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Abstract

Aims/hypothesis Pregnancies complicated by diabetes have a
higher risk of adverse outcomes for mothers and children,
including predisposition to disease later in life, e.g. metabolic
syndrome and hypertension. We hypothesised that adverse
outcomes from diabetic pregnancies may be linked to
compromised placental function, and sought to identify
cellular and molecular abnormalities in diabetic placenta.
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Methods Using a mouse model of diabetic pregnancy,
placental gene expression was assayed at mid-gestation
and cellular composition analysed at various stages.
Genome-wide expression profiling was validated by quan-
titative PCR and tissue localisation studies were performed
to identify cellular correlates of altered gene expression in
diabetic placenta.

Results We detected significantly altered gene expres-
sion in diabetic placenta for genes expressed in the
maternal and those expressed in the embryonic compart-
ments. We also found altered cellular composition of
the decidual compartment. In addition, the junctional
and labyrinth layers were reduced in diabetic placenta,
accompanied by aberrant differentiation of spongiotro-
phoblast cells.

Conclusions/interpretation Diabetes during pregnancy
alters transcriptional profiles in the murine placenta,
affecting cells of embryonic and maternal origin, and
involving several genes not previously implicated in
diabetic pregnancies. The molecular changes and abnormal
differentiation of multiple cell types precede impaired
growth of junctional zone and labyrinth, and of placenta
overall. Regardless of whether these changes represent
direct responses to hyperglycaemia or are physiological
adaptations, they are likely to play a role in pregnancy
complications and outcomes, and to have implications for
developmental origins of adult disease.
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Hyperglycaemia - Junctional layer- Maternal diabetes -
Placental insufficiency - Spongiotrophoblast -
Transcription factors
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Abbreviations
DAVID Database for Annotation, Visualization and Inte-
grated Discovery

FOX Forkhead box

HIF1 Hypoxia-inducible factor 1

MGI Mouse Genome Informatics
NFkB  Nuclear factor kB

TFBS Transcription factor binding site
TPBPA  Trophoblast-specific protein alpha
Introduction

Diabetes in pregnancy is a well established risk factor for
diabetic embryopathy, a spectrum of congenital malforma-
tions that include heart defects and neural tube defects [1—
3]. Exposure to maternal diabetes during pregnancy also
predisposes to disease later in life, e.g. metabolic syndrome,
obesity, diabetes and hypertension [4, 5]. While mechanis-
tic studies on developmental origins of adult disease are
still in early stages, substantial progress has been made in
identifying causes of the congenital abnormalities. Thus in
rodent models, metabolic perturbations and nutrient defi-
ciencies have been demonstrated, including perturbed
prostaglandin metabolism and inositol deficiency. Oxida-
tive stress and hypoxia have also been documented as
causes [6], and antioxidant administration reduced the
incidence of fetal malformations. In addition to increased
apoptosis, developmental regulators [7] and signalling
pathways [8, 9] are perturbed in exposed embryos,
implicating these mechanisms in abnormal morphogenesis
and congenital malformations in diabetic embryopathy.
There is, however, little knowledge about the basis for
increased disease susceptibility later in life in progeny
exposed to maternal diabetes. Once an embryo has escaped
the critical time window of vulnerability to congenital
defects, it nevertheless remains exposed to the diabetic
environment. We have recently shown that this leads to
reduction of intrauterine growth during later stages of
gestation [10], possibly due to hyperglycaemia-induced
changes in the placenta. It has been proposed that placental
changes could be central to developmental programming of
disease susceptibility of the offspring [11, 12], but the
underlying molecular mechanisms are unknown. Altered
placental weight has been reported for diabetic rats [13],
and for human type 1 [14] and gestational diabetic [15]
pregnancies. Human type 1 diabetic placenta undergoes
increased angiogenesis and exhibits vascular dysfunction,
mediated through vascular endothelial growth factor and
nitric oxide in early pregnancy, and through hyperinsuli-
naemia in the later trimesters [16]. Furthermore, enrichment
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of glycogen [17] and excess lipid accumulation [18, 19]
have been described in rat diabetic placenta.

To identify the molecular basis of placental abnormali-
ties in diabetic pregnancies in the mouse, we used a
streptozotocin-induced model of diabetes. Our results
demonstrate that altered gene expression at mid-gestation
precedes cellular and structural abnormalities in diabetic
mouse placenta at later stages.

