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Abstract Recent genome-wide association studies identified
several novel risk genes for type 2 diabetes. The majority of
these type 2 diabetes risk variants confer impaired pancreatic
beta cell function. Though the molecular mechanisms by which
common genetic variation within these loci affects beta cell
function are not completely understood, risk variants may alter
glucose-stimulated insulin secretion, proinsulin conversion,
and incretin signals. In humans, the incretin effect is mediated
by the secretion and insulinotropic action of two peptide
hormones, glucose-dependent insulinotropic polypeptide and
glucagon-like peptide-1. This review article aims to give an
overview of the type 2 diabetes risk loci that were found to
associate with incretin secretion or incretin action, paying
special attention to the potential underlying mechanisms.
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Abbreviations
GIP Glucose-dependent insulinotropic peptide
GIPR GIP receptor
GLP-1 Glucagon-like peptide-1
GLP-1R GLP-1 receptor
KCNQ1 Potassium voltage-gated channel, KQT-like

subfamily, member 1

MTNR1B Melatonin receptor 1B
TCF7L2 Transcription factor 7-like 2
WFS Wolfram syndrome
WNT Wingless-type MMTV integration site family

member 2
ZnT-8 Zinc transporter 8

Introduction

As a result of the dramatic increase in the incidence of type 2
diabetes mellitus worldwide, this chronic and progressive
disease has reached epidemic proportions with major health
consequences at an individual as well as a public health level
[1]. Impaired pancreatic beta cell function as well as central and
peripheral insulin resistance are key features in the patho-
physiology of type 2 diabetes mellitus [2]. The most relevant
environmental factors in the development of type 2 diabetes
comprise excessive energy intake and reduced physical
activity on the background of a genetic predisposition [3].

Recent genome-wide association studies identified a series
of novel type 2 diabetes risk loci [4–15]. The majority of
these type 2 diabetes risk variants confer an impaired
pancreatic beta cell function [8, 14–37]. Though the
underlying mechanisms by which common genetic variation
within these loci affects beta cell function are not completely
understood, risk variants may alter glucose-stimulated insulin
secretion [16, 17, 19, 24, 25, 30, 32], proinsulin conversion
[21, 38–40] and incretin secretion or incretin action.

Effects of type 2 diabetes risk variants on incretin
secretion and incretin action

The two major incretins glucagon-like peptide 1 (GLP-1)
and glucose-dependent insulinotropic peptide (GIP), for-
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merly known as gastric inhibitory peptide, which account
for up to 60% of postprandial insulin release in healthy
people, are secreted in response to meals by the L cells of
the distal ileum and colon and the K cells of the duodenum
and jejunum, respectively (for review, see Holst et al. [41]).
The biologically active forms of GLP-1, i.e. GLP-1(7–36)
amide and GLP-1(7–37), and GIP are derived from post-
translational processing of their precursors pro-GIP and
proglucagon, respectively. As a result of rapid inactivation
by the ubiquitously produced enzyme dipeptidyl peptidase-4,
circulating incretins have a short duration of action. Both
incretins act via specific receptors, i.e. the GLP-1 receptor
(GLP-1R) and the GIP receptor (GIPR), respectively, both of
which are members of the seven-transmembrane spanning,
heterotrimeric G-protein-coupled receptor superfamily. The
GLP-1R is produced in pancreatic alpha and beta cells as well
as in heart, central nervous system, kidney, lung and
gastrointestinal tract, whereas the GIPR is mainly found in
pancreatic beta cells and, to a lesser extent, in the central
nervous system, adipose tissue and osteoblasts. Metabolic
actions of incretins comprise glucose-dependent insulin
secretion, pancreatic beta cell proliferation, inhibition of beta
cell apoptosis, and deceleration of gastric emptying. In
addition, GLP-1 suppresses glucose-dependent glucagon
secretion, appetite and food intake. In pancreatic beta cells,
activation of the GLP-1R causes, through a stimulatory
G-protein, production of the second messenger cyclic AMP,
which mediates most of the GLP-1-dependent actions,
including regulation of ion channel activity, intracellular
calcium increase, insulin granule release, and insulin gene
expression. Protein kinase A (PKA), the cyclic AMP-
regulated guanine nucleotide exchange factor II (cAMP-
GEFII, also known as EPAC2), as well as the cross-talk
between PKA and the wingless-type MMTV integration site
family member 2 (WNT) signalling pathway are involved in
the aforementioned cyclic AMP-stimulated events (Fig. 1).

