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Abstract Insulin signalling is uniquely required for storing
energy as fat in humans. While de novo synthesis of fatty
acids and triacylglycerol occurs mostly in liver, adipose
tissue is the primary site for triacylglycerol storage. Insulin
signalling mechanisms in adipose tissue that stimulate hy-
drolysis of circulating triacylglycerol, uptake of the released
fatty acids and their conversion to triacylglycerol are poorly
understood. New findings include (1) activation of DNA-
dependent protein kinase to stimulate upstream stimulatory
factor (USF)1/USF2 heterodimers, enhancing the lipogenic
transcription factor sterol regulatory element binding protein
1c (SREBP1c); (2) stimulation of fatty acid synthase
through AMP kinase modulation; (3) mobilisation of lipid
droplet proteins to promote retention of triacylglycerol; and
(4) upregulation of a novel carbohydrate response element
binding protein β isoform that potently stimulates transcrip-
tion of lipogenic enzymes. Additionally, insulin signalling
through mammalian target of rapamycin to activate tran-
scription and processing of SREBP1c described in liver
may apply to adipose tissue. Paradoxically, insulin resis-
tance in obesity and type 2 diabetes is associated with
increased triacylglycerol synthesis in liver, while it is de-
creased in adipose tissue. This and other mysteries about
insulin signalling and insulin resistance in adipose tissue
make this topic especially fertile for future research.
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Abbreviations
ACC Acetyl-CoA carboxylase
AMPK AMP-activated protein kinase
ATGL Adipose tissue triglyceride lipase
CGI-58 Comparative gene identification-58
ChREBP Carbohydrate response element-binding protein
DAG Diacylglycerol
DNA-
PK

DNA-dependent protein kinase

FAS Fatty acid synthase
FATP1 Fatty acid transporter protein 1
FSP27 Fat-specific protein of 27 kDa
HFD High-fat diet
HSL Hormone-sensitive lipase
LPL Lipoprotein lipase
MAPK Mitogen-activated protein kinase
mTOR Mammalian target of rapamycin
mTORC Mammalian target of rapamycin complex
NP Natriuretic peptide
PI3K Phosphatidylinositol 3-kinase
PKA Protein kinase A
PKC Protein kinase C
PKG Protein kinase G
PPAR Peroxisome proliferator-activated receptor
SOCS Suppressor of cytokine signalling proteins
SREBP Sterol regulatory element binding protein
S6K S6 kinase
Th T helper
USF Upstream stimulatory factor

Introduction

Insulin signalling and its impairment in obesity and type 2
diabetes is a vast field that commands the full attention of
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many hundreds of laboratories worldwide. Scientific output
has been extremely prolific, making it unlikely that any inves-
tigator has actually read all the relevant literature, which in-
cludes 25,082 publications listed in PubMed under the topic
‘insulin signaling’ and 67,013 papers listed under the heading
‘insulin resistance’. Review articles that discuss insulin resis-
tance number 15,711, as of August 2012. Also, for many of
the most interesting findings, separating fact from fiction will
take years for confirmatory studies to be reported and contro-
versies resolved. These realities create a huge challenge for
scientists trying to understand insulin signalling mechanisms
and their dysfunctions in metabolic disease, especially for
those who are now just entering the field.

One approach to this scientific challenge is to focus on a
small but critical corner of the puzzle. Such a niche area in the
study of insulin signalling is lipid storage, dramatically
highlighted in the images of the first diabetic patients treated
with insulin in 1922, who were transformed from emaciated to
plump within a few weeks [1]. At the cellular and molecular
levels, insulin’s actions indeed coordinately enhance the syn-
thesis of triacylglycerol, the central currency of stored lipid in
humans. While hepatocytes are a principal site of de novo
lipogenesis (synthesis of fatty acid) as well as overall lipogen-
esis (esterification of fatty acid with glycerol 3-phosphate to
form triacylglycerol) [2], adipocytes are the principal site of
triacylglycerol storage in healthy individuals [3]. Importantly,
deficits in adipocyte capacity for increasing triacylglycerol
deposition, for example in human lipodystrophies and obesity,
contribute to systemic lipid overload and ‘lipotoxicity’, which
in turn are thought to disrupt whole body glucose tolerance [4].
Thus, we focus in this review on insulin signalling and its
dysfunctions specifically in relation to adipocyte
triacylglycerol sequestration, recognising this topic's broader
implications for understanding the pathophysiology of obesity
and type 2 diabetes.

Adipose lipid storage capacity modulates systemic
insulin sensitivity

Increased circulating fatty acids and triacylglycerol are
strongly correlated with impaired insulin signalling and
glucose intolerance in obesity and type 2 diabetes [5, 6].
Indeed, dysfunctional lipid metabolism has been highlighted
as the primary defect in the aetiology of metabolic disease
[7]. Furthermore, the accumulation of fat in non-adipose
tissue (e.g. liver and muscle) has been described as a strong
predictor of type 2 diabetes mellitus, although the molecular
mechanisms by which lipids contribute to insulin resistance
in these tissues is still unclear (for review, see [8, 9]).
Systemic insulin resistance includes impaired suppression
of hepatic gluconeogenesis by insulin and attenuated insulin
stimulation of skeletal muscle and adipocyte glucose uptake.

Inducing hypertriacylglycerolaemia or high circulating
NEFA levels in human volunteers using lipid emulsion in-
fusions can cause systemic insulin resistance as measured by
hyperinsulinaemic clamps [10–13]. In addition, incubating
cells with high concentrations of lipids, primarily palmitate,
demonstrates negative effects of increased circulating lipids
on insulin action in peripheral tissues [14–16]. However, a
contrary viewpoint is that circulating NEFA levels are min-
imally elevated in human obesity, and more work is required
in this area [17].

