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Abstract Clarification of the molecular mechanisms of in-
sulin secretion is crucial for understanding the pathogenesis
and pathophysiology of diabetes and for development of
novel therapeutic strategies for the disease. Insulin secretion
is regulated by various intracellular signals generated by
nutrients and hormonal and neural inputs. In addition, a
variety of glucose-lowering drugs including sulfonylureas,
glinide-derivatives, and incretin-related drugs such as dipep-
tidyl peptidase IV (DPP-4) inhibitors and glucagon-like
peptide 1 (GLP-1) receptor agonists are used for glycaemic
control by targeting beta cell signalling for improved insulin
secretion. There has been a remarkable increase in our
understanding of the basis of beta cell signalling over the
past two decades following the application of molecular
biology, gene technology, electrophysiology and bioimaging
to beta cell research. This review discusses cell signalling in
insulin secretion, focusing on the molecular targets of ATP,
cAMP and sulfonylurea, an essential metabolic signal in
glucose-induced insulin secretion (GIIS), a critical signal in

the potentiation of GIIS, and the commonly used glucose-
lowering drug, respectively.
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Introduction

The blood glucose level is tightly controlled by insulin secre-
tion from pancreatic beta cells and insulin action in target
tissues such as liver, muscle and adipose tissue. Pancreatic
beta cells secrete an appropriate amount of insulin in a process
that is precisely regulated temporally to maintain glucose
homeostasis. Insulin secretion is regulated by various factors,
including nutrients and hormonal and neural inputs to the beta
cells, among which glucose is the most important physiolog-
ical regulator. Beta cell dysfunction impairs normal regulation
of insulin secretion and leads to diabetes or hypoglycaemia.
The mechanisms of insulin secretion have been studied ex-
tensively both in vivo and in vitro in the 50 years since the
establishment of the radioimmunoassay for insulin [1]. Our
understanding of the mechanisms of insulin secretion was
deepened but remained incomplete. By the early 1980s, the
major intracellular signals in pancreatic beta cells for insulin
secretion had been identified by pharmacological, physiolog-
ical and biochemical methods. These include Ca2+, ATP,
cAMP and phospholipid-derived molecules such as diacyl-
glycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) [2–4].

Glucose-induced insulin secretion (GIIS) is the principal
mechanism of insulin secretion (Fig. 1a). Early studies pro-
posed two models of beta cell glucoreceptor signalling in
GIIS: the regulatory-site model [5] and the substrate-site
model [6, 7], although most studies supported the latter
model [8]. Following the discovery of the ATP-sensitive
K+ (KATP) channel in cardiomyocytes by electrophysiology
[9], the KATP channel and the glucose-regulated K+ channel
were also found in pancreatic beta cells [10–12]. As the
KATP channel couples glucose metabolism to electrical activ-
ity of the beta cell [13], the discovery of the channel supported
the notion that glucose metabolism is essential for GIIS.
Accumulating evidence indicates that glucose induces insulin
secretion by two different pathways: the triggering pathway
(KATP channel-dependent pathway) and the metabolic ampli-
fying pathway (KATP channel-independent pathway), the for-
mer of which is essential for GIIS [14]. According to the
current consensus on the triggering pathway of GIIS, glucose
transported into the beta cell through glucose transporters is
rapidly metabolised to yield an increase in the ATP concen-
tration (ATP/ADP ratio), which causes closure of KATP chan-
nels and depolarisation of the cell membrane. Membrane
depolarisation opens the voltage-dependent Ca2+ channels,
allowing Ca2+ influx. The resultant rise in intracellular Ca2+

concentration ([Ca2+]i) in the beta cell leads to fusion of
insulin granules to the plasma membrane in a soluble N-ethyl-
maleimide-sensitive factor attachment protein receptor
(SNARE)-dependent process. In contrast to this well-
established triggering pathway, the metabolic amplifying
pathway is more complex and its mechanism less well under-
stood. It has been suggested that metabolic signals generated

by glucose, such as ATP, act on steps in the secretory process
distal to the [Ca2+]i rise [15–17]. However, this pathway does
not influence insulin secretion if [Ca2+]i is not increased; the
metabolic amplifying pathway does not function if the trig-
gering pathway is not operational. In addition to metabolic
signals generated by glucose, intracellular signals such as
cAMP, DAG and IP3, evoked by hormonal and neuronal
inputs, are important for normal regulation of insulin secretion
(neurohormonal amplifying pathway) [14]. Lipid metabolism
is also important for regulating as well as modulating insulin
secretion [18]. The molecular bases for stimulus-secretion
coupling in GIIS and its potentiation were largely unknown
until the early 1990s. By utilising molecular biology, gene
technology and bioimaging, many regulators and targets of
intracellular signals in insulin secretion have been identified,
greatly enhancing our understanding of GIIS. This review
discusses the targets of ATP, cAMP and the glucose-
lowering drug sulfonylurea and their roles in GIIS, based on
our recent studies.

