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Abstract Aim/hypothesis: Obesity is a global problem
with high risks of cardiovascular diseases, stroke and type
2 diabetes. It is well known that maternal obesity affects
offspring by inducing malformation, functional abnor-
malities in many organs and cells, and by increased risk of
obesity and type 2 diabetes. However, little is known
about abnormalities induced by maternal obesity in pan-
creatic beta cells of offspring. Methods: We used mouse
mothers with the Agouti yellow modification ona C57BL/6
background as a maternal model of normoglycaemic
obesity, and produced Agouti-negative offspring. Half of
the offspring were fed a high-fat diet. Offspring glucose
tolerance was tested at different ages, and animals were
killed at 50 weeks of age for islet function analysis.
Results: Maternal obesity impaired glucose tolerance in
female offspring fed a high-fat diet, and significantly re-
duced insulin secretion at 50 weeks of age in female off-
spring that had been fed a normal diet and high-fat diet.
Insulin secretion and glucose potentiation from these islets
were significantly reduced. Islet protein, DNA and insulin
contents were increased while glyceraldehyde-3-phosphate
dehydrogenase and transketolase activities were reduced
in female offspring. Conclusions/interpretation: Our re-
sults indicate that maternal obesity has a long-term effect
on the beta cells of female, but not of male, offspring, and
leads to increased risk of gestational diabetes and type 2
diabetes in the offspring’s later lives.
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Introduction

More than 18% of American women meet the criteria for
obesity [1, 2] and 18 to 38% of pregnant women in the
United States are obese [3]. Obesity during pregnancy has
implications for morbidity and mortality in both mother
and baby [4, 5]. One of the possible risks to the baby is the
eventual development of type 2 diabetes [6]. Maternal
obesity could therefore be one of the factors contributing to
the alarming rise in the prevalence of diabetes.

It is well known that a prenatal diabetic environment
greatly increases the risk of type 2 diabetes in the offspring
[7-10]. The mechanism of this propensity to diabetes in
the offspring is not well understood. Diabetes and obesity
are frequently co-morbid conditions and maternal obesity
could be one factor contributing to the ultimate devel-
opment of diabetes in the offspring. Unfortunately, few
studies have attempted to establish whether obesity in the
absence of diabetes can promote glucose intolerance or
diabetes in the offspring.

In the current study, we tested whether maternal obesity
in mice, in the absence of diabetes, can impair glucose
tolerance in genetically normal offspring. We used mothers
carrying the Agouti (4") mutation on a C57BL/6 back-
ground. On this background, the 4 mutation produces
marked obesity without diabetes. Adult, genetically nor-
mal, offspring of 4#’-positive mothers were tested for their
capacity to maintain normal glucose homeostasis.

Studies of the effect of maternal diabetes or obesity
have demonstrated insulin resistance in the offspring [6,
11, 12]. However, diabetes will not occur unless there is



also a reduction in pancreatic beta cell function [13, 14].
Until now, the impact of maternal diabetes or obesity on
long-term beta cell function in the offspring has not been
tested. In this study, we found sex-related changes in beta
cell function due to maternal obesity. Our results indicate
that maternal obesity can lead to problems in glucose tol-
erance in adult offspring and that deficits in the pancreatic
beta cell play an important role.