Evidence that adipose triacylglycerol storage capacity is
a critical factor in elevated circulating triacylglycerol and
insulin resistance is provided by experimentally promoting
adipogenesis in mice [18, 19], which improves systemic
insulin sensitivity. This likely occurs in part through seques-
tration of lipid away from other insulin target tissues, as well
as by providing beneficial adipokines [20–22]. Specifically
promoting adipocyte triacylglycerol synthesis in transgenic
mice through increasing levels of critical lipogenic enzymes
in adipocytes, exemplified by acyl-CoA:diacylglycerol
acyltransferase [20], indeed produces increased adiposity
but also improves glucose tolerance. Furthermore, promot-
ing adipose glucose uptake and lipogenesis by transgenic
enhancement of glucose transporter 4 (GLUT4) levels re-
verses diabetes in mice [21, 23].

Insulin signalling mechanisms to attenuate
adipocyte lipolysis

Insulin signalling enhances lipid storage in adipocytes by both
stimulating triacylglycerol synthesis and inhibiting its break-
down. Triacylglycerol is stored in lipid droplets, which also
contain lipid droplet proteins, including perilipin 1,
adipophilin/adipocyte differentiation-related protein, tail-
interacting protein of 47 kDa and fat-specific protein of
27 kDa (FSP27)/Cidec [24–27]. Active hydrolysis of stored
triacylglycerol into its constituent fatty acids and glycerol
occurs in starvation and exercise, through the actions of li-
pases and their regulators localised on the droplets (Fig. 1).
Three key lipases control lipolysis: adipose tissue triglyceride
lipase (ATGL) primarily catalyses triacylglycerol into diac-
ylglycerol (DAG), hormone-sensitive lipase (HSL) has a
higher affinity toward DAG than triacylglycerol, and
monoacylglycerol lipase completes the last step in the process
[28–31]. Two lipolytic pathways are highlighted in Fig. 1. The
most studied pathway involves β-adrenergic stimulation by
catecholamines, leading to increased cAMP levels and protein
kinase A (PKA) activation, which increases access of lipases
to the triacylglycerol droplet. In the fed state, perilipin binds
the ATGL co-activator known as comparative gene
identification-58 (CGI-58). Upon activation, PKA phosphor-
ylates perilipin 1, releasing CGI-58 to activate ATGL [32, 33].
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In contrast, HSL activation arises through direct phosphory-
lation by PKA on multiple residues, inducing HSL transloca-
tion to the lipid droplet surface via interaction with the NH2-
terminal of phosphorylated perilipin-1. This coordinated acti-
vation of both HSL and ATGL results in a powerful lipolytic
stimulation [34, 35].

A second lipolytic pathway depicted in Fig. 1 is stimulated
by natriuretic peptide (NP). A recent study demonstrated that
this pathway is activated following cold exposure, increasing
the thermogenic activity of white adipose tissue via a p38
mitogen-activated protein kinase (MAPK)-dependent path-
way [36]. Binding of NPs to the active A isoform of the NP
receptor results in increased cGMP levels and activation of
protein kinase G (PKG), which phosphorylates the same
targets as PKA, namely HSL and perilipin 1, independently
of β-adrenergic stimulation [37–39]. Its role in enhancing
adipose tissue thermogenesis, together with the fact that it is
downregulated in obesity [36, 40], makes this NP receptor A
signalling pathway a potential therapeutic target.

Insulin’s potent inhibition of lipolysis not only favours
lipid storage but also markedly decreases circulating fatty

acid levels. Insulin signalling is initiated through its receptor
tyrosine kinase, which phosphorylates insulin receptor pro-
teins (IRS) leading to phosphatidylinositol 3-kinase activa-
tion (PI3K), phosphatidylinositol 3,4,5-triphosphate
generation and Akt activation (see [41, 42] for comprehen-
sive reviews). This signalling markedly inhibits PKA- but
not PKG-mediated lipolysis. At least four sites of negative
regulation by insulin signalling can be identified on the
β-adrenergic receptor-mediated lipolytic pathway (Fig. 1).
First, insulin inhibits lipolysis through phosphorylation of
adipose-specific phospholipase A2, which via arachidonic
acid production increases prostaglandin E2 levels and in a
paracrine/autocrine manner reduces cAMP levels through
inhibition of adenylate cyclase [43, 44]. The exact mecha-
nism of this pathway remains to be elucidated. Second,
activation of Akt phosphorylates and activates phosphodi-
esterase, thereby reducing cAMP levels and PKA activity
[45–47]. Third, the downstream target of Akt, mammalian
target of rapamycin complex 1 (mTORC1), attenuates
β-adrenergic stimulated lipolysis through inhibiting ATGL
mRNA levels, while mTORC1 itself is inhibited by PKA
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Fig. 1 Insulin signalling attenuates cAMP-mediated lipolysis at mul-
tiple steps in adipocytes. (a) NPs signal through NP receptor A to
increase cGMP levels and activate PKG. (b) Stimulation of the β-
adrenergic receptor increases cAMP levels, which activates PKA. (c)
The lipolytic actions of PKA and PKG converge through phosphory-
lating perilipin 1 (Plin1), releasing CGI-58 to bind and activate ATGL,
thereby stimulating hydrolysis of triacylglycerol (TG) to DAG. (d)
Both PKA and PKG also phosphorylate HSL, inducing its transloca-
tion to lipid droplets, where it interacts with phosphorylated perilipin and
acts primarily to convert DAG to monoacylglycerol (MAG). (e) Activa-
tion of the insulin receptor (InsR–IRS signalling pathway inhibits lipol-
ysis through activation of adipose-specific phospholipase A2 (AdPLA2),

