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Abstract
Aims/hypothesis We examined the link between altered gap
junctional communication and renal haemodynamic abnor-
malities in diabetes in studies performed on Zucker lean
(ZL) and the Zucker diabetic fatty (ZDF) rat model of type
2 diabetes.
Methods The abundance of connexin (Cx) 37, 40 and 43
was assessed by western blot and immunohistochemistry.
Renal haemodynamics was characterised with GAP pep-
tides, which are Cx mimetics, to inhibit gap junctions as a
probe in both strains.
Results ZDF rats exhibited higher plasma glucose, 8-epi-
prostaglandin F2α excretion, renal plasma flow and GFR
than ZL rats. In ZDF rat kidney phosphorylation of

Cx43 was enhanced compared with that in ZL rats.
Immunohistochemical study revealed that the density of
abundance of Cx37 in renin-secreting cells was signifi-
cantly reduced in ZDF rats. Although renal autoregula-
tion was markedly impaired in ZDF rats, it was
preserved in ZL rats. GAP27 for Cx37,43 and for
Cx40 impaired renal autoregulation in ZL rats, but failed
to induce further alterations in renal autoregulation in
ZDF rats.
Conclusions/interpretation Our findings indicate that ZDF
rats have glomerular hyperfiltration with impaired autoregu-
lation. They also demonstrate enhanced phosphorylation of
Cxs and reduced production of Cxs in ZDF rat kidney,
especially of Cx37 in renin-secreting cells. Finally, our data
suggest that an impairment of gap junctional communication
in juxtaglomerular apparatus plays a role in altered renal
autoregulation in diabetes.
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Introduction

Gap junctions comprising various connexins (Cxs) are
abundantly produced throughout the cardiovascular system,
providing direct electrical and chemical communication
between adjacent cells to coordinate physiological
responses such as cardiac rhythm and the regulation of
vasomotor tone [1–3]. In the kidney, extensive coupling by
gap junctions, involving Cx37 and Cx40, enables intercel-
lular communication between the renin-secreting cells of
the afferent arteriole, the endothelium and the mesangial
cells, which, together with the macula densa, form the
juxtaglomerular apparatus [4–7]. Cx40 also appears to be
essential for the correct targeting of renin-secreting cells
to the terminal regions of the renal arterial tree and for
the pressure-induced control of renin release in mice
[8–10]. In addition, our studies have shown that Cx37 and
Cx40 in the juxtaglomerular apparatus play an important
role in transducing purinergic tubuloglomerular feedback
(TGFback) response signal and controlling the renin–
angiotensin system [11, 12].

Perturbations in Cx production involving transcriptional
and post-transcriptional mechanisms are increasingly rec-
ognised to accompany pathophysiological conditions such
as ischaemic heart disease, heart failure, atrial fibrillation,
hypertension and diabetes [1, 2, 13, 14]. However, data
using animals in which a specific Cx has been deleted
suggest that compensatory changes may occur in the
remaining Cxs [2]. On the other hand, fine control of Cx
structure through post-translational modifications such as
phosphorylation may constitute additional mechanisms
through which the function of gap junction could be
disrupted. Indeed, the phosphorylation of Cx43 modulates
channel gating, turnover and distribution [15]. Interestingly,
high glucose treatment decreases gap junction function in
microvascular endothelial cells and aortic smoothmuscle cells
either by reducing production or increasing phosphorylation
of Cx43 [16, 17]. These observations raise the possibility that
dysfunction of gap junctions from altered Cxs and also
varied abundance of Cxs contribute to diabetic nephropathy,
a disease characterised by reduced afferent arteriolar tone
and glomerular hyperfiltration [18–20].

In the present study, we assessed the alterations of renal
autoregulation in a rat model of type 2 diabetes by
determining the levels of Cx37, Cx40 and Cx43, and
investigating the role of these Cxs in renal haemodynamics
using GAP peptides, which block gap junctions through
mimicry of extracellular sequences for specific Cxs
[21, 22]. Our findings that enhanced phosphorylation of
Cxs and reduced abundance of Cx37 in renin-secreting cells
are associated with little involvement of Cx37 and Cx40 in
renal autoregulation in diabetes seem to agree with our
previous studies, in which conductance of vascular gap

junctions was subject to pathophysiological modulations
[23]. A recent report that peptidomimetic molecules prevent
closure of cardiac Cx43 gap junctions points to a possible
basis for the development of new therapeutic tools for
diabetic nephropathy [24].