Materials and methods

Animals The principles of animal laboratory care under
the guidelines of both the National Institutes of Health
and the University of Louisville’s Animal Care Commit-
tee were followed strictly. Female obese 4”/C57BL/6 J
mice (L) mice (the yellow mutation, 4, on an L back-
ground) and normal male L mice (both from the Jackson
Laboratory, Bar Harbor, ME, USA), aged 10 weeks, were
used for mating. In litters from Agouti/L mothers, 4’-
positive and 4”-negative offspring are easily distinguished
by their distinct coat colors. Agouti/L mice become obese
around 6-8 weeks of age [15]. The body weights and
blood glucose levels of Agouti/L. and L mothers are shown
in Table 1. Body weights of Agouti/L mothers during
pregnancy were significantly higher than those of control
L mothers, but blood glucose levels were the same as
control mothers, demonstrating that the Agouti/L mothers
provided a good model of obesity without diabetes. 4’-
negative offspring of Agouti/L mothers were used for this
research. Offspring of L mothers were used as control
animals. The animals received normal chow up to 15 weeks
of age, then the animals were divided into two groups.
Half of the offspring (male and female, and control L and
A’-negative offspring) were fed with a high-fat diet (HFD;
60% energy from fat [21% casein, 15% sucrose, 18%
cornstarch, 5% corn oil, 31% lard], as powder, from
TestDiet, Richmond, IN, USA) starting at 15 weeks of
age, the other half received a basal diet (22% energy from
fat [21% casein, 15% sucrose, 43% cornstarch, 5% corn
oil, 5% lard], as powder, from TestDiet). All animals had
free access to food. We chose 15 weeks of age to start
high-fat feeding, because we wanted to observe adult off-
spring beta cell adaptation. All animals were housed in
the Animal Care Facility at the University of Louisville
and maintained at 25°C with a 12-h light/dark cycle.
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Body weight was measured and blood collected, after tail
snipping, at weekly intervals. Blood glucose was mea-
sured regularly with a portable glucose meter (Johnson &
Johnson Company, New Brunswick, NJ, USA). For mea-
surement of serum insulin, blood samples of mice were
collected into heparinised capillary tubes and serum was
stored at —20°C pending insulin assay. Mice were killed for
islet isolation at 50 weeks of age.

Glucose tolerance test and insulin assay After an over-
night fast, mice were administered glucose intraperi-
toneally (1 g/kg body weight or 2 g/kg body weight as
indicated). Blood samples were taken after tail snipping at
various time points (0, 15, 30, 60 and 120 min), and blood
glucose was determined as described above. Serum insulin
levels at 0, 15, and 30 min time points were determined
with the Ultrasensitive Mouse Insulin-ELISA Test Kit
(Mercodia Company, Sylveniusgaten, Uppsala, Sweden).

Islet isolation Islets were isolated from mice by an ad-
aptation of the Gotoh method [16]: pancreas duct infil-
tration with collagenase, Histopaque gradient separation
and hand-picking. Before performing measurements, islets
were cultured for 1 h at 37°C in humidified air and 5%
CO, in RPMI 1640 supplemented with 5.5 mmol/l glu-
cose, and 10% newborn calf serum, 2 mmol/l glutamine,
100 U/ml penicillin, 0.1 mg/ml streptomycin (all from
Gibco, Grand Island, NY, USA).

Insulin secretion Ten islets were cultured in each 5-ml vial
with 1 ml KRB (Krebs—Ringer bicarbonate buffer sup-
plemented with 10 mmol/l HEPES, pH 7.4 and 0.1%
BSA, bubbled with 5% CO,, 95% O,) containing 2.8 or
16.7 mmol/l glucose in a 37°C shaking water-bath as
previously described [17]. After incubation for 60 min,
vials were moved from the water-bath to ice to stop the
reaction, followed by a brief centrifugation at 4°C, 0.5 ml
KRB was moved into a glass tube and stored at —20°C
pending assay for insulin as described above.

Islet DNA, protein and insulin contents DNA was mea-
sured by the Labarca method [18] and protein by a com-
mercial kit that used BSA as standard (Bio-Rad, Hercules,
CA, USA). Islets were homogenised in acid—ethanol and
stored at —20°C pending assay for insulin contents as de-
scribed above.

Table 1 Body weight and fed blood glucose levels of Agouti and control mothers during pregnancy and 1 week after delivery

Body weight

Fed blood glucose

Week 1 Week 2 Week 3 Week 4 Week 1 Week 2 Week 3 Week 4
L 16.1+£0.9 17.3£1.1 18.8+1.5 21.54£3.6 145.5+24.7 155.5+17.1 168.3+41.6 144.5+6.1
AL 17.4+1.3 18.9+1.4 21.3+1.3 249422 153.84£23.9 164.8+18 178.5+15.8 149.8+8.1
p values NS <0.05 <0.05 <0.05 NS NS NS NS

