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Abstract
Aims/hypothesis Insulin-mediated glucose disposal rates
(Rd) are reduced in type 2 diabetic patients, a process in
which intrinsic signalling defects are thought to be
involved. Phosphorylation of TBC1 domain family, mem-
ber 4 (TBC1D4) is at present the most distal insulin
receptor signalling event linked to glucose transport. In this
study, we examined insulin action on site-specific phos-
phorylation of TBC1D4 and the effect of exercise training

on insulin action and signalling to TBC1D4 in skeletal
muscle from type 2 diabetic patients.
Methods During a 3 h euglycaemic–hyperinsulinaemic
(80 mU min−1 m−2) clamp, we obtained M. vastus lateralis
biopsies from 13 obese type 2 diabetic and 13 obese, non-
diabetic control individuals before and after 10 weeks of
endurance exercise-training.
Results Before training, reductions in insulin-stimulated Rd,
together with impaired insulin-stimulated glycogen syn-
thase fractional velocity, Akt Thr308 phosphorylation and
phosphorylation of TBC1D4 at Ser318, Ser588 and Ser751

were observed in skeletal muscle from diabetic patients.
Interestingly, exercise-training normalised insulin-induced
TBC1D4 phosphorylation in diabetic patients. This hap-
pened independently of increased TBC1D4 protein content,
but exercise-training did not normalise Akt phosphorylation
in diabetic patients. In both groups, training-induced
improvements in insulin-stimulated Rd (~20%) were asso-
ciated with increased muscle protein content of Akt,
TBC1D4, α2-AMP-activated kinase (AMPK), glycogen
synthase, hexokinase II and GLUT4 (20–75%).
Conclusions/interpretation Impaired insulin-induced site-
specific TBC1D4 phosphorylation may contribute to
skeletal muscle insulin resistance in type 2 diabetes. The
mechanisms by which exercise-training improves insulin
sensitivity in type 2 diabetes may involve augmented
signalling of TBC1D4 and increased skeletal muscle
content of key insulin signalling and effector proteins,
e.g., Akt, TBC1D4, AMPK, glycogen synthase, GLUT4
and hexokinase II.
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Abbreviations
AMPK AMP-activated protein kinase
%FV Per cent fractional velocity
HGP Hepatic glucose production
%I-form Glucose 6-phosphate-independent glycogen

synthase activity
PAS Phospho (Ser/Thr) Akt substrate
Rd Glucose disposal rates
TBC1D4 TBC1 domain family member 4
V
�
O2peak Peak volume of oxygen utilisation

Introduction

Impaired insulin-stimulated glucose disposal in skeletal
muscle is a prominent feature of insulin resistance and type
2 diabetes. Defects in insulin signalling along pathways
controlling glucose uptake and storage may be either a
primary or secondary cause further exacerbating insulin
resistance [1]. To increase our current understanding of the
molecular mechanisms underlying insulin resistance, fur-
ther elucidation of these pathways is essential.

Akt is a critical node in the insulin signalling pathway
[2], serving as a point of divergence for downstream
signalling to glucose transport through TBC1 domain
family, member 4 (TBC1D4, also known as AS160) and
TBC1 domain family, member 1 (TBC1D1), as well as to
glycogen synthesis through glycogen synthase kinase 3 and
glycogen synthase. Activation of Akt requires phosphory-
lation at Thr308 by 3-phosphoinositide-dependent protein
kinase-1 and at Ser473 by the mammalian target of
rapamycin–Rictor complex [2]. TBC1D4 is an Akt sub-
strate thought to be involved in the regulation of glucose
uptake in skeletal muscle and adipocytes [3–5]. TBC1D4
contains two phospho-tyrosine binding domains, a Rab
GTPase-activating protein domain and at least nine phos-
phorylation sites (Ser318, Ser341, Thr568, Ser570, Ser588,
Thr642, Ser666, Ser704 and Ser751) [4, 6, 7]. Under basal
conditions, the GTPase-activating protein domain of
TBC1D4 is proposed to retain Rab proteins in an inactive,
GDP-bound form that prevents GLUT4 trafficking and thus
glucose uptake via this glucose transporter. Upon phos-
phorylation of one or more of the described sites, GTPase
activity is thought to be suppressed, perhaps through
binding of 14-3-3 protein [8]. As a result, Rab proteins
become loaded with GTP, subsequently leading to GLUT4
mobilisation and influx of glucose. Muscle contraction and
insulin stimulate GLUT4-mediated glucose transport in
skeletal muscle in an additive manner, which suggests
distinct signalling pathways [9]. However, acute exercise
and exercise-training enhance subsequent insulin action on
glucose transport [10, 11], and since muscle contraction and