Dynamics of insulin secretion

Insulin secretion is a highly dynamic process. Glucose induces
insulin secretion in a biphasic pattern: there is an initial com-
ponent (first phase) that develops rapidly but lasts only a few
minutes, and this is followed by a progressively increasing or
sustained component (second phase) [14, 19, 20]. Loss of first
phase secretion and reduced second phase secretion are char-
acteristic features of type 2 diabetes. It is known that there is a
decrease in the first phase of GIIS in the early stage of type 2
diabetes and in impaired glucose tolerance [21].

By analogy with the exocytosis of neurotransmitters in
neurons [22], insulin granule exocytosis is thought to in-
volve several steps, including recruitment, docking, priming
and fusion [23]. It has been suggested that secretory vesicles
in pancreatic beta cells exist in functionally distinct pools
and that the sequential release of these pools underlies the
separable components in the dynamics of exocytosis [20].
Pancreatic beta cells contain at least two pools of insulin
secretory granules that differ in release competence: a re-
serve pool (RP) accounting for the vast majority of granules,
and a readily releasable pool (RRP) accounting for the
remaining <5%. A current hypothesis maintains that the first
phase of GIIS is caused by release of RRP granules and that
the second phase of GIIS represents a subsequent supply of
new granules mobilised from the RP [14, 20, 24].

Investigation of insulin granule dynamics has recently been
refined by use of the total internal reflection fluorescence
microscopy (TIRFM) system [25–28]. TIRF is a technology
that provides a means of selectively exciting fluorophores in
an aqueous or cellular environment very near a solid surface
(within 100 nm) without exciting fluorescence from regions
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further from the surface [29]. This unique feature of TIRFM
analysis has has led to its application in various different areas
of biochemistry and cell biology. A previous TIRFM study
reported that insulin granule exocytosis occurs in two modes
[26]. In one mode (mode 1), fusion events are caused by
granules that are predocked to the plasma membrane (referred
to as ‘previously docked granules’ in [26] and ‘old face’ in

[27]). In the other mode, fusion events are caused by granules
that are newly recruited to the plasma membrane (‘newcom-
er’). Detailed analyses of insulin granule dynamics induced by
various stimuli using primary cultured pancreatic beta cells
show that ‘newcomer’ can be classified into two modes: one
mode (mode 2), in which granules are newly recruited and
immediately fused to the plasma membrane without docking
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Fig. 1 a Glucose-induced insulin secretion and its potentiation. Glu-
cose is transported thorough the glucose transporter into the pancreatic
beta cell. Metabolism of glucose increases ATP production (ATP/ADP
ratio), closing the KATP channels, depolarising beta cell membrane
(ΔΨ), opening the voltage-dependent Ca2+ channels (VDCCs) and
allowing Ca2+ influx, thereby triggering insulin secretion (formerly
called the KATP channel-dependent pathway, presently called the trig-
gering pathway). In addition to the triggering pathway, metabolic
signals generated by glucose metabolism amplify insulin secretion
(formerly called the KATP channel-independent pathway, presently
called the metabolic amplifying pathway). Insulin secretion is also
amplified by hormones and neurotransmitters that generate intracellu-
lar signals such as cAMP, DAG, and IP3 (neurohormonal amplifying
pathways). PLCβ, phospholipase C-β; AC, adenylyl cyclase; ACh,
acetylcholine. b Modes of insulin granule exocytosis. There are three
modes of insulin granule exocytosis based on the dynamics of the
granules. ‘Old face’: predocked granules that are fused to the plasma