Methods

Animals All experiments were conducted in accordance
with the United States Public Health Service Policy on
Humane Care and Use of Laboratory Animals (http:/
grants1.nih.gov/grants/olaw/references/phspol.htm) in a fa-
cility approved by the American Association for Accredi-
tation of Laboratory Animal Care. Diabetes was induced in
7- to 9-week-old FVB female mice (Charles River
Laboratories, Wilmington, MA, USA) by two i.p. injections
of streptozotocin (100 mg/kg body weight) and matings
were set up as described previously [9]. Dams whose
glucose levels in tail vein blood (Contour Glucometer;
Bayer, Tarrytown, NY, USA) exceeded 13.9 mmol/l were
considered diabetic; average glucose levels were
8.22 mmol/l (1.0 SD) before streptozotocin treatment,
18.722+4.4 mmol/l in diabetic dams on the day of mating
and 29.33+3.9 mmol/l on the day of placenta removal
(from dams at gestational day E10.5, counting the day of
detection of vaginal plug as E0.5).

Microarray analysis Whole placentac were dissected at
E10.5; only specimens associated with morphologically
normal embryos were used. Decidua were removed from
the uterus, and the yolk sac and embryos were dissected
out; placenta samples consisted of embryonic and maternal
tissue. Placentac were processed as individual samples
following published methods [9]. Samples were hybridised
to 10 Affymetrix Mouse 430 2.0 arrays (Affymetrix, Santa
Clara, CA, USA), which were scanned using a scanner
(GeneChip3000, Affymetrix). Quality control was done
with GeneChip Operating Software (Affymetrix) and
statistical analyses were performed as previously described
for embryos [9]. The primary data files are available at the
NCBI Gene Expression Omnibus repository (accession
number GSE 28277).

Quantitative real-time PCR Quantitative real-time PCR
was performed as described [9] using the ABI Prism
7900HT device (Life Technologies, Carlsbad, CA, USA).
Primers (electronic supplementary material [ESM] Table 1)
were positioned to span exon—exon junctions and ampli-
cons were designed to originate from a different transcript
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region than that detected by microarray probes. Comple-
mentary DNA samples were derived from individual E10.5
placentae from different diabetic and control dams than
those from which samples were assayed on microarrays.
For normalisation, we used measurement of polymerase
epsilon 4 (Pols4, also known as Pole4) expression; Polc4
expression proved to be unaffected by maternal diabetes on
the arrays.

Annotation for molecular function and mutant mouse
phenotypes Molecular function attributes were based on
Gene Ontology annotation (NetAffx www.affymetrix.com/
analysis/netaffx/index.affx), supplemented with information
from PubMed and Database for Annotation, Visualization
and Integrated Discovery (DAVID) (http://david.abcc.
ncifcrf.gov/), which was also used to examine for enrich-
ment of specific categories. Information on mouse mutants
was obtained from Mouse Genome Informatics (MGI)
(www.informatics.jax.org; accessed 20 December, 2010).
For transcription factor binding site (TFBS) prediction,
Whole Genome rVISTA (http://genome.lbl.gov/vista/index.
shtml) was used to identify motifs that are conserved
between mouse and human and are over-represented in the
5 kb upstream regions of diabetes-affected genes, relative to
all 5 kb upstream regions in the genome (»<0.005).

Histology Placentae from normal and diabetic pregnancies
were embedded in paraffin using a Shandon Excelsior
tissue processor (Thermo, Waltham, MA, USA) and an
embedder (Histocentre 3, Thermo), and sectioned at a
thickness of 6 pum. Deparaffinisation and staining with
haematoxylin/eosin was done in a Special Stainer device
(ST5020; Leica Microsystems, Bannockburn, IL, USA),
followed by coverslipping (CV5030; Leica). Slides were
scanned on a digital pathology station (NDP Nanozoomer;
Hamamatsu, Bridgewater, NJ, USA).

In situ hybridisation In situ hybridisations were performed
as published [20] to either 20 um frozen sections or 6 pm
sections of paraffin-embedded tissues. Processing of slides
was done together for diabetic and control samples in the
same vessel for all fixation, wash, hybridisation, incubation
and development steps. Plasmids for probe generation were
obtained from Open Biosystems (Huntsville, AL, USA).
For comparison of control and diabetic tissues, photography
was done with the same magnification and exposure.

Cell counting and statistical analysis All sections were
from the middle of the respective placentae. The sizes of
placental compartments were determined as the respective
area fractions in Image] (National Institutes of Health,
Bethesda, MD, USA; http://rsbweb.nih.gov/ij/download.
html, accessed 14 March 2011). Cell cluster counting was

done by selecting the labyrinth only and counting of pixels
with Tpbpa signal above a uniform threshold was
performed. The validity of these methods was confirmed
manually by two individuals, independently. For each
placenta, data from ten sections were averaged and adjusted
for size of the whole placenta. We included six placentae
each in the control and diabetic groups for gestational day
E15.5 and three specimens per group were used for E18.5.
Each placenta came from a different pregnancy. Embryo
and placenta size were averaged to each dam before
averaging for the group. Statistical analysis was done by
two-sided ¢ test.