insulin lead to TBC1D4 phosphorylation [12, 13], TBC1D4
is potentially a point of convergence for exercise- and
insulin-induced signalling to glucose uptake in human
skeletal muscle [9, 11, 12, 14].

Impaired insulin activation of glycogen synthase is a
consistent feature of type 2 diabetes and other insulin-
resistant conditions [15–19]. Some, but not all [15, 20–24]
studies have shown reduced insulin-mediated phosphoryla-
tion of Akt at Thr308 [18, 24–26] or Ser473 [26–28] and/or
TBC1D4 phosphorylation [25, 26] in muscle of insulin-
resistant individuals with and without type 2 diabetes.
However, previous studies of TBC1D4 phosphorylation
in insulin-resistant human muscle have used the anti-
phospho (Ser/Thr) Akt substrate (PAS) antibody [20, 24–
26], which is believed to primarily detect Thr642 phos-
phorylation [3, 6]. It remains to be determined whether
insulin-mediated TBC1D4 phosphorylation at specific
sites is impaired in skeletal muscle of patients with type
2 diabetes.

Exercise-training is a cornerstone in prevention and
treatment of type 2 diabetes [29, 30] because it, among
other strategies, enhances insulin sensitivity [31]. However,
the mechanisms underlying the beneficial effects of
exercise-training are incompletely understood. Endurance
and strength exercise-training induces chronic adaptations
that include increased content of key signalling proteins
mediating insulin-stimulated glucose metabolism, such as
insulin receptor, Akt, glycogen synthase, GLUT4 and
hexokinase II [11, 31–33]. Enhanced TBC1D4 protein
levels have also been reported after exercise-training in
skeletal muscle of young healthy individuals [11]. This
effect on protein production fully accounted for the
observed enhanced PAS phosphorylation. However,
TBC1D4 is a multi-protein kinase substrate and is
phosphorylated on residues other than that recognised by
the PAS antibody. Thus, the hypothesis of whether
exercise-training improves TBC1D4 phosphorylation in
general or in a site-specific manner and whether this can
be accounted for by changes in TBC1D4 protein levels
remains to be tested.

The present study thus sought: (1) to investigate whether
type 2 diabetes is associated with abnormalities in insulin-
induced site-specific TBC1D4 phosphorylation in skeletal
muscle; and (2) to examine the effect of endurance
exercise-training on TBC1D4 and other key insulin
signalling events in well-matched obese individuals with
and without type 2 diabetes.

Methods

Participants Obese male type 2 diabetic patients (n=13)
and obese, non-diabetic male control individuals (n=13)
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matched according to age, BMI and habitual physical
activity level participated in the study (Table 1). Type 2
diabetic patients were treated either by diet alone (n=2) or
by diet in combination with sulfonylurea (n=1), metformin
(n=6) or both (n=4); they were also receiving lipid-
lowering (n=6) and/or antihypertensive (n=7) medication.
The patients were GAD65-antibody negative and without
signs of diabetic micro- or macrovascular complications.
The control individuals had normal glucose tolerance, normal
fasting glucose, no family history of diabetes and were not
taking medication. All participants had normal results on
blood tests screening for hepatic and renal function, and no
cardiovascular disease. Informed consent was obtained from
all participants before participation. The study was ap-
proved by the Local Ethics Committee and was performed
in accordance with the Helsinki Declaration. One type 2
diabetic patient did not complete the study due to health
problems unrelated to the training programme. Two control
individuals were excluded due to non-compliance with the
training programme. Pre-training data from these three
participants were included in the analyses.

