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Abstract
Aims/hypothesis AMP-activated protein kinase (AMPK)
has a broad role in the regulation of glucose and lipid
metabolism making it a promising target in the treatment of
type 2 diabetes mellitus. We therefore sought to characterise
for the first time the effects of chronic AMPK activation on
skeletal muscle carbohydrate metabolism in carriers of the
rare gain-of-function mutation of the gene encoding
AMPKγ3 subunit, PRKAG3 R225W.

Methods Aspects of fuel metabolism were studied in vitro
in myocytes isolated from vastus lateralis of PRKAG3
R225W carriers and matched control participants. In vivo,
muscular strength and fatigue were evaluated by isokinetic
dynamometer and surface electromyography, respectively.
Glucose uptake in exercising quadriceps was determined
using [18F]fluorodeoxyglucose and positron emission
tomography.
Results Myotubes from PRKAG3 R225W carriers had
threefold higher mitochondrial content (p<0.01) and
oxidative capacity, higher leak-dependent respiration
(1.6-fold, p<0.05), higher basal glucose uptake (twofold,
p<0.01) and higher glycogen synthesis rates (twofold,
p<0.05) than control myotubes. They also had higher
levels of intracellular glycogen (p<0.01) and a trend for
lower intramuscular triacylglycerol stores. R225W carriers
showed remarkable resistance to muscular fatigue and a
trend for increased glucose uptake in exercising muscle in
vivo.
Conclusions/interpretation Through the enhancement of
skeletal muscle glucose uptake and increased mitochon-
drial content, the R225W mutation may significantly
enhance exercise performance. These findings are also
consistent with the hypothesis that the γ3 subunit of
AMPK is a promising tissue-specific target for the
treatment of type 2 diabetes mellitus, a condition in
which glucose uptake and mitochondrial function are
impaired.
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Abbreviations
AICAR Aminoimidazole carboxamide

ribonucleotide
AMPK AMP-activated protein kinase
FCCP Carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone
FDG [18F]Fluorodeoxyglucose
IMTG Intramuscular triacylglycerol
MnSOD Manganese superoxide dismutase
PET Positron emission tomography
PGC-1α Peroxisome proliferator-activated

receptor γ coactivator 1α
SUV Standard uptake value
TCA Tricarboxylic acid

Introduction

AMP-activated protein kinase (AMPK) is a heterotrimeric
enzyme that can form 12 distinct complexes, each
comprising an α catalytic subunit (α1 or α2), as well as a
β and a γ regulatory subunit (β1, β2; γ1, γ2 or γ3), as
reviewed by Hardie and by Steinberg et al [1, 2]
respectively. All AMPK subunits can be detected to some
extent in skeletal muscle; however, it is thought that only
three of the possible 12 heterotrimeric complexes are
formed there: α1/β2/γ1, α2/β2/γ1 and α2/β2/γ3 [3]. The
γ3 subunit is exclusively produced in skeletal muscle and
appears to be most highly abundant in fast-twitch glycolytic
(type IIb) muscle fibres [4, 5].

The AMP-dependent activation of AMPK in skeletal
muscle enables it to act as a major energy sensor within the
cell by detecting intracellular levels of ATP and AMP
through specific binding sites on the γ regulatory subunit
[6–8]. AMPK may also be regulated through the glycogen-
binding domain on the β subunit by the content and
structure of intracellular glycogen [9]. When stimulated,
AMPK acts to restore cellular energy balance by stimulat-
ing ATP-producing pathways (glucose uptake, fatty acid
oxidation and mitochondrial biogenesis) [10–13] and
inhibiting ATP-consuming pathways (fatty acid synthesis,
glycogen synthesis and protein synthesis) [14–17].

The rare but naturally occurring R225W mutation in the
gene (PRKAG3) encoding the AMPKγ3 subunit in humans
was previously identified by our laboratory as a gain-of-
function mutation that results in a doubling of basal and
AMP-stimulated AMPK activity [18]. In addition to
increased AMPK activity, participants carrying the
R225W mutation were shown to have ∼90% higher
glycogen content and ∼30% lower intramuscular triacyl-
glycerol (IMTG) content in the vastus lateralis muscle [18].
This mutation is homologous to the PRKAG3 R225Q

mutation in RN− Hampshire pigs, which causes high muscle
glycogen content [19], as well as to the PRKAG2 R302Q
mutation in humans, which is associated with Wolff–
Parkinson–White syndrome [20–22]. Several mouse mod-
els have also been developed either to overproduce the
AMPKγ3 subunit or to express the gain-of-function Prkag3
R225Q mutation [23, 24]. Recently, Garcia-Roves et al.
[24] demonstrated that while the overproduction or ablation
of the AMPKγ3 subunit in mice did not alter mitochondrial
biogenesis, expression of PRKAG3 R225Q (similar to the
R225W mutation studied herein) resulted in enhanced
mitochondrial biogenesis.

