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Abstract
Aims/hypothesis We carried out a urinary metabolomic
study to gain insight into low estimated GFR (eGFR) in
patients with non-proteinuric type 2 diabetes.
Methods Patients were identified as being non-proteinuric
using multiple urinalyses. Cases (n=44) with low eGFR and
controls (n=46) had eGFR values <60 and ≥60 ml min−1

1.73 m−2, respectively, as calculated using the Modification
of Diet in Renal Disease formula. Urine samples were
analysed by liquid chromatography/mass spectrometry (LC/
MS) and GC/MS. False discovery rates were used to adjust
for multiple hypotheses testing, and selection of metabolites
that best predicted low eGFR status was achieved using least
absolute shrinkage and selection operator logistic regression.
Results Eleven GC/MS metabolites were strongly associat-
ed with low eGFR after correction for multiple hypotheses

testing (smallest adjusted p value=2.62×10−14, largest
adjusted p value=3.84×10−2). In regression analysis,
octanol, oxalic acid, phosphoric acid, benzamide, creati-
nine, 3,5-dimethoxymandelic amide and N-acetylglutamine
were selected as the best subset for prediction and allowed
excellent classification of low eGFR (AUC=0.996). In LC/
MS, 19 metabolites remained significant after multiple
hypotheses testing had been taken into account (smallest
adjusted p value=2.04×10−4, largest adjusted p value=
4.48×10−2), and several metabolites showed stronger
evidence of association relative to the uraemic toxin,
indoxyl sulphate (adjusted p value=3.03×10−2). The
potential effect of confounding on the association between
metabolites was excluded.
Conclusions/interpretation Our study has yielded substan-
tial new insight into low eGFR and provided a collection of
potential urinary biomarkers for its detection.

Keywords Low eGFR .Metabolomics . Non-proteinuric .

Type 2 diabetes . Uraemic toxin

Abbreviations
ACR Albumin/creatinine ratio
eGFR Estimated GFR
FDR False discovery rate
FMOC 9-Fluorenylmethoxycarbonyl
LASSO Least absolute shrinkage and selection

operator
LC Liquid chromatography
MDRD Modification of Diet in Renal Disease
OPLS-DA Orthogonal partial least-squares discriminant

analysis
PARP-1 Poly(ADP-ribose) polymerase-1
PC Principal component
rcf Relative centrifugal force

Electronic supplementary material The online version of this article
(doi:10.1007/s00125-011-2339-6) contains peer-reviewed but unedited
supplementary material, which is available to authorised users.

D. P. K. Ng (*) :A. Salim :Y. Liu : L. Zou : F. G. Xu :
S. Huang : C. N. Ong
Department of Epidemiology and Public Health,
Yong Loo Lin School of Medicine,
National University of Singapore,
16 Medical Drive MD3,
Singapore 117597, Republic of Singapore
e-mail: ephnpkd@nus.edu.sg

H. Leong
Clinical Services, National Healthcare Group Polyclinics,
Singapore, Republic of Singapore

C. N. Ong (*)
NUS Environmental Research Institute,
National University of Singapore,
5A, Engineering Drive,
Singapore 117411, Republic of Singapore
e-mail: ephocn@nus.edu.sg

Diabetologia (2012) 55:499–508
DOI 10.1007/s00125-011-2339-6

http://dx.doi.org/10.1007/s00125-011-2339-6


ROC Receiver operating characteristic
SDCS Singapore Diabetes Cohort Study

Introduction

It has been variously reported that some diabetic patients
have low renal function (typically expressed as estimated
GFR [eGFR]) even in the absence of proteinuria [1–5].
However, little else is known about the risk factors or
mechanisms associated with low eGFR in patients with
either type 1 [5] or type 2 diabetes [1–4]. Metabolomics is a
technological platform for the identification and quantifi-
cation of the metabolome, the collection of all small
molecules present in an organism or biological sample
[6]. Metabolomics has been greatly facilitated by recent
developments in mass detectors, allowing techniques such
as liquid chromatography/MS (LC/MS) and GC/MS to
support analysis of the metabolome [6].

Interrogation of the metabolome potentially offers
unprecedented insights into a disease or phenotype and
provides initial access to biomarker and pathway discovery
[7–9]. We applied these improved techniques to probe the
metabolomes of Chinese type 2 diabetic patients with low
eGFR. We observed striking associations between low
eGFR and several urinary metabolites, which extend
beyond the few known uraemic toxins. Besides offering
new leads on the possible mechanisms underlying low
eGFR, these metabolites could serve as novel biomarkers
for the detection of chronic kidney disease.