Training programme Exercise tests were performed before
and after training to determine peak volume of oxygen
utilisation (V

�
O2peak) as described [34] (ESM, Exercise

tests). Participants underwent 10 weeks of aerobic training
as described [34, 35]. In brief, the exercise-training
programme consisted of cycling on stationary bikes with
four to five sessions of 20 to 35 min per week at an average
intensity of ~65% of V

�
O2peak, see Electronic supplementary

material (ESM, Training programme). Diabetic patients
continued their medication throughout the training period,
except for one, who discontinued his glucose-lowering
treatment after 6 weeks.

Euglycaemic–hyperinsulinaemic clamp and muscle biopsies At
1 to 2 weeks prior to the training programme and again at
around 48 h after the last exercise bout, participants
underwent a euglycaemic–hyperinsulinaemic clamp (3 h
of insulin infusion at 80 mUmin−1m−2) with tracer glucose
to assess total glucose disposal rates (Rd), hepatic glucose
production (HGP), glycolytic flux and rates of glucose
storage as described in ESM (Euglycaemic–hyperinsulinae-
mic clamp). Plasma glucose levels at 5.0 to 5.5 mmol/l and
high physiological hyperinsulinaemia at ~900 pmol/l were
obtained in all groups during the insulin-stimulated periods.
In diabetic patients, all drugs were withdrawn 1 week prior
to the clamp studies and then resumed. Skeletal muscle
biopsies were obtained from the vastus lateralis muscle
before and after insulin, and homogenates and lysates were
prepared as described in ESM (Euglycaemic–hyperinsuli-
naemic clamp).

Glycogen synthase activity Muscle glycogen synthase
activity was measured in the presence of 8.0, 0.17 or
0.02 mmol/l glucose 6-phosphate as described [19] and
given as total glycogen synthase activity, glucose 6-
phosphate-independent glycogen synthase activity (%I-
form) and per cent fractional velocity (%FV) (see ESM,
Glycogen synthase activity).

SDS-PAGE and western blotting Western blot analyses
were performed as described [36] (ESM, SDS-PAGE and
western blotting). Membranes used for detection of phos-
phorylated Akt, TBC1D4 or AMP-activated protein kinase
(AMPK) were stripped as previously described [12] and re-
probed for the corresponding protein using an antibody
recognising the protein independently of phosphorylation.
A list of the antibodies used is given in ESM (Antibodies).

Characteristic Pre-training Post-training

Control T2D Control T2D

n 13 13 11 12

Age (years) 52.7±1.6 52.8±1.3 – –

BMI (kg/m2) 33.0±0.7 33.5±0.1 32.7±0.8††† 33.4±0.1

Lean body mass (kg) 74.7±2.1 72.7±1.9 75.9±2.2 74.3±1.7

Fat mass (kg) 35.7±2.5 34.9±2.1 32.9±2.5 33.7±1.9

V
�
O2peak (ml min−1 kg−1)a 27.8±1.5 26.7±0.9 34.6±2.2††† 29.8±1.2†††

Fasting plasma glucose (mmol/l) 5.8±0.1 9.4±0.5*** 5.5±0.1 9.2±0.5***

Fasting serum insulin (pmol/l) 64±7 82±11 50±4† 78.0±13

Fasting serum C-peptide (pmol/l) 945±65 1268±113* 804±57† 1243±138**

HbA1c (%) 5.2±0.1 7.2±0.3*** 5.3±0.1 7.0±0.3***

Fasting plasma cholesterol (mmol/l) 5.5±0.2 5.0±0.2 5.2±0.2 4.8±0.2

Fasting plasma triacylglycerol (mmol/l) 1.69±0.17 2.37±0.32 1.51±0.17 2.38±0.31

Diabetes duration (years) – 3.7±0.8 – –

Table 1 Anthropometric and
metabolic characteristics before
and after 10 weeks endurance
training

Data are means±SEM
a n=10 type 2 diabetic patients
post-training

*p<0.05, **p<0.01 and
***p<0.001 vs CON; † p<0.05
and ††† p<0.001 vs pre-training

T2D, type 2 diabetic patients
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Statistics Data are presented as means±SEM. Data analysis
was performed using four separate two-way ANOVA with
repeated measures to explore the effect of training (12
diabetic patients, 11 controls) in each of the study groups
and to explore differences (± insulin) between the two study
groups before (13 diabetic patients, 13 controls) and after
(12 diabetic patients, 11 controls) training. Statistical
analyses were performed by SigmaStat version 3.5 (Systat
Software, San Jose, CA, USA). Significant interactions
were analysed by Tukey’s post hoc test. A value of p<0.05
was accepted as statistically significant.