Agouti and control females were mated with C57BL/6 males at 10 weeks of age. Week 1 to Week 3 is pregnancy. Week 4=1 week after
delivery. L, control mothers; AL, Agouti-positive mothers. Data are means+SD; n=8 for each group
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GAPDH activity assay The assay measured the appear-
ance of NADH absorbance at 340 nm as described by
Lambeir et al. [19]. Reaction mixtures (1 ml) contained
0.01 mol/l triethanolamine/HCI, pH 7.6, 1 mmol/l dithio-
threitol, 1 mmol/l EDTA, 0.1 mol/l KCl, 10 mmol/l
potassium phosphate, 1 mmol/l NAD and 0.8 mmol/l
glyceraldehyde-3-phosphate. Reactions were initiated by
addition of 10 ul of islet extract. Reactions were carried
out at 25°C. Absorbance at 340 nm was measured on a
Hitachi 2500 spectrophotometer (Technical Lab Services,
Toronto, ON, Canada) for 10 min. Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) activity was con-
firmed by measuring the conversion of NADH to NAD" at
340 nm in the backward reaction starting with glycerate-3-
phosphate using glycerate-3-phosphate kinase plus ATP as
described previously [20].

Phosphofructokinase activity assay lIslets were sonicated
on ice in 0.15 ml of extraction buffer containing 15 mmol/l
K;PO4, pH 7.0, 100 mmol/l KCI, 2 mmol/l EDTA, 2
mmol/l phenylmethylsulfonyl fluoride, 0.2 mg/ml leupep-
tin and 50 pg/ml aprotinin. After centrifugation at 12,000
g for 15 min at 4°C, phosphofructokinase (PFK) activity
was measured by a previously described method [17].
Supernatant was added to 1 ml buffer that contained 50
mmol/l Tris/HCL, pH 8.0, I mmol/l EDTA, 2.5 mmol/l di-
thiothreitol, 5 mmol/l ammonium sulfate, 2 mmol/l MgCl,,
1 mmol/l ATP, 1 mmol/I fructose-6-phosphate, 0.16 mmol/l
NADH, 0.4 U/ml aldolase, and 2.4 U/ml triose phosphate
isomerase plus 0.8 U/ml glycerophosphate dehydrogenase
mixture (Boehringer Mannheim, Indianapolis, IN, USA)
in a quartz cuvette. The NADH metabolised was assessed
at 340 nm by spectrophotometry. PFK activity was cal-
culated based on 1 umol fructose-1,6-diphosphate=2 pmol
NADH consumed.

Transketolase activity assay Islets were washed with PBS
0.5 ml, three times, and homogenised in 100 pl of 10
mmol/l HEPES, pH 7.4, 250 mmol/l sucrose, 2.5 mmol/l
EDTA, 2 mmol/l cysteine, and 0.02% BSA. The catalytic
activity of transketolase was measured spectrophotomet-
rically at 340 nm at 25°C by the rate of NAD" reduction in
a coupled system with glyceraldehyde phosphate dehy-
drogenase [21]. The reaction mixture (final volume 0.6 ml)
contained 50 mmol/l glycylglycine, 5 mmol/l sodium ar-
senate, 0.25 mmol/l NAD", 3 U glyceraldehydephosphate
dehydrogenase, 3 mmol/l dithiothreitol, 2.5 mmol/l CaCl,,
0.1 mmol/l ThDP and 7 mmol/l phosphopentoses (xylu-
lose-5-phosphatetribose-5-phosphate); pH 7.6. The reac-
tion was initiated by islet extract addition.

Data presentation and statistical methods All data are
expressed as means+SD. Unless otherwise stated, the listed
n values represent the number of experiments performed.
Comparisons between two groups were performed by Stu-
dent’s t-test. Comparisons between multiple groups were
performed by one-way or two-way ANOVA. A value of
p<0.05 was considered significant.

Results

Offspring birthweight and body weight Maternal obesity
increased the birthweight of offspring. As shown in Fig. 1a,
A’-negative pups born of obese 4”-positive mothers weighed
14% more than control pups born of normal mothers. This
effect was not maintained into adulthood (Fig. 1b). At 20,
30 and 50 weeks of age body weights of 4”-negative off-
spring and control offspring were not significantly differ-
ent. From Fig. 1b it can be seen that the HFD markedly
increased body weight in #-negative and control animals.