The PRKAG3 R225Q, PRKAG3 R225W and PRKAG2
R302Q mutations are associated with excess glycogen in
skeletal muscle (PRKAG3) or in heart (PRKAG2 R302Q)
[18–20]. Although AMPK inhibits glycogen synthesis
through phosphorylation of glycogen synthase, the alloste-
ric activation of glycogen synthase by glucose 6-phosphate
can overcome the inhibitory effects of glycogen synthase
phosphorylation [25, 26]. Studies have demonstrated that
AMPK activation in the heart and skeletal muscle enhances
GLUT4 transport to the plasma membrane [27, 28] and that
loss of the AMPK α2, β2 or γ3 subunits abolishes
aminoimidazole carboxamide ribonucleotide (AICAR)-
stimulated glucose uptake [23, 29]. While the mechanisms
underlying the AMPK-mediated increases in glucose
uptake have not been fully elucidated, AMPK has been
shown to phosphorylate and activate TBC1 domain family,
member 4 (TBC1D4) and the IRS-1, both of which
stimulate GLUT4 translocation [30, 31]. Additionally,
chronic AMPK activation in Sprague–Dawley rats through
treatment with AICAR increases skeletal muscle levels of
GLUT4 and hexokinase [32]. The present study characterises
for the first time the effects of chronic AMPK activation on
skeletal muscle carbohydrate metabolism in carriers of the
rare gain-of-function mutation of the gene encoding the-
AMPKγ3 subunit, PRKAG3 R225W.

Methods

Participants Two probands carrying the PRKAG3 R225W
mutation were initially identified through the Ottawa
Hospital Weight Management Clinic [18]. Four R225W
carriers were recruited for this study and matched for age,
sex, BMI and physical activity (International Physical
Activity Questionnaire) to control participants. All four
participants underwent in vivo positron emission tomogra-
phy (PET) imaging and isokinetic dynamometer strength
determinations; one of the four participants did not consent
to a skeletal muscle biopsy and was therefore not included
in the cellular studies. The protocol for this study was
approved by the Research Ethics Board of the Ottawa
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Hospital and the University of Ottawa Heart Institute.
Written informed consent was obtained from all participants.

Muscular strength and fatigue determination Participants
were screened for physical activity readiness by Physical
Activity Readiness Questionnaire. Following a 12 h over-
night fast, participants underwent testing to determine the
maximal force output of the quadriceps in their dominant
leg using an isokinetic dynamometer (Kin Com; Isokinetic
International, Harrison, TN, USA). Participants performed a
series of three to five constant velocity (60°/s) concentric
and eccentric contractions for determination of maximal
force output. The rate of muscular fatigue in the vastus
lateralis, vastus medialis and rectus femoris muscles was
evaluated by electromyography. The change in the mean
frequency of contraction was monitored over the course of
a 60 s isometric contraction of the quadriceps at 80% of the
participant’s maximal eccentric force. Data collection and
processing were performed using an electromyography unit
(Bortec, Calgary, AB, Canada) (sampling rate 1,000 Hz)
connected to a movement and behaviour analysis system
(SIMI, Unterschleissheim, Germany).

Exercise intervention and [18F]fluorodeoxyglucose PET
Participants refrained from physical activity for 48 h and
underwent a 12 h overnight fast prior to the exercise
intervention. Immediately before the initiation of exercise, a
baseline blood sample was taken for determination of
serum NEFA, cortisol, insulin, lactate and glucose concen-
trations. Keeping their non-dominant leg in the resting
position, participants performed leg extensions with the
dominant leg for 30 min, bearing a load equivalent to 11%
of their maximal concentric force output as determined
during strength testing. The leg extension consisted of a 1 s
concentric phase and a 2 s eccentric phase. [18F]Fluoro-
deoxyglucose (FDG) is retained within the cell and can be
quantified using PET [33]. FDG (5 MBq/kg) was injected
10 min post exercise initiation and exercise proceeded for
an additional 20 min [34, 35]. Blood samples were taken
for metabolite analysis immediately prior to FDG injection,
and at 20 and 60 min post-injection. After 30 min of
exercise, participants underwent a computed tomography
scan followed by a 20 min PET scan in 3D mode
(Discovery Rx PET/VCT; GE Healthcare, Milwaukee, WI,
USA). FDG PET images were reconstructed using a 3D
iterative algorithm (ordered subset expectation maximisa-
tion 21 subsets, two iterations) with a 4 mm Hann post-
reconstruction filter. Images were quantified in terms of the
standardised uptake value (SUV), with SUV=pixel value
(Bq/ml)×body weight (kg)/injected activity (kBq). A
volume of interest was defined over the quadriceps muscle
in the exercised leg using a threshold value of SUV>1.0
(Hybrid Viewer; HERMES Medical Solution, Stockholm,

Sweden). The mean and integral SUV was measured within
the volume of interest.