Results

Metabolic characteristics At baseline, HbA1c, fasting lev-
els of plasma glucose, NEFA and serum C-peptide were
significantly elevated in diabetic patients compared with
controls (Tables 1 and 2). Insulin increased Rd and
suppressed HGP significantly in both groups; however,
insulin-stimulated Rd in type 2 diabetic patients was 38%
lower than in controls (Table 2). In parallel with this, the
former had lower insulin-stimulated glucose storage (45%)
and glycolytic flux (20%), indicating that the reduction in
insulin-stimulated Rd was primarily due to impaired insulin-
induced glucose storage (Table 2). Muscle glycogen levels
were similar between groups before and after training, but
showed an approximately 30% to 40% increase in response
to training in both groups (Table 2).

General adaptation to exercise V
�
O2peak and body compo-

sition were similar at baseline in the two groups (Table 1).
Compliance to the training, assessed as the percentage of
completed exercise sessions confirmed by heart rate
monitor recordings, amounted to 97±1% in type 2 diabetic
patients and controls. Training increased V

�
O2peak and

insulin-stimulated Rd in both groups (Tables 1 and 2), also
when related to lean body mass (data not shown) (p<0.01).
In the controls, training increased insulin-stimulated glu-
cose storage and glycolytic flux, whereas it reduced BMI,
and serum insulin and C-peptide (Tables 1 and 2). In type 2
diabetic patients, insulin-mediated glycolytic flux (p=
0.064) and HGP (p=0.052) tended to increase after
training, whereas glucose storage, BMI, serum insulin and
C-peptide were unchanged.

TBC1D4 protein content and phosphorylation TBC1D4
protein levels did not differ between type 2 diabetic and
control individuals either before or after training. Train-
ing increased TBC1D4 protein by around 20% in both
groups (Fig. 1). Basal TBC1D4 phosphorylation at Ser318,
Ser341, Ser588, Thr642 and Ser751, and PAS phosphoryla-
tion of TBC1D4 were similar in the diabetic and control
groups before and after training (Fig. 1). Insulin increased
TBC1D4 phosphorylation at all sites and PAS phosphor-
ylation in both groups before, as well as after training
(all p<0.006). However, before training, insulin-
stimulated TBC1D4 phosphorylation at Ser318 (p<
0.001), Ser588 (p=0.006) and Ser751 (p<0.001), as well

Characteristic Pre-training Post-training

Control T2D Control T2D

n 13 13 11 12

Rd (mgmin−1m−2)

Basal 84±3 85±2 84±1 91±3‡

Clamp 327±22*** 208±26‡‡‡*** 400±39*** ††† 242±30‡‡‡ ***†††

Gl. storage clamp (mgmin−1m−2) 215±20 118±19‡‡ 280±35†† 133±24‡‡‡

Glycolytic flux (mg min−1 m−2)

Basal 76±3 73±4 84±4 85±5

Clamp 112±5*** 90±9‡‡* 120±8***† 108±14

HGP (mgmin−1 m−2)

Basal 84±3 79±3 86±1 85±5

Clamp 21±7*** 26±3*** 38±10*** 35±4***

Glycogen (mg/mmol protein)

Basal 6.9±0.4 8.5±0.6 10.2±0.5††† 11.4±0.7†

Clamp 7.9±0.5 ** 8.3±0.7 11.6±0.6**††† 10.9±0.9†

NEFA (mmol/l)

Basal 0.41±0.03 0.52±0.04‡‡ 0.42±0.03 0.47±0.05

Clamp 0.03±0.00*** 0.07±0.01*** 0.03±0.00*** 0.06±0.01***

Serum insulin clamp (pmol/l) 899±36 894±43 860±53 891±40

Table 2 Metabolic characteris-
tics before and after 10 weeks
endurance training

Values are means±SEM

*p<0.05, **p<0.01 and
***p<0.001 vs basal; † p<0.05,
†† p<0.01 and ††† p<0.001 vs pre-
training; ‡ p<0.05, ‡‡ p<0.01 and
‡‡‡ p<0.001 vs CON