As suggested by the production of GLP-1R and GIPR in
multiple organs outside the pancreas, incretin actions are
not limited to pancreatic islet cells, but they play regulatory
roles in distinct tissues. While GLP-1 appears to promote
beneficial effects on the cardiovascular system and central
nervous system, the extrapancreatic actions of GIP com-
prise adipocyte function and fat storage as well as bone
formation through stimulation of osteoblast proliferation
and inhibition of apoptosis.

In type 2 diabetes, the incretin effect is impaired, with
the insulinotropic action of GLP-1 being significantly more
conserved than that of GIP. Though in some studies,
postprandial concentrations of GLP-1 and GIP were
diminished, the contribution of the potentially altered
incretin secretion to the development of type 2 diabetes
remains obscure [42]. In light of the described incretin
actions in health and disease, genes encoding for proteins
with impact on incretin production and secretion or on
incretin signalling pathways appear to be potential type 2
diabetes candidate genes. In accordance with this assump-
tion, some of the recently identified type 2 diabetes risk
alleles appear to affect incretin secretion and incretin action
(Table 1).

Genetic variants of TCF7L2 are associated most consis-
tently with alterations in the incretin function. TCF7L2
encodes the transcription factor 7-like 2 (TCF7L2), which
mediates the WNT signalling pathway [43]. The latter has
been reported to be involved in the neonatal regulation of
normal and regenerative growth of pancreatic beta cells
[44]. Heterodimerisation of TCF7L2 with β-catenin results
in transcription of numerous genes, such as that for
proglucagon, which is processed to GLP-1 in the intestinal
L cells [45]. GLP-1, which exhibits a wide range of
glucose-lowering actions [43], stimulates pancreatic beta
cell proliferation through activation of the WNT signalling
pathway [46]. Positive feedback between GLP-1 and WNT
signalling enhances the beneficial effects of GLP-1 on
pancreatic beta cell function [47]. Also the insulin gene
appears to be a direct target of TCF7L2, given that the
expression of the insulin gene was reported to correlate
strongly with TCF7L2 expression and to be diminished
after targeted silencing of the TCF7L2 gene [48, 49]. In
patients with type 2 diabetes, as well as in animal models of
type 2 diabetes, TCF7L2 mRNA levels were found to be
increased several-fold, whereas protein levels were
decreased [49, 50]. Experimental knockdown of TCF7L2
by RNA interference in human and murine islets resulted in
an increase in beta cell apoptosis as well as in a decrease in
beta cell proliferation and glucose-stimulated insulin secretion
[51]. The impairment of glucose-stimulated and incretin-
stimulated insulin secretion after TCF7L2 gene silencing was
accompanied by a decrease in production of the GLP-1R and
the GIPR as well as by an attenuation of the GLP-1-stimulated
and GIP-stimulated AKT phosphorylation, and AKT-mediated
forkhead box O1 (FOXO-1) phosphorylation and nuclear
exclusion. A comparable reduction in GLP-1R and GIPR
levels was also detected in islets from patients with type 2
diabetes [49]. Furthermore, reducing TCF7L2 levels by RNA
interference decreased expression of beta cell genes regulating
secretory granule fusion, such as Munc18-1 (also known as
STXBP1) and ZnT-8 (also known as SLC30A8), resulting in
defective insulin exocytosis [52]. In contrast, overexpression

GLP-1 and GIP are the two major incretins accounting
for up to 60% of postprandial insulin release in healthy
people
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of TCF7L2 attenuated glucose-induced and cytokine-induced
islet apoptosis and impaired function, confirming the
important role of TCF7L2 in beta cell survival and beta cell
proliferation as well as in glucose-stimulated and incretin-
stimulated insulin secretion [51]. Together, these studies point
towards a role for TCF7L2 as the major effector of the
canonical WNT signalling pathway in the pathogenesis of
type 2 diabetes.