Blood glucose and serum insulin levels following a glu-
cose challenge Fifty-week-old 4”-negative and control an-
imals were subject to glucose tolerance tests using doses
of 1 and 2 mg glucose/g body weight. As shown in Fig. 2,
blood glucose curves were similar in female 4’-negative
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Fig. 1 Birthweight (a) and body weight gain rate (b) of offspring of
control (L) and Agouti obese mothers. Male and female offspring
were mixed in birthweight, but Agouti-positive offspring were
excluded. Open bars 20 weeks; shaded bars 30 weeks; dark shaded
bars 50 weeks. A’L(-), Agouti-negative offspring; M, male; F,
female. Data are means+SD. *p<0.05 compared with control. n=80
(a), n=8-10 (b)



Fig. 2 Glucose tolerance tests
with i.p. injection of 1 g glu-
cose/kg body weight (a) and 2 g
glucose/kg body weight (b).
Insulin levels in glucose toler-
ance test blood samples of
50-week-old control and
Agouti-negative female off-
spring fed with a normal diet
after i.p. injection of 1 g glu-
cose/kg body weight (¢) and 2 g
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and control offspring at both doses of glucose. Serum
insulin values were similar following the 1 mg glucose
dose. However, following the 2 mg dose, serum insulin
values peaked at a much higher level in control offspring
than in 4’-negative offspring. In males, there was no sig-
nificant difference in blood glucose or serum insulin at
either dose of glucose (data not shown). This result sug-
gested that female 4’-negative offspring have a lower
capacity to secrete insulin. We tested whether a chronic
high-fat diet exacerbated the differences observed between
A’-negative and control offspring. Female (Fig. 3) and male
(Fig. 4) offspring fed the HFD from 15 weeks of age were
injected with 1 mg glucose/g body weight at three ages.
The high-fat diet exacerbated glucose intolerance, espe-
cially in 4-negative female mice. At 30 and 50 weeks
of age the female 4"-negative serum insulin response was
significantly reduced compared with control offspring. In
50-week-old A”-negative females, blood glucose levels
were significantly higher than those measured in control
offspring. Unlike females, in males a high-fat diet did not
produce large differences between 4”-negative and control
offspring. These results indicate that insulin secretion is
reduced in female 4”-negative offspring and that this deficit
is aggravated by a high-fat diet.

Insulin secretion from isolated islets of control and A’-
negative female offspring To determine if the reduction in
serum insulin in A”-negative females was associated with

Time after injection (min)

reduced beta cell secretion, we assayed insulin secretion in
isolated islets from 50-week-old offspring that had been
fed normal and high-fat diets. The results shown in Fig. 5
indicate that insulin secretion was similar in islets from
control and #4”-negative offspring fed a normal diet, which
is consistent with the serum insulin levels shown in
Fig. 2c. However, following the HFD, insulin secretion
was significantly reduced in A”-negative islets (p<0.05)
compared with control islets when stimulated with 16.7
mmol/l glucose or 16.7 mmol/l glucose plus 10 mmol/l
arginine. Notably, the basal secretory levels were not dif-
ferent, suggesting that the decrease was related to the abil-
ity of high glucose to stimulate secretion. This result is
consistent with what we found for serum insulin in high-
fat-fed A”-negative offspring (Fig. 3), where the deficit in
A’-negative offspring occurred only after glucose injection.