Gl., glucose; T2D, type 2
diabetic patients
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as PAS phosphorylation (p=0.024) were lower in type 2
diabetic than in control individuals (Fig. 2). These
abnormalities persisted after correction for TBC1D4
protein levels except for PAS phosphorylation (p=0.097)
(ESM Fig. 1). In diabetic patients, exercise-training
increased insulin-mediated TBC1D4 phosphorylation at
Ser318 (~30%, p<0.03), Ser588 (~60%, p<0.003) and
Ser751 (~60%, p<0.001). In fact, these effects fully
normalised the insulin responses at these three sites
compared with matched controls (Fig. 1). In both groups,
training increased insulin-induced phosphorylation at
Ser341 and Thr642; in controls a small increase in
phosphorylation of Ser751 was also seen. After normal-
isation for TBC1D4 protein, the increase in Ser588 and
Ser751 phosphorylation in diabetic patients remained

significant (p<0.05 for all) (ESM Fig. 1). Thus, TBC1D4
displayed enhanced sensitivity toward activation by
insulin at two phosphorylation residues after exercise-
training. After training, the defect in insulin-stimulated
PAS phosphorylation of TBC1D4 in the type 2 diabetic
group was no longer detectable. However, training had
no significant effect on PAS phosphorylation in this
group with or without correction for TBC1D4 protein. In
controls, a decrease in PAS phosphorylation per TBC1D4
protein was observed after training (p=0.006 for main
effect) (ESM Fig. 1).

Akt protein content and phosphorylation Protein levels of
Akt1 and Akt2 did not differ between groups either before
or after training. Training increased Akt1 protein by ~20%
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in the control group and by ~50% in the diabetic group, and
Akt2 protein by ~30 to 40% in both groups (Fig. 2). Basal
Akt phosphorylation at Thr308 and Ser473 was similar in the
type 2 diabetic and control group before and after training
(Fig. 2). Moreover, insulin significantly increased Akt
phosphorylation at Thr308 and Ser473 in both groups before,
as well as after training. However, in the insulin-stimulated
state, Akt Thr308 phosphorylation was reduced in the type 2
diabetic group compared with controls before (p<0.02) and
after (p<0.05) training, and also when corrected for
changes in Akt1 or Akt2 protein (data not shown). Training
did not change basal or insulin-stimulated Akt Thr308

phosphorylation in any of the groups. Insulin-induced Akt
Ser473 phosphorylation was similar between the groups.
Training induced a small, but significant increase in insulin-
stimulated Akt Ser473 phosphorylation in the control group
and a tendency to increase in the diabetic group (p=0.082).
These effects of training were attributable to increased
levels of Akt1 or Akt2 protein, as normalisation of the
phosphorylation levels to the protein content in individual
samples abolished the increases in Akt Ser473 phosphory-
lation. In fact, the insulin-stimulated ratios of Ser473:Akt1,
Ser473:Akt2 and Thr308:Akt2 showed a small decrease in
control individuals in response to training (p<0.05),
whereas in the diabetic group, training induced a decrease in
the insulin-stimulated ratios of Thr308:Akt2 and Thr308:Akt1

(p<0.001), but not of Ser473:Akt1 or Ser473:Akt2 (data
not shown).

AMPK protein and phosphorylation Among TBC1D4
Ser318, Ser588 and Ser751, phosphorylation of Ser588 seems
to be the most important for GLUT4 translocation [4].
TBC1D4 Ser588 is also the site preferentially phosphory-
lated by AMPK in vitro [6]. We therefore examined
whether changes in protein levels and activity of AMPK
could explain the alterations in TBC1D4 phosphorylation
observed in relation to type 2 diabetes and training. No
differences in α2-AMPK protein content or AMPK Thr172

phosphorylation were observed between the groups either
before or after training. Protein content of α2-AMPK
increased in response to training in the diabetic group (p=
0.001) and to a lesser extent in the control group (p=0.02
for main effect) (Fig. 2). Only in type 2 diabetic patients
was a significant increase in AMPK Thr172 phosphorylation
demonstrated (p=0.003). This seems to be explained by the
more robust increase in AMPK protein levels, because the
ratio of Thr172:α2-AMPK did not show any changes
between the two groups or in response to training (data
not shown).