Methods

Patients and urine samples All patients for this study were
from the Singapore Diabetes Cohort Study (SDCS). Briefly,
the recruitment process of SDCS was as follows. Since
2004, all patients previously diagnosed as having type 2
diabetes and treated at primary care facilities of the
National Healthcare Group Polyclinics in Singapore were
invited to join SDCS. Patients with a history of mental
illness were excluded. Of the patients approached, 91%
agreed to participate in the study and formed part of the
cohort. Consenting patients completed a questionnaire to
elicit information on demographics, lifestyle factors and
medical family history and also had their physical measure-
ments taken. Random (not first morning) spot urine speci-
mens were typically collected in the morning at the
outpatient polyclinic and used for laboratory analyses.
Medical records were reviewed to obtain information on
their metabolic control and the presence of co-morbidities
and complications including any history of non-diabetic

kidney disease. Lipid measurements were performed on
fasting blood samples.

The research protocol was approved by both the National
University of Singapore Institutional Review Board and the
National Healthcare Group Domain-Specific Review Board,
and patients participating in this cohort gave informed
consent.

Definitions of non-proteinuria and low eGFR Patients in
this metabolomic study were identified as being non-
proteinuric using multiple spot urine samples. To thoroughly
exclude the presence of proteinuria, urine samples were
required to test negative on Labstix (Bayer Corporation,
Elkhart, IN, USA) or Micral-Test (Boehringer Mannheim,
Mannheim, Germany) or have an albumin/creatinine ratio
(ACR) <3.5 μg/μmol (Exocell, Philadelphia, PA, USA) on at
least two of the last three urinalyses. Most of the patients were
therefore likely to be normoalbuminuric, although it was
possible for some to have microalbuminuria especially if this
was transient. eGFR was calculated using the simplified
Modification of Diet in Renal Disease (MDRD) equation,
where eGFR (ml min−1 1.73 m−2)=186.3×(plasma creatinine
in μmol/l×0.011)−1.154×(age in years)−0.203×(0.742 for
women)×(1.21 if subject is black) [10]. Cases (n=44) were
defined as patients with eGFR <60 ml min−1 1.73 m−2, and
controls (n=46) had eGFR values ≥60 ml min−1 1.73 m−2.
As a history of cataract was strongly associated with low
eGFR in SDCS (data not shown), presence of this
complication was used as an exclusion criterion to eliminate
potential confounding.

Metabolomic analysis using GC/MS Urine samples (20 μl)
were incubated with 20 μl (10 mg/ml) urease enzyme for
30 min at 37°C. Then urease and other proteins were
precipitated with 180 μl ice-cold methanol, which contained
10 μg/ml 9-fluorenylmethoxycarbonyl (FMOC)-glycine as an
internal standard. After separation by centrifugation (16
relative centrifugal force [rcf]×10 min, 4°C), 100 μl superna-
tant fraction was dried under nitrogen and derivatised with
150 μl methoxamine (50 μg/ml in pyridine, 37°C×2 h)
followed by 150μl MSTFA (37°C×16 h). After centrifugation
(4°C, 6 rcf×1 min), the supernatant fraction was injected into
GC/MS. The derivatised sample (1.0 μl) was introduced by
splitless injectionwith an Agilent 7683 Series autosampler into
an Agilent 6890 GC System (both from Agilent Technologies,
Santa Clara, CA, USA) equipped with a fused-silica capillary
column HP-5MSI (30 m×0.25 mm i.d., 0.25 μm film
thickness) as reported previously [11]. The inlet temperature
was set at 250°C. Helium was used as the carrier gas at a
constant flow rate of 1.0 ml/min. The column effluent was
introduced into the ion source of an Agilent 5973 Mass
Selective Detector (Agilent Technologies). The transfer line
temperature was set at 280°C and the ion source temperature
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at 230°C. The mass spectrometer was operated in electron
impact mode (70 eV). Data acquisition was performed in full
scan mode from m/z 50 to 550 with a scan time of 0.5 s. The
compounds were identified by comparison of mass spectra
and retention time with those of reference standards, and
those available in libraries (NIST 0.5). A total of 106 peaks
with specific retention times in GC/MS analyses were
detected in this study.

