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Abstract

Aims/hypothesis Diabetic retinopathy is the most common
complication of diabetes and a leading cause of blindness
among working-age adults. Anatomical and functional
changes occur in the retina and retinal pigment epithelium
(RPE) prior to clinical symptoms of the disease. However,
the molecular mechanisms responsible for these early changes,
particularly in the RPE, remain unclear. To begin defining the
molecular changes associated with pre-retinopathic diabetes,
we conducted a comparative proteomics study of human
donor RPE.

Methods The RPE was dissected from diabetic human
donor eyes with no clinically apparent diabetic retinopathy
(n=6) and from eyes of age-matched control donors (n=
17). Soluble proteins were separated based upon their mass
and charge using two-dimensional (2-D) gel electrophore-
sis. Protein spots were visualised with a fluorescent dye and
spot densities were compared between diabetic and control
gels. Proteins from spots with significant disease-related
changes in density were identified using mass spectrometry.
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Results Analysis of 325 spots on 2-D gels identified 31 spots
that were either up- or downregulated relative to those from
age-matched control donors. The protein identity of 18 spots
was determined by mass spectrometry. A majority of altered
proteins belonged to two major functional groups, metabo-
lism and chaperones, while other affected categories included
protein degradation, synthesis and transport, oxidoreduc-
tases, cytoskeletal structure and retinoid metabolism.
Conclusions/interpretation Changes identified in the RPE
proteome of pre-retinopathic diabetic donor eyes compared
with age-matched controls suggest specific cellular alter-
ations that may contribute to diabetic retinopathy. Defining
the pre-retinopathic changes affecting the RPE could
provide important insight into the molecular events that
lead to this disease.
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Abbreviations
AMD age-related macular degeneration
2-D two-dimensional

MALDI-  matrix-assisted laser desorption/ionisation
TOF time-of-flight

MOWSE  molecular weight search

MS/MS tandem mass spectrometry

PEDF pigment epithelium-derived factor

pl isoelectric point
RPE retinal pigment epithelium
VEGF vascular endothelial growth factor
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Introduction

Diabetes mellitus is a multifactorial metabolic disorder that
currently affects over 200 million people worldwide [1].
Models estimate that this number will nearly double by the
year 2025 [1]. Diabetic retinopathy is the most common
complication in diabetes and the leading cause of blindness
among working-age adults [2]. The clinical manifestations
of diabetic retinopathy, including retinal microaneurysms,
neovascularisation, haemorrhages and macular oedema,
eventually lead to visual impairment [3]. Although vascular
abnormalities in the retina clearly contribute to vision loss,
other anatomical and functional changes are apparent soon
after the onset of diabetes [4-6]. Anatomical changes
include reduced retinal thickness [4, 6] and morphological
changes of several retinal cell types, including the retinal
pigment epithelium (RPE) [5, 7]. Functional changes in
retinal electrophysiology and contrast sensitivity have been
observed in diabetic patients and animal models [6, 8, 9].
These anatomical and functional changes are apparent in
the pre-retinopathic stage that precedes clinically evident
vascular changes associated with the disease. Importantly,
the onset of retinopathy occurs after a prolonged interval
following disease onset. Klein and colleagues reported that
retinopathy occurs in 73% of type 1 diabetic patients
approximately 14 years after the initial diagnosis [2]. Thus,
the pre-retinopathic stage provides a window of opportunity
for intervention that could delay or prevent the onset of
blindness. To fully maximise this potential, a thorough
understanding of the biochemical changes occurring in
retinal tissue is required.

The retina is composed of two major components, the
neural retina and the RPE. Previous investigations have
focused on the neural retina where vascular changes occur.
The neural retina is composed of seven different cell types,
including the photoreceptors that are responsible for visual
signal transduction. The RPE is essential for vision because
of its role in maintaining the photoreceptors [10]. Key
functions of the RPE include regenerating the rhodopsin
chromophore, regulating nutrient transport to the photo-
receptors, phagocytosis of spent tips of photoreceptor outer
segments [10] and the production of cytokines, including
neurotrophic and angiogenic factors [11]. Additionally, the
RPE provides 60 to 80% of retinal glucose via its high-
capacity transport system, making it a key source of the
high glucose needs of the retina [12].

To characterise early changes leading to diabetic
retinopathy, several recent studies have examined changes
in the proteome of the neural retina in diabetic animal
models [13, 14]. The present study has focused on the RPE
because of its role in supporting the retina before and after
the onset of diabetes. We applied a proteomic approach
using two-dimensional (2-D) gel electrophoresis and ma-
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trix-assisted laser desorption/ionisation time-of-flight
(MALDI-TOF) mass spectrometry to identify differences
in cellular protein content in human donor RPE at the pre-
retinopathic stage of diabetes.