Glycogen synthase protein, activity and phosphoryla-
tion To test whether the persistent defect in insulin action
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on Akt in type 2 diabetic patients, even after training, was
transmitted to one of its major down-stream effectors, we
examined glycogen synthase activity and protein content.
Glycogen synthase protein levels and total glycogen
synthase activity were similar in the two groups before
and after training (Fig. 3). Training increased glycogen
synthase protein levels and total glycogen synthase activity
in both groups (p<0.001 for all, main effect). Insulin-
stimulated glycogen synthase activity (%I-form, %FV) was
reduced in the diabetic group before and after training
compared with the control group (p<0.05 for all). Before
and after training, insulin increased glycogen synthase
activity (%I-form, %FV) in both groups, but insulin action
on these activities of glycogen synthase was unaffected by
training in both groups. Glycogen synthase site 3a
phosphorylation was similar in the two groups and
decreased in response to insulin in both (Fig. 3). In patients
with type 2 diabetes, glycogen synthase site 2+2a phos-

phorylation tended to increase in response to insulin (p=
0.08) and was higher after insulin than in controls (p=
0.025) before but not after training. Training increased
glycogen synthase phosphorylation at site 3a in both groups
(p<0.05 for main effect) and at site 2+2a in controls (p<
0.05 for main effect), but after correction for the increase in
glycogen synthase protein, no effect of training was
observed (data not shown).

GLUT4 and hexokinase II protein content GLUT4 protein
levels did not differ between diabetic and control individ-
uals, whereas hexokinase II protein content was reduced in
the former before and after training (p<0.05 for all).
Training increased GLUT4 protein levels by ~20% in
controls and ~30% in the diabetic group (Fig. 4). Moreover,
hexokinase II protein levels increased in response to
training by ~45% in controls and by ~75% in diabetic
patients (Fig. 4).
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Discussion

Here, we evaluated insulin signalling events leading to
glucose uptake and storage through Akt, TBC1D4 and
glycogen synthase in skeletal muscle of type 2 diabetic
patients and matched non-diabetic controls. We focused on
the site-specific phosphorylation of TBC1D4 before and
after 10 weeks of endurance exercise-training. In previous
studies investigating TBC1D4 phosphorylation in human
skeletal muscle, the anti-PAS antibody was used to assess
changes in overall phosphorylation in response to various
stimuli such as exercise and insulin in healthy individuals
and in various states of insulin resistance [11, 13, 20, 24–
26, 37–39]. Recently, we used phospho-site-specific anti-
bodies to demonstrate that insulin increases TBC1D4
phosphorylation at Ser318, Ser341, Ser588, Thr642, Ser666

and Ser751 in skeletal muscle of young, healthy individuals
[12]. In the present study, we have extended these findings
by demonstrating that insulin significantly increased
TBC1D4 phosphorylation at the same sites in skeletal
muscle from obese individuals with and without type 2
diabetes. Most importantly, we show that insulin-stimulated
TBC1D4 phosphorylation at Ser318, Ser588 and Ser751 (but
not Ser341 and Thr642) is impaired in untrained obese type 2
diabetic patients, compared with matched controls. Re-

duced insulin-mediated TBC1D4 phosphorylation in skel-
etal muscle as measured by the anti-PAS antibody has been
reported in non-obese type 2 diabetic patients [25], insulin-
resistant women with polycystic ovary syndrome [26] and
healthy individuals after TNFα infusion [39]. Intriguingly,
we found impaired insulin-mediated PAS phosphorylation
of TBC1D4 but unaltered phosphorylation of Thr642 in type
2 diabetic compared with control individuals, although this
site is believed to be the main site detected by the anti-PAS
antibody [3, 6]. The PAS antibody has been reported to
detect TBC1D1 phosphorylation in mouse skeletal muscle
[40, 41]. However, using immunopurification, we previ-
ously demonstrated that removal of TBC1D4 from human
muscle lysates completely abolishes signals from the anti-
PAS and anti-phospho-Thr642 antibodies [12]. Thus, it is
unlikely that the observed discrepancy between PAS and
Thr642 phosphorylation is related to recognition of TBC1D1
in human muscle by these antibodies.

