to stimulate prolif-
eration in juvenile rodent beta cells, but difficult in those from
mice older than 14 months, and from humans older than
2–5 years. Recently, we and others have been able to induce
robust adult human beta cell proliferation using overexpres-
sion of cell cycle molecules and gene therapy approaches, but
these are not readily translated to humans with diabetes
[8–11]. Thus, there is an urgent need to understand signalling
pathways and receptors upstream of the cell cycle molecules
that control and can activate human beta cell replication [12].
From these several perspectives, one key message of the
article by Yang and colleagues in this issue of Diabetologia
is that marked beta cell replication can indeed be induced in
very old mice [13]. But more on this later.

Phosphatidylinositol-3-kinase signalling

Phosphatidylinositol-3-kinase (PI3K) is a ubiquitously distrib-
uted lipid kinase [12–20] shown in green in Fig. 1. PI3K
signalling is activated by many different kinds of upstream
signals coming from the cell surface, exemplified by, but not
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limited to, tyrosine kinase receptors (such as the insulin and
IGF-1 receptor), G-protein-coupled receptors (GPCRs; such
as the glucagon-like peptide-1 (GLP-1)/exendin-4 receptor),
and other classes of receptors. PI3K is linked to these cell
surface receptors via molecules such as IRS2 and G-proteins.
PI3K’s enzymatic function converts phosphatidylinositol-4,5-
bisphosphate (PIP2) to an active form, PIP-3,4,5 trisphosphate
(PIP3), which then activates PIP3-dependent kinase-1 (PDK1).
This in turn activates a downstream intracellular signalling
cascade that includes a panoply of mitogenic, survival and cell

size-enhancing molecules and their isoforms, such as Akt/
protein kinase B (PKB), Ras homologue enriched in brain
(Rheb), tuberous sclerosis protein (TSC)1 and 2, mammalian
target of rapamycin (MTOR) and ribosomal protein S6 kinase
(p70S6K), among others. This is complex, but becomes more
complex because ‘PI3K’ proves to be not one enzyme, but a
large family of catalytic and regulatory subunits. In addition,
the PI3K pathway is not linear, as shown in the simplified
schema in Fig. 1, but crosstalks or intersects with other
mitogenic/survival pathways, such as the rat sarcoma protein
(Ras)/rapidly accelerated fibrosarcoma (Raf)/mitogen-activated
protein kinase (MAPK) pathway, and various protein kinase C
(PKC) pathways. These act in concert to drive cell cycle
progression, to activate survival pathways, and to drive differ-
entiation pathways, all in cell-type specific ways.

PTEN

This background serves to introduce the protein ‘phosphatase
and tensin homologue’ (PTEN) (shown in red in Fig. 1)
[12–20]. It is a negative regulator of PI3K activity by remov-
ing the 3-phosphate from PIP3. Through this mechanism
PTEN is a tumour suppressor, the loss of which is linked to
numerous cancer types, such as breast cancer. PTEN biology
is also complex, as the protein is localised in both the nucleus
and cytosol, and has an additional isoform derived from an
alternative translational initiation site that generates a secreto-
ry form that can penetrate adjacent cells and suppress their
proliferation [15, 16]. In addition, PTEN itself is subject to
complex transcriptional, translational, proteasomal and post-
translational regulation [17]. The important point here is that,
since PI3K is composed of so many different isoforms and
subtypes, it is difficult to silence each of these in concert.
Thus, PTEN is useful in research terms because it serves as a
general inhibitor of most or all PI3K isoforms. Conversely, its
loss in cancer, or its intentional removal in mouse genetic
models, as in the Yang report [13], serves as a general activa-
tor of PI3K activity.