Metabolomic analysis using LC/MS The urine samples
were diluted 1:1 with methanol (containing 10 μg/ml
FMOC-glycine as an internal standard) before being
vortex-mixed for 3 min. After separation by centrifugation
(16 rcf×10 min, 4°C), the supernatant fraction was injected
for LC/MS analysis. LC/MS analysis was performed on
an Agilent 1200 HPLC system (Agilent Technologies,
Waldbronn, Germany) equipped with a 6410 QQQ triple
quadrupole mass detector and managed by a MassHunter
workstation. The column used for the separation was an
Agilent rapid resolution HT Zorbax SB-C18 (2.1×50 mm,
1.8 μm; Agilent Technologies, Santa Clara, CA, USA). The
oven temperature was set at 50°C. The gradient elution
involved a mobile phase consisting of (A) 0.1% formic acid
in water and (B) 0.1% formic acid in methanol. The initial
condition was set at 5% of B. The following solvent
gradient was applied: from 5% B to 100% B within 20 min,
then hold for 2 min. Flow rate was set at 0.2 ml/min, and
5 μl of samples was injected. The electrospray ionisation
mass spectra were acquired in positive and negative ion
mode. The ion spray voltage was set at 4,000 V. The heated
capillary temperature was maintained at 350°C. The drying
gas and nebuliser nitrogen gas flow rates were 10 l/min and
207×103 Pa, respectively. For full scan mode analysis,
spectra were stored from m/z 100 to 1,000. A total of 144
peaks with specific retention times in LC/MS analyses were
detected in this study. The compounds were searched for
using the Human Metabolome Database (www.hmdb.ca)
using ion mass and further identified by either MS/MS
fragmentation pattern or reference standards.

Metabolomic data preprocessing Each chromatogram
obtained from GC/MS and LC/MS analysis was processed
for baseline correction and peak area calculation manually.
The data were combined into a single matrix by aligning
peaks with the same mass and retention time for GC/MS
and LC/MS data, respectively. The area of each peak was
normalised to that of the internal standard in each dataset.
There was no further normalisation of the metabolites with
respect to creatinine because the level of this metabolite
was different between cases and controls (Tables 2 and 3).

Statistical analysis Statistical comparison of clinical char-
acteristics between cases and controls was performed using

two-sample t tests in the case of quantitative traits. In the
event where the data distribution deviated from normal
distribution, Mann–Whitney tests were used. For qualitative
traits, comparison between cases and controls was per-
formed using Fisher’s exact tests.

The preprocessed metabolomic data were exported into
Soft Independent Modeling of Class Analysis (SIMCA)-P
(version 11.0; Umetrics AB, Umea, Sweden) for orthogonal
partial least-squares discriminant analysis (OPLS-DA). To
compare median signal intensities of the metabolites
between cases and controls, the Mann–Whitney test was
applied to each metabolite separately. The resultant p values
for all metabolites were subsequently adjusted to account
for multiple hypotheses testing. The false discovery rate
(FDR) method of Benjamini and Yekutieli [12] was used to
perform the adjustment.

To determine how well these metabolites performed in
separating cases from controls, we used two approaches. In
the first approach, principal component (PC) analysis was
performed for metabolites with a statistically significant
association in the univariate analysis. The first and second
PC scores were then used as predictors in the logistic
regression model, with case status as the outcome. To
ensure that the PC estimates were robust, any outlying
observations that lay more than four standard deviations
from the mean were removed. The receiver operating
characteristic (ROC) curve for the logistic model was
calculated, and the AUC was used to assess the quality
of prediction, with AUC closer to 1 indicating better
performance.

The second approach involved selecting the best subset
of metabolites that can be used to predict case status. Least
absolute shrinkage and selection operator (LASSO) logistic
regression [13] was used, with the optimal LASSO estimate
determined using leave-one-out cross-validation. Briefly,
LASSO logistic regression is very similar to the ordinary
logistic regression, except that LASSO places restriction on
the number of metabolites with non-zero regression
coefficients. The LASSO algorithm optimally selects this
subset of metabolites with non-zero coefficients. In our
study, leave-one-out cross-validation was used to select this
subset.

Results

Patient characteristics Cases and controls were comparable
in most clinical characteristics except that cases were older
at the time of recruitment and had higher serum creatinine
values, as would be expected as these variables were
directly used to compute eGFR values in the MDRD
equation (Table 1). Cases were also older than controls at
the time of diabetes diagnosis, but this difference was
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borderline significant (unadjusted p=0.0129). ACR values
were similar between cases and controls (Table 1).

GC/MS analyses OPLS-DA revealed that cases could be
clearly segregated from controls on the basis of the 106
peaks detected by GC/MS (Fig. 1). Univariate analyses of
the metabolite signal intensities revealed striking associ-
ations between 24 metabolites and low eGFR (unadjusted
p<0.05; Table 2). Of these 24 associations, 11 remained
statistically significant after correction to account for
multiple hypotheses testing (adjusted p<0.05). In partic-
ular, the p values associated with six metabolites (oxalic
acid, octanol, N-acetylglutamine, 3,5-dimethoxymandelic
amide, benzamide and phosphoric acid) were very small,
with the largest p value=7.28×10−5 (phosphoric acid) and
the smallest p value=2.62×10−14 (oxalic acid). Urinary
creatinine was also higher in cases than controls (p=6.46×
10−8; Table 2).