Islet protein, DNA and insulin contents in control and A’-
negative islets We measured protein (Fig. 6a), DNA
(Fig. 6¢) and insulin (Fig. 6¢) contents in islets from
50-week-old 4’-negative female offspring fed a normal
diet. #-negative islet protein and DNA contents were
increased about two-fold and A4"-negative islet insulin
content was increased 1.4-fold. Islet yields from mice fed a
high-fat diet were low and they were analysed only for
insulin content. High-fat feeding increased islet insulin
content in control islets but did not significantly affect
insulin content of 4”-negative islets.
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Fig. 3 Glucose tolerance tests at 20 weeks (a), 30 weeks (b) and 50
weeks (¢). 1 g glucose/kg body weight was injected i.p. Insulin
levels in glucose tolerance test (1 g glucose/kg body weight) blood
samples from control and Agouti-negative female offspring fed the

Transketolase, GAPDH and PFK activities in 50-week-old
control and A-negative female offspring islets To better
understand the altered islet function, selected metabolic
enzymes were measured in islets from 50-week-old female
control and A”-negative mice fed a normal diet. Transke-
tolase, a key enzyme in the non-oxidative branch [22] of
the pentose phosphate pathway was significantly reduced
in A-negative islets (Fig. 7a). The glycolytic enzyme,
GAPDH was reduced by 72% in A4’-negative islets
(Fig. 7b). Under normal feeding conditions, PFK was not
reduced in 4”-negative islets (Fig. 7c¢). PFK was also mea-
sured in islets isolated from high-fat-fed mice, in which
there was a significant reduction in 4”-negative PFK ac-
tivity compared with PFK activity in control islets.

Discussion

Clinical studies have demonstrated that maternal diabetes
increases the offspring’s risk of developing type 2 diabe-
tes [11, 23, 24]. Basic research in animal models of di-
abetes has shown similar effects [7, 25, 26]. However,
neither clinical nor animal studies have clearly pinpointed
whether it is the effects of maternal obesity or the effects
of maternal diabetes that predisposes to type 2 diabetes in
the offspring. To look at the effects of obesity indepen-

Time after injection (min)

Time after injection (min)

HFD measured at 20 weeks (d), 30 weeks (e) and 50 weeks (f).
Open diamonds control offspring; closed squares Agouti-negative
offspring. Data are means+SD. *p<0.05, **p<0.01 compared with
control; n=8-10

dently of diabetes, we used 4 mothers on a C57BL/6
background. As shown in Table 1, these female mice were
obese but never became diabetic, even during pregnancy.
Our analysis of their genetically normal offspring showed
that maternal obesity induced impaired glucose tolerance
in offspring with several features: (1) female 4”-negative
offspring on a normal diet exhibited impaired insulin
secretion when challenged with an injection of 2 mg glu-
cose/g body weight (Fig. 2); (2) in female offspring sub-
jected to prolonged high-fat feeding, the impairment in
insulin secretion due to an obese mother was exacerbated
and these offspring also exhibited an abnormal glucose
tolerance curve.

To our knowledge, this is the first report to show that
obesity alone during pregnancy impairs glucose tolerance
in offspring. This may contribute to the development of
gestational diabetes and type 2 diabetes in these offspring.
Since there are many times more obese mothers than
diabetic mothers [1-3, 27], maternal obesity may be an
important factor contributing to the overall rise of type 2
diabetes in the population.

The reduced serum insulin values in female 4"-negative
offspring suggested a defect in pancreatic beta cells. To
test this directly we isolated islets from 50-week-old fe-
male offspring. The ability of glucose to stimulate insulin
secretion was markedly reduced in A”-negative islets that
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Fig. 4 Glucose tolerance tests at 20 weeks (a), 30 weeks (b) and 50
weeks (¢). 1 g glucose/kg body weight was injected i.p. Insulin
levels in glucose tolerance test (1 g glucose/kg body weight) blood
samples from control and Agouti-negative male offspring fed the

had received a chronic HFD. This corresponded well to
the low serum insulin levels we measured in vivo. High-
fat feeding revealed functional deficits in 4”-negative
islets that were small or undetectable when A4”-negative
offspring were fed normal chow. At this time, it is un-
clear whether the impact of high-fat feeding was due to

20
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10 20 30 40
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30 40

HFD measured at 20 weeks (d), 30 weeks (e) and 50 weeks (f).
Open diamonds control offspring; closed squares Agouti-negative
offspring. Data are means+SD, *p<0.05 compared with control;
n=8-10

the need for beta cells to compensate for prolonged
insulin resistance induced by high fat or to a direct toxic
effect of elevated serum lipids on the beta cell [28, 29].