Methods

Human tissue procurement Donor eyes obtained from the
Minnesota Lions Eye Bank (Minneapolis, MN, USA)
were acquired with the consent of the donor or the
donor’s family for use in medical research in accordance
with the principles outlined in the Declaration of Helsinki
and as approved by the University of Minnesota Insti-
tutional Review Board. Information provided by the
Lions Eye Bank included sex, age, time and cause of
death, and a family report of a limited medical history
including ocular history and the occurrence of diabetes
(Table 1).

Eyes were maintained in a moist chamber at 4°C until
processing for evaluation of ocular pathology as previously
outlined [15—17]. Anterior segments were removed for direct
visualisation and stereoscopic fundus photography of the
posterior segment. The methodology employed for imaging
the posterior pole was that used in the Minnesota Grading
System, which has been previously described for studies of
age-related macular degeneration (AMD) [18]. The fundus,
including the macula and optic nerve, was carefully
examined for signs of proliferative diabetic retinopathy,
microaneurysms, characteristic dot blot haemorrhages or
signs of hard exudation. Some post-mortem haemorrhages
are common; therefore, it is difficult to completely distinguish
small intraretinal haemorrhages of early diabetic retinopathy
from post-mortem changes. After reviewing eyebank eyes for
over 7 years, we feel confident of being able to distinguish
such haemorrhages. Post mortem haemorrhages are typically
large, asymmetric, intra-, sub- or pre-retinal and regional
(e.g. in one quadrant). Diabetic haemorrhages are usually
small, diffuse, symmetric and specifically intraretinal. Digi-
tised images were taken before and after removal of the
neural retina for a simultaneous examination of the RPE cell
layer by two ophthalmologists (T. W. Olsen and X. Feng).
Eyes were excluded from the study if there was clinical
evidence of retinal pathology. Eyes were also excluded if
post-mortem retinal vascular changes suggested that they
could be related to diabetes or the eyes had evidence of
AMD. Donors with a medical history of diabetes but no
signs of diabetic retinopathy were included in the pre-
retinopathic group (Table 1). Three diabetic donors had type
1 and two had type 2 diabetes. The type of diabetes for one
donor was not known. The age-matched control group
included donors with no history of diabetes and no evidence
of retinal pathology.
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Table 1 Donor demographics

Group Sample size Sex Age (years) TAD (h) Cause of death®
Men (n) Women () Mean Range
Control 17° 10 8 65+9 52-86 17.8+3.7 Cancer (5), sepsis (7), respiratory (3), CVA (1),
multi organ failure (1), cardiomyopathy (1)
Diabetes 6 3 3 6110 48-79 17.5£3.3 Cancer (1), sepsis (1), renal failure (2), MI (1),

multiorgan failure (1)

Unless otherwise indicated, values are ranges or means+SD

#The values in parentheses indicate the number of donors for each cause of death category
CVA, cerebro-vascular accident; MI, myocardial infarction; TAD, time after death until tissue freezing
® Discrepancy between sample size and total number of ‘Cause of death’ and ‘Sex’ is due to the combination of two age-matched donor protein

samples for loading onto one gel

Protein isolation Total RPE was dissected after collecting
fundus images, pelleted by centrifugation for 30 min at
1,100 g and frozen at —80°C until processing [15]. RPE
cells were fractioned by two freeze-thaw cycles and
homogenised by six passes through a 26 gauge needle in
a buffer containing 20 mmol/l HEPES, 10 mmol/l KCl,
1.5 mmol/l MgCl,, 250 mmol/l sucrose, 1 mmol/l EDTA,
1 mmol/l EGTA, 1 mmol/l phenylmethylsulphonyl fluoride
and 0.5% NP40. Nuclei and intact cells were pelleted by
centrifugation for 15 min at 600 g and 4°C, and the
supernatant retained. After repeating homogenisation and
centrifugation of the intact cell pellet, the first and second
supernatants were combined. The supernatant from a final
15 min centrifugation at 13,000 g was stored at —80°C until
use. Protein concentrations were determined using the
bicinchoninic acid protein assay (Pierce Biotechnology,
Rockford, IL, USA), with bovine serum albumin as the
protein standard. Average protein yield for the control and
diabetic eyes was 486.2+34.2 pg and 558.1+64.4 ug
(mean+SE), respectively. The yields were not significantly
different between the two groups (p=0.314).

2-D SDS-PAGE The proteins extracted from the RPE of
each donor were subjected to 2-D SDS PAGE (125 ng).
The first dimension separation was performed with pH 5
to 8 immobilised linear gradient strips (Bio-Rad, Hercules,
CA, USA). Protein samples (125 pg) were dissolved in a
rehydration solution (9 mol/l urea, 3 mol/l thiourea, 6%
CHAPS, 1% ASB-14, 1% Biolytes pH 3-10 (Bio-Rad)
and 50 mmol/l dithiothreitol and loaded onto 11 cm IPG
strips. The conditions for strip rehydration, focusing,
equilibration and second-dimension separation were as
outlined [17].

The 2-D gels, analysed for protein content, were stained
with Flamingo fluorescent stain (Bio-Rad) according to the
manufacturer’s protocol. Gels for mass spectrometry were
stained with silver using a mass spectrometry-compatible
kit (Silver Stain Plus Kit; Bio-Rad) and imaged with a GS-
800 calibrated densitometer (Bio-Rad).