PC analysis was next performed to determine the
clustering of the 24 metabolites. The first two PCs of GC
metabolites explained 56.5% of correlations between these
metabolites. The first PC axis is a contrast between
phosphoric acid (metabolite 4) and 3,5-dimethoxymandelic
amide (metabolite 13) on the one hand and the rest of the
metabolites (Electronic supplementary material [ESM]
Fig. 1). The second axis was largely responsible for the
separation of cases and controls, and could be characterised
by a group of metabolites that tended to have higher signal
intensities in controls (phosphoric acid [metabolite 4], 3,5-
dimethoxymandelic amide [metabolite 13], benzamide
[metabolite 7], L-serine [metabolite 6], D-glucuronic [me-
tabolite 20], oxalic acid [metabolite 3], succinic acid
[metabolite 5] and uric acid [metabolite 22]) and metabo-
lites that were of higher signal intensity among cases,
including creatinine (metabolite 10), N-acetylglutamine
(metabolite 23) and octanol (metabolite 2). On the basis

Table 1 Clinical characteristics
of cases and controls

Continuous variables are pre-
sented as mean±SD, categorical
variables as n (%)
aTreatment information is missing
for one case and four controls
bMean and subsequent SD was
computed after removal of one
outlier

NA, not applicable

Variable Cases (n=44) Controls (n=46) p value

Age (years) 67.93±8.96 60.80±9.39 0.0004

Male 19 (43.2) 13 (28.3) 0.1390

Age at diabetes diagnosis (years) 58.27±10.90 52.18±10.58 0.0129

Duration of diabetes (years) 9.46±9.60 8.50±7.72 0.8975

Current modality for diabetes treatmenta 0.2240

Diet and exercise only 13 (30.2) 9 (21.4)

Oral hypoglycaemic agent with/without
diet and exercise

25 (58.1) 32 (76.2)

Oral hypoglycaemic agent + insulin 4 (9.3) 1 (2.3)

Insulin alone 1 (2.3) 0 (0.0)

HbA1c (%) 7.4±0.96 7.07±0.67 0.0701

HbA1c (mmol/mol) 57.37±7.34 53.77±10.50

Systolic blood pressure (mmHg) 136.48±14.98 133.33±11.74 0.2963

Diastolic blood pressure (mmHg) 74.82±8.82 76.17±6.86 0.4167

Mean arterial pressure (mmHg) 95.387±8.90 95.22±6.54 0.9857

Triacylglycerol (mmol/l) 1.64±0.81 1.40±0.50 0.0941

Cholesterol (mmol/l) 4.61±0.76 4.68±0.89 0.7459

LDL-cholesterol (mmol/l) 2.60±0.60 2.77±0.77 0.2560

HDL-cholesterol (mmol/l) 1.27±0.29 1.28±0.30 0.8860

Serum creatinine (μmol/l) 113.75±23.31 74.37±16.36 <0.0001

Smoking 0.817

Yes 4 (9.01) 3 (6.5)

Never 33 (75.0) 37 (80.4)

Ex-smoker 7 (15.9) 6 (13.0)

Waist hip ratio 0.90±0.06 0.87±0.06 0.0705

BMI (kg/m2) 24.92±3.69 24.86±3.68 0.9426

eGFR (ml min−1 1.73 m−2) 51.66±6.88 83.61±16.06 NA

ACR (μg/μmol)

Mean ± SD 2.45±5.69b 2.45±3.64 0.999

Median (IQR) 1.06 (1.63) 1.31 (2.14) 0.168
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of these first and second PCs, the cases could be separated
quite well from controls. With the diagonal line in ESM
Fig. 1 used as a simple rule for separating cases from
controls, all controls were placed below the line and all but
five cases were located above it. In logistic regression
where the first and second PC scores were used to classify
participants into cases and controls, the ROC curve
revealed very good discriminatory power (AUC=0.999).

The above classification was achieved by using all 24
metabolites. However, from the univariate analysis (Table 2), it
is clear that only a subset of metabolites was significantly
associated after adjustment for multiple testing, and, further-
more, metabolites tended to show clustering, i.e., their signal
intensities tended to vary together across the different samples,
as was evident in the PC plots. We therefore next determined
whether the same level of classification could be achieved
with a smaller select group of metabolites. With the use of
LASSO logistic regression, the following metabolites were
selected as the best subset for case prediction: octanol, oxalic
acid, phosphoric acid, benzamide, creatinine, 3,5-dimethox-
ymandelic amide and N-acetylglutamine.