Mouse model of diabetic pregnancy We employed the
well-established streptozotocin-induced mouse model of
diabetes, using the FVB inbred strain of mice. Embryos
and placentae were collected at embryonic day 10.5
(E10.5) because at this stage, neural tube defects are
casily detectable. Samples associated with malformed
embryos were excluded from the analysis. Control
embryos (n=65 embryos from nine dams) had a crown—
rump length of 5.17£0.34 mm (mean+SD). In diabetes-
exposed embryos (=97 embryos from 13 dams) crown—
rump length was 5.07£0.39 mm. Differences were not
statistically significant (p=0.54). Placentae looked normal
at this time point, but they differed (p=0.0038) in size,
with control placenta (n=31 placentae from seven dams)
having a wet weight of 42.87+2.01 mg and diabetic
placentae (n=61 placentae from nine dams) weighing
37.92+3.96 mg. From five control dams and five diabetic
dams, we collected one placenta each of a weight close to
the mean for the respective group and performed ten
independent microarray assays (Affymetrix 430 2.0).
Separate placentac were used for validation studies by
quantitative real-time PCR. There were no significant
differences in litter size at any of the gestational points
investigated, except at E18.5, where control dams on
average had 9.8+2.31 embryos and diabetic dams had 8.1+
3.04 progeny.

Altered gene expression profiles in placentae from diabetic
dams From the 45,401 probe sets represented on the
microarrays, we identified 158 genes where expression
levels in placentae differed significantly between the
experimental and control groups by more than 1.5-fold
(ESM Table 2). Of these 158 genes, 73 (46.2%) were
expressed at lower levels and 85 (53.8%) genes at higher
levels in diabetic placentae (Fig. 1a). This is in contrast to
the diabetes-exposed embryo (Fig. 1b), where more than
85% of the differentially expressed genes were decreased in
expression compared with controls [9]. Even where
identical genes exhibited differential expression on embryo
and placenta microarrays under conditions of maternal
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Fig. 1 Comparison of gene expression profiles in placentac and
embryos under conditions of maternal diabetes. The data for placentae
are from this report; the data for embryos are from previously
published material [9]. Direction of change for (a) placenta genes and

diabetes (ESM Table 3), 62.5% of these displayed
discordant regulation, reflecting opposite directions of
misregulation in embryo and placenta. These results
underscore the notion that responses of placenta and
embryo to maternal diabetes are fundamentally different at
the molecular level, probably implicating different molec-
ular mechanisms of regulation.

This is also reflected in the products encoded by the
placental genes (Table 1). Whereas transcriptional regula-
tors (Fig. 1d) were over-represented among de-regulated

DMA binding/chromatin
Transcription factors

[ signal transduction

O cell surface, receptors, growth factors
Extra-cellular matrix, adhesion
Metabolism
Lipid metabolism

] Cytoskeleton
Protein processing
RNA binding
Transporters/channels

B cell cycle/apoptosis

B Metal ion homeostasis

[ other

] Unknawn

(b) embryo genes that were misregulated under gestational diabetic
conditions by more than twofold at p<0.05. Classification of
misregulated (¢) placenta genes and (d) embryo genes by molecular
function, as indicated by colours

genes in diabetes-exposed embryos [9], we did not find this
when comparing diabetic and control placentae (Fig. 1c).
Instead, DAVID analysis provided evidence of enrichment
of molecules with roles in cell adhesion and receptor-
mediated signalling, with the majority of genes in these
categories (63.2% and 77.3%, respectively) exhibiting
higher expression levels in diabetic placenta than in control.
These results implicate processes at the cell surface and
signalling as the major pathways affected in diabetic
placenta.

Table 1 Genes differentially expressed in diabetic placenta classified by cellular function

Functional category

Genes (n) Percent Gene symbol

Extracellular matrix, cell adhesion, 19 12.0
cell migration

Soluble factors, hormones, ligands, 15 9.5
ligand binding proteins

Anxa4, Faml19a5, Ceacaml5, Cldn23, Cldn3, Emidl, Emp2, Ggt al, Gpld],
Igsfl11, Lims1, Mmp9, MpzI2, Pfpl, Pkp2, Pvrll, Thsd4, Tmem30a, Tmem46

Angptd, Bmp2, Calch, Cck, Cx3cll, Fgfbp3, Fstl3, Osm, Pri5al, Renl/Ren, Sfip5,
Tac4, Tgfbi, Thbsl, Thbs2