Two-dimensional gel quantification and analysis Flamingo-
stained gels were imaged at two different exposure times
using a ChemiDoc XRS (Bio-Rad) and a Dark Reader
Transilluminator (Clare Chemical Research, Dolores, CO,
USA) to optimise the number of spots analysed. The Dark
Reader was used because the light source wavelength (400—
500 nm) closely matched the excitation maximum (512 nm)
of the dye. Exposure times were based on the fluorescence
intensity of two standard proteins run on each gel. Protein
spot identification, alignment and quantification of intensity
were performed using a 2-D gel analysis software (PDQuest
7.1.1; Bio-Rad). One gel with well-resolved protein spots
was chosen as the master gel. Background, streaks and other
staining artefacts were subtracted. Automatic spot detection
and matching were followed by manual inspection and
editing. Spot intensities of each gel were normalised to the
total intensity of valid spots of that gel.

In-gel digestion and MALDI-TOF analysis Spots were
manually excised from 2-D silver-stained polyacrylamide
gels and in-gel digestion was performed with trypsin as
described [17]. Peptides were analysed by MALDI-TOF
using a mass spectrometer (QSTAR XL quadrupole-TOF;
Applied Biosystems, Foster City, CA, USA) located at the
University of Minnesota Mass Spectrometry Consortium
for the Life Sciences. All mass spectra were externally
calibrated with human angiotensin II tryptic peptides
(monoisotopic [MH+] 1,046.5417) and adrenocorticotropin
hormone fragment (monoisotopic [MH+] 2,465.1989). Mass
values corresponding to known contaminants (e.g. keratin)
and to published trypsin autolysis fragments and matrix
clusters were removed [19]. Monoisotopic peaks were
automatically identified (Bioanalyst; Applied Biosystems)
and verified by manual inspection. Peak lists were submit-
ted to the Mascot search engine (http://www.matrixscience.
com, accessed 4 March 2008) and searched in the human
Swiss-Prot database (http://ca.expasy.org/sprot/, accessed 4
March 2008). Enzyme specificity was set to trypsin with no
missed cleavages, a mass tolerance window of 100 ppm,
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carbamidomethyl as a fixed cysteine modification and
oxidation of methionine as a variable modification. Initial
identifications were accepted for spectra with a significant
molecular weight search (MOWSE) score. Initial identities
were confirmed by peptide sequencing with tandem mass
spectrometry (MS/MS) using a QSTAR XL mass spec-
trometer (Applied Biosystems). The MS/MS spectra were
submitted to Mascot set to the human Swiss-Prot database
with a fragment tolerance window of 0.8 Da, peptide
tolerance of 1.2 Da and MALDI-QUAD-TOF selected as
the instrument. Only MS/MS spectra with a significant
Mascot score (p<0.05) were considered acceptable. The
proteins were considered positively identified when the
criteria of a significant full-scan match and one or more
significantly matched peptide sequences were met. In some
instances, a significant score derived from several peptide
sequences was considered as positive verification (Tables 2
and 3).

Statistical analysis To determine the number of samples
necessary to detect statistically significant changes between
groups, a power analysis was performed on Flamingo-
stained gels (n=17 control and n=6 diabetic) as previously
outlined [15]. Linear regression analysis was performed to
compare spot density with time from death to freezing.
Analysis was done for both gel exposure times. The p value
for linear regression and critical values for correlation
coefficient (R) were taken into consideration when verify-
ing the significance of the relationship using Origin Lab 7.5
statistical software (http://www.originlab.com, accessed 4
March 2008).

The normalised intensity values of individual protein
spots were compared between the two groups by Student’s
two-tailed 7 test for unpaired samples. Values outside three
interquartile ranges from the 25th and 75th percentiles of
the data distribution were removed. When the assumption
of equal variance (Modified Levene Equal-Variance Test)
was violated, the Aspin—Welch Unequal Variance Test was
used. When normality assumptions were not met, data were
either transformed to natural log to obtain a normal
distribution or Kolgomarov—Smirnov nonparametric test
was used. The results are expressed as mean+SEM and a
value of p<0.05 was considered statistically significant. All
statistics were calculated using NCSS statistical software
(NCSS 2001; Kaysville, UT, USA).

Results
Experimental design Demographic and clinical donor in-

formation obtained from the Minnesota Lions Eye Bank is
summarised in Table 1. Donors with clinically evident eye
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disease were excluded from the study. Average time from
enucleation to freezing (17.7+3.5 h; mean+SD) was not
significantly different between the two groups (p=0.996).

Analysis included 17 and 6 gels from control and
diabetic donors, respectively. A total of 325 spots were
analysed. In some instances, spots were eliminated from
analysis if they were not clearly resolved, had artefacts that
interfered with density measurements, or were defined
statistically as outliers. However, to be included in the
analysis, each spot had to be present in a minimum of five
samples from the diabetic group and 14 samples from the
control group. A power analysis based on the average
variation in intensity of individual spots from 2-D gels
indicated that this number was sufficient to detect at least a
75% difference in intensity with 80% power and «=0.05.