In agreement with these in vitro data, genetic variants in
TCF7L2 were identified to associate with an increased risk
of type 2 diabetes in humans [53–55], with impaired insulin
secretion as a potential link [29, 54, 56, 57]. Two recent
studies investigating the underlying mechanisms of altered

insulin secretion in TCF7L2 risk allele carriers provided
evidence for an involvement of TCF7L2 genetic variants
(rs7903146 and rs12255372) in incretin-induced insulin
secretion by comparison of OGTT and IVGTT data [50, 58]
as well as by hyperglycaemic clamp combined with GLP-1
infusion, without affecting plasma GLP-1 levels [50, 58].
The lower incretin effect on insulin secretion despite similar
GIP and GLP-1 responses to oral glucose in risk allele carriers
was also confirmed by two recent studies [59, 60]. In
agreement with these findings, knockdown of TCF7L2 in
human and murine islets have demonstrated a role for the
transcription factor in incretin signalling [51]. Pilgaard et al.
found elevated endogenous glucose production at fasting
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Fig. 1 Insulinotropic actions of GLP-1 and GIP in pancreatic beta
cells. Binding of GLP-1 and GIP to their specific receptors, i.e. GLP-
1R and GIPR, causes, through a stimulatory G-protein (G), activation
of adenylyl cyclase (AC), which converts ATP into the second
messenger cyclic AMP (cAMP). Increase of intracellular cAMP levels
results in activation of protein kinase A (PKA) and the cAMP-
regulated guanine nucleotide exchange factor II (cAMP-GEFII, also
known as EPAC2), which mediate most of the incretin-dependent
actions. Synergistically with an increase in intracellular ATP levels,
PKA-mediated phosphorylation of the ATP-sensitive potassium (KATP)
channel leads to closure of the KATP channel, causing depolarisation of
the membrane potential. Inhibition of the voltage-gated potassium
(Kv) channel through a PKA-dependent phosphorylation leads to
prolongation of the action potential duration. On depolarisation, the
voltage-dependent L-type calcium channel (L-type Ca2+) opens and
calcium flows into the cells. The PKA-dependent phosphorylation also
activates the L-type calcium channel. This calcium influx into the cell

causes calcium mobilisation from the endoplasmic reticulum through
PKA- and EPAC2-dependent mechanisms, which serves as a signif-
icant source for increasing intracellular calcium concentration
([Ca2+]i). The increase in intracellular calcium levels finally causes
release of preformed insulin granules into the circulation. Furthermore,
PKA mediates expression of the insulin gene as well as of GLP-1R and
GIPR by activation of the WNT signalling pathway via phosphoryla-
tion of β-catenin (β-cat.) and subsequent interaction of β-catenin with
transcription factors, such as TCF7L2. WFS1 (Wolframin) has recently
been identified as a component of the unfolded protein response in the
endoplasmic reticulum [79], whereas KCNQ1 is ubiquitously
expressed in epithelial cells, including the small intestine [86] and
appears to be involved in hormone and electrolyte transport processes
[88]. Proteins encoded by recently identified type 2 diabetes risk loci
with a potential impact on incretin secretion and action are highlighted
by the boxes surrounded by solid black lines
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conditions and during a euglycaemic–hyperinsulinaemic clamp
despite diminished plasma glucagon levels in participants
carrying the risk allele [60]. The authors interpreted these
conflicting results as either a more direct role of TCF7L2 in
the regulation of hepatic glucose homeostasis, such as
modulation of expression of the gene encoding glucagon in
pancreatic alpha cells [45], or as an indirect influence on
hepatic glucose balance via the central nervous system. The
latter assumption would be in agreement with a previous
study showing that in the presence of hyperglycaemia
intracerebroventricular application of the GLP-1 agonist
exendin-4 resulted not only in a fourfold rise in insulin
secretion, but also in increased liver glycogen storage [61].