PTEN and the mouse beta cell

Since PI3K activates mitogenic pathways, and since PTEN is
an upstream suppressor of PI3K, it makes sense to hypothesise
that loss of PTEN in the beta cell would cause increases in beta
cell proliferation, survival, mass and function. This prediction
has been shown to be true by the Kushner, Stiles and Woo
research groups using insulin promoter-driven Cre or gener-
alised Pten knockout models [18–21]. However, since PTEN
was removed in embryonic life in these earlier models, it is
possible that effects observed in adults were the result of
developmental events. More specifically, it is not possible to
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Fig. 1 The Yin and Yang of PI3K vs PTEN in the regulation of beta cell
proliferation. This is a greatly oversimplified schematic of the receptor-to-
PI3K-to-proliferation pathway, focusing on PI3K (in green, because it
activates the mitogenic pathway) and PTEN (in red because it inhibits the
mitogenic pathway). In this example, a GPCR (such the GLP-1 receptor)
activates PI3K via a G-protein (such as Gq); or a tyrosine kinase receptor,
such as the insulin receptor (IR) or IGF-1 receptor (IGFR) activates PI3K
via adaptor proteins, or in some cases directly. This leads to a sequence of
downstream events including generation of PIP3, its activation of PDK1,
which phosphorylates Akt/PKB, which in turn phosphorylates, thereby
inhibiting, TSC1 and 2; this releases the small G-protein, Rheb, so that it
can phosphorylate and activate MTOR. Active MTOR, through a com-
plex series of downstream events, leads to proliferation. Not shown in the
figure, this pathway interacts with a variety of other mitogenic and
survival pathways, including, but not limited to, the Ras/Raf/MAPK
pathways, Janus kinase/signal transducer and activator of transcription
(JAK–STAT) signalling pathways and PKC signalling pathways. For
readers who prefer more detail, Shi et al [17] provide illustrations of
PTEN intracellular compartmentalisation and regulation of its levels and
activity. In the context of the accompanying report by Yang et al [13], the
key point is that PTEN is placed near the top of this pathway, and thus in a
pivotal position for controlling the entire pathway. It balances the pro-
mitogenic activity of PI3K: its loss is permissive for increased activity in
the pathway (and thus proliferation); conversely, its overexpression in-
hibits the pathway, reducing proliferation, and serving as a tumour
suppressor protein (inhibiting proliferation)
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know if the proliferation observed in young adults, initiated in
fetal life, would occur if PI3K were activated in aged beta
cells.

This is the focal point of the Yang paper in this issue of
Diabetologia [13]. The authors demonstrate that Pten dele-
tion, using a tamoxifen-regulated insulin promoter-Cre system
that effectively silences Pten following tamoxifen administra-
tion, leads to activation of proliferation and to enhanced beta
cell survival following administration of streptozotocin. Most
importantly, they show that this can be induced not only in
young mice at 3–4 months of age, but also when Pten expres-
sion is disrupted at 12 months of age; indeed the resultant
proliferation continues up to 24 months of age. This is re-
markable, for it is one of a very few examples of induction of
proliferation in aged mouse beta cells. Along related lines,
Saltpeter and colleagues used a parabiosis model, joining
young (1-month-old) to old (8-month-old) mice, to demon-
strate that the circulation of young mice contains a factor or
factors that can induce proliferation of beta cells in old mice
[22]; however, some would argue that the 8-month-old mice
are not really ‘aged’. Chen et al showed that platelet-derived
growth factor (PDGF) receptor signalling can activate prolif-
eration in older beta cells [23], but their model used lifelong,
constitutive PDGF receptor overexpression beginning during
pancreas development, so that it is not clear that ‘normal’ aged
beta cells would respond with a proliferative response to
PDGF signalling. Thus, a very important novel aspect of the
Yang report is their demonstration that PTEN loss—beginning
in aged animals—can activate proliferation in what all would
agree are very adult beta cells.