Methods

Animals

All experiments were performed using 8-week-old male
Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats
(Charles River, Kanagawa Japan) to assess early changes in
diabetes. Experimental protocols followed Principles of
Laboratory Animal Care and were approved by the Ethics
Committee of Saitama Medical University and Australian
National University. Animals were housed separately in
metabolism cages and had free access to tap water and rat
chow consisting of 24% protein, 14% fat, 5% ash, 3% fibre
and 46% nitrogen-free extract (Quick Fat; Nihon Clea,
Tokyo, Japan) in a temperature-controlled room with a 12 h
light/dark cycle until experiments began. No insulin
treatment was performed.

Immunohistochemistry

ZL (n=4) and ZDF (n=4) rats were killed with an overdose
of pentobarbital. Kidneys were removed and cut into 3 to
4 mm transverse slices, which were fixed in ice-cold
acetone for 20 min at 4°C and then washed in PBS for
30 min. The slices were cryoprotected overnight in 30%
(wt/vol.) sucrose in PBS, embedded in Tissue Tek OCT
(Sakura Fintek, Torrance, CA, USA) and coronal sections
(30 μm) cut on a cryostat. Staining of Cx37, Cx40, Cx43
and renin were carried out as described previously [25, 26].
For more details, see also Electronic supplementary
material (ESM), Immunohistochemistry.

Morphological analysis

The image analysis program Image J (National Institutes of
Health, Bethesda, MD, USA) was used to generate single
projections for each series of images. These single images
were subsequently used to analyse Cx and renin staining.
The distance from the glomerulus of renin-secreting cells
along the afferent arteriole was measured and occurrence of
additional groups of renin-stained cells in the same afferent
arteriole was noted in a binary manner. The incidence of
renin-secreting cells in the efferent arteriole was similarly
noted. Efferent arterioles were identified by lack of Cx
staining [11] and also by the irregular arrangement of
smooth muscle cells.
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Cx37 staining was quantified in two regions of the
afferent arteriole after background subtraction using the
threshold image function of Image J. The first region
colocalised with renin staining and region was 40 μm
proximal to this area along the same afferent arteriole. The
density of Cx staining within renin-secreting cells was defined
by Cx staining in the total area coincident with renin staining,
after subtraction of Cx staining in the area represented by the
endothelium. Staining density in renin-secreting cells was
normalised for variation in intensity between preparations
against abundance relative to endothelial cell density in the
proximal region in each preparation.

Western blotting

ZDF (n=4) and ZL (n=4) rats were anaesthetised with
pentobarbital (50 mg/kg i.p.) and decapitated. Both kidneys
were removed, immersed in liquid nitrogen and kept frozen
at −80°C until the assay. As described previously, β-actin
was used as a housekeeping protein [27, 28]. For more
details please see ESM, Western blotting.

Haemodynamics

Animal preparations were performed, as detailed previously
[5, 11, 12, 29] and in ESM, Haemodynamics. Under
anaesthesia, the right jugular vein was cannulated with
polyethylene tubing (PE50). The animals were infused at a
rate of 1.2 ml/h with isotonic saline solution containing 6%
(wt/vol.) BSA during surgery and thereafter with isotonic
saline solution containing 1% (wt/vol.) BSA, 7.5% (wt/
vol.) Inutest (Laevosan-Gesellschaft, Linz/Donau, Austria)
and 1.5% (wt/vol.) para-aminohippuric acid (Merck Sharp
Dohme, West Point, PA, USA) to enable calculation of
GFR and effective renal plasma flow (RPF). The left
femoral artery was catheterised with PE50 filled with
heparinised saline (100 U/ml) to allow blood sampling
and continuous arterial pressure measurements. An adjust-
able clamp was placed on the aorta above the left renal
artery to control left renal arterial pressure. We used GAP
peptides because they interrupt gap junctions through
mimicry of extracellular sequences for specific Cxs as the
decoy. The left adrenal artery was cannulated with extended
PE10 to infuse heparinised saline or GAP peptides (5 mg
administered intra-arterially, and followed by 0.2 mg/min)
at a rate of 0.6 ml/h [30, 31], and the solution for
transjugular infusion was adjusted to 2% (wt/vol.) BSA
and infused at a rate of 0.6 ml/h to make water load similar.
After completion of surgery, 1 h of equilibration was
allowed before initiating experimental protocols.

