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Abstract
Aims/hypothesis Due to their ability to regulate various
signalling pathways (cytokines, hormones, growth factors),
the suppressor of cytokine signalling (SOCS) proteins are
thought to be promising therapeutic targets for metabolic
and inflammatory disorders. Hence, their role in vivo has to
be precisely determined.
Methods We generated transgenic mice constitutively pro-
ducing SOCS-3 in skeletal muscle to define whether the

sole abundance of SOCS-3 is sufficient to induce metabolic
disorders and whether SOCS-3 is implicated in physiolog-
ical roles distinct from metabolism.
Results We demonstrate here that chronic expression of
SOCS-3 in skeletal muscle leads to overweight in mice and
worsening of high-fat diet-induced systemic insulin resis-
tance. Counter-intuitively, insulin sensitivity in muscle of
transgenic mice appears to be unaltered. However, following
constitutive SOCS-3 production, several genes had deregu-
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lated expression, among them other members of the SOCS
family. This could maintain the insulin signal into skeletal
muscle. Interestingly, we found that SOCS-3 interacts with
calcineurin, which has been implicated in muscle contractility.
In Socs-3 transgenic muscle, this leads to delocalisation of
calcineurin to the fibre periphery. Relevant to this finding,
Socs-3 transgenic animals had dilatation of the sarcoplasmic
reticulum associated with swollen mitochondria and de-
creased voluntary activity.
Conclusions/interpretation Our results show that constitutive
SOCS-3 production in skeletal muscle is not in itself sufficient
to induce the establishment of metabolic disorders such as
diabetes. In contrast, we reveal a novel role of SOCS-3, which
appears to be important for muscle integrity and locomotor
activity.
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Abbreviations
CIS Cytokine-inducible SH2-containing protein
CNTF Ciliary neurotrophic factor (CNTF)
DHPR Dihydropyridine-sensitive L-type calcium channel
EDL Extensor digitorum longus
GSK-3 Glycogen synthase kinase-3
GST Glutathione S-transferase
HFD High-fat diet
IPGTT Intra-peritoneal glucose tolerance test
IPITT Intra-peritoneal insulin tolerance test
MLC Myosin light chain
PKB Protein kinase B
r-t PCR real-time PCR
RyR Ryanodine receptors
SDH Succinate dehydrogenase
SOCS Suppressor of cytokine signalling

Introduction

Suppressor of cytokine signalling (SOCS) proteins are
feedback inhibitors of signalling pathways induced by a
wide panel of stimuli, including hormones, cytokines and
growth factors. This family of regulators is composed of
SOCS-1 to SOCS-7 and the cytokine-inducible SH2-
containing protein (CIS) [1]. Upon induction by various
stimuli, SOCS protein levels rapidly increase, but content is
only transiently augmented. First revealed as repressors of
cytokine signalling, SOCS proteins have been shown to be
also potent inhibitors of hormone-induced signalling. In
brief, we and others have reported that SOCS-3 produced in

response to insulin attenuates subsequent propagation of
insulin signalling by hampering binding and phosphoryla-
tion of IRSs [2, 3] and by targeting IRS-1 and IRS-2 for
proteasomal degradation [4]. The impact of SOCS-3 on
metabolism can also occur via inhibition of leptin signal-
ling, which regulates food intake, energy balance and
neuroendocrine functions [5, 6].

Several mouse models have been generated to investi-
gate the role of SOCS-3 in vivo. Thus, Socs-3-deficient
mice demonstrated the implication of SOCS-3 in regulating
leptin signalling pathways in neurons [7, 8]. Moreover,
SOCS-3 constitutive production in liver decreased IRS
tyrosine phosphorylation [3] and induced systemic insulin
resistance and hepatic steatosis [9, 10]. However, using
transgenic mice constitutively producing SOCS-3 in adi-
pose tissue, it has been shown that SOCS-3 decreases
insulin signalling in adipose tissue, but this is insufficient to
induce organismal hormone resistance [11]. Finally, a study
of transgenic mice producing high levels of SOCS-3 in
pancreatic beta cells suggests a role of SOCS-3 in
controlling growth hormone and cytokine pathways in vivo
[12, 13]. While collectively these data suggest that SOCS-3
profoundly affects cell physiology, the signalling pathways
modulated by SOCS-3 appear to vary from one tissue to
another.