membrane by stimulation. ‘Restless newcomer’: granules that are
newly recruited by stimulation and immediately fused to the plasma
membrane. ‘Resting newcomer’: granules that are newly recruited by
stimulation, docked and fused to the plasma membrane by stimulation.
Modified from [27] with permission. Copyright 2007 National Acad-
emy of Sciences, U.S.A. c Models of glucose-induced insulin secre-
tion. In the existing model of GIIS, the first phase of insulin secretion
results from an RRP comprising predocked insulin granules (old face);
the second phase secretion results from an RP comprising granules
located farther away (resting newcomer), granules that are newly
recruited upon stimulation, docked, and fused to the plasma membrane.
In the new model, both phases are caused by restless newcomer
granules that are recruited upon stimulation and immediately fused to
the plasma membrane without docking. Modified with permission of
the American Society for Clinical Investigation, from [31]; permission
conveyed through Copyright Clearance Center, Inc.
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(a docking state that can barely be detected by TIRFM)
(‘restless newcomer’), and another mode (mode 3) in which
granules are newly recruited, docked and then fused to the
plasma membrane (‘resting newcomer’) [27] (Fig. 1b). The
three modes of insulin granule exocytosis have been con-
firmed by other studies [28, 30]. Unlike the original model
of GIIS, in which the first phase results from the RRP com-
prising predocked granules and the second phase from RP, a
new model in which both phases of GIIS are caused by
‘restless newcomer’ has been proposed (Fig. 1c) [31].

In contrast, most K+-induced insulin granule exocytosis
that occurs immediately and transiently after stimulation rep-
resents the release of predocked granules (‘old face’) [27, 32].
The dynamics of insulin granule exocytosis vary according to
whether stimulation is due to K+ or glucose. As K+ stimulation
elicits only Ca2+ influx and glucose stimulation generates
various metabolic signals such as ATP in addition to Ca2+

influx in pancreatic beta cells, this difference in intracellular
signal may underlie the distinct modes of exocytosis.

Various proteins associated with insulin granule exocytosis
have been identified [23, 33], among which Rab-interacting
molecule 2 (Rim2, Rim2α) was identified as a molecule
interacting with exchange protein activated by cAMP (Epac)
2A (cAMP-GEFII) [34]. In addition to Epac2A, Rim2α inter-
acts with various exocytosis-related molecules, at least in vitro,
including Rab3 [34], Munc13-1 [35], Rab8 [36], ELKS [37,
38], Piccolo [39], and synaptotagmin 1 [40]. Although synap-
totagmin 1 is produced in insulinoma cells, the synaptotagmin
genes expressed in primary mouse beta cells are those encod-
ing synaptotagmin 7 [41] and 9 [42]. Rim2α null (Rim2α−/−)
mice exhibit a marked impairment in glucose tolerance [43].
Analysis by TIRFM shows that both K+-induced insulin gran-
ule exocytosis and glucose-induced insulin granule exocytosis,
especially the first phase, are severely impaired in pancreatic
beta cells of Rim2α null mice [43]. Rim2α has been found to
determine the docking and priming states depending on inter-
action with Rab3 or Munc13-1, respectively.

The exocyst is an octameric protein complex that ensures
spatial docking or tethering of exocytotic vesicles to fusion
sites of the plasma membrane [44]. Eight subunits of the
exocyst complex are expressed in both pancreatic islets and
MIN6 cells. Exocyst complex component 3-like (Exoc3l),
an isoform of Sec6, the core subunit of the exocyst complex,
was identified by in silico screening [45]. Exoc3l forms
tertiary complexes consisting of Sec5, Sec8 and Sec10, all
of which are binding partners of Sec6. Exoc3l is suggested
to be involved in the regulated exocytosis of insulin granules
through formation of the exocyst complex.

cAMP-increasing ligands potentiate both the first phase
and second phase of GIIS [4]. However, the potentiating
effect of cAMP occurs only at glucose concentrations above
a certain threshold [46]. cAMP also affects various steps of
insulin secretion. In normal pancreatic islets, the in vitro