Skeletal muscle biopsies Participants refrained from phys-
ical activity for 3 days and fasted for 12 h prior to the
biopsy. After local anaesthesia, biopsies of the vastus
lateralis were obtained using a 5 mm Bergstrom needle
(Opitek International, Glostrup, Denmark) as previously
described [18].

Cell culture Freshly biopsied vastus lateralis was minced,
subjected to 30 min trypsin digestion and plated in Ham’s
F-10 medium, supplemented with 15% FBS (vol./vol.),
0.5 mg/ml BSA, 1 μmol/l dexamethazone, 10 ng/ml EGF,
0.5 mg/ml fetuin and 25 pmol/l insulin. Muscle satellite
cells were isolated as described previously [18] using anti-
5.1H11 antibody (Developmental Studies Hybridoma
Bank) [36]. Prior to experimentation, isolated myoblasts
were grown to ∼80% confluence prior to differentiation for
7 days in 5.5 mmol/l glucose DMEM (with 25 pmol/l
insulin, 2% horse serum [vol./vol.], 1% antibiotic–antimy-
cotic [vol./vol.] and 2.5 mg/ml gentamicin).

Mitochondrial enzyme activities Mitochondria were isolat-
ed from myotubes using a mitochondrial isolation kit
(MITOISO2; Sigma, St Louis, MO, USA). Mitochondrial
and total cellular protein were determined by bicinchoninic
acid assay. Cytochrome c oxidase activity was assayed in
intact mitochondria using a kit (CYTOCOX1; Sigma).
Citrate synthase activity was determined in lysed mito-
chondria using a kit (CS0720; Sigma).

Oxygen consumption Oxygen consumption was measured
in myotubes using an analyser (Extracellular Flux Analyser;
Seahorse Bioscience, North Billerica, MA, USA). Myo-
blasts were seeded 50,000 per well in specialised 24-well
plates (Seahorse Bioscience). Myotubes were incubated for
1 h at 37°C in DMEM (5030; Sigma) supplemented with
5.5 mmol/l D-glucose and 0.584 g/l L-glutamine prior to
analysis. Baseline oxygen consumption was measured four
times for 3 min at 7 min intervals. Carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP) (1 μmol/l) or
oligomycin (500 ng/ml) was then injected into each well
and mixed for 10 min prior to measurement.

Intramuscular triacylglycerol content IMTG content was
determined in myotubes treated with or without 2 mmol/l
AICAR for 2 h. Myotubes were resuspended in 25 mmol/l
Tris–HCl pH 7.5 with 1 mmol/l EDTA. Lipids were extracted
via chloroform–methanol (2:1), dried under N2 gas and
dissolved in 2-propanol. IMTG concentration was deter-
mined using an assay (L-Type TG H; Wako Chemicals,
Richmond, VA, USA) and normalised to protein content.
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Fatty acid oxidation assay In a 12-well plate, myoblasts
were grown to ∼80% confluency in low glucose DMEM
supplemented with 10% FBS (vol./vol.), 0.5 mg/ml BSA,
1 μmol/l dexamethazone, 10 ng/ml human EGF, 0.5 mg/ml
fetuin, 50 μg/ml gentamicin and 0.05 μg/ml fungizone.
They were then differentiated for 5 days in α-MEM media
supplemented with 2% FBS (vol./vol.), 2% PenStrep (vol./
vol.) and 0.5 mg/ml fetuin. Cells were exposed for 3 h to
incubation media containing 100 μmol/l cold palmitate,
37 kBq/ml [1-14C]palmitate (Perkin Elmer, Waltham, MA,
USA), 0.25% fatty acid-free BSA (wt/vol.), 1 mmol/l
carnitine and 12.5 mmol/l HEPES. Incubation medium
was then transferred to a 24 dual-well Teflon trapping plate
[37] and the reaction terminated by adding 70% perchloric
acid (wt/vol.). During 1 h incubation at 25°C, 14CO2 was
trapped in 1 mol/l sodium hydroxide and quantified by
liquid scintillation counting. Incubation medium was left
overnight at 4°C and centrifuged at 15,000 g for 5 min,
after which the 14C-labelled acid soluble metabolites were
quantified.