Linear regression was performed (spot density versus
time from death to freezing) to evaluate post mortem
stability of proteins in our samples. No time-dependent
change in density was noted for 94% of all spots examined
and no change was observed for the spots identified in our
study. These results confirm that the changes in protein
content in this study were not due to post mortem protein
degradation, but resulted from altered protein content due to
the disease state.

Analysis of protein content and protein identification The
RPE proteome was analysed using 2-D gel electrophoresis
and mass spectrometry to identify differences in cellular
protein content between the diabetic and control groups. A
representative Flamingo-stained fluorescent gel is shown in
Fig. 1. A total of 325 spots were analysed. There was a
significant change in the cellular content of 31 spots with
diabetes. Protein identity was determined for 18 spots. As
shown in Fig. 2, 15 spots were upregulated and three were
downregulated. Initial identification of protein spots was
done by MALDI-TOF mass spectrometry peptide mass
fingerprinting and confirmed by MS/MS peptide sequenc-
ing. Protein identification was based on six or more
matching peptides (average 11, range 6-21), statistically
significant MOWSE score (p<0.05) and the sequencing of
at least one peptide. Since multiple proteins can co-migrate
in a single spot, we re-examined our MALDI full scans by
removing the peptides that matched the identified protein
and re-searching for peptides from other proteins. This
secondary search did not reveal additional proteins.
Overall, the experimental molecular mass and isoelectric
point (pI) were similar to the theoretical values for each
protein, with the exception of cathepsin D (Table 2). Spot 6,
identified as cathepsin D, migrates at an apparent mass of
31 kDa, but matched to a theoretical molecular mass of
45 kDa. This protein is initially synthesised as an inactive
proenzyme (52 kDa) that is subsequently converted into an
active intermediate (46 kDa) and finally cleaved in the
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Molecular mass (kDa)

21 -

Fig. 1 RPE proteins resolved by 2-D gel electrophoresis. Represen-
tative Flamingo-stained gel (125 npg) indicates identified proteins
showing altered content with diabetes. Boxed spots, increased levels;
circled spots, decreased levels. The pl range for separation in the first
dimension (pH 5-8) is shown at the top. The molecular mass standard
is labelled in kDa on the left. Numbers correspond to density
summaries in Fig. 2 and identified proteins listed in Tables 2 and 3
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Fig. 2 Summary of protein spot density. Results of densitometry for
protein spots that were identified by mass spectrometry and
demonstrated a significant increase (a, b) or decrease (c¢) in spot
density. Spot numbers correspond to those in Fig. 1 and identified
proteins listed in Tables 2 and 3. Dark grey bars, control; light grey
bars, diabetic

lysosome to generate the mature 31 kDa form [20]. The
migration of spot 6 is consistent with the theoretical
migration of mature cathepsin D protein.

Two proteins that we identified migrated in multiple
spots. Aldehyde dehydrogenase was identified in two spots
(spots 2 and 3) that migrated at a similar molecular mass
but a different pl, as did protein disulphide-isomerase A3
(spots 12 and 13). These findings could reflect post-
translational modifications that cause an acidic or basic
shift in migration for a subset of the protein population.

Classification of the identified proteins The identified
proteins were categorised according to their function on
the basis of published literature and the Swiss-Prot
database. The major functional groups include energy
metabolism (29%) and chaperones (23%). Other functional
groups include membrane dynamics (12%), structural
proteins (6%), protein transport (6%), protein degradation
(6%), protein synthesis (6%), retinoid metabolism (6%) and
oxidoreductases (6%) (Fig. 3).

Our list includes proteins residing in different subcellular
compartments. The majority of proteins were cytoplasmic
(59%). Other proteins were identified from the mitochon-
dria (aldehyde dehydrogenase, elongation factor Tu,
GRP75 and succinyl CoA: 3-ketoacid-coenzyme A trans-
ferase 1), the endoplasmic reticulum (protein disulphide
isomerase A3), peroxisomes (sterol carrier protein x) and
lysosomes (cathepsin D).

23%

Oxidoreductase
o 6% Protein
Retinoid degradation
metabolism 6%
6% Structural
Protein transport 6%
6%
Protein synthesis
6% :
Chaperones

metabolism Membrane
29% dynamics
12%

Fig. 3 Summary of the functional groups for proteins that show
altered cellular content in pre-retinopathic RPE. The diagram indicates
the relative per cent of proteins in each functional group
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Discussion

In the present study we analysed the RPE proteome in pre-
retinopathic diabetic human donor eyes. Analysis of 325
spots on 2-D gels identified 31 spots that were either up- or
downregulated relative to those from age-matched control
donors. The protein identity of eighteen spots was
determined by mass spectrometry. A majority of altered
proteins belonged to two major functional groups, metab-
olism and chaperones, while other affected categories
included protein degradation, synthesis and transport,
oxidoreductases, cytoskeletal structure and retinoid metab-
olism (Fig. 3). The cellular content of approximately 62%
of these proteins has previously been reported to change in
response to diabetes but in non-retinal tissues (Tables 2 and
3), and thus these results represent novel findings for the
retina. Because of the unique role of the RPE in supporting
the photoreceptors and the retinal microenvironment, the
pre-clinical changes identified here provide our first
insights into the early molecular changes that precede
diabetic retinopathy.