concentration dependence of GIIS displays a sigmoidal
curve [47], in which a glucose concentration exceeding
6 mmol/l is required to trigger insulin secretion. In addition,
it has been reported that glucagon-like peptide 1 (GLP-1)
renders glucose-insensitive beta cells glucose-competent,
probably by modulating KATP channel activity [48]. These
findings suggest a mechanism by which cAMP might in-
duce beta cell glucose responsiveness. Using a pancreatic
perfusion system, we recently found that pretreatment with
GLP-1 or glucose-dependent insulinotropic polypeptide
(GIP) improved glucose responsiveness to some extent in
Kir6.2 null (Kir6.2−/−) mice, in which almost no insulin
secretion in response to glucose is detected [49], but the
effect of GLP-1 was stronger. The dynamics of GIIS is
usually assessed by the insulin secretory response to a large
and prompt change in glucose concentration, e.g. from 2.8
to 16.7 mmol/l in 1 min, using perfusion of the pancreas and
perifusion of pancreatic islets. However, such a drastic
change in glucose concentration is unlikely to occur in the
physiological state. As regards the perfusion of the pan-
creases of wild-type mice, when the glucose concentration
was increased in a stepwise manner (1.4 mmol/l every
5 min) from 2.8 to 12.5 mmol/l in the absence of cAMP-
increasing agents (8-bromo-cAMP or GLP-1), no insulin
secretion was evoked (Fig. 2a) [50]. Interestingly, the pres-
ence of these agents resulted in a dramatic induction of GIIS
(Fig. 2a, b). Similar results also were found in Kir6.2 null
mice. This GIIS was almost completely abolished by treat-
ment with niflumic acid, indicating that cAMP signalling
also evokes glucose responsiveness by activating niflumic
acid-sensitive channels (Fig. 2c). Niflumic acid is often used
to block Cl− channels but it also acts on other channels,
including transient receptor potential (TRP) channels. Since
removal of Na+ did not abolish the membrane depolarisation
caused by glucose and cAMP [50], Na+ influx through TRP
channels is unlikely to be a contributor to initial membrane
depolarisation; Ca2+-activated Cl− channels are the more
likely candidate for the niflumic acid-sensitive channels
responsible for depolarisation caused by glucose and cAMP.
These findings indicate that cAMP signalling is important
not only for potentiation of GIIS but also for induction of
glucose responsiveness in insulin secretion.

The role of cAMP signalling in insulin granule exocyto-
sis has also been investigated by TIRFM. The cAMP ana-
logue 8-bromo-cAMP alone did not cause either significant
docking or fusion events of insulin granules. However,
8-bromo-cAMP clearly enhanced the frequency of
glucose-induced fusion events in both the first phase and
the second phase. 8-bromo-cAMP promoted fusion events by
increasing only ‘restless newcomer’. Comparison of the fu-
sion sites induced by glucose stimulation and those induced
by 8-bromo-cAMP stimulation showed that new fusion sites
appeared upon 8-bromo-cAMP stimulation, suggesting that
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cAMP signaling also participates in the spatial regulation of
insulin granule exocytosis [27].

The KATP channel as a target of ATP and sulfonylurea

The KATP channel links cellular metabolic status to the
electrical activity of pancreatic beta cells [10–12] and is a