Fatty acid uptake Myoblasts were grown as described and
differentiated for 6 days. Fatty acid uptake rates were
determined as previously described [38]. Cells were
incubated with or without 100 nmol/l insulin for 20 min
and then for 4 min in FBS-free medium containing 7.4 kBq/ml
[1-14C]palmitic acid (Perkin Elmer) and 20 μmol/l cold
palmitate conjugated to fatty acid-free BSA. Cells were then
washed with ice-cold PBS and collected with 0.1 mol/l
NaOH.

Glycogen content Myotubes were suspended in PBM
buffer (20 mmol/l KH2PO4, 10 μmol/l CaCl2, 1 mmol/l
MgCl2, pH 6.1) and lysed by freeze–thaw. Samples were
boiled for 20 min in 30% KOH (wt/vol.) saturated with
anhydrous Na2SO4. Glycogen was precipitated with 95%
ethanol (vol./vol.), dissolved in double distilled H2O and
incubated for 20 min with 0.2% anthrone (wt/vol.) in
H2SO4 at 100°C. Glycogen concentration was determined
spectrophotometrically relative to an oyster glycogen
standard curve and normalised to protein content.

Glucose uptake Glucose uptake was assayed as described
previously [39]. Myotubes were washed with uptake buffer
(136 mmol/l NaCl, 4.7 mmol/l KCl, 1.25 mmol/l
MgSO4∙7H2O, 1.2 mmol/l CaCl∙2H2O, 20 mmol/l HEPES;
pH 7.4) and incubated at 37°C for 20 min with or without
100 nmol/l insulin. Cells were exposed to 18.5 kBq/ml
2-deoxy[3H]glucose and 100 μmol/l cold 2-deoxy-glucose
for 10 min, then washed and collected.

Glycogen synthesis Glycogen synthesis was assayed as
described previously [40]. Myotubes were glucose/serum-

starved for 1.5 h, incubated for 3 h in DMEM containing
5.5 mmol/l glucose and 18.5 kBq/ml 2-deoxy[3H]glucose
with or without 100 nmol/l insulin, and then washed and
collected. Lysates were incubated for 20 min at 100°C in
the presence of 6.3 μg/µl oyster glycogen. Glycogen was
precipitated in ethanol, washed and then dissolved in
double distilled H2O.

RNA extraction and quantitative RT-PCR RNA was
extracted from myotubes with Trizol and flash-frozen.
RNA was column-purified using a kit (RNeasy Fibrous
Mini Kit; Qiagen, Mississagua, ON, Canada). Primers and
probes were designed for PGC-1α (also known as
PPARGC1A), mTFA (also known as TFAM) and NRF1
using Primer Express 2.1 (Applied Biosystems) (Electronic
supplementary material [ESM] Table 1). The concentration
of target mRNAs was determined by quantitative RT PCR
using Taqman primers and fluorescent probes as detection
system. The quantitative RT-PCR was performed on a
device (ABI PRISM 7900; Applied Biosystems, Foster
City, CA, USA) using the following variables: one cycle of
48°C for 30 min, then 95°C for 10 min, followed by 40
cycles at 95°C for 15 s and at 60°C for 1 min. All
expression data were normalised to the housekeeping gene
RPLP0.

Western blotting Electrophoresis of cell lysates was carried
out on 10% polyacrylamide gel (wt/vol.) and proteins were
transferred to a nitrocellulose membrane. Primary anti-
bodies were: manganese superoxide dismutase (MnSOD)
(sc-30080; Santa-Cruz, Santa Cruz, CA, USA), peroxisome
proliferator-activated receptor γ coactivator 1α (PGC-1α)
(sc-13067; Santa-Cruz), cytochrome c oxidase (MS404;
MitoSciences, Eugene, OR, USA), P-Akt (Ser473 #9271;
Cell Signaling, Beverly, MA, USA), Akt (9272; Cell
Signaling) and β-actin (4967 L; Cell Signaling). Secondary
antibodies were: goat anti-rabbit horseradish peroxidase
and goat anti-mouse horseradish peroxidase (sc-2030 and
sc-2031, respectively; Santa Cruz). Visualisation was
achieved using a chemiluminescence kit (ECL; Amersham
Pharmacia, Pittsburgh, PA, USA).

Statistical methods A Student’s t test or a two-way
ANOVA with Bonferroni correction was used to assess
statistical differences between groups. Confidence intervals
were set at 95%.

Results

Participants The PRKAG3 R225W mutation carriers
assessed in this study are a subset of the population
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identified previously [18]. These participants were matched
with control participants on the basis of sex, age, weight,
BMI and physical activity. Physical activity was assessed
through the International Physical Activity Questionnaire.
No significant differences were noted in fasting values for
plasma lipids, glucose, insulin and lactate in these individ-
uals (Table 1).