This is important, because it means that age-associated beta
cell cycle arrest is not irreversible: with appropriate stimula-
tion, aged beta cells can be induced to re-enter the cell cycle.
This highlights another important question: why is it that aged
beta cells are so resistant to replication? Is it quiescence?
Senescence? Terminal differentiation? Enforcement of the
‘disallowed genes’ principle [24]? And what do these terms
specifically mean in the context of the beta cell? Depletion of
cell cycle activators? Excessive activation of cell cycle inhib-
itors? Reversal or activation of promoter methylation in cer-
tain genes? Methylation, de-methylation, acetylation etc. of
relevant histone tails? Loss of telomeres? Here, the Yang
paper also provides some preliminary clues: the authors show
that cyclins D1 and D2 can be activated, and key cell cycle
inhibitors, such as p27cip and p16INK4a, can be repressed in
the aged mouse beta cell by PTEN loss. Interestingly, one of
the histone methylases that represses p16INK4a transcription,
enhancer of zeste homologue-2 (EZH2), is also activated by
PI3K activation. More than 30 other cell cycle activators and
inhibitors can regulate cell cycle progression, so it is not
certain that the few candidates studied to date are the only
ones—or even the most important ones—that mediate the
PI3K activation of cell cycle progression. But collectively,

they demonstrate that cell cycle inhibition is not irreversible
in the aged beta cell, and also provide hope that other mito-
genic signalling pathways may be able to engage cell cycle
machinery.

New questions raised

Each advance in research raises additional questions. One
question raised here relates to beta cell function: despite
remarkable increases in beta cell proliferation and mass, the
Pten-null mice are not hypoglycaemic. This is surprising, and
may suggest that PI3K activation and/or proliferation induce
de-differentiation of beta cells. Alternatively, it may suggest
that, on a per-cell basis, each beta cell is appropriately down-
regulating its insulin secretion. This was not studied using
markers or bioassays of beta cell differentiation, and can only
be analysed unequivocally in a reversible model in which
PTEN function can be restored, or PI3K activity otherwise
attenuated. Further, since different mouse genetic models may
have different phenotypes when studied on different back-
grounds, is this a generalised phenomenon, or representative
of all or most mouse strains?

Also unanswered is the question of which of the many
catalytic or regulatory subunits in the PI3K family is respon-
sible for the proliferation and enhanced survival? Similarly,
since there is crosstalk among PI3K downstream pathways,
which specific pathways mediate proliferation and survival in
this model of PTEN loss? Another key question is, what
upstream receptors for growth factors or nutrients might be
the natural upstream mediators or activators of PI3K mitogen-
ic signalling in adult islets?

Back to the clinical problem

Of course, the biggest questions are: what relevance does all
this have to human beta cell replication, regeneration and
survival, and how can it be leveraged to treat diabetes? The
article byYang and colleagues is silent on this issue. However,
there are some indications that the PI3K pathway can drive
human beta cell proliferation, even in adults. First, both Akt/
PKB and PKCζ, which can act as downstream mediators of
PI3K activation, can activate proliferation in adult human beta
cells to a limited degree [25, 26]. Furthermore, human
insulinoma has been associated with increases in cyclin D1
and cyclin-dependent kinase 4 (CDK4) [27, 28], and with
inactivating mutations in TSC2 [29, 30], as well as in menin,
which represses p18INK4 and p27cip [31]. In addition, the Akt/
PKB inhibitor, tribbles homologue 3, has been shown to
repress proliferation in the human beta cell [32]. But most
directly relevant to the Yang study and to human beta cell
proliferation, there are at least two reports of PTEN mutations
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or deletions in pancreatic endocrine tumours [28, 29]. This
contrasts with the Ras/Raf/MAPK pathway, which is com-
monly activated in pancreatic adenocarcinoma, but rarely, if
ever, in insulinoma [28].

It is relatively easy to ask whether PI3K activation can
drive human beta cell proliferation and survival. A more
difficult question will be to identify the upstream ligands,
receptors, and/or signalling molecules that should drive
PI3K, but fail to, in adult human beta cells. These should be
excellent targets for therapeutic induction of human beta cell
proliferation, survival and function.
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