Despite relatively normal insulin secretion, islets from
A’-negative female offspring that had been fed normal
chow were not normal. They were significantly larger than

Fig. 5 Insulin secretion from 50 1 p=0.02
the islets of 50-week-old control |
and Agouti-negative female
offspring fed with normal and - p=0.01
high-fat diets. Shaded bars, e 40 , -
Agouti-negative offspring; open £
bars, control offspring. 2.8=2.8 %
mmol/l, 16.7=16.7 mmol/l glu- =y l
cose concentration in KRB, 8 30
respectively; Arg=10 mmol/l @
arginine. Data are means£SD, o
*p<0.05, **p<0.01 compared £ hi
with control; n=4—6 2 -
T 20
2
o
o
@
wn
£ 10 *
S
wun
& ’_LH“ ’-L!—H 11 I
28 28+Arg 167  167+Arg 28  28+Ag 167 167+Arg
Normal diet High-fat diet
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control islets as indicated by increased protein, DNA and
insulin content. In addition, we found that 4”-negative
female islets had markedly reduced transketolase and
GAPDH activities. Transketolase is important for the
pentose phosphate shunt that is needed for nucleic acid
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Fig. 7 Islet transketolase, GAPDH and PFK activity in 50-week-old
control and Agouti-negative female offspring fed with a normal (a, b
and ¢) and high-fat diet (¢). £L(-), Agouti-negative offspring; L,
control offspring. *p<0.01 compared with control. Data are means+
SD; n=6



precursors [22] and may reduce high glucose stress [21].
Low transketolase may render 4”-negative islets vulnerable
to additional damage. Low GAPDH may limit glycolytic
flux and this could contribute to the impairment of glu-
cose stimulated insulin secretion. We obtained low islet
yields from high-fat fed mice; as a result we could not
perform all assays on these islets. However, we were able
to determine that high-fat feeding did not increase insulin
content in 4’-negative islets as it did in control islets. In
addition, high-fat feeding caused a more severe decline in
islet PFK activity in 4”-negative islets. Both the failure
to increase insulin content and the greater loss of PFK
activity may have contributed to the decline in islet func-
tion of high-fat fed 4”-negative islets.

The mechanisms by which maternal obesity impairs islet
function in offspring are unknown. The fact that the change
can be seen a full 50 weeks after delivery indicates that
maternal obesity induces a change in developmental pro-
gramming of the islet with permanent consequences for
beta-cell function. Obesity is associated with abnormali-
ties of lipid metabolism [30]. Maternal non-estirified fatty
acids can cross the placenta, and placental lipoprotein li-
pase hydrolyses triglycerides to fatty acids that can cross
the placenta [31, 32]. Thus, increased serum levels of
maternal fatty acids and triglycerides may increase fatty
acid transfer to the fetus. Triglyceride levels are elevated
in newborn infants of obese, nondiabetic mothers, in com-
parison with control subjects [33]. Fatty acids are known
to have detrimental effects on the adult beta cell [29, 34]
and they may effect beta cell development as well. Oxi-
dative stress occurs in the embryo during diabetic preg-
nancy [35], and also in the placenta of obese women [36].
It is possible that obese pregnancy leads to beta cell ox-
idative stress that disrupts normal programming. Whatever
the mechanism of damage, it was evident that female
offspring were significantly and reproducibly more sen-
sitive than male offspring. Other type 2 diabetes models
exhibit a sex bias; however, this is generally towards
greater sensitivity of males [37, 38]. Maternal obesity must
have a different mode of damage to beta cells.

Summary In summary, we have shown that maternal
obesity causes glucose intolerance and a significant re-
duction in glucose-stimulated insulin secretion in A4-
negative female offspring. Islet protein, DNA and insulin
content in female offspring were increased but transketo-
lase, GAPDH and PFK activities were reduced. These
changes in 4’-negative female offspring may contribute to
the development of gestational diabetes and type 2 dia-
betes in later life. These results imply that the detrimental
impact of maternal obesity on the beta cell may be anoth-
er factor contributing to the epidemic of type 2 diabetes.
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