Cell surface receptors 7 44 Chrml, Csf2rb, Cxcr4, Gpr161, Hhipll, Ms4a4c, Tnfisf1b
Signal transduction 12 7.6 Ctnnd2, Dabl, Ehd3, Gnaol, Hipk2, Pctk3, Phip, Prkg2, Rhov, Rockl, Socs3, Sphkl
Transcription factors 15 9.5 Ascl2, Atoh8, Cdx2, Creb3i3, E2f2, Fosi2, Foxk2, Hand2, Myb, Nfatcl, Prrx2,
Smad6, Srebf2, Zbth20, Zfp458
DNA-binding/chromatin 3 1.9 Ddx31, Fancm, Whsclll
Metabolism/enzymes 12 7.6 Aldh5al, Car5b, Ckmtl, Cyplal, Enol, Haghl, Pgkl, Fabp4, Gdpdl, Mgam,
Pankl, Tdo2
Lipid metabolism 3 1.9 Lpl, Osbp, Star
Transporter/channels 10 6.3 Atpla3, Ccbel, Itpr2, Kenk2, Kennd, Slc28a3, Slc41a3, Sic6a4, Slco2al, Tmc5
Protein processing 12 7.6 Arll5, Cts7, Gent3, 1l4il, Lta4h, PcskS, Ppmlj, Prosc, Spsb4, Trip12, Trim63, Usp32

Cytoskeleton/microtubules 7 4.4 Actel, Ankrd2, Dctn5, Kifl8a, Phrl, Synpo2l, TsgalO

Cell cycle/apoptosis 3 1.9 Ambral, Incenp, Pacs2

RNA binding 2 13 Earll, Sfis3

Metal ion homeostasis 1 0.6 Necab?

Other 9 5.7 Hjurp, Hspala, Mrps23, Nup88, Rad51c, Rmil, Sfrs18, Vpsll, Vamp5

Unknown 28 17.7 Bat2d, Bud31, Ccdc34, ler5, Kihl5, Prdm10, Sbsn, Sfinbt2, Ttc28, Zdhhcl4, A1414330,
AU015536, BC020535, C76555, C80406, D9Ertd115e, LOC100043487,
Rik1500009L16, Rik1810010M01, Rik2610019E17, Rik2610028H07,
Rik5033413D22, Rik5330426P16, Rik6820431F20, Rik9130008F23,
RikB130019D13, RikD130040H23, RikF630043404

Total 158 99.9

Information was obtained from Gene Ontology annotations and manually annotated with input from MGI and PubMed
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There was little overlap of the genes we identified as
misregulated in diabetic placentae at mid-gestation with
those reported by others for late gestation. In fact, no
genes were found in common with results from a 151
gene custom array applied to ICR outbred mouse strain
diabetic placentae at gestational day 17 [21] or from
cDNA arrays of E17.5 diabetic placentae from the C57BL/
6, BALB/c, DBA/1 and CBA/J inbred mouse strains [22].
In human term placentae from pregnancies affected by
gestational diabetes, TGFB-induced transcript, thrombo-
spondin 1 and heat shock protein A1A had increased and
follistatin-like 3 decreased expression [23], while we saw
decreased levels for all four genes. Fos-like antigen 2 and
annexin A4 were elevated in an independent study of
gestational diabetes mellitus placentae [24], while annexin
A4 was decreased in our assays. Apart from strain or
species differences, the most likely reason for the dearth of
common discoveries is the early time point of our assays.
Between E10.5 and E17 in the mouse, and mid-term to term in
humans, respectively, the placenta undergoes fundamental
changes in gene expression [25] in the maternally and
embryo-derived compartments [26]. Thus, even in normal
placenta at E10.5, we would expect different sets of genes to
be expressed compared with later-stage placenta as surveyed
by others. Differential gene expression under conditions of
maternal diabetes has also been reported for the yolk sac in
rats at E12.5 [27]. The only feature common to our results is
increased enolase 1 expression. We therefore conclude that
yolk sac and placenta undergo distinct responses to maternal
diabetes. Taken together, our results show that, placental
gene expression is uniquely altered in diabetic pregnancy in
mice as early as E10.5.

Validation of microarray vesults by quantitative real-time
PCR For validation by quantitative real-time PCR, we
selected differentially expressed genes with high and
moderate expression levels. Placenta samples were from
different pregnancies than those assayed in the microarray,
thus providing independent biological material from the
same diabetes paradigm. Table 2 shows that of 27 genes
assayed, 17 exhibited differential expression in the quanti-
tative real-time PCR assay with statistical significance set at
p<0.05, confirming the microarray results in independent
samples (n=6 per group). Thus, quantitative real-time PCR
provided independent validation of differential expression
between diabetic and control samples for 63% of the genes
tested. It is also noteworthy that the direction of change
(increase/decrease) was 100% consistent between microarray
and PCR for the validated genes.