Despite the key role of skeletal muscle in the control of
organismal glucose homeostasis, the role of SOCS-3 in this
tissue has been studied mainly using cultured cells. Indeed,
it was shown that SOCS-3 expression can be induced by
IGF-1 during C2C12 myoblast differentiation [14]. SOCS-3
can also attenuate insulin-stimulated glycogen synthesis in
L6 myotubes [3]. In vivo, abundance of SOCS-3 in skeletal
muscle has been shown in several pathophysiological
conditions such as exercise, insulin resistance and obesity
[3, 15]. However, it is still a matter of debate whether
augmented levels of SOCS-3 is a cause or a consequence of
insulin resistance.

Interestingly, SOCS-3 production can be induced by
catecholamines [16], which play a crucial role in muscle
contraction. In addition, the ability of SOCS-3 to interact
with calcineurin and to hamper its downstream signalling
has been reported [17]. Even though these results were
obtained in a system different from myocytes, it is
important to note that fluxes of Ca2+, necessary for skeletal
muscle functioning, are tightly regulated by calcineurin
[18].

Collectively, most of the data would suggest that SOCS-
3 plays an important role in regulation of skeletal muscle
metabolism. Hence, we generated transgenic mice consti-
tutively producing SOCS-3 in skeletal muscle to investigate
whether the sole abundance of SOCS-3 is sufficient to
induce metabolic disorders and whether SOCS-3 plays
physiological roles beyond regulation of metabolism.
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Methods

Materials

Rabbit antibodies to IRS-1 and IRS-2 used for immuno-
precipitation were home-made and from Upstate Biotech-
nology (Lake Placid, NY, USA), respectively. Antibodies to
SOCS-3 and glycogen synthase kinase-3 (GSK-3)β were
purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA) and those to phospho-GSK-3α/β (Ser21/9),
protein kinase B (PKB) (aa 466-473) and phospho-PKB
(Ser 473) were from Cell Signaling Technology (Danvers,
MA, USA). Antibodies to p85 and IRS-1 for western
blotting were from Upstate Biotechnology. The anti-
calcineurin (Pan A polyclonal antibody, AB 1695) was
from Chemicon (Millipore, Billerica, MA, USA). For all
experiments, we used human insulin (Insuman Rapid;
Aventis Pharma Deutschland, Frankfurt, Germany).

Generation of transgenic myosin light chain/Socs-3 mice

The myosin-light chain (MLC) 1 promoter/enhancer has
been previously used for restricted expression in skeletal
muscle [19, 20]. Briefly, a flag-tagged 0.7 kb EcoRI–EcoRI
fragment containing the entire coding sequence of mouse
Socs-3 cDNA (from D. Hilton, The Walter and Eliza Hall
Institute of Medical Research, VIC, Australia) was intro-
duced in pMDAF2-MLC1. Our mice had a C57BL/6
background. Care of animals was performed in accordance
with the Guidelines for the care and use of laboratory
animals of the National Institute of Health and Medical
Research of France (INSERM, France).

RNA extraction, reverse transcription and real-time PCR

Frozen tissues were homogenised in Trizol (Invitrogen Life
Technologies, Gaithersburg, MD, USA), and RNAs were
extracted and reverse-transcribed (AMV-RT; Promega,
Madison, WI, USA). cDNAs were analysed using SYBR
Green real-time PCR (ABI PRISM 7000 Sequence Detector
System, Applied Biosystems, Foster City, CA, USA). The
amount of cDNA used in each reaction was normalised to
housekeeping 36b4 (also known as Rplp0) cDNA.

Animal studies and metabolic analysis

Mice were housed on a 12 h light/dark cycle and placed at
5 weeks old on a high-fat diet (HFD) (42% fat, TD-88137;
Harlan Teklab, Madison, WI, USA) or standard chow diet
with free access to diet and water. Body weight and food
intake were measured weekly. For intra-peritoneal glucose
tolerance test (IPGTT) and intra-peritoneal insulin tolerance
tests (IPITT), 2 mg/g body weight and 0.75 mU/g body

weight of glucose and insulin, respectively, were injected
intraperitoneally. Glycaemia was measured using a gluc-
ometer (One Touch; Lifescan, Milpitas, CA, USA).

