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Abstract Aims/hypothesis: In order to test the hypothesis
that disturbances in skeletal muscle fatty acid metabolism
with type 2 diabetes are not equally present in the upper
and lower limbs, we studied fatty acid kinetics simulta-
neously across the arm and leg of type 2 diabetic patients
(n=6) and matched control subjects (n=7) for 5 h under
baseline conditions and during a 4-h hyperinsulinaemic—
euglycaemic clamp. Methods: Limb fatty acid kinetics
was determined by means of continuous [U-'>C]palmitate
infusion and measurement of arteriovenous differences.
Results: The systemic palmitate rate of appearance was
3.6+0.4 and 2.7£0.3 pumol-kg lean body mass 'min~' and
decreased during the clamp by 26% (p=0.04) and 43%
(»<0.01) in the diabetic patients and in the control subjects
respectively. At baseline, palmitate uptake across the arm
was similar in the two groups, whereas leg palmitate uptake
was lower than in the arm in the diabetic patients. During
the clamp, palmitate uptake decreased in the arm (—48%,
p=0.02) and the leg (—38%, p=0.04) of the control subjects,
whereas it decreased in the arm (—30%, p=0.04) but not in
the leg of the diabetic patients. Similarly, during the clamp
palmitate release was substantially suppressed in the arm
(—47%, p<0.01) and the leg of the control subjects (—45%,
2<0.01), but only in the arm of the diabetic patients (—45%,
p<0.01). Conclusions/interpretation: The present data
indicate that type 2 diabetes is characterised by heteroge-
neity in the dysregulation of skeletal muscle fatty acid
metabolism, with only the leg, but not the arm, showing
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Introduction

Disturbances of fatty acid metabolism may play a role in
the development of insulin resistance and type 2 diabetes.
In the postabsorptive state type 2 diabetic patients have an
increased plasma fatty acid concentration [1, 2], which may
interfere with glucose homeostasis/metabolism. In healthy
volunteers it has been shown that an elevation of plasma
fatty acid levels for some hours induced insulin resistance
[3-5] and that a reduction in fatty acid level reduced the
severity of insulin resistance in type 2 diabetic patients [6].

Skeletal muscle is an important tissue for the mainte-
nance of glucose and fatty acid homeostasis in the body,
and being a prime target for insulin action is therefore
linked to insulin resistance. Reduced plasma fatty acid up-
take and oxidation by the leg [7] and the arm [8, 9] have
been observed in type 2 diabetics as compared to healthy
individuals. Moreover, the relationship between intramus-
cular lipid accumulation and insulin resistance has been
described [10, 11]. Physical inactivity or muscle disuse is
recognised as one of the risk factors for the development of
insulin resistance and type 2 diabetes [12, 13]. Against this,
it has been shown that exercise training can reduce insulin
resistance in the leg of diabetic patients [14, 15]. Recently,
evidence has been presented for heterogeneity towards
lipolysis in human skeletal muscles [16]. Given the dif-
ferent roles of arm and leg muscles and their different
activation in daily life, it is possible that the observed dis-
turbances in skeletal muscle fatty acid kinetics in type 2
diabetes are not equal in skeletal muscles of the arms and



legs. To test this hypothesis, we investigated limb fatty
acid kinetics by means of a combination of stable isotope
dilution and an arterial-venous balance technique applied
to the arm and the leg of sedentary type 2 diabetic patients
and matched healthy volunteers under baseline conditions
and during a hyperinsulinaemic—euglycaemic clamp caus-
ing an increase in insulin well within the physiological
range.

Subjects, materials and methods
Subjects

Six type 2 diabetic male volunteers and seven matched
healthy volunteers (controls) participated in the study. The
characteristics of the subjects are reported in Table 1. All
subjects had had a stable body weight for at least the pre-
ceding 3 months and were not engaged in any regular
strenuous physical activity or have a physically demand-
ing job. Two of the diabetic patients were treated with diet
only, one patient with diet and insulin, and three patients
with diet and oral glucose-lowering agents (two patients
with metformin and one patient with metformin and sul-
phonylureas). All medications were withheld 24 h before
the experiments. None of the patients had health prob-
lems, apart from type 2 diabetes. None of the healthy
control subjects were receiving medication and all had
a normal oral glucose tolerance test. The patients and
healthy volunteers were informed about the aim and the
possible risks involved in the study and gave their written
consent to participation. The study was conducted accord-
ing to the Declaration of Helsinki and had been approved
by the Ethical Committee of Copenhagen—Frederiksberg
Communities.