Using these seven metabolites to predict case status, a
classification (AUC=0.995) was achieved that was as good as
that previously derived using all 24 metabolites (ESM Fig. 2).
This led to the conclusion that higher signal intensities of
octanol, creatinine and N-acetylglutamine and lower signal
intensities of oxalic acid, phosphoric acid, benzamide and
3,5-dimethoxymandelic amide were all independent predic-
tors of low eGFR. Among the clinical variables, only age at
diabetes diagnosis, age at recruitment and serum creatinine
were statistically significant in univariate analyses (Table 1).
In LASSO regression, only serum creatinine was selected
into the model when the significant metabolites listed above
were included. The AUC of the model with serum creatinine
added is 0.996, which is very similar to the model without
serum creatinine (AUC=0.995).

LC/MS analyses OPLS-DA revealed clear segregation of
cases from controls on the basis of 144 peaks detected in
LC/MS (Fig. 2). Univariate analyses revealed a total of 32
metabolites that were significantly associated with low
eGFR (unadjusted p<0.05). Of these, 19 remained signif-
icantly associated after multiple hypotheses testing had
been taken into account (adjusted p<0.05; Table 3). Of
these, 17 were detected in positive ion mode, while two
were determined under the negative ion mode, including
indoxyl sulphate, a well-established uraemic toxin [14].
Relative to indoxyl sulphate (adjusted p=3.03×10−2),
several metabolites clearly showed stronger evidence
of statistical association with low eGFR, with p
values that were at least a magnitude smaller. These
included 4-methoxyphenylacetic acid, N6-acetyl-L-lysine,
chondroitin sulphate, citric acid, phenylacetyl-L-glutamine,
2-deoxyuridine and deoxypyridinoline (Table 3).

PC analyses of the LC/MS metabolites using the first
two PCs explained 53.5% of correlations. The metabolites
had higher signal intensities among cases compared with
controls, with three clusters of metabolites being evident
(ESM Fig. 3). Compared with the GC/MS results, the
separation of cases from controls was less optimal, with
only moderate discriminatory power (AUC=0.777), as
observed using the ROC curve (data not shown). LASSO
regression revealed a subset of seven metabolites (N6-
acetyl-L-lysine, caffeine, 4-methoxyphenylacetic acid, chon-
droitin sulphate, hyocholic acid/cholic acid/ursocholic acid,
phenyl sulphate and α-hydroxyhippuric acid) that best
predicted case status with an AUC of 0.870, an improve-
ment on that achieved using PC scores (ESM Fig. 4). The
potential effect of confounding on the association between
metabolites and low eGFR by patient clinical variables was
excluded. In univariate analyses, age at diabetes diagnosis,
age at examination and serum creatinine were statistically
significant at the 5% significance level (Table 1). However,

Fig. 1 OPLS-DA score plot
obtained from GC/MS data
based on 106 peaks. Black
circles, controls (n=46); white
circles, cases (n=44). The x-axis
t[1] and y-axis t[2] indicate the
first PC and second PC,
respectively
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only age at recruitment and serum creatinine were selected
by LASSO regression when the significant metabolites

listed above were included. The AUC for this model where
age at recruitment and serum creatinine were added to the