Ex vivo insulin signal in isolated muscles

Stimulation of intact extensor digitorum longus (EDL)
muscle ex vivo with insulin (1 nmol/l) was done in Krebs–
Ringer buffer as previously described [21]. For protein
extraction, tissues were lysed as previously described [22]
and proteins were quantified (BCA protein assay kit;
Pierce/Thermo Scientific, Rockford, IL, USA), separated
by SDS-PAGE, transferred to PVDF membranes and
blotted with antibodies. Immunoreactive proteins were
revealed by enhanced chemiluminescence.

Microarray

cDNA was generated from 300 ng of total RNA using a kit
(GeneChip WT cDNA Synthesis and Amplification Kit;
Affymetrix, Santa Clara, CA, USA) and was fragmented and
end-labelled using the Terminal Labeling Kit (GeneChip WT;
Affymetrix). Labelled DNA targets were hybridised to the
Affymetrix GeneChip Mouse Gene 1.0 ST Array at 45°C for
17 h, according to manufacturer’s recommendations. Hybri-
dised arrays were washed and stained on a GeneChip Fluidics
Station 450 and scanned on a GeneChip Scanner 3000 7G
(Affymetrix). Gene expression levels were estimated using
Gene Level-RMA sketch method in Expression Console
software (Affymetrix). Normalised data were then analysed
with the lima package from Bioconductor [23]. Microarray
data are archived in GEO website (www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?token=jpwtxqieaucgihm&acc=GSE17063,
accessed 20 July 2009).

Glutathione S-transferase pull-down and proteomics

For glutathione S-transferase (GST) pull-down experiments,
muscle lysates were incubated with GST or GST/SOCS-3
beads for 75 min at room temperature. Interacting proteins
were separated by SDS-PAGE and analysed by western
blotting or proteomics [24].

Histological analysis

Staining for succinate dehydrogenase (SDH) has been
described elsewhere [25]. Cryosections were cut from the
middle portion of frozen tibialis anterior muscle. The
number of SDH-positive fibres (moderately or darkly
stained) was counted in whole-muscle sections.

For transmission electron microscopic analysis, tibialis
anterior muscle fragments were fixed in 2.5% (vol./vol.)
glutaraldehyde and 2% (vol./vol.) paraformaldehyde, post-
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fixed in 1% (vol./vol.) osmium tetroxide, stained in
aqueous uranyl acetate, dehydrated and embedded in epoxy
resin. Ultrathin sections (70 nm) were stained using lead
citrate and examined by transmission electron microscopy
(H-7000; Hitachi, Schaumburg, IL, USA).

For immunohistochemistry, the following antibodies
were used: rabbit anti-human calcineurin antibody (1:100)
and goat anti-mouse SOCS-3 antibody (1:100) (both from
Santa Cruz Biotechnology); biotinylated anti-rabbit IgG
(Vector Laboratories, Burlingame, CA, USA); and strepta-
vidin Alexa Fluor 488 and anti-goat Alexa Fluor 568 (both
from Molecular Probes). ToPro3 iodide (Molecular Probes/
Invitrogen/Life Technologies, Carlsbad, CA, USA) for
nuclear counterstaining was used for laser-scanning confo-
cal analysis (TCS SP2; Leica Microsystems, Wetzlar,
Germany).

Indirect calorimetry and locomotor activity

The following metabolic variables were measured on
individually-caged mice (Oxylet, Panlab-Bioseb, Chaville,
France): oxygen consumption ðV:O2Þ, carbon dioxide pro-
duction ðV: CO2Þ, energy expenditure and locomotor activity
[26]. Measurements were performed over a 24 h period and
data were averaged for each mouse. Physical activities of the
mice were monitored by an infrared photocell beam-
interruption method (Panlab-Bioseb, Chaville, France). For
voluntary exercise, mice were individually housed in cages
equipped with a 25 cm diameter wheel. The counter
connected to the wheel counts the number of run quarters
and was reset every day.

Statistical analysis

Results are presented as means±SEM. n represents the
number of mice. Differences between groups were com-
pared with the two-tailed unpaired Student’s t test. A p
value of ≤0.05 was considered significant.