which inhibits adenylate cyclase via prostaglandin E2 synthesis, while
activation of Akt leads to phosphodiesterase 3B (PDE-3B) activation to
lower cAMP levels. Lipid droplet protein FSP27 is also upregulated by
insulin signalling. (f) mTORC1 acts as a critical node in the control of
adipocyte lipid metabolism, through reducing Atgl mRNA levels and (g)
stimulating lipogenesis via SREBP1-c. Alternatively, mTORC1 stimu-
lates a negative feedback loop through activation of (h) S6K and growth
factor receptor-bound protein 10 (GRB10). (i) PKA can also regulate
adipocyte lipid handling by modulating its own activity by phosphory-
lating and activating PDE-3B, while PKA has also been shown to (j)
inhibit mTORC1. MGL, monoacylglycerol lipase
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[48]. Fourth, insulin upregulates the levels of the lipid
droplet protein FSP27 through increasing its transcription,
which dampens lipolysis [27, 49]. Thus, insulin action to
inhibit lipolysis in this multifaceted mode provides a powerful
restraint on the release of fatty acids from triacylglycerol
within adipocyte lipid droplets.

Rapid insulin signalling mechanisms stimulate
adipocyte lipogenesis

The actions of insulin to stimulate synthesis of triacylglycerol
in adipocytes can be divided into two categories based on the
time frame of their stimulatory effects. A summary of rapid
insulin effects that occur within minutes to an hour or two is
presented in Fig. 2. The major acute insulin effect is a several-
fold stimulation of glucose transport into cells, mediated by
increased translocation of GLUT4 to the plasma membrane
through signalling by PI3K [50–54]. In adipocytes, this stim-
ulation of glucose entry (Fig. 2) acts in concert with the
process of glyceroneogenesis, [55] to provide intracellular
substrate for synthesis of glycerol 3-phosphate needed for
esterification of fatty acids into triacylglycerol. It is important
to note that the process of glyceroneogenesis, whereby pyru-
vate is converted to glycerol 3-phosphate, can be the major
contributor to this esterification step as well, and is discussed
in detail elsewhere [55]. The signals downstream of insulin-
stimulated PI3K may include atypical protein kinase C (PKC)
isoforms [56, 57], but it seems that the predominant signals
derive from Akt activation [58, 59]. The RabGAP (Rab
GTPase-activating protein) AS160/ TCB1D4 has been iden-
tified as an Akt substrate that regulates GLUT4 translocation
[60–62], but studies on manipulating AS160 levels suggest
that other, as yet unidentified, Akt substrates are also involved
[63, 64]. In spite of decades of work, the detailed mechanisms
of insulin stimulation of glucose transport remain largely
unresolved.

Two pathways stimulated by insulin contribute to the pool
of fatty acids that is esterified into triacylglycerol in adipo-
cytes: fatty acid uptake from circulating triacylglycerol and de
novo fatty acid synthesis. The former is the major pathway
and is mediated in part through insulin stimulation of mRNA
and protein levels of lipoprotein lipase (LPL), as well as the
activity of LPL, which hydrolyses circulating triacylglycerols
in lipoproteins into glycerol and fatty acids (Fig. 2) [65, 66].
Adipocyte-derived LPL is required for efficient fatty acid
uptake and storage [67], and insulin infusion in humans in-
creases adipose tissue LPL activity within a few hours [68, 69].
LPL activity is modulated through both post-transcriptional
and post-translational mechanisms [66, 70]. In isolated rat
adipocytes, inhibition of PI3K completely blocks the stimula-
tion of LPL activity by insulin, while inhibition of mTOR
partially inhibits insulin-stimulated LPL activity [71]. Fatty

acids enter the adipocyte by diffusion and by capture mediated
by fatty acid transporter (FAT/CD36) and fatty acid transporter
protein 1 (FATP1), which catalyses the conversion of fatty
acids into fatty acyl-CoA [70]. Wu et al showed that insulin-
stimulated fatty acid uptake is completely abolished in FATP1-
null adipocytes and greatly reduced in the skeletal muscle of
FATP1-knockout animals, while basal fatty acid uptake by
both tissues was unaffected [72]. Insulin appears to increase
fatty acid uptake in adipocytes by stimulating the translocation
of FATP1 from intracellular vesicles to the plasma membrane
[73]. Blocking PI3K or the MAPK pathway inhibits insulin-
stimulated translocation of FATP1 to the cell surface [73].

As mentioned above, insulin also increases the pool of
adipocyte fatty acids for esterification through its acute
stimulation of de novo lipogenesis, which mostly occurs in
the liver and to a smaller extent in adipocytes. The inacti-
vation by phosphorylation of a key enzyme in fatty acid
synthesis, acetyl-CoA carboxylase (ACC), by AMP-
activated protein kinase (AMPK) has been well established
in isolated adipocytes [74–76]. Berggreen et al reported that,
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Fig. 2 Insulin signalling exerts rapid stimulation of glucose transport
as well as fatty acid uptake, synthesis and esterification to
triacylglycerol (TG). (a) Stimulation of the PI3K/Akt pathway by
insulin leads to inhibition of AS160 and GLUT4 translocation. Glu-
cose is converted to glycerol 3-phosphaate and fatty acids. (b) Insulin-
stimulated Akt may inhibit AMPK by phosphorylation. This in turn
would lead to dephosphorylation and activation of ACC, increasing
malonyl CoA production and de novo lipogenesis. (c) Reactive oxygen
species (ROS) are reported to activate AMPK, which then phosphor-
ylates and inhibits FAS. Insulin treatment decreases the inhibition of
FAS induced by ROS. (d) Insulin increases fatty acid uptake by
stimulating the translocation of FATP1 from intracellular vesicles to
the plasma membrane mediated by PI3K or the MAPK pathway. (e)
Insulin increases fatty acid uptake by stimulating LPL levels and
activity through PI3K. (f) Insulin triacylglycerol synthesis or retention
in adipocytes can be altered through regulation of lipid droplet protein
S3-12 redistribution or FSP27 levels
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in adipocytes, insulin-stimulated Akt might regulate ACC
by direct phosphorylation of AMPK, resulting in AMPK
inhibition [77]. This in turn would lead to the dephosphor-
ylation and activation of ACC, increasing malonyl CoA
production and de novo lipogenesis (Fig. 2). Interestingly,
fatty acid synthase (FAS), the last enzyme in the synthesis of
fatty acids [78, 79], may also be regulated by AMPK under
certain conditions [80].