To test whether Cxs play a role in renal autoregulation,
the effects of GAP27 for Cx37,43 (Cx37,43GAP27), GAP27
for Cx40 (Cx40GAP27) and GAP26 for Cx43 (Cx43GAP26)

(Severn Biotech, Worcester, UK) were examined. This
series of studies was performed on ZL and ZDF rats (six
rats per group). Two consecutive 20 min control clearances
were carried out. The aortic clamp was tightened to reduce
renal arterial pressure by approximately 20 mmHg before
initiating two consecutive 20 min clearance periods.
Subsequently, the aortic clamp was released. Saline was
exchanged by infusion for GAP peptide, which was infused
into the adrenal artery throughout the remaining experi-
mental periods. Since our previous studies have shown that
Cx37,43GAP27 or Cx40GAP27 induced an increase in blood
pressure [12], the aortic clamp was slightly tightened to
prevent this increase and hence maintain renal arterial
pressure at the control level. To obtain maximal effects of
GAP peptides [11], at least another 60 min equilibration
period was allowed before initiating two consecutive
20 min clearance periods. Subsequently, the aortic clamp
was further tightened to reduce renal arterial pressure by
approximately 20 mmHg and two consecutive 20 min
clearance studies were carried out.

Renin–angiotensin

In additional experiments, plasma renin activity was
measured separately in eight groups of rats (ZDF and ZL
rats in the absence or presence of three GAP peptides, n=
4–5 per group). Surgical procedures were the same as the
above, except that the ureter was not cannulated. After 1 h
of equilibration, GAP peptides were infused into the
adrenal artery as detailed above. In the case of
Cx37,43GAP27 or Cx40GAP27, the aortic clamp was used
to maintain renal arterial pressure at baseline level. After
1 h, 2 ml blood sample was taken from the femoral artery in
chilled tubes containing EDTA. Plasma was kept deep-
frozen until the assay [11, 29].

Statistics

Data are expressed as means ± SEM. Statistical analysis was
performed using ANOVA and Student’s t test with or without
Bonferroni’s correction for multiple comparisons when
appropriate. We used χ2 tests for analysis of renin abundance
in efferent arterioles and for identification of multiple groups
of renin-secreting cells along the afferent arterioles. A value
of p<0.05 was considered statistically significant.

Results

General animal condition

ZDF rats had higher body weight (n=18 for each group)
and plasma glucose than ZL rats (p<0.05) (Table 1)
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although they were not fed with Purina 5008 (Purina Mills,
Richmond, IN, USA). ZDF rats had diabetes at the time of
the experiments although blood pressure was not elevated.
Kidney weight in ZDF rats was also greater than in ZL rats
(p<0.01). Neither of the rat groups had any evidence of
hydronephrosis at this age. Packed cell volume was similar
between ZL (48±1%) and ZDF rats (49±1%). ZDF rats
excreted more albumin (190±18 μg/day) than ZL rats
(15±3 μg/day; p<0.01). Creatinine clearance (2.70±0.19
vs 1.86±0.16 ml/min; p<0.01) and 8-epi-prostaglandin
F2α excretion (2.2±0.2 vs 1.5±0.2 ng/day; p<0.05) were
elevated in ZDF rats. Urine flow, RPF and GFR were
significantly higher in ZDF than ZL rats (Table 1).

Western blotting

The levels of Cx37, Cx40 and Cx43 did not differ between
the kidneys of ZDF and ZL rats at the age examined
(Fig. 1a–c). However, a significant higher amount of Cx43
was phosphorylated in ZDF rats (Fig. 1d). We were not able
to perform similar analysis on phosphorylated Cx37 and
Cx40, as specific antibodies for each were not available.