Muscular fatigue R225W carriers demonstrated a remark-
able resistance to fatigue relative to matched controls as
assessed by electromyography during 60 s isometric
contraction (p<0.05) (Fig. 1c). The rate of fatigue was
determined by a linear regression of the mean frequency of
contraction over time (mV/s). A negative slope (decrease in
contraction frequency) is indicative of fatigue, whereas a
flat line or positive slope indicates resistance to fatigue
(representative electromyography traces) (Fig. 1a, b).
Interestingly, the R225W carriers had an increase in mean
frequency of contraction over time.

Fuel storage Previously our laboratory has shown ex vivo
that muscle fibres from PRKAG3 R225W carriers have
∼30% lower IMTG content and ∼90% higher glycogen
content [18]. In the current study we examined fuel storage
in satellite cells isolated from the vastus lateralis of R225W
carriers. Myotubes from volunteers with the PRKAG3
R225W mutation had ∼30% more glycogen than myotubes
from matched controls (p<0.01). Paradoxically, the acute
treatment of control and R225W myotubes with AICAR
resulted in a decrease in glycogen content (p<0.001)
(Fig. 2a). Basal glycogen synthesis rates were 2.3-fold
higher in R225W myotubes than in control myotubes
(Fig. 2b). Insulin stimulation of the cells resulted in a 1.8-
fold increase in glycogen synthesis rate in control myo-
tubes, but had no effect on R225W myotubes (p<0.05)
(Fig. 2b).

Myotubes from R225W carriers had somewhat de-
creased IMTG stores compared with cells from control

participants (Fig. 2c). Interestingly, acute treatment of
myotubes with the AMPK activator AICAR resulted in a
trend towards decreased IMTG stores in the control cells,
but not in the R225W cells.

Fatty acid uptake and oxidation There were no differences
in basal fatty acid uptake between control and R225W
myotubes; however, control myotubes showed a ∼20%
increase in fatty acid uptake when stimulated with insulin,
whereas R225W myotubes showed no change (Fig. 2d).
Cells from R225W carriers exhibited a trend towards
increased complete fatty acid oxidation, but this did not
reach statistical significance. No differences were observed
in incomplete fatty acid oxidation (Fig. 2e).

Oxidative capacity Mitochondrial content was threefold
greater in myotubes from R225W carriers than in matched
control participants (p<0.01) (Fig. 3a). Cytochrome c
oxidase activity and citrate synthase activity were also
measured as markers for electron transport chain and
tricarboxylic acid (TCA) cycle capacity, respectively.
R225W cells exhibited 2.5-fold higher cellular cytochrome
c oxidase activity at the cellular level (p<0.01), but no
difference in cytochrome c oxidase activity per mitochon-
drion (Fig. 3c, d). Interestingly, citrate synthase activity was
ninefold higher in R225W myotubes at the cellular level
(p<0.05) and threefold higher per mitochondrion (p<0.05),
compared with control cells (Fig. 3e, f). These results are
consistent with the idea that in R225W cells enhanced TCA
cycle capacity is greater than that anticipated due to the
increases in mitochondrial content. However, no significant
differences were observed in the relative cellular amounts
of the TCA cycle intermediates, succinate, α-ketoglutarate,
citrate, fumarate or malate (ESM Methods and ESM
Table 2).

We also tested for differences in oxidative characteristics
of the cells by examining cellular oxygen consumption
rates. Maximal oxygen consumption and mitochondrial
proton leak-dependent respiration were evaluated in the
presence of the chemical uncoupler FCCP or the inhibitor
of ATP synthase, oligomycin. Myotubes from R225W
carriers demonstrated ∼2.5-fold higher maximal oxygen
consumption (p<0.01) (Fig. 3b), consistent with the
observed increases in mitochondrial content. They also
exhibited elevated proton leak-dependent respiration
(p<0.05) and a trend toward increased resting oxygen
consumption. No significant differences were observed in
extracellular acidification rate, a proxy measure of the rate
of glycolysis (data not shown).

Gene expression and protein levels To assess factors
mediating the increased mitochondrial content observed in
R225W myotubes, mRNA expression levels of the mito-

Table 1 Baseline characteristics of carriers of the PRKAG3 R225W
mutation and matched controls