Donors of our diabetic samples had type 1 or type 2
diabetes as specified by Eye Bank records rather than by
direct clinical records. Ideally, we would have analysed
type 1 and 2 samples separately. However, this was not
feasible because of the limited availability of tissue. If the
proteomes of the two groups were significantly different in
the pre-retinopathic stage, we would have observed a high
variability within our diabetic group. However, no outliers
were detected in this group, suggesting that the proteomes
of our type 1 and type 2 diabetic donors were comparable at
the pre-retinopathic stage.

The 16 proteins identified herein reflect a conservative
estimate, due to our limited sample size and the technical
constraints of 2-D gels. With our sample size, we were able to
detect a 75% difference on average, but smaller, physiolog-
ically meaningful changes may have been undetected.
Membrane proteins resolve poorly in the first dimension of
a 2-D gel and are likely to be under-represented in the
analysis. Low-abundance proteins are often below the
detection limit of 2-D gels and would be under-represented
in this analysis. While the pH range of 5 to 8 was used
because it resolved the greatest number of spots, proteins
outside that range would not have been detected using this
methodology. Finally, due to the restricted number of tryptic
peptides generated, we were unable to identify low-mass
spots. Despite these caveats, this study identified many novel
diabetes-related changes in the RPE proteome.

Vascular endothelial growth factor (VEGF) and pigment
epithelium-derived factor (PEDF), growth factors produced
by RPE, are considerably altered in diabetic retinopathy
[21]. The differential production and secretion of these
factors lead to non-proliferative and proliferative diabetic
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retinopathy (i.e. leaky vasculature and neovascularisation)
[21]. No change was detected for either factor in the present
study. The absence of these two growth factors in our
analysis is probably due to technical constraints of the 2-D
gels and secretion of these growth factors from the RPE
into the extracellular space. For example, the pl of VEGF-A
is 8.5, which is outside the pl range of our first dimension
(i.e. pI 5-8) and thus would not resolve under our
experimental conditions. PEDF was detected in previous
2-D analyses but only in extracellular fractions such as
vitreous [22], suggesting that the intracellular content is not
sufficient in RPE homogenates for detection in 2-D gels.
Consistent with our results, these growth factors were not
reported in a previous characterisation of the human RPE
cellular proteome [23].

To date, biochemical studies of human diabetic retinop-
athy have been mostly limited to analysis of the vitreous
[22, 24-26]. These analyses have revealed several path-
ways and factors that provided insight into diabetes-related
ocular alterations. For example, by measuring levels in the
vitreous, several studies have found an imbalance in
angiogenic (i.e. VEGF-A) and anti-angiogenic (i.e. sol flt-
1 receptor, PEDF) factors to be present in proliferative
diabetic retinopathy [25, 26]. Despite their contributions to
an understanding of diabetic retinopathy, several limitations
are associated with these studies. First, vitreous protein
levels are an indirect, secondary measure of intracellular
events occurring in the retina. Second, vitreous collection
usually occurs during a surgical procedure at the later
stages of retinopathy where early biochemical changes
leading to pathogenesis may no longer be evident. Third,
the vitreous includes a large amount of albumin and
immunoglobulin that may overlap with small spots or less
abundant proteins and compromise the utility of 2-D gel
analysis. Finally, the cellular origin of many vitreous
proteins is unclear and may be non-retinal [27].

There are several advantages associated with the present
study. First, we directly analysed retinal proteins from
affected human tissue. Second, based on direct clinical
evaluation, we excluded donor eyes with characteristic
diabetic retinopathy and exclusively studied pre-retinopathic
RPE. Third, our proteomic approach enabled simultaneous
analysis of over 300 protein spots. Finally, the RPE does not
contain disproportionately abundant proteins that could
otherwise interfere with the resolution of a large number of
protein spots.

Of the proteins identified, 29% (Fig. 3) participate in various
metabolic pathways including glycolysis (phosphoglycerate
mutase and gamma-enolase), the citric acid cycle (dihydroli-
poyl dehydrogenase), lipid metabolism (sterol carrier protein x)
and ketolysis (succinyl CoA: 3-ketoacid-coenzyme A transfer-
ase 1). In other tissues prone to diabetic complications, such as
liver, kidney and both skeletal and heart muscle, energy
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metabolism is one of the key areas affected [28-32]. However,
metabolic changes associated with diabetes are tissue-specific.
For example, an increase in glycolysis was reported in skeletal
muscle from type 1 and type 2 patients [28, 29], while a
reduction was demonstrated in diabetic heart [30, 33] and in
streptozotocin-induced diabetic rat retinas after 3 months of
disease [34]. Our results indicate that systemic metabolic
changes observed in other tissues affected by diabetes also
occur in the pre-retinopathic RPE. These tissue-specific
changes may result in loss of RPE functions that subsequently
impact retinal health and photoreceptor activity.