key molecule in the regulation of GIIS. The beta cell KATP

channel was also suggested to be the target for sulfonylurea
[51], a widely used drug in the treatment of type 2 diabetes.
However, whether the target (receptor) for sulfonylurea was
the KATP channel itself or a molecule associated closely with
the KATP channel was not known. In 1995, a receptor
(SUR1) for sulfonylurea was cloned by Aguilar-Bryan and
colleagues [52] (Fig. 3a). SUR1 was found to be a member
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Fig. 2 a Insulin secretion in response to small and stepwise increases
(increment of 1.4 mmol/l per 5 min) in glucose concentration in the
absence (white circles) and presence (white triangles) of 1 mmol/l
8-bromo-cAMP. b Insulin secretion in response to small and stepwise
increases in glucose concentration in the absence of 10 nmol/l GLP-1.
c Effect of niflumic (100 μmol/l) acid on insulin secretion in response
to small and stepwise increases in glucose concentration in the pres-
ence of 1 mmol/l 8-bromo-cAMP. Reproduced from [50] with permis-
sion of Springer Science+Business Media
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rectifying K+ channel family, is the pore-forming subunit. SUR1,
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regulatory subunit. b Subunit structure of the beta cell KATP channel. A
beta cell KATP channel is composed of Kir6.2 and SUR1 with 4 to 4
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of the ATP-binding cassette (ABC) transporter family [52].
However, expression of SUR1 alone in Xenopus oocytes did
not generate K+ currents, demonstrating that SUR1 is not
itself the KATP channel. At almost the same time that SUR1
was cloned, we identified a novel member of the inwardly
rectifying K+ channel family, designated BIR (now known
as Kir6.2), by homology screening of the insulin-secreting
cell line MIN6 cDNA library using uKATP-1 (now Kir6.1)
as a probe (Fig. 3a) [53]. Like SUR1, expression of Kir6.2
alone in mammalian cells did not produce K+ channel ac-
tivity. We therefore explored the possibility that Kir6.2
generates K+ channel activity by coupling with SUR1.
Coexpression of Kir6.2 and SUR1 in mammalian cells
generated ATP-sensitive and sulfonylurea-sensitive K+ cur-
rents with electrophysiological and pharmacological prop-
erties similar to those of beta cell KATP channels [53],
demonstrating that the beta cell KATP channel is composed
of Kir6.2, a pore-forming subunit, and SUR1, a regulatory
subunit (Fig. 3a). Reconstitution of the beta cell KATP chan-
nel currents from Kir6.2 and SUR1 was also reported using
a Xenopus oocyte expression system by Ashcroft and her
colleagues [54]. The beta cell KATP channel functions as a
hetero-octameric complex comprising a tetramer of the Kir6.2
subunit and a tetramer of the SUR1 subunit (Fig. 3b). SUR2
(SUR2A and SUR2B) was subsequently cloned. It is now
known that differing combinations of Kir6.2 or Kir6.1 and
SUR1, SUR2A or SUR2B constitute different KATP channels
with distinct nucleotide sensitivities and pharmacological
properties in various cell types [55, 56], where they function
as metabolic sensors [57, 58]. A two-site (A site and B site)
model for the interaction of SUs and glinides with SUR has
been proposed [59, 60]. The A site is located on the eighth
cytosolic loop (between transmembrane segments [TM] 15
and 16), which is specific for SUR1, and the B site is located
on the third cytosolic loop (between TM 5 and 6), which is
very similar in all SURs. Based on this model, SUs and
glinides can be divided into three groups. The first group
(which includes tolbutamide, gliclazide and nateglinide) binds
specifically to the A site of SUR1; the second group (which
includes glibenclamide, known as glyburide in the USA and
Canada, and glimepiride) binds to the B sites of both SUR1
and SUR2A as well as to the A site of SUR1; the third group
(which includes meglitinide and repaglinide) binds to the B
site of SUR1 and SUR2A.

Studies of various KATP genetically engineered mice
[61–64] clearly show the essential role of the KATP channel
for GIIS and sulfonylurea-induced insulin secretion
(Fig. 3c). Under certain conditions in Kir6.2 null mice [63,
65], GIIS was detected to some extent, indicating that the
metabolic amplifying pathway contributes at least in part to
GIIS. However, during stimulation with glucose alone, the
metabolic amplifying pathway is ineffective as long as the
triggering pathway is inoperative. The triggering and

metabolic amplifying pathways in GIIS have recently been
reviewed in detail [14]. Mutations of the beta cell KATP

channels cause neonatal diabetes or persistent hyperinsulinae-
mic hypoglycaemia of infancy (PHHI), depending on gain-of
function (activating) mutation or loss-of-function mutation,
respectively. The pathophysiology of PHHI and neonatal dia-
betes owing to mutations of Kir6.2 and SUR1 have been
discussed in detail in recent review articles [66–68].

The ventromedial hypothalamus (VMH) has been shown
to possess the highest density of glucose-responsive (GR)
neurons, which play a critical role in glucose homeostasis
and are involved in glucagon secretion during hypoglycae-
mia [69]. The VMH KATP channel has been found to consist
of Kir6.2 and SUR1 [70], which is identical to the beta cell
KATP channel. Recovery from systemic hypoglycaemia in-
duced by insulin injection was severely impaired in Kir6.2
null mice due to a marked reduction in glucagon secretion in
vivo in these mice. Glucagon secretion in response to low
glucose concentrations in isolated pancreatic islets from
Kir6.2 null mice to that islets from wild-type mice, indicat-
ing a normal response of glucagon secretion from alpha cells
[71]. Administration of 2-deoxyglucose (2DG) into the
intracerebroventricle, which is known to induce neuroglu-
copenia in the hypothalamus and to stimulate glucagon
secretion through activation of autonomic neurons, pro-
duced an increase in glucagon secretion in normal mice
but not in Kir6.2 null mice. Thus, the KATP channels in the
VMH function as glucose sensors for glucagon secretion
during hypoglycemia. Beta-cell and VMH KATP channels
act in concert as peripheral and central glucose sensors in
the maintenance of glucose homeostasis.