Characteristic Control R225W

Age (years) 44.3±5.2 43.5±7.7

BMI (kg/m2) 28.6±4.1 29.6±4.2

Glucose (mmol/l) 4.83±0.22 4.95±0.38

Insulin (pmol/l) 0.085±0.011 0.108±0.019

Lactate (mmol/l) 1.47±0.014 1.60±0.014

Serum NEFA (mmol/l) 0.500±0.045 0.470±0.077

Maximal force output (N) 439.8±53.9 423.6±57.7

Values are means ± SEM

p=NS for all values, Student’s t test
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Fig. 2 Fuel storage in differentiated human myotubes. a Glycogen
and c IMTG content normalised to total cellular protein in the basal
state or following a 2 h treatment with 2 mmol/l AICAR. b Rate of
glycogen re-synthesis following 1.5 h glucose/serum starvation in the
presence or absence of 100 nmol/l insulin. d Rate of fatty acid uptake
in the presence or absence of 100 nmol/l insulin. e Rate of incomplete

and complete fatty acid oxidation expressed, respectively, as the rate
of labelled acid soluble metabolite (14C-ASM) and rate of CO2

production (14CO2). Black bars, R225W carriers; white bars, control
participants. Means ± SEM, n=3. p<0.05 for effect of genotype and
treatment; *p<0.05, **p<0.01, ***p<0.001 (two-way ANOVA with
Bonferroni correction)

Fig. 1 Quadriceps maximal force and rate of fatigue. a Representative
electromyography traces of the vastus lateralis (red), rectus femoris
(green) and vastus medialis (blue) during the 60 s isometric
contraction in control and b R225W carrier individuals. c Rates of

fatigue as quantified by change in mean frequency of an isometric
contraction at 80% of maximal concentric force over 60 s. Means ±
SEM, n=4. *p<0.05 Student’s t test
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chondrial transcription factors PGC-1α, mTFA and NRF1
were quantified. While a trend for increased PGC-1α mRNA
was observed, the inter-participant variability in these genes
was much greater than any clear difference between groups
(Fig. 4a). Protein levels of cytochrome c oxidase were found
to be ∼2.5-fold higher in R225W myotubes (p<0.05;
Fig. 4b, c). The P-Akt:Akt ratio was moderately increased
in R225W participants under basal conditions, but did not
reach significance. There were no differences in P-Akt:Akt
ratio between affected and control cells; however, the
expected increases in phosphorylation upon addition of
insulin were observed for both groups (Fig. 4b, d). No
significant differences were observed in the protein levels of
the transcription factor PGC1-α or the mitochondrial
reactive oxygen species scavenger MnSOD (Fig. 4b, c).

Glucose uptake in vitro and in vivo Relative to control cells,
R225W myotubes exhibited 80% higher basal glucose

uptake rates (p<0.01) (Fig. 5a). R225W myotubes demon-
strated similar absolute changes in glucose uptake following
insulin stimulation relative to control myotubes (Fig. 5b).

Glucose uptake was measured in vivo by FDG-PET in
resting and exercised quadriceps following a 30 min unilat-
eral leg extension exercise against a constant resistance
equivalent to 11% of the participant’s maximal force output
(Table 1). While three of the four R225W participants
exhibited a trend towards increased total and maximal FDG
uptake in the exercised leg (p=0.054), one exhibited very
low levels of FDG uptake in the exercised leg (Fig. 6e, f).
This latter individual also had elevated plasma cortisol
outside the normal range (Fig. 6g). A larger volume of
quadriceps muscle actively taking up FDG in the exercising
leg was also apparent in R225W carriers, as defined by the
volume of skeletal muscle meeting the threshold SUVof 1.0
in the exercising leg (p<0.05) (Fig. 6e). No differences were
observed in the resting leg (data not shown). No differences

Fig. 3 Mitochondrial content
and oxidative capacity in differ-
entiated human myotubes.
a Mitochondrial yield as mito-
chondrial protein content
per cellular protein content.
b Basal oxygen consumption,
leak-dependent oxygen con-
sumption (500 ng/ml oligomy-
cin) and maximal oxygen
consumption (1 μmol/l FCCP).
Black bars, R225W carriers;
white bars, control participants.
c Cytochrome c oxidase activity
normalised to cellular or d mi-
tochondrial protein. e Citrate
synthase activity normalised
to cellular or f mitochondrial
protein. Mean ± SEM, n=3.
*p<0.05 and **p<0.01
(Student’s t test)
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were observed in serum glucose or lactate with exercise;
however, the relative increase in serum NEFAwas higher in
the carriers of the R225W mutation than in matched controls
(p<0.05) (Table 2).

Discussion

AMPK is an important regulator of cellular and whole-body
energy metabolism. Despite extensive characterisation of
acute AMPK activation, the metabolic effects of chronic
AMPK activation, especially in humans, are poorly
understood. In previous ex vivo histological analyses, we
have shown that carriers of the PRKAG3 R225W mutation
have a 90% increase in skeletal muscle glycogen and a 30%
decrease in IMTG stores compared with matched controls
[18]. The current study further characterises the skeletal
muscle metabolism of these participants in vivo and in
vitro.