Chaperones comprised a second major functional cate-
gory that was altered in diabetic RPE (Fig. 3, Table 2).
Chaperones mediate protein folding, defend against protein
damage and aggregation due to misfolding, assist with
translocation of proteins across intracellular membranes and
stabilise unstable protein conformers [35]. Chaperones from
multiple subcellular compartments were identified, includ-
ing mitochondria (GRP75 and elongation factor TU),
cytosol (heat shock cognate 71) and the endoplasmic
reticulum (protein disulphide-isomerase A3). Protein disul-
phide-isomerase A3 is a specialised endoplasmic reticulum
protein that assists with folding and formation of native
disulphide bonds in nascent and unfolded proteins [36].
Specific upregulation of this chaperone suggests elevated
unfolded proteins in the endoplasmic reticulum, which is
associated with endoplasmic reticulum stress [37]. Numer-
ous studies report the presence of endoplasmic reticulum
stress in diabetes. For example, endoplasmic reticulum
stress markers such as BiP, GRP94 and CHOP are elevated
in the Akita diabetic mouse model [38] and in pancreatic
beta cells of type 2 diabetic patients [39].

Aldehyde dehydrogenase 2, a mitochondrial isoform of
the aldehyde dehydrogenase family, was increased in our
study. It is involved in detoxifying reactive aldehydes
produced by lipid peroxidation [40]. Increased content of
this protein probably reflects increased lipoxidation prod-
ucts in the diabetic RPE. Lipid peroxidation and oxidation
of glycated proteins are two major mechanisms of protein
damage resulting from oxidative stress in the diabetic retina
[41]. Oxidative stress occurs when the production of
oxidants, including reactive oxygen species, exceeds the
level of antioxidants in the cell [42]. Numerous studies
have shown elevated reactive oxygen species and impaired
antioxidant defence in the retina of diabetic animal models
and humans, as reviewed [42]. Taken together, elevated
levels of aldehyde dehydrogenase 2 and chaperones may be
a compensatory response to oxidative stress in the human
pre-retinopathic RPE.

Some of the major protein categories that were altered in
our study, such as energy metabolism, chaperones and
cytoskeletal proteins [43, 44], overlap with findings from
other tissues affected by diabetes. However, some proteins

altered in the present study are completely novel to
diabetes, such as proteins involved in retinoid metabolism
(CRALBP), membrane dynamics (annexin A4, A7) and
protein transport (selenium binding protein). While the
consequences of these changes have yet to be determined,
they are consistent with the global effect that diabetes has
on multiple cellular processes.

In summary, we compared the human RPE proteome in a
pre-retinopathic stage of diabetes to age-matched controls
using a high-throughput proteomic approach. Our study
demonstrates that significant biochemical changes take
place in the RPE prior to clinically evident diabetic
retinopathy. It also indicates that changes in metabolic
proteins parallel those found in other diabetic tissues.
Changes in proteins associated with oxidative and endo-
plasmic reticulum stress also suggest protein damage in the
pre-retinopathic RPE. Given the importance of the RPE in
supporting the retinal microenvironment, these alterations
may be significant in the early pathogenesis of diabetic
retinopathy.

Acknowledgements This research was supported in part by grants
EY014176 (to D. A. Ferrington) and AG025392 (to T. W. Olsen) from
the National Institutes of Health, by the Minnesota Lions Macular
Degeneration Center, by a career development award from the
American Federation for Aging Research and Foundation Fighting
Blindness (to D. A. Ferrington), by the Minnesota Medical Foundation
and by an unrestricted grant from Research to Prevent Blindness
Foundation. The authors thank the Minnesota Lions Eye Bank for their
assistance in procuring eyes for this study. The mass spectrometry
analysis was performed at the Mass Spectrometry Consortium for the
Life Sciences at the University Minnesota.

Duality of interest The authors declare that there is no duality of
interest associated with this manuscript.

References

1. International Diabetes Federation (2005) Diabetes Atlas. Available
from http://www.eatlas.idf.org/, last accessed January 2008

2. Klein R, Klein BE, Moss SE, Cruickshanks KJ (1998) The
Wisconsin epidemiologic study of diabetic retinopathy: XVII The
14-year incidence and progression of diabetic retinopathy and
associated risk factors in type 1 diabetes. Ophthalmology 105:
1801-1815

3. Antonetti DA, Barber AJ, Bronson SK et al (2006) Diabetic
retinopathy: seeing beyond glucose-induced microvascular dis-
ease. Diabetes 55:2401-2411

4. Park SH, Park JW, Park SJ et al (2003) Apoptotic death of
photoreceptors in the streptozotocin-induced diabetic rat retina.
Diabetologia 46:1260-1268

5. Aizu Y, Oyanagi K, Hu J, Nakagawa H (2002) Degeneration of
retinal neuronal processes and pigment epithelium in the early
stage of the streptozotocin-diabetic rats. Neuropathology 22:161—
170

@ Springer


http://www.eatlas.idf.org/

1060

Diabetologia (2008) 51:1051-1061

6.