Results

Constitutive production of SOCS-3 in skeletal muscle
of MLC/Socs-3 mice

SOCS protein level is very low under basal conditions. As
expected, SOCS-3 protein was detectable by western blot
exclusively in transgenic skeletal muscle (Fig. 1a). We
verified by real-time PCR that Socs-3 mRNA was consti-
tutively expressed only in skeletal muscle, but not in other
muscles of our transgenic mice (Fig. 1b). Expression of the
mRNA transgene is high in glycolytic and mixed muscles,
but less pronounced in the oxidative soleus muscle
(Fig. 1c). Our transgenic mice had normal fertility and a
Mendelian transgene distribution.

Metabolic study of MLC/Socs-3 mice

Weight and adipose mass Weight of transgenic and wild-
type mice was monitored for 14 weeks. As shown in
Fig. 2a, transgenic mice at 8 to 13 weeks of diet had a
weight gain significantly higher than that observed for
wild-type mice, both on standard chow and on HFD.
Next, we studied the adiposity of our mice and
demonstrated that transgenic mice, after 14 weeks on
HFD, had increased perigonadal fat mass (Fig. 2b) (for
cellular adiposity see Electronic supplementary material
[ESM] Fig. 1). This is representative of total white adipose
mass, which doubled in transgenic animals on HFD,
whereas brown adipose tissue mass was unchanged (data
not shown).

Food intake and energy expenditure in MLC/Socs-3
mice Measurement of energy intake indicated that from
8 to 14 weeks of diet (chow and HFD) transgenic mice
seemed to eat more than wild-type mice (Fig. 2c). However,
energy intake normalised for the mean weight of each
group of animals (Fig. 2d) suggested that the greater food
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Fig. 1 Generation of transgenic mice constitutively producing SOCS-
3 in skeletal muscle. a Total extracts from insulin-sensitive tissues (as
indicated) were prepared from wild-type (wt) and transgenic (tg) mice
and analysed by western blot with antibody to SOCS-3. b Socs-3
transgene expression is restricted to skeletal muscle. Heart, diaphragm
and skeletal muscles were isolated from transgenic (black bars) and

wild-type (white bars) mice (n=2). RNA was extracted and analysed
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analysed as above (b)
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intake in transgenic mice reflected their increased body
mass. Thus, despite a similar energy intake per g body
weight, the MLC/Socs-3 mice gained more weight than
their wild-type littermates.

Since the two major factors regulating weight gain
are food intake and energy expenditure, we next
analysed whether our transgenic mice had altered energy
expenditure. As shown in Fig. 2e, the V

:
O2 intake was

reduced by 16% and 12% in transgenic mice during day
and night, respectively. The decrease in V

:
O2 calculated

during the night was not statistically significant (p=0.07).
Compatible with the V

:
O2 measurements, we observed

reduced energy expenditure in our transgenic mice both

during day and night (15.5% and 12.8%, respectively)
(Fig. 2f). These results strongly suggest that the fat
accumulation observed in MLC/Socs-3 mice could be due
to altered energy expenditure rather than to increased
food intake.

Insulin and glucose tolerance We performed IPGTT and
IPITT to define whether the transgenic mice were able to
properly regulate their glycaemia and whether they were
insulin-resistant.

Using IPGTT, we found that MLC/Socs-3 mice had
normal glucose tolerance (Fig. 3a). However, regulation of
glycaemia in response to insulin was altered in MLC/Socs-3
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Fig. 2 a, b MLC/Socs-3 trans-
genic mice have increased body
weight and enlarged fat mass
compared with wild-type litter-
mates on standard chow and
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type, n=7, white squares; trans-
genic, n=7, black diamonds) or
on HFD (wild-type, n=7, white
circles; transgenic, n=6, black
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week, starting at 5 weeks of age
and for 14 weeks (a). Perigona-
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lated from wild-type (white
bars) and transgenic (black bars)
mice at 24 weeks of age (chow
diet, n=5 per mouse type) and at
25 weeks of age (HFD, n=4 per
group), and weighed. c, d Sim-
ilar energy intake in MLC/ Socs-
3 transgenic mice compared
with wild-type littermates. Food
was weighed once a week and
converted to energy value (kJ).
An average per mouse and per
day was calculated for each
group (c). Food intake (kJ) was
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energy expenditure in MLC/
SOCS-3 transgenic mice com-
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mice on HFD (Fig. 3b). Importantly, the decreased insulin
sensitivity was not observed in a group of transgenic
animals with body weight similar to wild-type (ESM
Fig. 2a).