Transcriptional regulation If cohorts of genes in the
placenta are dysregulated through shared pathways of
transcriptional regulation, one would expect occurrence of

common TFBSs in the regulatory regions of these genes. In
embryos exposed to hyperglycaemia [9], we previously
found over-representation of binding motifs for forkhead
box (FOX)O1, FOXO4 and nuclear factor erythroid 2-
related factor 2 (NRF2), which are involved in the oxidative
stress response, and for hypoxia-inducible factor 1 (HIF1),
which orchestrates the response to hypoxia. Both oxidative
stress and hypoxia have been reported for embryos exposed
to diabetes [6]. However, when we analysed promoter
sequences (5 kb upstream of the transcription start) of
diabetes-affected placental genes for the presence of TFBS,
we found no enrichment of HIF1 sites. In addition, neither
Hiflx expression nor expression of any of its known targets
[28] were perturbed in placentae from diabetic dams,
providing scant evidence for a hypoxia response in the
placenta.

For FOXO1 and FOXO4, putative binding sites were
present in 85 and 82 genes, respectively, of 131 placental
genes for which results were returned (this accounts for
65% and 62.6%, respectively, of 131 genes, with 80 genes
having both motifs). In addition, there was significant
enrichment of these TFBS (—logio p=6.7809 and—log;, p=
5.55, respectively) compared with the entire genome. In
placenta, oxidative stress has been associated with activa-
tion of nuclear factor kB (NFkB) [29, 30], and we found
TFBS motifs for NFkB-enrichment (—log;o p=5.076), with
63 genes (48% of 131) carrying these sites. These results
suggest that oxidative stress pathways could be involved in
deregulated gene expression in the diabetic placenta.

Functional roles of genes deregulated in diabetic placen-
tae Conceivably, misregulated genes in diabetic placentae
could be involved in altered placental function. This
proposition is supported by mouse mutant phenotype
information (MGI), which is available for 68 of the 158
genes. Of these 68 genes, seven have been shown to play a
role in abnormal development of extra-embryonic tissues,
uterus and/or the placenta (ESM Table 4 plus references
cited there). Knockout of /ncenp and Limsi affects extra-
embryonic tissues, and Bmp?2 deficiency delays allantois
development, while Star deletion is associated with
abnormal uterus morphology. The labyrinth is disorganised
in mutants that are heterozygous for a mutant Cdx2 allele
on a Cdx4-deficient background. Animals with knockout of
Socs3 and Ascl2 exhibited altered placental morphology in
the labyrinth layer, with the latter gene also affecting
trophoblast giant cells and spongiotrophoblasts. However,
for many other diabetes-affected placental genes, functional
annotation is not yet available. Interestingly, the number of
genes we identified as altered in diabetic placenta is only a
small fraction of the 458 genotypes listed in MGI with
placental phenotypes. This strongly suggests that diabetes
affects specific pathways in the placenta, such as cell
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Table 2 Validation of microarray results by quantitative RT-PCR

Gene designation

Microarray Real-time PCR

Symbol Name

Fold change p value Fold change p value

Gene expression significantly changed in RT-PCR

Atoh8 Atonal homologue 8 (Drosophila) 2.17 0.0012  1.57 0.0116
Bmp?2 Bone morphogenetic protein 2 2.47 0.0003 1.36 0.0165
Calcb Calcitonin-related polypeptide, beta 2.24 0.0116 193 0.0015
Cck Cholecystokinin 2.91 <0.0001 1.71 0.0254
Earll Eosinophil-associated, ribonuclease A family, member 11 2.74 0.0120 1.53 0.0235
Mmp9  Matrix metallopeptidase 9 3.28 0.0157 1.59 0.0228
Pesks Proprotein convertase subtilisin/kexin type 5 2.63 0.0041 1.55 0.0028
Pipl Pore forming protein-like 3.23 0.0282  2.05 0.0018
Pri5al  Prolactin family 5, subfamily a, member 1 2.54 0.0164 195 0.0081
Slc6a4  Solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 2.61 0.0016  2.45 0.0003
Ankrd2  Ankyrin repeat domain 2 (stretch responsive muscle) -2.16 0.0003 —3.03 0.0003
Ascl2 Achaete-scute complex homologue-like 2 (Drosophila) -1.72 0.0148 -1.66 0.0036
Ctsq Cathepsin Q -1.73 0.0059 —2.69 0.0070
MpzI2  Myelin protein zero-like 2 -1.80 0.0007 —1.29 0.0084
Rassf4  Ras association (ralgds/AF-6) domain family 4 -1.67 0.0135 -1.52 0.0089
Tgfbi Transforming growth factor, beta induced —-1.89 0.0003 -1.56 0.0249
Tpbpb  Trophoblast specific protein beta -1.95 0.0006 —2.02 0.0094
Gene expression not significantly changed in RT-PCR