10.

11.

12.

13.

14.

15.

16.

18.

20.

21.

22.

23.

24.

25.

Phipps JA, Fletcher EL, Vingrys AJ (2004) Paired-flash identifi-
cation of rod and cone dysfunction in the diabetic rat. Invest
Ophthalmol Vis Sci 45:4592-4600

. Bensaoula T, Ottlecz A (2001) Biochemical and ultrastructural

studies in the neural retina and retinal pigment epithelium of STZ-
diabetic rats: effect of captopril. J Ocul Pharmacol Ther 17:573-586

. Ramsey DJ, Ripps H, Qian H (2006) An electrophysiological

study of retinal function in the diabetic female rat. Invest
Ophthalmol Vis Sci 47:5116-5124

. Klemp K, Larsen M, Sander B, Vaag A, Brockhoff PB, Lund-

Andersen H (2004) Effect of short-term hyperglycemia on
multifocal electroretinogram in diabetic patients without retinop-
athy. Invest Ophthalmol Vis Sci 45:3812-3819

Steinberg RH (1985) Interactions between the retinal pigment
epithelium and the neural retina. Doc Ophthalmol 60:327-346
Young TA, Wang H, Munk S et al (2005) Vascular endothelial
growth factor expression and secretion by retinal pigment
epithelial cells in high glucose and hypoxia is protein kinase C-
dependent. Exp Eye Res 80:651-662

Foulds WS (1990) The choroidal circulation and retinal metabo-
lism—an overview. Eye 4:243-248

Quin GG, Len AC, Billson FA, Gillies MC (2007) Proteome map
of normal rat retina and comparison with the proteome of diabetic
rat retina: new insight in the pathogenesis of diabetic retinopathy.
Proteomics 7:2636-2650

Wang YD, Wu JD, Jiang ZL et al (2007) Comparative proteome
analysis of neural retinas from type 2 diabetic rats by two-
dimensional electrophoresis. Curr Eye Res 32:891-901
Nordgaard CL, Berg KM, Kapphahn RJ et al (2006) Proteomics
of the retinal pigment epithelium reveals altered protein expres-
sion at progressive stages of age-related macular degeneration.
Invest Ophthalmol Vis Sci 47:815-822

Ethen CM, Reilly C, Feng X, Olsen TW, Ferrington DA (2006)
The proteome of central and peripheral retina with progression of
age-related macular degeneration. Invest Ophthalmol Vis Sci
47:2280-2290

. Kapphahn RJ, Ethen CM, Peters EA, Higgins L, Ferrington DA

(2003) Modified alpha A crystallin in the retina: altered expression
and truncation with aging. Biochemistry 42:15310-15325

Olsen TW, Feng X (2004) The Minnesota Grading System of eye
bank eyes for age-related macular degeneration. Invest Ophthal-
mol Vis Sci 45:4484-4490

. Harris WA, Janecki DJ, Reilly JP (2002) Use of matrix clusters

and trypsin autolysis fragments as mass calibrants in matrix-
assisted laser desorption/ionization time-of-flight mass spectrom-
etry. Rapid Commun Mass Spectrom 16:1714-1722

Hoppe G, O'Neil J, Hoff HF, Sears J (2004) Products of lipid
peroxidation induce missorting of the principal lysosomal protease
in retinal pigment epithelium. Biochim Biophys Acta 1689:33-41
Witmer AN, Vrensen GF, Van Noorden CJ, Schlingemann RO
(2003) Vascular endothelial growth factors and angiogenesis in
eye disease. Prog Retin Eye Res 22:1-29

Yamane K, Minamoto A, Yamashita H et al (2003) Proteome analysis
of human vitreous proteins. Mol Cell Proteomics 2:1177-1187
West KA, Yan L, Shadrach K et al (2003) Protein database,
human retinal pigment epithelium. Mol Cell Proteomics 2:37-49
Ouchi M, West K, Crabb JW, Kinoshita S, Kamei M (2005)
Proteomic analysis of vitreous from diabetic macular edema. Exp
Eye Res 81:176-182

Patel JI, Tombran-Tink J, Hykin PG, Gregor ZJ, Cree 1A (2006)
Vitreous and aqueous concentrations of proangiogenic, antiangio-
genic factors and other cytokines in diabetic retinopathy patients
with macular edema: implications for structural differences in
macular profiles. Exp Eye Res 82:798-806

@ Springer

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.
38.

39.

40.

41

42.

43.

44,

45.

46.