To summarise, compared with wild-type, MLC/Socs-3
mice on a HFD developed an exacerbated organismal
insulin resistance, which appears to be due to their
increased obesity.

MLC/Socs-3 mice have unaltered insulin signalling
in their skeletal muscle

Since it has been shown that SOCS-3 inhibits insulin
signalling in vitro [2], we sought to evaluate whether this
also occurred in the muscle of our transgenic animals.
However, we did not detect changes in insulin-induced IRS/
p85 co-immunoprecipitation and in PKB and GSK-3
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Fig. 3 a, b Metabolic study in MLC/Socs-3 transgenic mice. IPGTT
(a) and IPITT (b) in MLC/Socs-3 transgenic mice on chow (black
diamonds) and HFD (large black diamonds), and wild-type mice on
chow (small white squares) and HFD (large white squares). IPGTTs
were performed after a 16 h fast (overnight) and IPITTs after a 6 h
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on mice of 20 and 21 weeks of ages in HFD and chow diet groups
respectively. n=5–7 for each group, *p<0.05. c, d Insulin signalling is
not altered in skeletal muscle of chow-fed MLC/Socs-3 transgenic (tg,
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vivo with insulin (1 nmol/l) for 30 min. Total lysates and lysates
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activation in Socs-3 transgenic mice compared with wild-
type (Fig. 3c, d). Consistent with the unaltered insulin
signalling in transgenic muscle, glycogen synthesis in
response to insulin was similar in wild-type and transgenic
animals (ESM Fig. 2b). To summarise, in mice constitutive
SOCS-3 production in skeletal muscle failed to alter insulin
signalling in this tissue.

To define more precisely the molecular changes that could
explain the maintenance of insulin signalling in Socs-3
transgenic muscle, we performed an Affymetrix analysis on
MLC/Socs-3 and wild-type mice. Generally speaking, a
series of genes with modest variation in their expression
level was revealed (for complete data see GEO website;
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jpwtxqiea
ucgihm&acc=GSE17063, accessed 20 July 2009). Using r-t
PCR, we confirmed the most relevant gene variations in
tibialis and EDL muscles, and in three different groups of
animals. Some of the most interesting observations are
shown in Fig. 3e and f. Notably, we found that both Socs-2
and Cis (also known as Cish) had a threefold reduction in
their expression (e). Cntfr expression was increased (about
threefold), whereas Lpl mRNA was reduced (1.42-fold) in
Socs-3 transgenic muscle (f).

Potential role of SOCS-3 in interfering with muscle
calcineurin and in reducing locomotor activity

Our Affymetrix analysis revealed a set of genes that was
deregulated in skeletal muscle from Socs-3 transgenic
animals. Interestingly, some of them operate downstream
of the phosphatase calcineurin, i.e. Lpl and Smtck [27, 28].
Moreover, data obtained in T cells demonstrated an
interaction between calcineurin A and GST-SOCS-3 protein
[17]. We next examined whether a similar interaction could
occur in muscle of MLC/Socs-3 mice. In brief, using
whole-muscle lysate from wild-type animals, we performed
pull-down with GST-SOCS-3 (vs GST alone). Proteomic
analysis of proteins specifically associated with GST-
SOCS-3 revealed calcineurin A (Fig. 4a). This interaction
was confirmed by western blotting analysis (Fig. 4b).

Using immunohistochemistry we looked at calcineurin
localisation inside skeletal muscle. Consistent with previ-
ously published data [29], the calcineurin immunohisto-
chemical signal exhibited a pattern formed by discrete rows
of puncta that run transversally to the myofibril (Fig. 4c).
Remarkably, in transgenic animals, calcineurin was delo-
calised to the periphery of the fibres and the size of puncta
positively stained for calcineurin was increased. Interest-
ingly, immunostaining for calcineurin A and SOCS-3
showed co-localisation of calcineurin with SOCS-3 in
transgenic animals (Fig. 4d). Moreover, co-localisation
between calcineurin and SOCS-3 occurred mainly in areas
where the calcineurin signal was perturbed. Finally,

calcineurin protein level was unaltered in transgenic muscle
(ESM Fig. 3). Taken together, our results suggest that
constitutively produced SOCS-3 interacts with calcineurin
A in skeletal muscle in vivo, inducing its sequestration and
hence potentially altering its biological functions.