Body composition assessment

Body composition was determined by dual-energy X-ray
absorptiometry, which has been shown to provide a valid

Table 1 Subject characteristics

Control subjects  Type 2 diabetic

(n=7) subjects (n=6)

Age (years) 4844 5842
Body weight (kg) 89+7 105+6
BMI (kg/m ?) 2842 3342
Percentage body fat 28+£2 2943
Lean body mass (kg) 61+4 7043
Percentage leg fat 2543 27+3
Percentage arm fat 2542 2743
Leg muscle mass (kg) 7.9+0.6 9.0+0.3
Arm muscle mass (kg) 3.310.2 3.9+0.2
Fasting glucose (mmol/l)  5.3+0.2 8.6+0.8"

Data are means+SE
Significantly different from controls (p<0.05)
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and reproducible estimation of limb fat and muscle mass
[17]. Before each scan the machine was calibrated with
phantoms of known composition.

Experimental procedure

The type 2 diabetic patients and control subjects refrained
from any of their ordinary physical activities during the 48
h preceding the trial. On the day of the experiment the
subjects reported to the laboratory at 08.00 hours after an
overnight fast (12 h). After 20 min of supine rest, Teflon
catheters (20 G; Ohmeda, Wiltshire, UK) were inserted in
the femoral artery and in the retrograde direction into the
femoral vein of one leg using the Seldinger technique. In
addition, a 16 G catheter was inserted into an antecubital
vein of one arm and the tip of the catheter advanced into
the subclavian vein until approximately 5 cm before the
merger with the jugular vein. The positioning of the tip of
the catheter was verified by X-ray. Furthermore, two cath-
eters were placed in antecubital veins of the other arm for
stable isotope, glucose and insulin infusion. Twenty min-
utes after the catheterisation procedure, baseline blood
samples were taken and femoral and subclavian blood flow
was measured by Doppler ultrasound [18]. Subsequently, a
constant infusion of [U-'*CJpalmitate (0.009 pmol-kg '
min ' Cambridge Isotope Laboratories, Andover, MA,
USA) was started. The isotope infusion was continued for 9
h, during which time the subjects remained in the supine
position. Blood sampling and blood flow measurements
were performed every 60 min throughout the experiment.
Before blood sampling, a pneumatic cuff was placed under
the knee and around the wrist and inflated to a suprasystolic
pressure to avoid shunting in the lower leg and in the hand
[19]. Five hours after the start of the stable isotope infusion,
an insulin infusion (1 pmol kg ''min~") was started and
continued for the remaining 4 h of the study. During the
hyperinsulinaemic clamp the arterial glucose concentration
was maintained at the value recorded at the end of the
baseline period (5.07+0.1 mmol/l in the control subjects and
6.86%1.0 mmol/l in the diabetic 3patients) by infusion of a
20% glucose solution. The [U-'"C]palmitate infusion rate
was reduced by 50% at the start of the hyperinsulinaemic—
euglycaemic clamp. Arterial glucose and potassium con-
centrations were measured every 10 min during the clamp
period (ABL 715; Radiometer, Copenhagen, Denmark) and
potassium was infused to maintain the plasma potassium
concentration.