Very recently the variant rs10423928 in the GIPR
(gastric inhibitory polypeptide receptor; OMIM entry no.
137241) locus was found to associate with increased 2 h
glucose levels during an OGTT, decreased insulin secretion,
and diminished incretin effect [62]. Activation of the seven-
transmembrane GIPR by GIP requires interaction of the
N-terminal moiety of GIP with determinant residues within
the transmembrane helices of GIPR [63]. GIPR is produced
widely, but in particular is found on pancreatic beta cells.
The physiological and pharmacological regulation of GIPR
production is modulated by peroxisome proliferator-
activated receptor gamma signalling [64]. In different
animal models, functional knockout of the Gipr gene
resulted in impaired glucose tolerance with altered early
insulin response after oral glucose load, whereas glucose
tolerance and pancreatic beta cell function were normal
following an intraperitoneal or intravenous glucose
challenge [65, 66]. In line with these findings, in different
rat models of diabetes, GIPR agonist treatment exhibited

beta cell anti-apoptotic actions leading to improvement of
beta cell function and glycaemic control [67].

At present, the function of the intron-located GIPR variant
rs10423928, which associated with indices of glucose
intolerance and impaired beta cell function, remains elusive.
However, it is worth noting that this single nucleotide
polymorphism (SNP) is in strong linkage disequilibrium with
theGIPR variant rs1800437, a missense mutation that results
in substitution of glutamic acid by glutamine at codon 354
(E354Q). In glucose-tolerant patients homozygous for the
Gln354 variant, serum C-peptide concentrations in fasting
conditions and 30 min after an oral glucose challenge were
significantly diminished compared with concentrations in
wild-type carriers [68]. However, while neither in the study
by Almind et al. [68] nor in two other small case–control
studies of type 2 diabetes [69, 70], was an association
between genetic variation in GIPR and risk for type 2
diabetes observed, in a recent meta-analysis comprising
about 19,000 individuals with diabetes and more than 38,000
individuals without diabetes, the rs10423928 A allele was
nominally associated with a moderate type 2 diabetes risk
(OR 1.07, 95% CI 1.03–1.12) [62].

In light of the rather well-defined role of TCF7L2 and GIPR
in the regulation of incretin actions, it appears plausible that
genetic variants in these loci confer pancreatic beta cell
dysfunction and increased risk for type 2 diabetes by alteration
of incretin-dependent signalling pathways. In contrast, only
limited data are available on the association of other type 2
diabetes risk loci, such as WFS1 and KCNQ1, with impaired
incretin secretion or action. Besides, the underlying
pathophysiological mechanisms by which variants within
these loci contribute to alterations in the incretin system are
not understood.

Table 1 Effects of single nucleotide polymorphisms in confirmed type 2 diabetes genes on incretin action and incretin secretion

Gene Chr. Relevant tissue
expression

Variants (approximate RAF) Risk allele effects

TCF7L2 10 Pancreas rs7903146 (30%), rs12255372 (30%),
rs7901695 (30%)

Incretin (GLP-1)-stimulated insulin secretion ↓

GIPR 19 Pancreas rs10423928 (20%) Incretin (GIP)-stimulated insulin secretion ↓

WFS1 4 Pancreas rs10010131 (60%) Incretin (GLP-1)-stimulated insulin secretion ↓

KCNQ1 11 Pancreas, intestine rs2237892 (90%), rs151290 (80%) Incretin secretion ↓

Chr., chromosome; RAF, risk allele frequency

TCF7L2 variants affect incretin actions, with alterations
of the WNT signalling pathway as a potential underlying
mechanism