Constitutive SOCS-3 production changes muscle morphology

Calcineurin has been shown to be a key actor in the switch
of type II muscular fibres to type I, improving muscle
oxidative characteristics [27, 28, 30]. Thus, using in situ
staining of SDH activity, we investigated the effect of
constitutive SOCS-3 production on fibre distribution in
tibialis anterior. As shown in Fig. 5a, constitutive SOCS-3
production had no detectable effect on fibre number in
transgenic compared with wild-type mice and did not
change the percentage of SDH-positive fibres.

Calcineurin is also implicated in the calcium fluxes
involved in muscle contractility. Using transmission elec-
tron microscopy, we compared skeletal muscle morphology
of transgenic mice with wild-type. Interestingly, Socs-3
transgenic muscles showed a specific dilatation of the
cistern of sarcoplasmic reticulum with no modification of
the T-tubule structure (Fig. 5b). Moreover, mitochondria in
transgenic muscle were frequently abnormally shaped,
larger in size and of translucent appearance (Fig. 5c). In
line with mitochondrial alteration in Socs-3 transgenic
muscle, our Affymetrix and r-t PCR investigations revealed
decreased expression of the mitochondrial markers, Smtck
(1.41 fold) and Slc25a3 (2.16-fold) (Fig. 5d).

Given the crucial role of calcineurin and sarcoplasmic
reticulum in skeletal muscle contraction, we studied
whether constitutive production of SOCS-3 could impact
on locomotor activity. First, our analysis of longitudinal
movements suggested that the activity was significantly
diminished in transgenic mice (14.1% day, 13.7% night)
(Fig. 6a). To determine whether the transgenic animals have
perturbed locomotion, we estimated voluntary exercise of
wild-type and transgenic mice with similar weight using
wheel-coupled cages. We found that the transgenic animals
had reduced spontaneous physical activity. Moreover, this
decrease was exacerbated within 1 week of training (Fig. 6b).

Discussion

Several in vitro and in vivo studies have suggested that SOCS-
3 is implicated in development of insulin resistance and type 2
diabetes [3, 31–33]. However, it is still not clear whether
increased SOCS-3 levels in vivo are a cause or rather a
consequence of insulin resistance. In addition, SOCS-3
appears to affect signalling pathways differently depending
on the tissue in which its production is increased [10, 12].
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Considering the crucial contribution of muscle to glucose
homeostasis, we investigated the role of SOCS-3 in skeletal
muscle of intact animals using tissue-specific transgenic
mice.

The most striking observation of our study is the
pronounced obese phenotype of our transgenic mice. Their

overweight is present on a standard chow diet, but comes to
full bloom on a HFD. All white adipose depots analysed
were enlarged in transgenic mice leading to a twofold
increase in total white adipose mass. We further found that
our Socs-3 transgenic mice were very susceptible to
develop HFD-induced insulin resistance. However, this

Fig. 4 Potential regulation of
calcineurin functions by SOCS-
3. a, b A GST pull-down anal-
ysis was performed using GST
alone vs GST/SOCS-3 and
whole-cell lysate (WCL) from
wild-type gastrocnemius. Pro-
teomic (a) and western blot (b)
analyses revealed an interaction
between GST/SOCS-3 and cal-
cineurin (CnAα/β). MW, mo-
lecular weight. c, d Tibialis
anterior muscle from 15-week-
old wild-type (wt, n=5) or
transgenic (tg, n=5) mice were
fixed in paraformaldehyde and
embedded in paraffin. Immuno-
histochemistry was performed
using anti-calcineurin and anti-
SOCS-3 antibodies. For nuclear
counterstaining ToPro 3 iodide
was used. White arrows (c)
point to the calcineurin targeting
to fibre periphery in transgenic
animals (top, scale bars: 40 μm)
and the enlarged puncta staining
of calcineurin in transgenic ani-
mals (bottom, scale bars:
12 μm). d White arrows point to
the co-localisation of calcineurin
and SOCS-3 in enlarged puncta.
Scale bar, top: 30 μm; bottom:
20 μm