Immunohistochemistry

ZL rats Cx37 was strongly produced in the endothelium of
the afferent arterioles and larger arteries, and weakly
produced in the efferent arterioles. In the glomerulus,
Cx37 was found only at the vascular pole (ESM Fig. 1).
Labelling for renin demonstrated that Cx37 was also
produced in renin-secreting cells, but not in extraglomerular
mesangial cells (Fig. 2a).

Cx40 was similarly strongly produced in the endothelium
of the afferent arterioles and larger arteries, and in renin-
secreting cells (ESM Fig. 1). In contrast to Cx37, Cx40
was present throughout the glomerulus and in the
extraglomerular mesangium, but was not found in the
efferent arterioles (Fig. 2b).

Cx43 was produced weakly in the endothelium of the
afferent arterioles and throughout the glomerulus. In renin-
secreting cells, Cx43 staining colocalised with the intracellular
staining for renin, but was not located in a punctate form in the
cell membrane (Fig. 2c).

In addition to the renin-secreting cells located along the
afferent arterioles at the entrance to the glomerulus, renin-
secreting cells were also found at sites more distant from
the glomerulus in some nephrons (ESM Fig. 1). Renin
staining was also found surrounding the exit of some
efferent arterioles.

ZDF rats When compared with the staining in ZL rats, the
abundance patterns for Cx37, Cx40 and Cx43 were similar
in the nephrons of ZDF rats (Fig. 2d–f), although the
density of Cx37 staining in renin-secreting cells appeared to
be reduced (Fig. 2a, d). The abundance of renin in the
terminal afferent arterioles also appeared to be reduced in

Table 1 Animal conditions and baseline renal haemodynamics

Characteristic ZL ZDF

Body weight (g) 272±4 364±5*

Kidney weight (g) 0.96±0.02 1.19±0.03*

Mean BP (mmHg) 98±1 100±2

Plasma glucose (mmol/l) 4.9±0.2 12.8±0.9*

RPF (ml min−1 [g kidney wt]−1) 3.51±0.07 3.85±0.06*

GFR (ml min−1 [g kidney wt]−1) 0.94±0.03 1.15±0.03*

Urine volume (μl/min) 7±1 19±2*

Values are mean±SEM

*p<0.05
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ZDF rats (Fig. 2a–f). Thus, the following morphological
analysis was performed.

Morphological analysis

Measurement of the distance from the glomerulus of renin-
secreting cells along the afferent arteriole showed that this
was significantly shorter in the afferent arterioles from ZDF
rats than in those from ZL rats (p<0.05) (Fig. 3a).
Furthermore, the percentage of afferent arterioles with
additional groups of renin-secreting cells along the afferent
arterioles tended to be lower in the arterioles of ZDF rats
than in those of ZL rats, although this did not reach
statistical significance (p=0.06) (Fig. 3b). However, the
percentage of efferent arterioles with renin-secreting cells
around their origin from the glomerulus was significantly
lower in ZDF rats than in ZL rats (p<0.05) (Fig. 3c).

While it was not possible to quantify the density of Cx40
staining in renin-secreting cells due to potential overlap
with extraglomerular mesangial cells, this was done for

Cx37, where no production was detected in the extraglo-
merular mesangium. Expressed as positive staining above
background per unit area, levels of Cx37 tended to be
reduced in the renin-secreting cells of ZDF compared with
ZL rats (Fig. 3d). To normalise for variation in staining
between different staining runs, a region of endothelial
staining removed from the renin-secreting cells was
quantified. While content of Cx37 in the endothelial cells
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of the afferent arterioles of ZL and ZDF rats was not
significantly different (Fig. 3e), the density of abundance of
Cx37 in the renin-secreting cells, normalised to this
endothelial content, showed a significant reduction in
ZDF compared with ZL rats (Fig. 3f).