Insulin might acutely stimulate triacylglycerol synthesis
or retention in adipocytes through regulation of S3-12, an
adipocyte-specific lipid droplet protein [81]. The formation
of S3-12-coated lipid droplets in adipocytes apparently re-
quires active triacylglycerol synthesis, which is insulin-
dependent though PI3K activation. Treatment of 3T3-L1
adipocytes for 30 min with insulin was sufficient to redis-
tribute S3-12 protein to lipid droplets [78], whereas a period
of about 4 h was required for the upregulation of the lipid
droplet protein FSP27 level by insulin [49]. Insulin may also
facilitate the reformation of macro lipid droplets during
recovery from lipolysis stimulation [82].

Insulin-stimulated transcription of genes encoding
lipogenic enzymes

Although long-term insulin stimulation of lipogenesis in-
volves major increases in the expression of genes encoding
hepatic lipogenic enzymes [83–86], as depicted in Fig. 3
within the orange background, remarkably little is known
about these mechanisms in adipocytes. Sterol regulatory
element binding protein (SREBP) was originally identified
as a transcription factor that binds to sterol regulatory ele-
ments in the promoter of the genes required for cholesterol
regulation and adipocyte differentiation [87, 88]. Nuclear
entry of SREBP requires proteolytic cleavage of the cyto-
plasmic N-terminal domain [89, 90], which is stimulated by
insulin in hepatocytes [88, 89]. Of the three members of the
SREBP family—SREBP-1a, SREBP-1c and SREBP-2—
SREBP-1c is abundant in lipogenic tissues, and its transcrip-
tion is induced by insulin [91]. SREBP-1c can stimulate the
transcription of Glut4 [92] and many lipogenic genes, in-
cluding, Fas, Lpl, Acc, Elovl6, Acl, Gpat, Dgat, Scd-1, and
Scd-2 [87, 93], and strongly promotes de novo lipogenesis
in liver. However, adipose-specific knockout of this fac-
tor had little or no phenotype in mice [94, 95].
Deficiency of SREBP-1c in mouse tissues can be accom-
panied by an elevation of SREBP-2 levels, which may be
partially functionally redundant, so interpretation of these
results is unclear and more work is needed to resolve this
issue.

Insulin signalling to increase both SREBP-1c levels and
processing is robust in liver (orange background in Fig. 3).
Mechanisms may include a role of atypical PKC since a

constitutively active PKCλ/ζ in liver upregulated SREBP-
1c while an active Akt construct did not [96]. These data
complement previously published studies on mouse knock-
outs indicating that atypical PKC activity is necessary for
insulin stimulation of SREBP-1c levels [97]. In contrast,
hepatic SREBP1c processing appears to be controlled by
insulin through the Akt–mTOR pathway [98–100]. It was
reported that mTORC1 mediates insulin-stimulated process-
ing of SREBP-1c through its substrate protein kinase S6K,
while the insulin signalling to stimulate SREBP-1c levels is
less clear [101, 102]. Lipin-1, a phosphatidic acid phospha-
tase and a transcriptional co-activator, is a direct substrate of
mTORC1 and a negative regulator of nuclear SREBP activ-
ity [98]. In mouse liver, nuclear transport of SREBP may be
regulated by Akt signalling through control of INSIG-2
levels [100, 103]. The MAPK pathways, c-Jun N-terminal
kinase, extracellular-signal-regulated kinase and p38 MAPK
have been shown to phosphorylate SREBP-1a in liver [104,
105], and mutation of the SREBP-1a sites phosphorylated
by the MAPKs in vivo abolished the transcriptional activa-
tion by SREBP1-a and protected mice from fatty liver and
visceral obesity (not shown in Fig. 3) [105]. Thus, insulin
acts at multiple regulatory steps to control the activity and
levels of SREBPs in hepatocytes but, remarkably, none of
these pathways has yet been carefully evaluated in adipocytes.

Two pathways that have been demonstrated to regulate
expression of lipogenic genes downstream of insulin signal-
ling in adipocytes are also depicted in Fig. 3 within the
yellow background section. First, insulin regulates the bind-
ing of heterodimers of basic helix–loop–helix leucine zipper
transcription factors upstream stimulatory factor-1 and -2
(USF1/USF2) to the Fas promoter in cultured adipocytes
[86]. Consistent with these findings, USF null mice exhibit
significantly impaired lipogenic gene induction in liver
[106]. USF and SREBP-1c also interact in vitro and in vivo,
while co-transfection of USF and SREBP-1c result in highly
synergistic activation of the Fas promoter [84]. Insulin
signalling through protein phosphatase-1 has been proposed
to dephosphorylate and activate the protein kinase DNA-
dependent protein kinase (DNA-PK), which in turn phos-
phorylates USF1 and increases transcriptional activation of
FAS and de novo lipogenesis [107]. In DNA-PK-deficient
severe combined immunodeficiency (SCID) mice, feeding-
induced USF1 and FAS activation are impaired, resulting in
decreased circulating triacylglycerol levels and reduced ad-
iposity [108].