2208 Diabetologia (2009) 52:2201–2212



increased insulin resistance seems to be due to the
exacerbated obesity of transgenic mice and not directly to
the chronic production of SOCS-3 in muscle. In line with
this fact, constitutive SOCS-3 production does not appear
to affect insulin action in muscle when measured acutely.
At first glance this observation is counter-intuitive, as
several studies, including our own, have shown that
increased SOCS-3 levels results in decreased insulin
signalling in the tissue concerned [2, 3]. One of the
important differences between our transgenic mice and the
models used in the above-mentioned studies is the presence
of chronic vs acute SOCS production. Obviously prolonged
SOCS production is more likely to lead to compensatory
mechanisms aimed at maintaining homeostasis, such as the
reduction of other negative regulators of insulin action. In
fact, such a scenario might be occurring in our transgenic
mice, where, using Affymetrix and r-t PCR analyses, we
found that constitutive SOCS-3 production in muscle
resulted in decreased expression of several modulators of
insulin signalling. Thus, a significant decrease in Socs-2
and Cis was found. So far, SOCS-2 and CIS have been
implicated mainly in regulating postnatal growth [34, 35]
and very little is known about their role in skeletal muscle
metabolism. However, very recent data strongly suggest
that SOCS-2 is a key actor in modulating insulin signal in
muscle. Indeed, it has been shown that chemokine CXC
ligand-5 induces insulin resistance mainly by inhibiting
insulin signalling in muscle, which may be driven by
SOCS-2 production [36]. Moreover, a given SOCS protein
appears to promote the proteasomal degradation of other
SOCS proteins [37]. This suggests that SOCS proteins are
able to transregulate the expression of other members of the
family, leading to auto-regulatory compensatory mecha-
nisms. Such a scenario could counterbalance the effects of
increased SOCS-3 levels, hence explaining the unchanged
insulin signal in transgenic skeletal muscle, despite consti-
tutive SOCS-3 production.
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Fig. 5 a Constitutive production of SOCS-3 in skeletal muscle does
not change the amount of SDH-positive fibres in tibialis anterior.
Tibialis anterior muscle from 24-week-old wild-type (wt) or transgenic
(tg) mice were cryosectioned and stained for SDH activity. Total
number of fibres was determined on serial sections. Values are means±
SEM from three animals of each genotype. Scale bar: 1 mm. b, c
SOCS-3 constitutive production alters skeletal muscle ultra structure.
Tibialis anterior muscle from 15-week-old wild-type (wt, n=5) or
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Another candidate for maintaining insulin signalling in
our transgenic mice was revealed by Affymetrix analysis.
Indeed, the mRNA of Cntfr was increased in muscle from
transgenic animals. Previous data have strongly suggested a
role for ciliary neurotrophic factor (CNTF) in insulin
resistance and obesity [38, 39]. CNTF acts centrally and
peripherally; remarkably, it appears to reduce inflammatory
signalling cascades associated with lipid accumulation in
liver and muscle. By doing so, CNTF is thought to maintain
or restore insulin sensitivity in peripheral tissues.

Finally, we found a decrease in Lpl mRNA level in Socs-3
transgenic muscle. In line with the observations made in our
Socs-3 transgenic model, old and HFD-fed Smlpl−/− mice
developed obesity associated with systemic insulin resistance
[40]. Moreover, the same study shows that Lpl deletion in
skeletal muscle increased insulin signalling in this tissue.

Interestingly, Lpl is one of the genes regulated by the
calcineurin/NFAT pathway and drives part of the biological
effects of calcineurin [27]. Moreover, previous studies
in T cells have shown that SOCS-3 is able to interact
with calcineurin A, hampering the signal downstream of
calcineurin [17]. Using a GST-pull down analysis, we
demonstrated that calcineurin A from muscle interacts with
a GST-SOCS-3 fusion protein, suggesting that such an
interaction may in fact occur in Socs-3 transgenic muscle.
Indeed, as shown with our immunohistochemical analysis,
calcineurin co-localised perfectly with SOCS-3 in trans-
genic muscle. In addition, in transgenic mice, calcineurin