In accordance with the idea that TBC1D4 Ser318, Ser588

and Ser751 are downstream targets of Akt [6], and
consistent with studies of non-obese type 2 diabetic patients
[25] and other insulin-resistant states [18, 26], we found
impaired insulin-stimulated Akt Thr308 and PAS phosphor-
ylation in muscle of obese type 2 diabetic patients. We were
previously unable to detect such differences between obese
individuals with and without type 2 diabetes [15, 24].
However, in the present study, we used a twofold higher
insulin infusion rate, raising insulin levels during the clamp
from ~400 to ~900 pmol/l. Thus, stimulation with high
physiological hyperinsulinaemia seems to unmask these
defects in insulin-stimulated phosphorylation of Akt at
Thr308 and of TBC1D4 in type 2 diabetic patients, as
previously noted for Akt ex vivo [42]. Consistent with
several studies, we also observed defects in insulin
activation and phosphorylation of glycogen synthase [15–
17, 24, 43], and lower hexokinase II protein content [44] in
type 2 diabetic patients. Taken together, our results suggest
that, in addition to the previously described defects in
insulin action on Akt and glycogen synthase, reduced
insulin-mediated TBC1D4 phosphorylation at Ser318, Ser588

and Ser751 may contribute to impaired GLUT4 transloca-
tion and glucose disposal in skeletal muscle of sedentary
type 2 diabetic patients.

The effect of long-term exercise-training on signalling
events involving TBC1D4 in human skeletal muscle has so
far only been sparsely described. In agreement with our
results, one study evaluating the effect of short-term
(7 days) endurance training showed that PAS phosphoryla-
tion of TBC1D4 was unchanged in skeletal muscle of obese
non-diabetic and type 2 diabetic individuals [21]. Recently,
we found that 3 weeks of one-legged endurance training in
young, healthy volunteers increased TBC1D4 protein
levels, as well as PAS phosphorylation, both at rest and
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after insulin stimulation [11]. However, in that study the
increase in TBC1D4 phosphorylation appeared to reflect a
corresponding change in TBC1D4 protein content, consis-
tent with the present observation for TBC1D4 Thr642

phosphorylation. In the present study, type 2 diabetic and
obese non-diabetic individuals achieved an approximately
20% improvement in insulin-stimulated Rd in response to
10 weeks of exercise-training. Moreover, this increase in
insulin sensitivity was accompanied by enhanced TBC1D4
phosphorylation at several sites. However, as seen in
young, healthy individuals [11], these responses are partly
attributable to the significant increase in TBC1D4 protein
content. Nevertheless, even after correction for TBC1D4
protein content, training significantly increased insulin-
stimulated TBC1D4 phosphorylation at Ser588 and Ser751 in
muscle of type 2 diabetic patients. These data suggest that
the phosphorylation defects of TBC1D4 at Ser588 and
Ser751 in skeletal muscle may be particularly sensitive to
regular endurance training in type 2 diabetic patients and,
as a consequence, may contribute to the improved insulin
sensitivity in these individuals. In fact, these two sites are
potently phosphorylated immediately post-exercise in mus-
cle of young healthy males (J. T. Treebak, C. Pehmøller and
J. F. P. Wojtaszewski, unpublished observations), as well as
in a prolonged period into recovery from exercise [12].
While basal phosphorylation on these sites was unchanged
by training, exercise by some unknown mechanisms seems
to increase the sensitivity of these phosphorylation sites to
insulin-mediated signals. Previously, activation of AMPK
has been reported to enhance sensitivity of muscle glucose
transport to insulin [45]. Moreover, AMPK preferentially
phosphorylates TBC1D4 at Ser588 in vitro [6], which
together with Thr642 seems to be the two major sites
involved in GLUT4 translocation [4]. In agreement with
these findings, we observed a significant increase in AMPK
Thr172 phosphorylation in diabetic patients after training,
which could explain the normalisation of insulin-stimulated
TBC1D4 Ser588 phosphorylation. This increase in AMPK
Thr172 phosphorylation was due to a more robust increase
in AMPK protein levels in type 2 diabetic patients
compared with controls.