A second insulin-regulated lipogenic transcription factor
in adipocytes is the carbohydrate response element-binding
protein (ChREBP), also known to enhance lipogenesis in
liver. Insulin-stimulated glucose uptake in adipocytes acti-
vates ChREBP, which upregulates de novo lipogenesis in
adipose tissue [21]. The target genes of ChREBP are in-
volved in glycolysis, lipogenesis and gluconeogenesis
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[109–112]. During fasting, PKA and AMPK phosphorylate
and inhibit ChREBP function [113]. Intermediates of glu-
cose metabolism (xylulose 5-phosphate or glucose 6-
phosphate) may be essential for both ChREBP nuclear
translocation and transcriptional activity in response to glu-
cose in liver cells [113, 114]. ChREBP−/− (also known as
Mlxipl) mice display significantly reduced adipose tissue
and are insulin resistant [108]; this is potentially due to
dysfunctional adipocyte lipogenesis. Interestingly, glucose-
induced ChREBPα transcriptional activity increases the
levels of a novel isoform, ChREBPβ (Fig. 3), which plays
an even more active role in the regulation of lipogenic genes
in adipose tissue [21]. While transgenic mice producing
high levels of GLUT4 in adipose tissue improves insulin
sensitivity, elevating adipocyte GLUT4 levels in ChREBP−/−

mice does not [21]. These data are consistent with the hypoth-
esis that adipocyte lipogenesis stimulated by insulin is impor-
tant in regulating whole body metabolism, perhaps by
generating beneficial lipids that can affect whole body insulin
sensitivity [115]. That insulin signalling is important for adi-
pocyte lipogenesis is reinforced by data showing that adipose-

specific knockout of the insulin receptor leads to lower adi-
pose mass [116, 117].

Adipose tissue immune cells and their bioactive factors
that effect lipogenesis

Expansion of fat mass in obesity is accompanied by infil-
tration of cells of innate and adaptive immunity, including
macrophages, T cells, B cells, natural killer T cells, neutro-
phils, eosinophils and mast cells [118–123]. Macrophages
are the most abundant immune cell population in adipose
tissue in obesity [120], and are the main source of pro-
inflammatory molecules (e.g. TNF-α, IL1β) secreted in
adipose tissue in the obese state [124, 125]. Macrophages
may be attracted into adipose tissue by increased fatty acid
release from either viable or dying adipocytes in obesity
[126, 127], which may shift their phenotype from M2 to-
wards the M1 pro-inflammatory phenotype [128]. Adipose
tissue macrophages can also accumulate lipids and become
‘foam cell like-cells’ [129], which may complement
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Fig. 3 Transcriptional regulation of lipogenic enzymes by insulin and
glucose studied in hepatocytes (orange background) and adipocytes
(yellow background). The degree to which the mechanisms discovered
in liver apply to adipocytes is likely to be high, but this has not yet been
established. (a) Insulin may increase the levels of active SREBP-1c
through the atypical PKC PKCλ/ζ and (b) PI3K. (c) Activation of
PI3K by insulin leads to increased SREBP-1c levels through
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Insig-2a, which inhibits SREBP processing. (f) Lipin-1 is a direct
substrate of mTORC1 and a negative regulator of nuclear SREBP

activity. Once active, SREBP can induce the transcription of lipogenic
genes. (g) Insulin-stimulated protein phosphatase-1 (PP1) dephosphor-
ylates and activates DNA-PK, which in turn phosphorylates USF1/2.
By interacting with SREBP, USF1/2 increases expression of Fas and
de novo lipogenesis. (h) Insulin-stimulated glucose uptake in adipo-
cytes activates ChREBPα, which stimulates production of its isoform
ChREBPβ. The target genes of SREBP1c and ChREBPα and
ChREBPβ are involved in adipogenesis, glucose uptake, glycolysis,
lipogenesis, and triacylglycerol (TG) storage. FA, fatty acid; SCAP,
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adipocyte lipid sequestration in adipose tissue. While much
of the relevant literature suggests macrophages in adipose
tissue inhibit adipose function [125, 130], some data indi-
cate a beneficial role, for example, in attenuating lipolysis
[128].

T lymphocytes represent the second most abundant im-
mune cell population in adipose tissue and might accelerate
adipose tissue macrophage recruitment and activation [131,
132]. Levels of pro-inflammatory CD8+ and IFNγ+ T helper
(Th) type 1 cells appear to increase with obesity, while
levels of anti-inflammatory IL4+Th2 and regulatory T cells
appear to decrease in adipose tissue from obese mice and
humans [133–137]. Thus, T cells may mediate inhibitory
effects on insulin action and lipogenic genes [135, 136].
Th17 cells producing IL17 may impair adipose tissue me-
tabolism via inhibition of adipogenesis and decreased glu-
cose uptake [137, 138]. IL17-deficient mice gained weight
but sustained glucose tolerance under high-fat diet (HFD)
conditions [139]. In addition, natural killer T lymphocytes
in adipose tissue are activated by binding to lipids or glyco-
lipids associated with the protein CD1d. Although these and
other immune cells represent a very low percentage of the
adipose tissue total, a role in obesity-induced insulin resis-
tance is suggested by their experimental depletion in mice
[119, 121, 122, 140]. Macrophages and lymphocytes can
also become insulin resistant [141]. Indeed, depletion of insu-
lin receptor in myeloid cells protected mice from HFD-
induced insulin resistance and adipose tissue inflammation
[142, 143].