seems to be targeted to the periphery of the fibres and
increased punctated staining occurs. This suggests that by
sequestering calcineurin, SOCS-3 could alter its biological
function. Albeit controversial, calcineurin is thought to be
involved in transforming the fast-twitch skeletal muscle
fibres to a slow-twitch phenotype [41, 42]. In particular, it
has been shown that production of constitutively active
Calcineurin A (CnA*) in skeletal muscle leads to increased
oxidative metabolism [27, 28]. Consistent with these
results, a reduction in oxidative characteristics has been
shown in calcineurin A gene-targeted mice [43]. The ability
of calcineurin to modulate skeletal muscle metabolism
seems to be due mainly to the regulation of specific target
genes implicated in glucose (e.g.Gapdh, Pdk4) and lipid (e.g.
Lpl, CD36) metabolism [27]. By Affymetrix analysis and
r-t PCR, we found that Lpl and Smtck gene expression are
decreased in MLC/Socs-3 mice, whereas they are increased
in CnA* mice. However, using SDH staining, we failed to
detect alterations of fibre distribution (oxidative/glycolytic)
in skeletal muscle, suggesting that the deleterious effects of
SOCS-3 on calcineurin must affect another function of the
phosphatase. In addition to its role in muscle oxidative
pathway, calcineurin is thought to be involved in muscle
contraction and relaxation. The sarcoplasmic reticulum is
clearly implicated in Ca2+ fluxes into muscle cells [44, 45].
Membrane depolarisation is detected by the voltage-sensing
dihydropyridine-sensitive L-type calcium channel (DHPR),
which induces calcium release from the sarcoplasmic
reticulum through the ryanodine receptors (RyR), leading
to muscle contraction. Note that calcineurin co-localises
with RyR and DHPR in mature skeletal muscle [29]. The
association between calcineurin and RyR is Ca2+-dependent
and regulates, via dephosphorylation, the activity of RyR
and the subsequent Ca2+ release by sarcoplasmic reticulum
[18]. Using transmission electron microscopy, we found
altered sarcoplasmic reticulum and mitochondria patterns in
transgenic muscle. It has to be stressed that the dilatation of
sarcoplasmic reticulum associated with swollen mitochon-
dria is pronounced in type II fibres, whereas it is more
discrete in type I (data not shown). Thus, these alterations
are most likely to be linked to robust Socs-3 transgene
expression, which is mainly present in type II fibres. We
further showed that expression of Smtck and Slc25a3 was
reduced in MLC/Socs-3 muscles. Interestingly, these two
mitochondrial markers have been implicated in muscular
tonicity [46, 47]. Altogether our observations argue for the
occurrence of SOCS-3-induced mitochondrial dysfunction
in the transgenic mice. Thus, even though our SDH analysis
did not detect differences in distribution of type I and type
II fibres, we cannot exclude the possibility that the Socs-3
transgenic animals have a modified oxidative activity in
muscle, which could impact on organismal metabolism and/
or physical activity.
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voluntary exercise was monitored for 6 days. The number of quarter
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The molecular and morphological alterations discussed
above have often been found to be associated with
decreased locomotor activity [47, 48]. As expected, we
revealed reduced locomotor activity in Socs-3 transgenic
animals. It is important to stress that the analysis of
voluntary exercise was performed using wild-type and
transgenic animals with similar body weight. Thus, our
results clearly demonstrate that the overweight of transgen-
ic mice is a consequence of the locomotor defect and not a
cause of it.

Due to their regulatory role in several signalling path-
ways, the SOCS proteins have been put forward as potential
key therapeutic targets. However, the exact role of SOCS in
vivo has to be defined using highly relevant animal models.
The present study brings new insight into the role of SOCS-
3 in skeletal muscle. Our first key finding is that, as
demonstrated in fat-specific transgenic mice, SOCS-3
constitutive production in skeletal muscle is not in itself
sufficient to induce the establishment of organismal
metabolic disorders such as diabetes. However, in contrast
to what was described for adipose tissue, chronic SOCS-3
production in muscle modulates the expression of several
genes coding for regulatory proteins, which may explain
the maintenance of normal insulin sensitivity in skeletal
muscle. Our second major contribution is that we reveal a
novel function of SOCS-3 in muscle physiology, which
impacts on locomotor activity. The data suggest that
constitutive production of SOCS-3 in skeletal muscle alters
mitochondrial integrity and the excitation–contraction cou-
pling, leading to muscle fatigability. Our urgent challenge is
now to identify the precise mechanisms by which the SOCS
proteins control these fundamental functions of muscle
metabolism.
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