It was suggested that some sulfonylureas enhance glucose
uptake in skeletal muscles [72, 73]. The glucose-lowering
effect by insulin injection at a relatively low dose is signifi-
cantly increased in Kir6.2 null mice compared with that in
normal mice, suggesting that insulin sensitivity is enhanced in
Kir6.2 null mice [62]. In fact, glucose uptake in some skeletal
muscles is increased in Kir6.2 null mice [74]. The involvement
of the KATP channels in glucose uptake in skeletal muscles also
is indicated by a study of SUR2 null (SUR2−/−) mice [75].
Thus, closure of the KATP channels in skeletal muscles can
enhance glucose transport. KATP channels in pancreatic beta
cells, hypothalamus and skeletal muscle are critically involved
in the maintenance of glucose homeostasis [76].

Epac2A (cAMP-GEFII) as a target of cAMP

Since the discovery of cAMP as an intracellular second
messenger, it has been shown to mediate a variety of cellular
responses. Various hormones and neurotransmitters, includ-
ing GLP-1 [77–79], GIP [77, 79], vasoactive intestinal
polypeptide (VIP) [80] and pituitary adenylate cyclase-
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activating polypeptide (PACAP) [80], potentiate insulin se-
cretion by promoting cAMP generation in pancreatic beta
cells. Eight adenylyl cyclase isoforms (types I–VIII) are
expressed in pancreatic islets and beta cell lines [81, 82].
In fact, MDL12330A, an adenylyl cyclase inhibitor, com-
pletely blocks both GLP-1- and GIP-induced cAMP produc-
tion in islets and also markedly reduces both GLP-1- and
GIP-potentiated insulin secretions [83].

Until recently, the action of cAMP in insulin secretion
was thought to primarily be mediated by protein kinase A
(PKA), which phosphorylates various proteins associated
with the secretory process [84]. Kir6.2, the pore-forming
subunit of KATP channels, and the α-subunit of the voltage-
dependent Ca2+ channel can be phosphorylated by PKA on
stimulation in beta cell lines [85, 86]. GLUT2 can also be
phosphorylated by GLP-1 in purified beta bcells [87]. Al-
though phosphorylation of these proteins influences their
activities [85–87], a direct effect of phosphorylation on
insulin secretion has not been established. We recently
found that in MIN6 cells, Rip11, an effector of the small
G-protein Rab11, participates in the potentiation of exocy-
tosis by cAMP plus glucose stimulation but not in that of
glucose stimulation alone [88]. In addition, Rip11 was
found to be phosphorylated by PKA in MIN6 cells. These
findings indicate that Rip11, as a substrate of PKA, is
involved in the regulation of insulin secretion potentiated
by cAMP in pancreatic beta cells.

It is now known that cAMP also potentiates GIIS by a
PKA-independent mechanism [84] (Fig. 4a). This mecha-
nism is mediated by the cAMP-binding protein Epac2 (also
referred to as cAMP-GEFII; Fig. 4b). Two Epacs, Epac1
(cAMP-GEFI) and Epac2, have been identified [89–91].
Both Epac proteins possess guanine nucleotide exchange
factor (GEF) activity towards the small G-proteins Rap1
and Rap2 in a cAMP-dependent manner [89–91]. It has
become apparent that Epac proteins are cAMP sensors that
regulate several cellular processes independently of PKA.
Epac1 mRNA is ubiquitously expressed, while Epac2
mRNA is mainly expressed in neurons, neuroendocrine
cells and endocrine cells [34, 89, 90]. Epac1 and Epac2
are each encoded by two genes. Structurally, both Epac
proteins have common features: an amino-terminal regula-
tory region harbouring cAMP-binding domains and a Di-
shevelled, Egl-10, and Pleckstrin (DEP) domain and a
carboxyl-terminal catalytic region harboring an Ras ex-
change motif (REM) domain, an Ras-association (RA) do-
main, and a CDC25-homology domain for GEF activity.
However, Epac1 possesses one cAMP-binding domain,
while Epac2 possesses two cAMP-binding domains. X-ray
crystallographic analysis of the inactive and active forms of
Epac2 reveal that in the absence of cAMP, the regulatory
region covers the catalytic region and autoinhibits GEF
activity by hindering the binding of Rap proteins to the