Adamts6 A disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 6 1.54 0.0187 1.07 0.6068
Csf2rb Colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage) 2.14 0.0040 1.30 0.1102
Kenk2  Potassium channel, subfamily K, member 2 2.14 0.0031 1.02 0.8894
Sfip5 Secreted frizzled-related sequence protein 5 1.61 0.0122  1.10 0.5603
Slco2al  Solute carrier organic anion transporter family, member 2al, prostaglandin transporter 1.86 0.0059 1.09 0.6437
Smad6 ~ MAD homologue 6 (Drosophila) 1.86 0.0165 1.29 0.1631
Thbs2  Thrombospondin 2 1.93 0.0079 1.38 0.1885
Cyplal Cytochrome P450, family 1, subfamily a, polypeptide 1 1.92 0.0044 —1.07 0.7371
Kihl5 Kelch-like 5 (Drosophila) 1.77 0.0442 —1.08 0.3275
Thsd4  Thrombospondin, type I, domain containing 4 2.18 0.0040 -1.13 0.4449

For each gene, the amplification rate was calculated from the geometric range of the respective reaction, and placentae from independent diabetic
dams were compared (n=6 except otherwise indicated) with placentae from independent control pregnancies (n=6 except otherwise indicated)

adhesion, growth factor responses and nutrient transport.
Collectively, our results are consistent with the notion that
misregulation of gene expression compromises develop-
ment and function of the placenta in diabetic mouse
pregnancy.

Expression studies identified abnormalities in the maternal
and embryonic compartments of the diabetic placenta To
identify the cell types with altered gene expression, we
performed in situ hybridisation studies. Figure 2 depicts
hybridisation patterns in normal E10.5 placenta for selected
genes for which placental expression has not been
described previously. Mmp9 was expressed in a few cells
of the junctional zone, thrombospondin-domain 4 exhibited
a diffuse pattern, and in the decidual compartment we
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detected Sfip5 and Rik9130008F23. Expression of all these
genes was increased under conditions of diabetes (ESM
Table 2). Using microarray and RT-PCR, we also found
decreased expression in diabetic placentae of Asci/2
(Fig. 3a—c) and ankyrin-repeat-domain 2 (Fig. 3d—f), which
is expressed in the same region, encompassing junctional
layer and labyrinth.

Particularly noteworthy are increased hybridisation sig-
nals for the Slc6a4 (serotonin transporter), Cyplal,
calcitonin-related-peptide B and cholecystokinin genes in
diabetic placenta (Fig. 3g—r). In all four cases, the number
of cells expressing the respective transcript was increased.
The identity of cells expressing Slc6a4 (Fig. 3g—i) adjacent
to the junctional layer remains to be determined; a weak
signal was also detected in the labyrinth. Cyplal (Fig. 3j-1)
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Fig. 2 Expression of selected a
misregulated genes in normal
midterm placenta. a Schematic
representation of mouse
mid-gestation placenta. b
Visualisation of maternal and
embryonic compartments of the
placenta on histological sections
by staining with periodic

Metrial gland
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q) placentae at gestational day
E10.5. For each placenta, ten
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independent experiments were
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placentae per modality. (a—c)
Ascl2; (d—f) Ankrd2; (g—i)
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was expressed in cells lining the decidual blood sinuses,
consistent with a report that found the same localisation
after administration of a toxic compound [31]. Elevated
Cyplal expression and activity in placenta is a well-
known indicator of exposure to xenogenic substances,
most prominently linked to maternal cigarette smoking
[32]. In diabetic placentae, the number of Cyplal-
expressing cells was increased (Fig. 3k). Although in
human diabetic pregnancies, P450 enzyme activities were
not elevated [33] in term placenta, our results from mid-
gestation diabetic mice support the notion that elevated
Cyplal expression may have a physiological role in
diabetic pregnancies, possibly in the removal of undesir-
able metabolites.

Calcitonin-related-peptide B gene expression levels were
also increased in diabetic placenta (Fig. 3n), this being
again associated with an increase in the number of positive
cells, which were dispersed in the decidual part of the
placenta (Fig. 30), and whose identity and physiological
role remain to be clarified. Calcitonin-related peptides are
known to be potent vasodilators in placenta [34], and
increased blood flow to implantation sites has been
documented in streptozotocin-induced diabetic rats [35]. It
is thus possible that increased Calcitonin-related peptide B
levels could be involved in placental complications in
diabetic pregnancies.

Robust induction by maternal diabetes was observed for
the gene encoding cholecystokinin, a gastrointestinal peptide
and neurotransmitter. In diabetic placentae, the signal for Cck
mRNA was clearly elevated (Fig. 3q); again, this was
associated with a larger number of Cck-expressing cells.
The identity of these cells in the metrial region (Fig. 31) is
currently undetermined; a subset is CD45-positive (data not
shown), indicating a haematopoietic origin.

Taken together, our studies demonstrate that maternal
diabetes alters gene expression in embryonic and maternal
compartments of the placenta, including several genes not
previously implicated in diabetic pregnancies. In all cases
where increased expression was present, this was linked to
a greater number of cells expressing the respective gene,
demonstrating that the cellular composition of the placenta
is altered in diabetic pregnancy.