Renal haemodynamics

In ZL rats, changes in mean arterial pressure (MAP)
from 98±2 to 82±2 mmHg failed to alter RPF and GFR
(Fig. 4a, c). During intra-renal infusion of Cx37,43GAP27,
alterations of MAP from 98±2 to 79±1 mmHg decreased
RPF and GFR in ZL rats. Cx37,43GAP27 elevated filtration
fraction in ZL rats (28±2 to 33±2%; p<0.05). MAP was
elevated to 116±2 mmHg (p<0.01) following full release
of the aortic clamp. Autoregulatory indices for RPF (5±8 to
54±10%; p<0.01) and GFR (1±9 to 58±11%; p<0.05)
were also increased by Cx37,43GAP27 in ZL rats.
Autoregulatory efficiency was already impaired in ZDF
rats under basal conditions (Fig. 4b, d). The reduction of
MAP from 100±2 to 82±2 mmHg markedly decreased
RPF and GFR in these rats. However, subsequent
administration of Cx37,43GAP27 did not induce further
decrements in autoregulation of ZDF rats, while alterations
of MAP from 98±2 to 80±1 mmHg decreased RPF and
GFR in this rat group.

Under control conditions, RPF and GFR were autoregu-
lated in the range of MAP from 101±2 to 82±1 mmHg in
ZL rats (Fig. 4e, g). Following intra-renal infusion of
Cx40GAP27, autoregulation of RPF and GFR was reduced
to between 98±2 and 80±1 mmHg in ZL rats. Subsequent
release of the aortic clamp increased MAP to 112±2 mmHg
(p<0.01). Thus, Cx40GAP27 increased filtration fraction
from 25±1 to 29±1% (p<0.05) and autoregulatory indices
of RPF (4±10 to 54±13%; p<0.05) and GFR (1±6 to
54±8%; p<0.01) in ZL rats. In ZDF rats, however, the
reduction of MAP from 102±2 to 82±2 mmHg markedly
decreased RPF and GFR even under basal conditions
(Fig. 4f, h). Subsequent administration of Cx40GAP27 did
not induce further decrements in autoregulation of ZDF
rats. In the presence of Cx40GAP27, the reduction of MAP
from 98±2 to 80±2 mmHg reduced PRF and GFR in
ZDF rats.

As shown in Fig. 4i, k, RPF and GFR were well
autoregulated in the range of MAP from 101±2 to 80±
1 mmHg in ZL rats. Following intra-renal infusion of
Cx43GAP26, autoregulation of RPF and GFR was still
preserved between 98±1 and 80±1 mmHg. Thus,
Cx43GAP26 decreased GFR (p<0.05), but did not alter
autoregulatory indices for RPF and GFR in ZL rats. There
was no significant change in MAP after release of the aortic
clamp. In ZDF rats, reduction of MAP, under basal
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conditions, from 99±2 to 79±2 mmHg altered PRF and
GFR (Fig. 4j, l). The administration of Cx43GAP26 to ZDF
rats resulted in decrements of RPF and GFR in response to
a decrease in MAP from 99±1 to 80±1 mmHg. Cx43GAP26
failed to alter GFR in ZDF rats.

Renin–angiotensin

As shown in Fig. 5, plasma renin activity was similar
between ZDF rats (14±2 ng ml−1 h−1) and ZL rats
(12±2 ng ml−1 h−1) under control conditions. In ZL rats,
Cx37,43GAP27 (28±3 ng ml−1 h−1; p<0.05) and Cx40GAP27
(25±3 ng ml−1 h−1; p<0.05) increased plasma renin
activity, whereas Cx43GAP26 did not. However, these trends
were strikingly weakened in ZDF rats. Although
Cx40GAP27 tended to increase plasma renin activity, no
GAP peptide induced any significant alteration in plasma
renin activity in ZDF rats (by ANOVA).

Discussion

Diabetes in ZDF rats resembles type 2 diabetes in humans,
with animals becoming obese and acquiring diabetes with
hyperinsulinaemia as they grow. At 8 weeks old, ZDF rats
already had diabetes when fed with Quick Fat diet. The
results may vary in long-lasting or advanced diabetes.
Caution is required when extrapolating the present findings
to clinical situations. In addition, we did not observe the
hydronephrotic changes previously reported in 10-week-old
ZDF rats [32]. We did, however, observe glomerular
hyperfiltration, a characteristic of early diabetic nephropa-
thy, in conscious and anaesthetised ZDF rats. Moreover,
while blood pressure was similar between the two strains in
the present study, 8-epi-prostaglandin F2α excretion was
increased in ZDF rats, suggesting that oxidative stress is
higher. Metabolic memory including advanced glycation
endproducts and epigenetic alterations could be important,

too [33]. Thus, ZDF rats are an appropriate animal model
for investigating mechanisms in the development of
diabetic nephropathy.