Table 1 summarises the major factors produced by infil-
trating immune cells in adipose tissue of obese rodents and
humans and their reported effects on adipose tissue metab-
olism and insulin signalling. These include a broad range of
pro-inflammatory cytokines, including TNF-α, IL1β, IL6,
and IFNγ, whose negative effect on insulin signalling is
indicated in several studies using knockout animals and
other approaches [125, 144, 145]. Furthermore, TNF-α
injection or adipocyte-specific production of the active
transmembrane form of TNF-α exacerbates systemic and
local insulin resistance, respectively [146–148]. IFNγ, pro-
duced by Th1 and CD8+ lymphocytes, also downregulates
insulin signalling and adipogenesis, while increasing lipol-
ysis [149]. Moreover, depletion of IFNγ protects mice from
HFD-induced insulin resistance [150]. IL17 secreted by
Th17 cells in adipose tissue also negatively regulates adipo-
cyte lipid metabolism [139]. The production of inflamma-
tory lipid mediators such as 12/15-lipoxygenase products
(leukotrienes, hydroxyeicosatetraenoic acids) may add to
the detrimental effect on lipid metabolism in adipocytes by
inducing the secretion of pro-inflammatory cytokines [151,
152]. Studies in humans and rodents continue to reveal
novel inflammatory molecules from the chemokine or inter-
leukin families that influence adipose tissue insulin signalling

and lipid storage, exemplified by CCL7, CXCL5, IL7 and
IL33 [153–155].

Anti-inflammatory cytokines IL4, IL10 and IL1 receptor
antagonist (IL1Ra), which blunt the actions of pro-
inflammatory cytokines on insulin signalling can also be
measured in adipose tissue of obese individuals [128,
156–158]. For example, IL10 inhibits TNF-α production in
macrophages [158], while transgenic mice producing elevated
levels of IL10 show improved insulin sensitivity under HFD
conditions [159]. Recent studies suggest that IL4 enhances
insulin action in adipose tissue, promoting activation of Akt
and inhibition of glycogen synthase kinase-3β, attenuating
adipose tissue inflammation [156, 160]. A key point from
these studies is that immune cells can secrete both beneficial
and deleterious factors within adipose depots, and the overall
effect under a given physiological condition represents the
integration of the effects of these multiple factors in real time.

Mechanisms of insulin resistance of adipocyte
lipogenesis

Prior to discoveries starting in the 1980s that uncovered the
molecules of insulin signalling, the problem of insulin re-
sistance was viewed as simply whether obesity mostly im-
paired insulin binding to its receptor vs ‘post-receptor’
signalling events. Insulin binding to adipocytes was indeed
found to be inhibited in obesity, reflecting a decrease in the
number of adipocyte surface receptors [161, 162] following
induction of receptor endocytosis in response to insulin
binding [163, 164]. However, the remaining receptors were
calculated to be sufficient to mediate a full response at high
insulin concentrations, which is at odds with the greatly
decreased maximum response of lipogenesis that was
observed [165, 166].

We now know that tyrosine phosphorylation of IRS pro-
teins and activation of Akt2, the major insulin signalling
pathway leading to glucose transport stimulation [53, 58],
are also blunted in adipocytes from obese mice [167, 168]
and obese, insulin-resistant humans [169–171]. Mechanisms
for this impaired signalling could include inhibition of IRS
function by the negative feedback loop from S6K [172] and
inhibition of mTORC2-mediated Akt2 phosphorylation and
activation, also through negative regulation by S6K [173]
(Fig. 1). This concept is consistent with the hypothesis that
the hyperinsulinaemia associated with obesity may actually
be the cause, rather than simply the consequence, of insulin
resistance via such feedback inhibition [165]. Other major
candidates for obesity-mediated attenuation of insulin signal-
ling to Akt2 in adipocytes in obesity include (1) factors
secreted from immune cells in adipose tissue, as described in
the section above; (2) factors secreted from endothelial cells
[174, 175]; (3) factors from neuronal innervation of adipose
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tissue [176–178]; and (4) increased influx of fatty acids into
adipocytes, particularly palmitate [179, 180]. It should be
noted that insulin itself may modulate the production of cyto-
kines [142, 181–186]. Moreover, hyperinsulinaemic clamp
conditions in humans cause increased cytokine secretion by
adipose tissue [187, 188]. Thus, hyperinsulinaemia may act
synergistically with adipose tissue immune cells in producing
insulin resistance.

The potential mechanisms for inhibition of insulin sig-
nalling to Akt by the above factors have been extensively
reviewed [189, 190]. Much experimental emphasis has been
placed on Ser/Thr phosphorylation of IRS proteins by var-
ious protein kinases activated by the factors listed above,
leading to inhibition of IRS tyrosine phosphorylation and its
signalling through PI3K [191]. However, an underappreci-
ated aspect of insulin resistance in adipose tissue is the fact
that inhibition of insulin receptor signalling to Akt is not
sufficient to explain the degree to which insulin-stimulated
lipogenesis is suppressed in adipocytes under physiological
glucose concentrations [192–195]. Stimulated Akt activity
is in large excess over that needed to fully upregulate glu-
cose transport in adipocytes, and even large inhibitions of its
activity, as occurs in obesity, are unlikely to fully account
for the great diminutions of acute glucose conversion to
triacylglycerol observed [195]. Thus, a key concept is that
attenuation of the upstream insulin signalling pathway to
Akt in obesity is only one contributor, and possibly a minor
one, to what is measured as resistance of lipogenesis to
insulin in adipocytes.