Table 2 Univariate analysis of metabolite signal intensities measured by GC/MS

Metabolite Median (SD) Unadjusted p valuea Adjusted p valueb

Control Cases

Oxalic acid 0.263 (0.457) 0.000 (0.000) 4.71×10−17 2.62×10−14

Octanol 0.287 (0.204) 0.899 (0.596) 9.65×10−13 2.68×10−10

3,5-Dimethoxymandelic amide 0.764 (0.464) 0.292 (0.181) 4.75×10−11 6.98×10−9

N-Acetylglutamine 0.246 (0.735) 1.811 (2.325) 5.02×10−11 6.98×10−9

Creatinine 2.639 (3.237) 11.224 (5.723) 6.97×10−10 6.46×10−8

Benzamide 0.102 (0.026) 0.079 (0.020) 7.63×10−8 5.80×10−6

Phosphoric acid 43.706 (18.812) 29.391 (12.001) 1.18×10−6 7.28×10−5

2-Hydroxyadipic acid 0.034 (0.025) 0.056 (0.039) 1.75×10−5 8.86×10−4

Ribonic acid 0.353 (0.610) 1.168 (1.163) 1.80×10−4 7.71×10−3

Hydroxyphenylacetic acid 0.123 (0.216) 0.261 (0.380) 6.98×10−4 2.43×10−2

Sarcosine 0.144 (0.247) 0.183 (0.069) 1.18×10−3 3.84×10−2

Salicyluric acid 0.849 (2.176) 2.120 (4.442) 2.10×10−3 6.50×10−2

Uric acid 1.847 (1.598) 1.250 (1.435) 2.34×10−3 6.85×10−2

ß-Hydroxybutyric acid 0.035 (0.061) 0.070 (0.068) 5.22×10−3 1.45×10−1

cis-Aconitic acid 0.128 (0.258) 0.233 (0.518) 7.02×10−3 1.86×10−1

2-Ketogluconic acid 0.073 (0.203) 0.164 (0.258) 9.35×10−3 2.36×10−1

Dodecanoic acid (C12:0) 0.346 (0.086) 0.397 (0.236) 1.48×10−2 3.42×10−1

Threitol 0.340 (0.451) 0.689 (0.751) 1.55×10−2 3.44×10−1

3-Hydroxyhippuric acid 0.308 (0.707) 0.565 (0.719) 1.97×10−2 4.20×10−1

Succinic acid 0.180 (0.177) 0.137 (0.092) 2.10×10−2 4.32×10−1

D-Glucuronic acid 0.088 (0.481) 0.124 (0.267) 3.05×10−2 5.47×10−1

Xylitol 0.762 (1.817) 1.758 (1.782) 3.73×10−2 6.21×10−1

Pseudouridine 0.903 (2.307) 1.944 (2.482) 3.66×10−2 6.21×10−1

L-Serine 0.106 (0.439) 0.184 (0.446) 4.71×10−2 7.27×10−1

Only metabolites with unadjusted p values of <0.05 are shown
a p value from Mann–Whitney test comparing the medians
b Adjusted for multiple hypotheses testing by controlling for FDR [12]

Fig. 2 OPLS-DA score plot
obtained from LC/MS data on
144 peaks. Black circles, controls
(n=46); white circles, cases (n=
44). The x-axis t[1] and y-axis
t[2] indicate the first PC and
second PC, respectively

504 Diabetologia (2012) 55:499–508



model was 0.978, which represents a significant improve-
ment over the model with metabolites only (AUC=0.870).

Validation In an attempt to provide some kind of validation
for the above GC/MS and LC/MS results, 45 individuals
(23 controls, 22 cases) were randomly selected from the 90

participants and used to discover the important metabolites.
These metabolites were then validated by calculating the
AUC based on the 45 remaining unselected participants.
This random selection was repeated ten times, yielding a
range of AUC values. For GC/MS metabolites, the AUC
for the validation set was consistent and ranged from 0.934

Table 3 Univariate analysis of metabolite signal intensities measured by LC/MS

Metabolite Median (SD)

Control Cases Unadjusted p valuea Adjusted p valueb

Positive ion mode

4-Methoxyphenylacetic acidc 0.022 (0.031) 0.080 (0.076) 5.11×10−7 2.04×10−4

N6-Acetyl-L-lysinec 0.16 (0.069) 0.258 (0.249) 2.16×10−6 3.82×10−4

Chondroitin sulphatec 0.057 (0.099) 0.162 (0.213) 2.39×10−6 3.82×10−4

Citric acidd 0.261 (0.241) 0.441 (0.435) 3.60×10−6 4.80×10−4

Phenylacetyl-L-glutaminec 0.827 (0.993) 1.693 (2.117) 4.91×10−6 4.91×10−4

2-Deoxyuridined 0.792 (0.565) 1.554 (1.378) 6.18×10−6 5.49×10−4

Deoxypyridinolinec 0.052 (0.059) 0.119 (0.140) 1.52×10−5 8.07×10−4

Dehydrotestosterone glucuronide/retinyl-ß-glucuronidec 0.091 (0.105) 0.157 (0.162) 3.28×10−4 1.09×10−2

N-Acetylsperminec 0.056 (0.080) 0.168 (0.185) 3.92×10−4 1.21×10−2

Creatinined 1.105 (0.753) 1.581 (1.260) 5.19×10−4 1.47×10−2

Sphingosinec 0.112 (0.187) 0.252 (0.671) 5.51×10−4 1.47×10−2

3,7-Dimethyluric acidc 0.131 (0.252) 0.408 (0.462) 6.75×10−4 1.69×10−2

10-Nitrolinoleic acidc 0.045 (0.097) 0.098 (0.145) 8.34×10−4 1.85×10−2

2,6-Dimethylheptanoyl carnitine nonanoylcarnitinec 0.085 (0.092) 0.288 (0.202) 8.52×10−4 1.85×10−2