CDC25-homology domain [92]. Binding of cAMP to Epac
causes a conformational change, thereby eliciting GEF ac-
tivity toward Rap proteins [92]. Recently, a novel splicing
variant was found in mouse adrenal glands [93]. This splic-
ing variant, which lacks the amino-terminal cAMP-binding
domain of Epac2, is designated Epac2B (adrenal type),
while the original Epac2 is now called Epac2A (brain/beta
cell type). A previously identified splicing variant, also lack-
ing the amino-terminal cAMP-binding domain, which is spe-
cifically expressed in liver [94], is referred to as Epac2C (liver
type). Conformational change of Epac1 induced by its binding
to cAMP induces the translocation of Epac1 to the plasma
membrane via the DEP domain [95]. Epac2A is localised
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to the plasma membrane through the interaction of the RA
domain with activated Ras proteins [96, 97]. The amino-
terminal cAMP-binding domain A of Epac2A also mediates
its localisation to the plasma membrane [93]. Localisation of
Epac2A to the plasma membrane is independent of its binding
to cAMP.

Studies of Epac2A null (Epac2a−/−) mice and Rap1 knock-
down in clonal mouse beta cells indicate that Epac2A/Rap1
signalling is required for first phase potentiation of glucose-
induced insulin granule exocytosis by cAMP [27]. It has been
proposed that activation of Epac2A/Rap1 signalling increases
the size of the RRP and/or recruitment of insulin granules
from the RRP, while PKA signalling increases the size of the
RP and/or recruitment of insulin granules from the RP
(Fig. 4c) [31]. Rim2α has been found to be essential for
Epac2A-mediated potentiation of GIIS by cAMP [43, 83].
Epac2A has also been shown to be involved in mobilisation
of Ca2+ from intracellular Ca2+ stores in pancreatic beta cells
[98]. The effect of Epac2A on Ca2+ mobilisation has been

shown to be mediated by ryanodine receptors and IP3 recep-
tors by studying ryanodine receptor null mice and phospholi-
pase Cε null mice, respectively [98].

cAMP signals are known to be compartmentalised in dif-
ferent regions of cardiac myocytes [99]. Such cAMP com-
partmentalisation is thought to underlie the distinct biological
responses mediated by the different cAMP-increasing ligands.
By analogy with the effects of cAMP in cardiac myocytes,
cAMP compartmentalisation has also been proposed in pan-
creatic beta cells [84].

Epac2A as a target of sulfonylurea

Sulfonylureas stimulate insulin secretion by closing KATP

channels through binding to SUR1, as mentioned above. Al-
though sulfonylureas were also suggested to act intracellularly
to stimulate insulin granule exocytosis [100–102], the direct
target was not identified.

To screen for agents and ligands that activate Epac2A,
Epac2A fluorescence resonance energy transfer (FRET) sen-
sor, in which the full-length Epac2A was fused amino-
terminally to enhanced cyan fluorescent protein (ECFP) and
carboxyl-terminally to enhanced yellow fluorescent protein
(EYFP; termed C-Epac2A-Y) was established (Fig. 5a)
[103]. FRET is the radiationless transfer of energy from an
initially excited donor to an acceptor [104]. It is dependent on
the proper spectral overlap of the donor and acceptor, their
distance from each other and the relative orientation of the
chromophore’s transition dipoles. In the case of green fluores-
cent proteins (GFPs), including ECFP and EYFP, the distance
between a donor and an acceptor must be within 5 nm for
FRET to be detectable [105]. Epac2A is a closed form in the
inactive state, so that ECFP and EYFP are located very close
to each other, which causes FRET. Upon binding of cAMP,