It is well established that, in human obesity, adipocyte
enzymes involved in fatty acid esterification and de novo
fatty acid synthesis pathways are markedly reduced [196].
These include diacylglycerol acyltransferase in the former
pathway and ATP citrate lyase, ACC and FAS in the latter
[197]. The decreased level of lipogenic enzymes is also
observed in most rodent models of obesity [198, 199].
Furthermore, it has been shown that large adipocytes from
old obese rats exhibit higher rates of glucose transport per
cell than small adipocytes from lean animals, even though
insulin-stimulated conversion of radiolabelled glucose to
triacylglycerol, glycerol and fatty acids is completely
blocked in the former [192]. Taken together, these data
indicate that the uptake of glucose into the adipocyte may
not be the major rate-limiting step in obesity but, rather, the
enzymatic capacity to convert it to triacylglycerol is limited.
Thus, in this sense, the term ‘insulin resistance’ may be a
misnomer in that the major physiological impairment is in
the end target of insulin action (lipogenic enzyme deficit)
rather than solely in the initial insulin signalling pathway.

It is confounding that hepatic lipogenesis is greatly en-
hanced in response to hyperinsulinaemia in obesity, while
adipocyte lipogenic capacity is attenuated under these same
conditions. One explanation for the increased hepatic lipo-
genesis in obesity appears to be activation of mTORC1 by
the excess nutrient amino acids, causing stimulation of one
of its known downstream targets, the lipogenic transcription
factor SREBP1 [98–100]. In contrast, SREBP1 abundance
and processing to its active, truncated form in adipocytes is

Table 1 Effects of cytokines on insulin signalling, glucose uptake, lipogenesis and lipolysis in adipocytes and on hepatic lipogenesis

Molecule Effect on in
vitro adipocyte
insulin signalling

Effect on in
vitro adipocyte
glucose uptake

Effect on in
vitro adipocyte
lipogenesis

Effect on in
vitro adipocyte
lipolysis

Insulin
sensitivity

Triacylglycerol
synthesis

Ref.

KO mice KO mice

TNF-α ↓IRS1, Akt ↓GLUT4 ↓PPARγ, SREBP1c,
ACS, SCD1,
LPL, aP2

↑ATGL, HSL ↑ ↓ (Liver) [125, 144, 148, 202,
232–235]

IL1β ↓IRS1, Akt ↓GLUT4 ↓PPARγ, SREBP1c,
ACC, FAS

↑HSL ↑ ↓ (Liver) [236–238]

IL6 ↓IRS1, Akt ↓GLUT4 ↓PPARγ, FAS, aP2 ↑ ↓ ↑ (Liver) [145, 239–241]

IFNγ ↓IRS1, IR, Akt ↓GLUT4 ↓LPL, FAS, PPARγ ↑ ↑ [134, 149, 150, 242]

IL17 ↓GLUT4 ↓PPARγ, PLIN ↑ [139]

Lipoxygenase
products

↓IRS1, Akt ↑HSL ↑ [150, 151]

IL4 ↑Akt ↓GSK-3β ↓ ↓ ↑ (Liver) [156, 160]

IL10 ↑Akt ↑ ↔ [128, 158, 159, 243]

IL1Ra ↑LPL activity, PPARγ ↑ [244–246]

First four columns: major bioactive molecules produced by immune cells that can modulate adipocyte insulin signalling elements, GLUT4 and
glucose uptake, conversion of precursors to triacylglycerol (lipogenesis), and glycerol and fatty acid release (lipolysis) in vitro (↓ inhibitory effect, ↑
stimulatory effect)

Last two columns: effects of gene knockout of indicated cytokines on whole body insulin sensitivity or triacylglycerol synthesis in indicated tissue

ACS, acyl-CoA synthetase; aP2, adipocyte protein 2; GSK-3β, glycogen synthase kinase-3β; IR, insulin receptor; LPL, lipoprotein lipase; PLIN,
perilipin; SCD, stearoyl-CoA desaturase
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decreased in obesity [198–202], even though mTOR and
S6K activities are apparently actually increased in the adi-
pose tissue of obese mice [172]. One possible answer to this
paradox relates to the selective negative influence on lipo-
genesis of certain immune cell factors and cytokines elevat-
ed in adipose tissue in obesity (Fig. 4). In obesity, immune
cell infiltration in adipose tissue is more severe than that
observed in liver [203, 204]. Strikingly, TNF-α greatly de-
creases adipose tissue levels of peroxisome proliferator-
activated receptor γ (PPARγ) and its target SREBP1 [191,
202, 205], while it increases SREBP1 levels and processing
in liver through mechanisms independent of PPARγ [206,
207]. The negative regulation of PPARγ in adipocytes by
TNF-α appears to include decreases in PPARγ transcrip-
tion, PPARγmRNA stability and protein turnover [191, 208,
209]. Phosphorylation of PPARγ by protein kinases
upregulated in obesity may be part of this inhibitory pattern
[210]. PPARγ, in turn, stimulates transcription and activa-
tion of SREBP1c, as well as acting directly on the promoters
of many genes encoding lipogenic enzymes and factors
[211–213]. The latter include lipid droplet proteins that help

to sequester triacylglycerol in the droplets, protected from
lipolytic enzymes [214–216]. Other cytokines such as IL1,
which are released by macrophages in adipose tissue of
obese individuals [124, 217], mediate similar attenuations
of PPARγ activity or levels [210]. Additionally, since insu-
lin signalling through Akt and mTORC1 causes processing
and activation of SREBP1c [98–100] (Fig. 3), the attenuated
activation of Akt in obesity may contribute to decreased
SREBP1c activity.