Reduced junctional zome and labyrinth size in diabetic
placentae Histological analysis confirmed the overall
smaller sizes of diabetic placentac (Fig. 4) at E15.5 and
E18.5. These results are consistent with reports of lower
weights for diabetic placentae at E17.5 [22] and E18.5 [36],
and with a systematic study throughout pregnancy from our
own laboratory (data not shown).

The junctional zone was reduced in diabetic placentae at
E15.5 (Fig. 4a—d) and the labyrinth was smaller at E18.5

@ Springer

(Fig. 4e, f). To identify the affected cell types, we performed
in situ hybridisation on adjacent sections using a probe
specific for the gene encoding the spongiotrophoblast-
expressed marker, trophoblast-specific protein alpha
(TPBPA) [37]. Since Tpbpa mRNA was expressed in
spongiotrophoblasts in the junctional layer (Fig. 5), this
allowed us to measure the relative areas of the placenta
occupied by junctional layer and labyrinth as a proxy for size
of these cellular compartments (Fig. 4i-1). While the relative
area for the labyrinth did not differ at E15.5, the area
occupied by a strong Tpbpa signal relative to the size of the
whole placenta and to the labyrinth was reduced in diabetic
placentae (Fig. 4j). However, by E18.8 size of the labyrinth
was significantly decreased in diabetic placentae (Fig. 4f, k),
while the area fraction for the junctional layer relative to
whole placenta or labyrinth was not significantly altered. A
reduction of labyrinth size has also been reported for diabetic
mouse placentae at E17.5 [22]. Taken together, our data from
two different time points indicate that growth of the
junctional layer and the labyrinth are affected at temporally
distinct phases by maternal diabetes.

Impaired spongiotrophoblast development has been
reported for mutants deficient in the genes encoding the
transcription factors achaete-scute complex homologue 2
(ASCL2), Hiflx, HOP homeobox or retinoid X receptor
(RXR) o/ff combined (ESM Table 4), as well as for
transcriptional co-regulators Cbp/p300-interacting trans-
activator with Glu/Asp-rich carboxy-terminal domain 2
(CITED2) and alkylation repair B homologue 1
(ALKBH1), and for loss of imprinting in the Dnmt3L
(also known as Dnmt3[) mutant. Reduced spongiotropho-
blast growth was associated with expansion of trophoblast
giant cells at mid-gestation [38] and reduction of giant and
glycogen cells at E14.5/15.5 [39, 40]. Where diminished
labyrinth size was reported for late pregnancy stages, it
was interpreted as secondary to the spongiotrophoblast
defect [41, 42]. We therefore consider it likely that the
reduced labyrinth in diabetic placentae could be a
consequence of impaired spongiotrophoblast growth.
Where investigated, reduced spongiotrophoblast growth
in mutants was associated with reduced Ascl2 expression
at mid-gestation (ESM Table 4), which we also found in
diabetic placentae. Collectively, this evidence supports the
conclusion that the spongiotrophoblast deficiency in
diabetic placentae is the result of aberrant gene expression
at mid-gestation.

Conceivably, the thickness of the spongiotrophoblast
layer could also be influenced by cell proliferation. In
Senp2 mutants, reduction of the spongiotrophoblast layer
was associated with delayed cell cycle progression [43].
Mice transgenic for cathepsin 7 also display reduced
spongiotrophoblast layer by E12.5, attributed to slower
progression through late G2 or M phases of the cell cycle
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Fig. 4 Histological analysis of control and diabetic placentae.
Paraffin-embedded sections were stained with haematoxylin—eosin,
and at least ten sections were analysed for each individual
placenta. Sections from (a) control and (b) diabetic placentae at
E15.5, with respective magnifications (¢, d) of areas in yellow frame
(a, b). Sections from (e) control and (f) diabetic placentae with (g, h)
magnifications as above (a—d) at E18.5. Green double arrows mark

[44]. The possibility that growth factor signalling may be
affected by diabetes is suggested by reduced expression
of Pappa2, which regulates IGF2 availability (data not
shown).