The impact of polymorphisms in GIPR on type 2 diabetes
risk and diminished incretin action is supported by its
function in beta cell regulation
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In a recent hyperglycaemic clamp study combined with
GLP-1 infusion, we found the variant rs10010131 in the
confirmed diabetes risk gene WFS1 (Wolfram syndrome 1
[wolframin]; OMIM entry no. 606201) to be associated
with impaired insulin secretion after GLP-1 administration
[71] in humans. A similarly powered study confirmed
reduced GLP-1 induced insulin secretion in carriers of the
diabetes risk alleles [72]. WFS1 encodes an 890-amino-acid
transmembrane polypeptide that is found ubiquitously,
particularly in pancreatic islets and specific neurons, and
is predominantly localised in the endoplasmic reticulum
[73]. Mutations in the WFS1 gene cause the rare autosomal
recessive neurodegenerative disorder Wolfram syndrome.
In light of its clinical presentation with diabetes insipidus,
young-onset non-immune insulin-dependent diabetes mellitus,
optic atrophy and deafness, Wolfram syndrome is also known
by the acronym DIDMOAD. In a mouse model, Wfs1 gene
knockout resulted in glucose intolerance and overt diabetes as
the result of enhanced beta cell endoplasmic reticulum stress,
diminished beta cell proliferation, progressive apoptotic beta
cell loss and, consequently, impaired insulin secretion
[74–76]. Though the exact function of wolframin is unknown,
a very recent study indicated its involvement in the
development of the pancreas [77]. Furthermore, based on its
localisation in the pancreatic endoplasmic reticulum, a key site
for insulin biosynthesis and the folding of newly synthesised
proinsulin [78], polymorphisms in the WFS1 gene may alter
the endoplasmic reticulum homeostasis and so impair beta cell
function. This assumption would be in agreement with the
recent identification of WFS1 as a component of the unfolded
protein response [79]. The unfolded protein response has a
key function in maintaining homeostasis of the pancreatic
endoplasmic reticulum by modulating the capacity and quality
of the endoplasmic reticulum protein-folding machinery to
prevent the accumulation of unfolded or misfolded proteins
[80]. However, impairment of the GLP-1 response may not
only result in a diminished postprandial insulin secretion, but
also in altered stimulation of beta cell growth and beta cell
differentiation [41].

Confirmed type 2 diabetes risk variants in KCNQ1
(OMIM entry no. 607542) were found to associate with
insulin secretion after an OGTT [81–84] but not after an
IVGTT [82]. None of these SNPs affected GLP-1-induced
insulin secretion. However, one variant, rs151290, was

associated with glucose-stimulated GIP and GLP-1 increase
[82] in our recent study. The KCNQ1 gene encodes
potassium voltage-gated channel, KQT-like subfamily,
member 1 (KCNQ1), which plays an important role in
controlling the ventricular repolarisation process. Mutations
in KCNQ1 have initially been associated with inherited
cardiac disorders, such as long QT syndrome and familial
atrial fibrillation. The long QT syndrome may occur in a
recessive form, which is associated with deafness (Jervell
and Lange-Nielsen syndrome) or in an autosomal dominant
variant not associated with deafness (Romano–Ward
syndrome) [85]. In addition to heart and cochlea, KCNQ1
is ubiquitously expressed in epithelial cells, including the
exocrine and endocrine pancreas as well as the small
intestine [86]. KCNQ1 was shown to be expressed in
insulin-secreting INS-1 cells and inhibition of this potassium
channel by the sulfonamide analogue 293B was found to
enhance tolbutamide-induced insulin secretion [87]. In the
gastrointestinal tract, KCNQ1 appears to be involved in
hormone and electrolyte transport processes [88]. Though
an involvement of KCNQ1 has not been shown for incretin
secretion, in light of the ubiquitous expression of KCNQ1
in epithelial cells, one could speculate that genetic variants
in KCNQ1 may alter the effectiveness of the incretin
transport machinery in the gastrointestinal tract.