Consistent with AMPK’s reported role in mitochondrial
biogenesis through the induction of PGC-1α [11, 24],
mitochondrial content and oxidative capacity were found to
be significantly higher in the myotubes of R225W carriers
than in myotubes of matched control participants. A trend
for increased PGC-1α mRNAwas observed in myotubes of
R225W carriers, but there were no differences in PGC-1α
protein levels. Despite the lack of change in protein levels,
chronic AMPK activation may still result in indirect
activation of PGC-1α. Jager et al. have previously shown
that AMPK activation results in the phosphorylation of
PGC-1α [11] and Canto et al. demonstrated that activation
of AMPK results in activation of the NAD+ dependent
deacetylase, sirtuin 1, which in turn deacetylates and
activates PGC-1α [41]. Mitochondrial leak-dependent
respiration was also 1.6-fold higher in R225W myotubes,
probably as a result of the increased mitochondrial content.

Interestingly, the activity of citrate synthase per mito-
chondrion was increased in R225W myotubes, suggesting
enhanced TCA cycle capacity. Elevated glucose uptake in

Fig. 5 Rate of glucose uptake in differentiated human myotubes. a Rate
of glucose uptake in the presence or absence of 100 nmol/l insulin.
b Fold-change in rate of glucose uptake following 100 nmol/l insulin
stimulation. Black bars, R225W carriers; white bars, control partici-
pants. Means ± SEM, n=3; *p<0.05 and **p<0.01 (two-way ANOVA
with Bonferroni correction)

Fig. 4 mRNA expression and
protein levels in differentiated
human myotubes. a PGC-1α,
mTFA and NRF1 mRNA ex-
pression levels relative to
RPLP0. b PGC-1α, MnSOD,
cytochrome c oxidase (COX-I)
and P-Akt protein levels relative
to β-actin. P-Akt was produced
in the presence and absence of
100 nmol/l insulin (Ins). Black
bars, R225W carriers; white
bars, control participants. c, d
Representative western blots as
labelled. Means ± SEM, n=3;
*p<0.05 (Student’s t test)
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myotubes of R225W participants may be responsible for
the increases in TCA cycle activity (or vice versa);
however, we were unable to detect differences in TCA
metabolite levels. The lack of a corresponding increase in
electron transport chain capacity (as measured by cyto-
chrome c oxidase activity) suggests that these TCA cycle
metabolites may be being diverted to alternative pathways.

R225W carriers also exhibited reduced rates of muscular
fatigue, which is consistent with previous reports of
increases in the time to 50% fatigue in mice with the
analogous Prkag3 R225Q mutation [42]. Based on results

from the in vitro analyses, it is possible that the increase in
isometric performance and resistance to fatigue in vivo is
due to a combination of the increased glycogen content,
glycogen synthesis rate and oxidative capacity seen in
myotubes from carriers of the PRKAG3 R225W mutation.

While previous studies have documented enhanced
glucose uptake in response to acute activation of AMPK,
either through exercise or treatment with AICAR in animal
and cell culture models, respectively [28, 43], these effects
have not been previously evaluated in humans in vivo. We
examined the effects of the R225W mutation of the gene
encoding AMPKγ3 on in vivo glucose uptake in exercised
quadriceps as measured by FDG uptake using PET
imaging. Three of four participants carrying the R225W
polymorphism exhibited a larger volume of muscle actively
taking up FDG as well as a trend towards increased total
FDG uptake in the exercised quadriceps. The remaining
carrier of the PRKAG3 R225W mutation exhibited ex-
tremely low levels of FDG uptake. This low level of FDG
uptake may be due, in part, to abnormally elevated levels of
serum cortisol, a potent inhibitor of skeletal muscle glucose
uptake [44]. This participant was not an outlier in any of the
in vitro assays or in the muscular fatigue evaluations,
suggesting that the increase in cortisol was likely to have

Fig. 6 Quadriceps glucose
uptake in vivo. Participants per-
formed a 30 min unilateral leg
extension exercise with their
dominant leg against a resis-
tance equivalent to 11% of their
maximal concentric force,
followed by a PET/computed
tomography (CT) scan.
a, c Representative PET and
b, d PET/computed tomography
overlay images. e Total volume
of muscle actively taking up
glucose (SUV>1). f Total FDG
uptake in the exercised leg.
g Baseline plasma cortisol
levels. Red symbols, outliers.
**p<0.01 and †p=0.052
(Student’s t test)

Table 2 Absolute changes in metabolites following a 30 min
unilateral leg extension exercise against a resistance equivalent to
11% of maximal concentric force

Variable Control R225W p value

Glucose (mmol/l) 0.040±0.065 0.060±0.078 NS

Insulin (pmol/l) −0.003±0.014 0.030±0.027 NS

Lactate (mmol/l) 0.200±0.284 0.120±0.136 NS

Serum NEFA (mmol/l) 0.010±0.028 0.136±0.023 <0.05

Cortisol (nmol/l) −35.32±29.80 −59.87±22.57 NS

Values are mean ± SEM

1994 Diabetologia (2010) 53:1986–1997



been a stress-related response to the testing protocol. The
increase in plasma fatty acids in R225W carriers during
exercise may indicate a blunted increase in fatty acid uptake
in muscle in response to exercise, stemming in turn from a
greater proportional reliance on endogenous glucose and
glycogen fuel stores in the muscle of individuals with the
PRKAG3 R225W mutation.