It is remarkable that key experiments have not yet been
performed to verify even the most popular hypotheses related
to adipose dysfunction in obesity. For example, testing the
concept that adipose inflammation by immune cells is a cause
of systemic glucose intolerance would require immune cells to
be experimentally depleted in adipose tissue while being
maintained in other tissues. This critical experiment is a tech-
nically difficult one, and has not been accomplished to date.
Furthermore, several anti-inflammatory strategies have been
tested in metabolic disease with little success [218–220], indi-
cating more research is necessary to unravel the role of adipose
tissue inflammation in diabetes.

Another major regulatory pathway of triacylglycerol syn-
thesis involves the ability of glucose to increase the activity
of ChREBPα, which promotes the expression of lipogenic
genes [21]. Similar to SREBP1c, hepatic ChREBPα levels
are increased in obesity, while adipocyte ChREBPα is de-
creased [221–223]. In adipose tissue, unlike liver, insulin
stimulates glucose uptake thus enhancing ChREBPα func-
tion. Levels of the GLUT4 protein itself are substantially
decreased in adipocytes of obese mice and humans [224,
225]. Recent work revealed that ChREBPβ levels are in-
creased by ChREBPα, and is even more potent in stimulat-
ing transcription of lipogenic genes [21]. Adipose-specific
depletion of GLUT4 decreases abundance of ChREBPα and
ChREBPβ, while increased GLUT4 elevates their levels
[21], indicating that the deficit in GLUT4 in obesity may
contribute to the observed downregulation of these lipogenic
factors. Furthermore, ChREBPα is also a downstream target
of PPARγ [222], which is often decreased in adipocytes in
obesity as discussed above. Taken together, these results indi-
cate that dysfunctions in the ChREBP pathway contribute to
adipose lipogenic deficiency in obesity.

Since the transcription factors SREBP1c and ChREBP,
along with the many genes that encode lipogenic enzymes
themselves, are all downstream of PPARγ, direct obstruction
of this master regulator in obesity is expected to decrease
adipocyte lipogenesis capacity (Fig. 4). Such effects of
PPARγ inhibition are further magnified by the simultaneous
disruption of downstream feed-forward cycles. For example,
the downstream target enzyme FAS catalyses synthesis of
palmitate, which can apparently be converted to derivatives
that act as PPARγ ligands [226–228]. Thus, decrements in
FAS due to PPARγ attenuation, reduces the extent to which

Candidate inhibitors of adipocyte lipogenesis in obesity
TNFα  IL1β  IFNγ DAG  Ceramide ROS 

PPARγ

Insulin

GLUT4

ChREBPα SREBP1c

ChREBPβ

FAS / SCD1 / ELOVL / DGAT 

nSREBP1c

Glucose

LIPOGENESIS

Glycerol 3-P

Insulin

FATP1

Fatty acyl-CoA

(a)

(b) (b)

Fig. 4 PPARγ as a key regulator of lipogenesis in adipocytes and
hypothetical major target for inhibitors of insulin-stimulated lipogene-
sis in obesity. Adipocytes from obese rodents and humans display
decreased levels of lipogenic transcription factors (SREBP1c and
ChREBP) and lipogenic enzymes (FAS, SCD1, ELOVL, DGAT) com-
pared with lean controls. (a) Attenuation of PPARγ by candidate
inhibitors generated in obesity would explain the downregulation of
all of these proteins. Direct inhibition of the lipogenic transcription
factors and enzymes by such inhibitors is also possible. (b) Inhibition
of early steps in insulin signalling is also evident in adipocytes in obesity,
through attenuation of IRS tyrosine phosphorylation and other inhibitory
mechanisms, as shown in Fig. 1. While the factors listed as candidate
inhibitors in the top box can be shown in vitro to exert such effects, the
extent to which they contribute to insulin resistance in adipocytes in vivo
remains to be fully elucidated. It should be noted that PPARγ also
stimulates production of the enzyme phosphoenolpyruvate carboxykinase
(not shown in the Figure), which in turn stimulates lipogenesis through
the pathway of glyceroneogenesis [55]. Thus PPARγ disruption will also
lead to attenuation of this pathway. DGAT, diglyceride acyltransferase;
ELOVL, elongation of long-chain fatty acids; ROS, reactive oxygen
species; SCD1, stearoyl-CoA desaturase
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the remaining PPARγ can be activated. Furthermore, PPARγ
upregulates elements of the insulin signalling pathway such as
IRS-1 [229–231], suggesting that suppression of the upstream
insulin signalling pathway to Akt in obesity is also in part
secondary to PPARγ inhibition in obesity.

Perspectives

The role of adipose tissue as the primary depot for robust
triacylglycerol storage in humans appears to be an important
factor in preventing systemic insulin resistance and diabetes in
response to obesity. Insulin signalling maintains this high
capacity for triacylglycerol synthesis and storage in adipose
tissue in healthy humans, but chronic hyperinsulinaemia, in-
creased cytokines and other abnormal secretions from cells
within adipose tissue are among the dysfunctions in obesity
that may contribute to a decrease in this capacity. Thus, to
fully understand the relationships between adipose tissue
function and whole body glucose tolerance, it is crucial to
unravel the underlying mechanisms of insulin signalling, in-
sulin resistance and control of lipogenesis in adipose. Two
basic key questions amongmany others remain unanswered to
date:What are the signals that downregulate adipose lipogenic
transcription factors and lipogenic enzymes in obesity? Do the
cytokines released in adipose tissue by immune cells in obe-
sity contribute to the downregulation of adipocyte lipogenesis
in vivo? Finding truly innovative approaches to answer these
questions will surely move this field forward and potentially
yield new therapeutic strategies for treating type 2 diabetes.
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