Fig. 5 a Epac2A FRET sensor. A FRET sensor was constructed in
which the full-length Epac2Awas sandwiched between ECFP at the N-
terminus and EYFP at the C-terminus. FRET occurs in the inactive
state (closed form). Upon cAMP binding, Epac2A changes its confor-
mation and becomes the open form. As a result, FRET does not occur.
DEP, Dishevelled, Egl-10, and Pleckstrin; RA, Ras-association; REM,
Ras exchange motif. b, c Activation of Epac2A by sulfonylureas.
Tolbutamide (b) and glibenclamide (c) decrease Epac2A FRET, indi-
cating that they activate Epac2A. The EYFP/ECFP ratio (R) was
normalised to R0 to describe FRET efficiency changes (FRET
change0R/R0), where R0 is the EYFP/ECFP ratio at time 0. Repro-
duced from [103] with permission from AAAS. d Mechanisms of
sulfonylurea action in insulin secretion. Closure of KATP channels is
required for sulfonylureas to stimulate insulin secretion; activation of
Epac2A/Rap1 signalling is required for sulfonylureas to exert their full
effects on insulin secretion. ΔΨ, depolarising beta cell membrane,
VDDC, voltage-dependent Ca2+ channel. Modified from [106] with
permission from the Asian Association for the Study of Diabetes and
Blackwell Publishing Asia Pty Ltd
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Epac2A changes its conformation, so that ECFP and EYFP
separate away. As a result, FRET does not occur (active state).
Utilising the Epac2A FRET sensor, the activation status of
Epac2A can be monitored. In the course of screening for
agents that activate Epac2A, we found that tolbutamide and
glibenclamide, both of which are glucose-lowering sulfonyl-
urea drugs, significantly decreased the FRET response in C-
Epac2A-Y transfected cells [103] (Fig. 5b, c). The effect on
FRET was confirmed using other sulfonylureas, including
chlorpropamide, acetohexamide, and glipizide, all of which
significantly decreased the FRET response to different degrees
and with varying kinetics. However, gliclazide, another sulfo-
nylurea, did not change FRET. Glinide derivatives, which
stimulate insulin secretion by closure of KATP channels by
acting directly on SUR1, had no effect on the FRET response.
Direct binding of sulfonylurea to Epac2A was confirmed by
specific binding of radiolabelled glibenclamide to Epac2A
expressed in COS-1 cells. In addition, the sulfonylureas that
decreased FRET all activated Rap1 in MIN6 cells, whereas
gliclazide did not. These results indicate that Epac2A is a
target of sulfonylurea. Moreover, tolbutamide-induced insulin
secretion and glibenclamide-induced insulin secretion from
isolated pancreatic islets were significantly reduced in
Epac2A null mice compared with wild-type mice. However,
there was no significant difference in insulin secretion in
response to gliclazide. Furthermore, the insulin response to
oral administration of tolbutamide alone or to concomitant
administration of glucose and tolbutamide in Epac2A null
mice was significantly reduced compared with that in wild-
type mice, and the glucose-lowering effect of tolbutamide in
Epac2A null mice was significantly less than that in wild-type
mice. Although closure of the KATP channels is essential for
sulfonylureas to stimulate insulin secretion, activation of
Epac2A/Rap1 signalling is required for sulfonylureas to exert
their full effects with regard to insulin secretion (except for
gliclazide). Considering the role of Epac2A/Rap1 signalling
in insulin granule exocytosis [27], sulfonylureas may increase
the size of the RRP of insulin granules near the plasma
membrane (Fig. 5d) [106]. Since Epac2A is also the target
of incretin/cAMP signalling, Epac2A is critical for the actions
of both sulfonylureas and incretin-related glucose-lowering
drugs such as DPP-4 inhibitors and GLP-1 receptor agonists.
It is possible that sulfonylurea and cAMP signalling interact
with each other through Epac2A, in which case the effects of
sulfonylurea on Epac2A might be influenced by cellular
cAMP concentrations and vice versa.

Conclusions

GIIS is the principal mechanism of insulin secretion. Poten-
tiation of GIIS by cAMP-increasing ligands such as incretin
is also critical for normal regulation of insulin secretion.

Sulfonylurea, a glucose-lowering drug widely used for treat-
ment of diabetes, stimulates insulin secretion. Utilising mo-
lecular biology and gene technology, it has been shown that
the KATP channel is the target of both ATP, an essential
signal for GIIS, and sulfonylurea, and that Epac2A is the
target of both cAMP, a critical signal for potentiation of
GIIS, and sulfonylurea. It is now known that ATP, cAMP,
and sulfonylurea interact with one another to facilitate stim-
ulus–secretion coupling in insulin release (Fig. 6). In 1970,
Prof. Albert Renold published the article ‘Insulin biosynthe-
sis and secretion – a still unsettled topic’ in The New
England Journal of Medicine [107]. Although our under-
standing of insulin secretion has increased remarkably since
that time, the title of the paper remains true.
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