Gene variants in two additional diabetes risk loci,
THADA and MTNR1B, were found to be associated with
altered insulin response towards GLP-1 treatment [72].
SNPs within the THADA locus associated with diminished
insulin secretion following GLP-1 treatment, whereas
variants within the MTNR1B locus associated with in-
creased insulin secretion after GLP-1 stimulation. However,
the associations between THADA and MTNR1B gene
variants and altered pancreatic beta cell function were not
specific for GLP-1 treatment but were also observed
following arginine stimulation. Furthermore, the association
between the risk allele of the MTNR1B SNP rs10830963
and increased insulin responses towards GLP-1 and
arginine stimulation, despite a diminished insulin response
to oral glucose during an OGTT [72], was surprising
because incretins such as GLP-1 are known to mediate, at
least in part, the insulin secretion after oral intake of
glucose. Therefore, confirmation in other cohorts is
important to rule out false-positive findings, before drawing
any further conclusions.

Variants in KCNQ1 affect glucose-induced incretin hormone
release, with altered incretin transport machinery in the
gastrointestinal tract as a potential explanation

The association between WFS1 variants and impaired
incretin action may result from alterations of endoplasmic
reticulum homeostasis and, consequently, beta cell
dysfunction
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It is worth mentioning that additional known diabetes risk
variants might affect incretin secretion and incretin function.
Given that the effect sizes of diabetes risk alleles are often
small [89], associations may have been missed by the recent
studies of limited sample sizes and may be identified only by
meta-analysis or large well-designed studies.

Conclusions

Recent genome-wide association studies identified several
new type 2 diabetes risk loci. The majority of these risk loci
appear to increase the risk of developing type 2 diabetes
through alteration of pancreatic beta cell homeostasis. Though
the molecular mechanisms by which the diabetes risk alleles
contribute to beta cell dysfunction are not understood, in
addition to glucose-induced insulin secretion and proinsulin
conversion, incretin action or insulin secretion may be altered.
Variants in TCF7L2, GIPR, and WFS1 were found to be
associated with incretin action and variants in KCNQ1 were
associated with incretin secretion. Although the known
physiological actions of the transcription factor TCF7L2
and the seven-transmembrane GIPR clearly indicate a
pathophysiological link between genetic variation in the
TCF7L2 and the GIPR loci and attenuation of incretin
susceptibility, the potential underlying mechanisms by which
variants in WFS1 and KCNQ1 contribute to impairments of
incretin-dependent pathways still have to be identified.

In recent years, it has become evident that genetic variants
in several diabetes risk genes may predict treatment outcome
of glucose-lowering drugs. Response to thiazolidinedione
therapy has been associated with PPARG (peroxisome
proliferator-activated receptor-gamma) variation [90, 91],
though not by all studies [92–94]. Literature on the impact
of the KCNJ11 risk variant E23K on treatment response to
sulfonylureas is similarly controversial. Whereas E23K
associated with an increased risk of secondary failure to
sulfonylureas in patients with type 2 diabetes [95], a lack of
protection by metformin [96], and diminished repaglinide
efficacy [97], in another study, the KCNJ11 risk variant did
not affect response to sulfonylurea therapy [98]. Data on
the association between SNPs in TCF7L2 and treatment
outcome appears to be more consistent. The TCF7L2
variants have been reported to influence disease severity
and therapeutic control [99], including lifestyle intervention
[54], response to sulfonylureas [100] and repaglinide
efficacy [97].

In light of the potential impact of a certain genetic
background on treatment response towards glucose-lowering
drugs, elucidation of the involvement of the type 2 diabetes
risk genes with impact on incretin signals in alterations of the
entero–insular axis appears to be highly relevant, as it could
open novel treatment options. Though possible interactions

between these type 2 diabetes risk loci with impact on
incretin signals and insulin secretagogues, incretin mimetics,
or dipeptidyl peptidase-4 inhibitors have, so far, not been
studied, defective glucose-stimulated insulin secretion by
pancreatic beta cells may be alleviated with GLP-1
analogues and dipeptidyl peptidase-4 inhibitors in risk allele
carriers.
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