Aberrant spongiotrophoblast differentiation in diabetic
placentae Unexpectedly, Tpbpa signal was also detected
within the labyrinth of diabetic placentae. At E15.5,
numerous clusters of Tpbpa+cells were present (Fig. 5b,
e), with lower incidence at E18.5 (Fig. 5h, k). This suggests
that diabetic conditions cause ectopic differentiation of cells
towards a spongiotrophoblast cell fate, ectopic proliferation
of spongiotrophoblast-like cells in the labyrinthine area or
aberrant migration into the labyrinth. In normal placentae,
some clusters of Tpbpa+cells were observed in the
labyrinth at E15.5, but very few at E18.5 (Fig. 5m, o),
indicating that such cells are normally either eliminated or
migrate out of the labyrinth. In the diabetic placentae, the
ectopic Tpbpa+clusters were significantly larger (Fig. 5n)
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the thickness of the labyrinth. i-1 Quantitative analyses of compart-
ment size was facilitated by Tpbpa staining of adjacent sections (see
Fig. 5 and text for details). Results are given as fraction of section
area occupied by labyrinth (i, k) and as fraction of area occupied by
Tpbpa+cells in relation to the area of the entire section and the
labyrinth area (j, 1). *p<0.05. C, control; D, diabetic

and persisted to E18.5. The mislocalisation of these cells
outside the spongiotrophoblast layer might explain its
reduced thickness. Interestingly, Yu et al. [22] reported
moderate enlargement of the junctional layer in E17.5
diabetic mouse placentae, based on isolectinB4 staining,
but they included glycogen-containing cells in their
measurements. These cells, which display light cytoplasms
on haematoxylin—eosin-stained sections [45], exhibit weak
Tpbpa labelling (Fig. Se, f) and were excluded from our
analysis because they differ in histological appearance
from the cells with the strongest Tpbpa signal at E15.5
(Fig. 5e, f) and at E18.5. The precise relationship of the
ectopic clusters in the labyrinth to trophoblast progenitors,
spongiotrophoblasts [46] and glycogen cells [45] remains to
be defined. The persistence of large clusters of inappropri-
ately differentiated cells may affect the functional integrity
of the labyrinth and the vasculature, a possibility that
deserves further investigation. Taken together, our results
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Fig. 5 Aberrant spongiotrophoblast differentiation in diabetic mouse
placenta. Ectopic localisation of spongiotrophoblast-like cells was
detected by in situ hybridisation with a probe for Tpbpa. Sections
from (a) control and (b) diabetic placentae at E15.5, with respective
(¢, e) magnifications and (h) diabetic placentae at E18.5, with (i, k)
magnification and (j, 1) staining as in a—f. Yellow circles highlight
corresponding clusters in diabetic placentae at (e, f) E15.5 and (k, 1)
E18.5. Light blue arrowheads (e, f) mark presumed glycogen-
containing cells with weak Tpbpa signal. These cells display different
histological appearance from the cells in typical clusters in the

show that maternal diabetes impairs growth and alters
spongiotrophoblast differentiation in the placenta, which is
likely to affect signalling pathways important for placental
growth and may have a detrimental effect on nutrient
supply to the embryo.

Mislocalisation of spongiotrophoblast cells to the labyrinth
has been reported in only a few instances to date. ‘Islands of
SP-like cells’ [47] in the labyrinth were detected with targeted
disruption of the genes encoding haemoxygenase 1,
prolyl hydroxylase domain 2 and protocadherin 12, and
aberrant expression of the imprinted gene Phlda? in mice
(ESM Table 4). Effects on labyrinth size were not consistent,
but in the latter, fetal growth was delayed, resulting in a 13%
smaller size by E18.5. These results implicate ectopic
spongiotrophoblast differentiation in intrauterine growth
reduction and support the intriguing possibility that the
reduced spongiotrophoblast layer and ectopic spongiotropho-
blast localisation in diabetic placentae could be responsible
for the reduced embryonic growth we previously observed
[10] at later stages of mouse diabetic pregnancies.
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Cluster size (in pixels)
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labyrinth (green arrowheads; i, j). Clusters in the labyrinth were
counted on the basis of pixel size for contiguous hybridisation signal
greater than 30. Diabetic placentaec at (m) E15.5 and (o) EI8.5
displayed significantly increased number of clusters (note the different
scale of the y-axis in m compared with o). n In diabetic placentae at
E15.5, sizes of clusters were also significantly larger, both when the
data were classified in three bins and in ten bins (not shown) of
increasing size along non-linear scale. *p<0.05. C, control; D,
diabetic

Finally, although spongiotrophoblasts originate from
extra-embryonic progenitors, their differentiation may be
influenced by maternal factors. For example, the spon-
giotrophoblast layer was reduced in mutants with uterus-
specific deletion of the Nr2f2 gene (encoding COUP-
TFII), demonstrating a maternal effect on spongiotropho-
blast growth [48]. Given that we found altered cell
composition in the decidual compartment of diabetic
placentae, it will be interesting to investigate which role
specific decidual cell types have in spongiotrophoblast
differentiation and placenta growth. Collectively, our
results show that maternal diabetes causes misregulation
of distinct gene repertoires in embryo and placenta,
bringing about developmental defects, intrauterine growth
reduction and abnormal placental cell differentiation,
respectively. Perturbed cellular interactions in the diabetic
placenta and subsequent impairment of fetal growth could
be the underlying cause for life-long elevated disease risk
for mother and offspring of a pregnancy complicated by
diabetes.
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