An increase in salt transport at the macula densa initiates
TGFback signals that constrict the afferent arteriole [34].
Thomson et al. have proposed the tubular hypothesis for
diabetic glomerular hyperfiltration [19]. Hyperglycaemia
elicits a large increase in proximal tubular reabsorption
associated with glucose reuptake, thereby reducing salt
delivery to the macula densa. Thus, hyperglycaemia by
itself would reduce afferent arteriolar tone by attenuating
TGFback tone [20]. Previous findings have indicated that
most of autoregulatory tone comes from TGFback in the
range of arterial pressure between 100 and 80 mmHg under
our experimental condition [5, 11, 12]. Consistent with the
above hypothesis, the present data indicate that renal
autoregulation was markedly impaired in ZDF rats at
spontaneous levels of mean BP, reducing preglomerular
vascular tone and participating in glomerular hyperfiltra-
tion. However, our results seem different from those of
Griffin et al. [35], who found that renal autoregulation was
preserved in Zucker spontaneously hypertensive rats, an
offspring from the breeding of Zucker obese and spontane-
ously hypertensive rats. Genetic differences between ZL
and ZDF rats, such as differences in leptin receptors, might
cause the autoregulatory curve to shift toward higher
pressure in ZDF rats. In contrast, Brännström et al. [36]
report that TGFback is enhanced in spontaneously
hypertensive rats. Diverse strains in an animal model of
diabetes could account for differing results. Alternatively,
our preliminary data suggest that a high-salt diet only
partially improves renal autoregulation in ZDF rats with
restored distal delivery (T. Takenaka, T. Inoue, T. Miyazaki
and H. Suzuki, unpublished observations). Collectively,
these data suggest that TGFback signal transduction is also
impaired in ZDF rats.

Our recent investigations on Wistar rats demonstrated
that Cx43 is produced in glomerular podocytes, as well as
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in afferent arteriolar endothelial cells, and that Cx43GAP26
reduced GFR without affecting renal autoregulation [11].
Our data obtained here from ZL rats show comparable
trends, supporting the notion that inhibition of Cx43 elicits
preglomerular vasoconstriction. Also in the present study,
blockade of Cx43 did not have any significant effects on
GFR in ZDF rats, although western blotting showed a
significant increase in phosphorylation of Cx43 in ZDF rat
kidney. This phosphorylation of Cx43, like that induced by
high glucose in vascular smooth muscle cells, would
interfere with gap junction expression, distribution, degra-
dation and function [15, 17, 37]. Indeed, Satriano et al. [38]
have reported reduced levels of Cx43 in kidney from a
streptozotosin-induced rat model of type 1 diabetes. Sawai
et al. [39] noted that Cx43 abundance was distributed
non-uniformly in human glomerular podocytes of type2
diabetes patients and that these abnormalities in Cx predict
poor renal prognosis. In the present study, ZDF rats
excreted more albumin than ZL rats. Taken together, these
results suggest that Cx43 phosphorylation may lead to the
malfunction of gap junctions, consisting of Cx43 in
podocytes as well as endothelial cells, that are presumably
involved in albuminuria in diabetes.