An important finding in the present study was that
10 weeks of exercise-training abolished the defects in
insulin-mediated TBC1D4 phosphorylation at Ser318, Ser588

and Ser751 in patients with type 2 diabetes, despite the fact
that insulin-stimulated Rd, although improved, remained
lower than in matched control individuals after training, as
reported earlier [31, 32, 46, 47]. This indicates that other
factors beyond those regulating TBC1D4 phosphorylation
at the sites measured in this study could explain the reduced
insulin-stimulated Rd in type 2 diabetes after training. After
the training period, defects in insulin action on Akt Thr308

phosphorylation and one of its major downstream effectors,

glycogen synthase activity, persisted in muscle of type 2
diabetic patients. Thus, these factors are plausible candi-
dates to explain the impaired insulin-stimulated Rd, even in
trained diabetic patients. Moreover, our data suggest the
possibility that kinases other than Akt mediate the
beneficial effect of exercise-training on TBC1D4 phosphor-
ylation at Ser318, Ser588 and Ser751 [6]. Our data also
question the strength of the relationship between training-
induced changes in Akt signalling and changes in insulin
action on Rd.

Based on previous reports, the beneficial adaptations to
endurance training in skeletal muscle are mediated at least
in part by increased protein content of molecules involved
in glucose transport/uptake, including Akt1/2, TBC1D4,
GLUT4, hexokinase II and different subunits of AMPK
[11, 21, 31–33, 44]. Although the modality and duration of
training in these studies differed somewhat from those in
the present study, our results provide further evidence that
increased protein content of TBC1D4, Akt1 and Akt2,
GLUT4, hexokinase II and AMPK in response to endur-
ance training may be an important mechanism contributing
to improved insulin-mediated glucose disposal in human
skeletal muscle, even in insulin-resistant conditions such as
obesity and type 2 diabetes. In fact, although GLUT4 is
important for the glucose transport process, animal studies
suggest that hexokinase II activity may represent a
regulatory step for insulin-stimulated glucose uptake in
skeletal muscle [48]. Thus with the marked reduction in
pre-training hexokinase II protein levels being partially
restored by training, similarly to changes observed for
insulin-stimulated Rd, this adaptation may be even more
important in type 2 diabetic patients than in healthy
individuals.

In most studies, improved insulin-stimulated glucose
disposal after long-term endurance training can be
attributed to increased glucose storage [31, 32], thereby
implicating a particular role for glycogen synthase.
Consistent with another study of the effect of 8 weeks of
training [32], we observed that endurance training in-
creased total glycogen synthase activity, as well as
glycogen synthase protein, in parallel with increased
glycogen levels and improved insulin-stimulated Rd in
skeletal muscle from obese non-diabetic and type 2
diabetic individuals. In contrast, the ability of insulin to
stimulate glycogen synthase activity, as measured by the %
I-form or %FV, was unaffected by training in both groups.
Similarly, no changes in glycogen synthase phosphoryla-
tion were seen after training when corrected for the
increase in glycogen synthase protein. These findings
demonstrate that training primarily increases protein
content, rather than insulin-dependent dephosphorylation
of glycogen synthase. Taken together, our data indicate that
the molecular mechanisms by which exercise-training

Diabetologia (2011) 54:157–167 165



increases content of key signalling proteins mediating
insulin-stimulated glucose metabolism in skeletal muscle
are largely preserved in insulin-resistant obese individuals
with and without type 2 diabetes. Further studies are
warranted to identify the transcriptional and translational
factors mediating these adaptations to aerobic training in
skeletal muscle.

In summary, we found decreased insulin-stimulated
TBC1D4 phosphorylation at Ser318, Ser588 and Ser751, in
addition to previously reported defects at the level of Akt
and glycogen synthase, in skeletal muscle from type 2
diabetic patients. Although the insulin-stimulated phos-
phorylation of Ser588 and Ser751 per TBC1D4 protein was
significantly increased after endurance training in type 2
diabetic patients, other defects persisted, possibly explain-
ing why insulin-stimulated Rd remained lower in type 2
diabetic patients. Nevertheless, insulin-stimulated Rd was
significantly improved in response to training in obese non-
diabetic individuals and in type 2 diabetic patients.
Additional data indicate that this increase in insulin
sensitivity may be achieved through improved signalling
at the level of TBC1D4, as well as increments in protein
levels of Akt1, Akt2, glycogen synthase, TBC1D4,
GLUT4, hexokinase II and α2-AMPK.
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