Hyocholic acid/cholic acid/ursocholic acidc 0.371 (0.418) 0.501 (0.952) 8.09×10−4 1.85×10−2

Phosphoribosyl-formylglycine amidinec 0.065 (0.124) 0.128 (0.342) 1.42×10−3 2.87×10−2

IDPc 0.000 (0.183) 0.052 (0.161) 2.52×10−3 4.48×10−2

Caffeined 0.139 (0.189) 0.307 (0.275) 3.74×10−3 5.86×10−2

α-Hippuric acid 2.186 (2.540) 3.543 (4.859) 6.06×10−3 9.14×10−2

Pregnanediol-3-glucuronidec 0.000 (0.067) 0.045 (0.168) 8.23×10−3 1.15×10−1

Suberylglycinec 0.180 (0.161) 0.284 (0.347) 8.92×10−3 1.23×10−1

Vinylacetylglycinec 0.525 (0.467) 0.715 (1.211) 1.65×10−2 1.97×10−1

Phytyl diphosphatec 0.023 (0.076) 0.073 (0.150) 1.71×10−2 2.01×10−1

Deoxycorticosterone/docosapentaenoic acidc 0.000 (0.123) 0.000 (0.206) 2.40×10−2 2.69×10−1

Galactosed 0.210 (0.964) 0.305 (0.355) 4.28×10−2 4.44×10−1

Negative ion mode

Androsterone glucuronide/etiocholanolone glucuronidec 0.345 (0.650) 0.597 (0.685) 1.44×10−3 2.87×10−2

Indoxyl sulphatec 10.484 (17.112) 18.120 (20.359) 1.56×10−3 3.03×10−2

α-Hydroxyhippuric acidd 0.606 (2.977) 1.688 (4.975) 3.31×10−3 5.50×10−2

Urothionc 1.162 (2.281) 1.594 (2.050) 5.76×10−3 8.86×10−2

Salicyluric acidc 0.297 (0.863) 0.794 (1.221) 6.27×10−3 9.29×10−2

3-Oxocholic acidc 0.603 (0.822) 0.890 (1.091) 2.42×10−2 2.69×10−1

Phenyl sulphate 2.592 (4.019) 3.142 (7.253) 4.80×10−2 4.84×10−1

Only metabolites with unadjusted p values of <0.05 are shown
a p value from Mann–Whitney test comparing the medians
b Adjusted for multiple hypotheses testing by controlling for FDR [12]
c Identified by MS/MS fragmentation pattern
d Identified by reference standard

IDP, inosine diphosphate
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to 1.000. For the LC/MS metabolites, the range was less
optimal, with AUC values of 0.477–1.000.

Discussion

Our study has succeeded in unveiling a wealth of
information linking a number of urinary metabolites with
low eGFR. Moreover, these novel and statistically robust
associations were found in diabetic patients who were
persistently non-proteinuric and thus would conventionally
have been regarded to be at low risk of chronic kidney
disease.

The candidate metabolites for low eGFR extended well
beyond the few widely acknowledged uraemic toxins.
Indeed, while we did find significant associations with
urinary levels of uraemic toxins such as indoxyl sulphate,
creatinine and the methoxylated form of phenylacetic
acid, at least 13 other metabolites exhibited much
stronger evidence of an association with low eGFR,
with p values that were at least a magnitude smaller when
compared with indoxyl sulphate (Tables 2 and 3). These
new candidate biomarkers include oxalic acid, octanol,
3,5-dimethoxymandelic amide, N-acetylglutamine, benza-
mide, phosphoric acid, 2-hydroxyadipic acid, N6-acetyl-L-
lysine, chondroitin sulphate, citric acid, phenylacetyl-L-
glutamine, 2-deoxyuridine and deoxypyridinoline.

Our literature review suggested that only a few of the
metabolites, such as creatinine, oxalic acid and phosphoric
acid, had been earlier linked to renal disease in humans
[15, 16]. While raised serum creatinine serves as an
indicator of renal function, urinary creatinine is primarily
used in the context of a 24 h creatinine clearance test to
measure GFR. Regarding oxalic and phosphoric acids,
high urinary levels of these metabolites predisposed to
the formation of kidney stones [17], but the effect of
kidney stones on reducing renal function remained unclear
[18]. It was noteworthy that the urinary levels of these
metabolites were actually lower in the cases than controls
in our study.