On the other hand, our recent data revealed that Cx37 and
Cx40 are localised in glomerular arteriolar endothelial cells
and juxtaglomerular granular cells in control rats [11], and are
involved in purinergic TGFback signal transduction [12].
The present findings that Cx40GAP27 and Cx37,43GAP27, but
not Cx43GAP26 diminished renal autoregulation in ZL rats
support the idea that gap junctions comprising Cx37 and
Cx40 transduce TGFback signals. Although our immuno-
histochemical studies did not reveal differences in Cx40
content between ZL and ZDF rats, we did demonstrate that
the density of abundance of Cx37 in renin-secreting cells
was decreased in ZDF rats, at least in part accounting for
abnormal renal autoregulation in these animals. In addition,
hyperglycaemia by itself or oxidative stress activates protein
kinase C and mitogen-activated protein kinase, both of
which could phosphorylate Cxs [40–42]. In the present
study, plasma glucose and 8-epi-prostaglandin F2α
excretion, an indicator of oxidative stress, were higher in
ZDF rats. Thus it is likely that Cx37 and Cx40 are also
phosphorylated in ZDF rats, similarly to Cx43. Interestingly,
phosphorylated Cxs are prone to be ubiquitinated to degrade
[37]. Reductions of Cx40 and weakened effects of
endothelium-derived hyperpolarising factor (EDHF) have
been demonstrated in the mesenteric artery of Zucker obese
rats [43]. Cxs play an important role in myogenic response
[44], one of the mechanisms mediating renal autoregulation
[45]. The present results raise the possibility that myogenic
response is also attenuated in diabetes. In combination with
reduced abundance and enhanced phosphorylation of Cxs,
the finding that Cx40GAP27 and Cx37,43GAP27 failed to

induce further changes in renal autoregulation in ZDF rats
constitutes novel evidence that gap junctions composed of
Cx37 and Cx40 were already malfunctioning in ZDF rats,
suggesting that Cxs form a link between biochemical
alterations and pathophysiological derangements in diabetic
nephropathy.

Angiotensin II has been considered a positive modulator of
TGFback [7, 33, 46]. We have currently provided evidence
that TGFback is diminished in ZDF rats, suggesting that low
adenosine prevails in juxtaglomerular apparatus [47]. The
present finding that plasma renin activity was similar
between ZDF and ZL rats may account at least in part for
the acute effects of angiotensin inhibition on glomerular
hypertension in diabetes [48] and make it unlikely that
renin–angiotensin system played a role in deteriorated
TGFback in ZDF rats. Cx40-deficient mice lack the pressure
control of renin release and TGFback contribution to renal
blood flow autoregulation [10, 49]. Cx37 and Cx40 are
involved in control of renin release and TGFback in Wistar
rats [11, 12]. In the present study, while Cx40GAP27
and Cx37,43GAP27 increased plasma renin activity and
filtration fraction in ZL rats, they exerted insignificant effects
in ZDF rat. GAP peptides induce renal vasoconstriction
also by inhibiting EDHF actions [31]. Consequently, the
present finding that intra-renal infusion of Cx40GAP27
or Cx37,43GAP27 failed to elicit changes in the renin–
angiotensin system in ZDF rats complement the notion
that diabetes modifies the communication through gap
junctions composed of Cx37 and Cx40, impairing signal
transduction within the juxtaglomerular apparatus.

Abnormal Cxs in diabetes may cause redistribution of
renin-secreting cells in the kidney. Kurtz et al. performed an
elegant study showing that renin-positive cells are absent in
the vessel wall and found in extraglomerular mesangium,
glomerular tuft and periglomerular interstitium in Cx40-
deficient mice [8]. In the present study, the distance from
the glomerulus of renin-secreting cells along the afferent
arteriole in ZDF rats was shorter than in ZL rats, but both
strains exhibited scanty renin staining in extraglomerular
mesangium. Furthermore, our data demonstrate that ectopic
renin staining in efferent arterioles was more frequent in ZL
rats than ZDF rats. Acquired modification of Cxs and gap
junction dysfunction may produce consequences different
from congenital Cx deletion. We previously reported that
Cx37 content was accentuated in diabetic mice kidney [50].
Thus, species difference and diabetes seem to be involved
[14]. Further studies are clearly required to elucidate how
diabetes alters Cx37 initially in rat renin-secreting cells.

In summary, the present findings indicate that ZDF rats
manifested characteristics of diabetes including hypergly-
caemia and enhanced oxidative stress. Our results also
demonstrate the derangement of Cxs in ZDF rats, which
could result in malfunction of gap junctions in juxtaglo-
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merular apparatus. Finally, the present data suggest that
impairment of gap junction plays a role in altered renal
autoregulation in diabetes.
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