Nakanishi T, Koyama R, Ikeda T, Shimizu A (2002) Catalogue of
soluble proteins in the human vitreous humor: comparison
between diabetic retinopathy and macular hole. J Chromatogr B
Analyt Technol Biomed Life Sci 776:89-100

Bishop PN, Takanosu M, Le Goff M, Mayne R (2002) The role of
the posterior ciliary body in the biosynthesis of vitreous humour.
Eye 16:454-460

Crowther GJ, Milstein JM, Jubrias SA, Kushmerick MJ, Gronka
RK, Conley KE (2003) Altered energetic properties in skeletal
muscle of men with well-controlled insulin-dependent (type 1)
diabetes. Am J Physiol Endocrinol Metab 284:E655-E662
Simoneau JA, Kelley DE (1997) Altered glycolytic and oxidative
capacities of skeletal muscle contribute to insulin resistance in
NIDDM. J Appl Physiol 83:166-171

Stanley WC, Lopaschuk GD, McCormack JG (1997) Regulation
of energy substrate metabolism in the diabetic heart. Cardiovasc
Res 34:25-33

. McLean MP, Billheimer JT, Warden KJ, Irby RB (1995)

Differential expression of hepatic sterol carrier proteins in the
streptozotocin-treated diabetic rat. Endocrinology 136:3360-3368
Tessari P, Puricelli L, Iori E et al (2007) Altered chaperone and
protein turnover regulators expression in cultured skin fibroblasts
from type 1 diabetes mellitus with nephropathy. J Proteome Res
6:976-986

Puricelli L, Iori E, Millioni R et al (2006) Proteome analysis of
cultured fibroblasts from type 1 diabetic patients and normal
subjects. J Clin Endocrinol Metab 91:3507-3514

Ola MS, Berkich DA, Xu Y et al (2006) Analysis of glucose
metabolism in diabetic rat retinas. Am J Physiol Endocrinol Metab
290:E1057-E1067

Borges JC, Ramos CH (2005) Protein folding assisted by
chaperones. Protein Pept Lett 12:257-261

Yao Y, Zhou Y, Wang C (1997) Both the isomerase and chaperone
activities of protein disulfide isomerase are required for the
reactivation of reduced and denatured acidic phospholipase A2.
Embo J 16:651-658

Yoshida H (2007) ER stress and diseases. Febs J 274:630-658
Nozaki J, Kubota H, Yoshida H et al (2004) The endoplasmic
reticulum stress response is stimulated through the continuous
activation of transcription factors ATF6 and XBP1 in Ins2+/Akita
pancreatic beta cells. Genes Cells 9:261-270

Laybutt DR, Preston AM, Akerfeldt MC et al (2007) Endoplasmic
reticulum stress contributes to beta cell apoptosis in type 2
diabetes. Diabetologia 50:752-763

Ohta S, Ohsawa I (2006) Dysfunction of mitochondria and
oxidative stress in the pathogenesis of Alzheimer’s disease: on
defects in the cytochrome c¢ oxidase complex and aldehyde
detoxification. J Alzheimers Dis 9:155-166

. van Reyk DM, Gillies MC, Davies MJ (2003) The retina:

oxidative stress and diabetes. Redox Rep 8:187-192

Ellis EM (2007) Reactive carbonyls and oxidative stress: potential
for therapeutic intervention. Pharmacol Ther 115:13-24

Dhalla NS, Liu X, Panagia V, Takeda N (1998) Subcellular
remodeling and heart dysfunction in chronic diabetes. Cardiovasc
Res 40:239-247

McLean WG (1997) The role of axonal cytoskeleton in diabetic
neuropathy. Neurochem Res 22:951-956

Murata C, Taniyama M, Kuriyama S et al (2004) Meta-analysis of
three diabetes population studies: association of inactive ALDH2
genotype with maternal inheritance of diabetes. Diabetes Res Clin
Pract 66(Suppl 1):S145-S147

Wadham C, Parker A, Wang L, Xia P (2007) High glucose
attenuates protein S-nitrosylation in endothelial cells: role of
oxidative stress. Diabetes 56:2715-2721



Diabetologia (2008) 51:1051-1061

1061

47.

48.

Witek B, Krol T, Kolataj A, Ochwanowska E, Stanislawska I,
Slewa A (2001) The insulin, glucose and cholesterol level and
activity of lysosomal enzymes in the course of the model alloxan
diabetes. Neuro Endocrinol Lett 22:238-242

Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS (2002) Gene
expression profile in skeletal muscle of type 2 diabetes and the
effect of insulin treatment. Diabetes 51:1913—-1920

49.

50.

Yokoyama T, Yamane K, Minamoto A et al (2006) High glucose
concentration induces elevated expression of anti-oxidant and
proteolytic enzymes in cultured human retinal pigment epithelial
cells. Exp Eye Res 83:602—-609

Turko IV, Marcondes S, Murad F (2001) Diabetes-associated nitration
of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-
transferase. Am J Physiol Heart Circ Physiol 281:H2289-H2294

@ Springer



	Human retinal pigment epithelium proteome changes in early diabetes
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