In particular, oxalic acid was detected in 44 out of 46
control participants (95.6%) but in none of the cases (ESM
Fig. 5). This striking observation may be consistent with
the systemic retention of this metabolite in the presence of
low eGFR. In this connection, it is interesting to note that
increased plasma oxalic acid levels had been previously
linked with chronic kidney disease [19].

Chondroitin sulphate is a type of glycosaminoglycan that
is covalently linked to proteins, forming proteoglycans. It is
reportedly absent in the normal glomerular basement
membrane, but its content increases soon after the onset
of experimental diabetes [20, 21]. Semi-quantitative analysis
suggested a reduction in total urinary glycosaminoglycan

content in diabetic animal models compared with non-
diabetic controls with increasing diabetes duration and
this appeared to correlate with albuminuria [22]. In
normoalbuminuric type 1 diabetic patients, increased
urinary excretion of glycosaminoglycans, including chon-
droitin sulphate, was related to poorer glycaemic control
and longer diabetes duration, although the association
between the excretion of these metabolites and eGFR was
not reported [23, 24].

An important highlight of our study is the previously
unrecognised roles of the remaining metabolites in the
modulation of eGFR. Even so, there may be some
underlying biological plausibility. For example, cases with
low eGFR had lower levels of benzamide compared with
controls. Benzamide has been shown to be an endogenous
inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) [25,
26], a key enzyme that has been strongly implicated in
causing diabetes-associated endothelial dysfunction [27].
Pharmacological inhibition of PARP-1 ameliorated various
features associated with nephropathy in both experimental
models of type 1 and type 2 diabetes, including albuminuria
[28, 29]. Urinary albumin and protein excretion were
reduced in the streptozotocin-diabetic mouse model with
the endogenous Parp1 gene constitutively ablated by gene
knockout [30]. While these previous animal studies
concentrated primarily on the effect of PARP-1 in amelio-
rating albuminuria, our present finding on benzamide
provides intriguing fresh evidence of a role for PARP-1 in
the modulation of eGFR in diabetic patients.

Despite the salient findings, certain limitations of our
study should be acknowledged. First, our study was based
on a case–control study design, and therefore we could not
draw conclusions regarding causation as in a cohort. This
case–control study design was, however, appropriate in the
current instance because the comprehensive metabolomic
profiling of a large cohort would have been prohibitive in
terms of both logistics and costs. The selected metabolites
here identified may now serve as prospective leads in future
cohort studies. These same logistic and cost considerations
also placed a necessary limit on our sample size, conse-
quently reducing the power of our study. However, this
decreased power did not appear to substantially affect our
study, as we successfully detected a number of associa-
tions that remained robust after correction for multiple
hypotheses testing. Third, GFR was estimated using a
serum creatinine-based equation rather than being directly
measured. This can be expected to have caused some
degree of disease misclassification and, conceivably,
made it harder to identify potential metabolites that had
weaker associations with low eGFR. Another potential
shortcoming was that our metabolomic study was con-
fined to urine and not the corresponding blood specimens
from the patients. This was due to the inherent technical
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difficulties in metabolomic analysis of this complex
biofluid. Characterisation of the blood metabolome may
have provided a more holistic context within which our
findings could be interpreted.

To balance this, attention should be drawn to several
strengths of our study. First, the metabolomic approach
used was comprehensive by leveraging both GC/MS and
LC/MS platforms. Second, positive and statistically robust
associations were uncovered. In addition, the detection of
associations with known uraemic toxins provided some
degree of validation of our study design including the
characterisation of our patient sample. Third, the chance of
false positive findings was minimised by careful adjustment
for multiple hypotheses testing. Fourth, our study focused
on low eGFR in non-proteinuric patients. Aside from
yielding new insight into the renal aspects of these patients,
a significant benefit of our study design was the minimi-
sation of any potential confounding due to the presence of
proteinuria on the associations between the metabolomic
profiles and low eGFR. Finally, to our knowledge, this is
the first study of the metabolomics of eGFR in human
type 2 diabetes. Previous reports have attempted to study
changes in the urinary metabolome associated with type 2
diabetes per se, without any attention being paid to their
possible association with the accompanying renal traits.
Critically, few of these studies were on human specimens
[31], with the majority being performed on experimental
models of diabetes [32–35].

In conclusion, our investigation of the metabolomics
of low eGFR in non-proteinuric type 2 diabetic patients
has yielded substantial biological insight. In addition, we
have identified several potential candidate biomarkers
that may prove useful for detecting and monitoring
chronic kidney disease. Individually, these potential
biomarkers, especially the seven GC/MS metabolites,
showed highly significant associations with low eGFR
and had good discriminatory power. When used collec-
tively, the metabolomic signatures appeared to be
promising for disease classification.
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