The mechanism responsible for a greater glucose uptake
in R225W carriers during exercise may be elevated skeletal
muscle GLUT4 levels, which has been previously demon-
strated in Sprague–Dawley rats chronically treated with
AICAR [32]. However, GLUT4 (also known as SLC2A4)
expression in the control and R225W primary human
myotubes was undetectable via quantitative RT-PCR (data
not shown). Despite the very low GLUT4 mRNA expres-
sion in human myotubes, rates of glucose uptake and
glycogen synthesis in myotubes from R225W carriers were
twofold higher than in matched controls. Moreover, there
were no differences in insulin sensitivity. These results
suggest that AMPK-mediated glucose uptake may be
occurring through an insulin-independent pathway. Future
studies are necessary to determine the mechanism by which
glucose uptake in R225W myotubes is increased.

Despite the accepted role of AMPK in the inhibition of
anabolic pathways such as glycogen synthesis, carriers of
the PRKAG3 R225W mutation have increased muscular
glycogen stores [18]. This increase in basal glycogen
storage is consistent with the increased rates of glycogen
synthesis observed in the myotubes of affected individuals
and the increased cardiomyocyte accumulation of glycogen
observed in carriers of the homologous PRKAG2 R302Q
mutation [45]. During chronic AMPK activation, AMPK-
stimulated glucose uptake may override inhibition of
glycogen synthase by AMPK, resulting in enhanced
glycogen storage. Similar effects of glycogen super-
compensation have been previously observed in AICAR-
treated Sprague–Dawley rats [32]. However, further AMPK
activation through acute AICAR stimulation resulted in a
decrease in glycogen levels in myotubes from control and
R225W carriers. While this reduction in glycogen content
following acute AICAR treatment may have resulted from
the phosphorylation of glycogen synthase kinase by
AMPK, it may also be the result of allosteric activation of
glycogen phosphorylase by AICAR [26, 46, 47].

In vitro analysis of IMTG stores revealed a trend
towards a slight decrease in R225W myotubes, which
paralleled similar decreases in matched control participants
following acute AMPK activation with AICAR. This trend
is consistent with previous ex vivo histological analyses of
these participants [18]. This modest decrease in IMTG
content may be explained in part by a trend towards
increased complete fatty acid oxidation in R225W myo-
tubes. Acute activation of AMPK has been shown to result

in the phosphorylation and inactivation of acetyl-CoA
carboxylase, a key enzyme regulating the balance between
fatty acid biosynthesis and oxidation [13, 48]. Inactivation
of acetyl-CoA carboxylase leads to a decrease in fatty acid
synthesis and a concomitant increase in fatty acid oxidation,
resulting in depletion of IMTG stores [49, 50].

The observed decrease in IMTG content, and increases
in glycogen content and oxidative capacity in human
myotubes with the PRKAG3 R225W mutation are consis-
tent with the previous animal models with the homologous
R225Q mutation [19, 23]. Interestingly, Barnes et al. have
demonstrated that when fed a high-fat diet, mice expressing
the Prkag3 R225Q mutation were protected from skeletal
muscle IMTG accumulation and insulin resistance relative
to control and γ3-knockout mice [23]. Similar studies in
long-term AICAR treatment of rats reported reduced
metabolic disturbances and lowered blood pressure in rats
displaying features of the insulin resistance syndrome [51].
Finally, muscle-specific ablation of AMPKα2 activity has
been shown to exacerbate insulin resistance induced by
high-fat feeding of mice [52].

In summary, the above findings of enhanced glucose
uptake, oxidative capacity and delayed onset of muscular
fatigue suggests that the PRKAG3 R225W mutation may be
beneficial to the exercise performance capabilities of
affected participants. As a direct result of this mutation,
these individuals are likely to have an enhanced capacity
for endurance exercise. These results are also consistent
with the hypothesis that the γ3 subunit of AMPK may
indeed be a suitable tissue-specific target for the treatment
of type 2 diabetes mellitus, a condition in which glucose
uptake and mitochondrial function are impaired.
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