Analytical procedures

Blood for the measurement of substrate concentrations and
isotopic enrichment was collected in prechilled tubes con-
taining 0.3 M EDTA (10 pul ml™' blood) and immediately
centrifuged for 10 min at 4°C. The plasma obtained was
immediately frozen and stored at —80°C until analysis.
Plasma insulin was determined with an ELISA kit (Dako,
Glostrup, Denmark). Extraction of plasma fatty acid for the
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determination of palmitate concentration and isotopic en-
richment was performed according to Patterson and col-
leagues [20]. Palmitate concentration was measured by gas
chromatography with FID (Autosystem XL; Perkin Elmer,
Northwalk, CT, USA), using heptadecanoic acid as an in-
ternal standard. Plasma palmitate '*C enrichment was mea-
sured by gas chromatography-combustion isotope ratio
mass spectrometry (GC-C-IRMS, Hewlett Packard 5890,
Finnigan GC combustion 111, Finnigan Delta”"*; Finnigan
MAT, Bremen, Germany) as described previously [21].
Palmitate enrichment was corrected by a factor of 17/16 to
account for the extra methyl group of the methyl palmitate
derivative.

Calculations

Whole-body palmitate kinetics The whole-body rate of
appearance (R,) of palmitate in plasma, which in steady-
state conditions is equal to the rate of disappearance (Ry),
was calculated by dividing the tracer infusion rate by the
arterial plasma enrichment (Steele’s equation for steady-
state conditions [22]).

Limb substrate balance and kinetics Net palmitate balance
across the leg and the arm was calculated by multiplying
the arterial-venous concentration difference by plasma
flow, calculated as blood flowx(1—haematocrit). The limb
fractional extraction was calculated as

(Ca X Ey)—(Cy X Ey)
C, X E,

fractional extraction =

where C, and E,, and C, and FE, are the concentration and
the tracer enrichment of palmitate in the artery and the
femoral/subclavian vein respectively. The limb palmitate
uptake was calculated as

uptake = fractional extraction x C, X plasma flow

and the limb release as

release = uptake —net balance.

Statistical analysis

Data are expressed as means+=SE. The data are presented as
average values of the 2—5 h (Basal) and 6-9 h (Insulin)
periods, when an apparent isotopic and physiological
steady state was achieved. Differences between the average
values of the two periods, groups and limbs were deter-
mined by two-way repeated-measures analysis of variance
(ANOVA). When ANOVA revealed a significant effect, a
t-test was used to determine where the difference occurred.
When the comparison between limbs was not applicable,
differences between groups were determined with the un-
paired r-test, whereas the effect of the clamp was deter-

mined with the paired #-test. Statistical significance was
accepted at a p value of less than 0.05.

Results

Arterial and systemic palmitate rate of appearance (R,)
The arterial palmitate concentration was similar in diabetic
patients and control subjects during the last 3 h of the
baseline and hyperinsulinaemic—euglycaemic clamp period
and was substantially decreased during the clamp (Fig. 1).
Baseline palmitate R, was 3.6+£0.4 and 2.7+0.3 pumol-kg
lean body mass '‘min "' in the diabetic patients and in the
control subjects respectively (Fig. 1). Palmitate R, de-
creased substantially during the hyperinsulinaemic—eugly-
caemic clamp in the control subjects (—43%, p<0.01) and
the diabetic patients (—26%, p<0.05).

Limb palmitate kinetics Under baseline conditions a net
palmitate uptake was observed across the leg, whereas a net
palmitate release was observed across the arm in both
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Fig. 1 Arterial palmitate and systemic palmitate rate of appearance
(R,) in control subjects and type 2 diabetic patients. a Arterial
palmitate concentration and b systemic palmitate R, in control sub-
jects and in type 2 diabetic patients during the baseline (basal, filled
bars) and hyperinsulinaemic—euglycaemic clamp (insulin, open
bars) periods. *p<0.05 for difference from basal



Fig. 2 Limb net palmitate bal-
ance (uptake and release) in
control subjects and type 2 dia-
betic patients during the baseline
(basal, filled bars) and hyper-
insulinaemic—euglycaemic
clamp (insulin, open bars) peri-
ods. *p<0.05 for significant dif-
ference from basal; #p<0.05 for
significant difference from leg
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groups (Fig. 2). The unidirectional palmitate uptake was
normalised for the limb muscle mass and palmitate release
for the limb fat mass in order to compare arm and leg
kinetics. In control subjects, palmitate uptake was not sig-
nificantly different between the limbs during the baseline
period and decreased similarly during the clamp (—48%
and —38% for the arm and the leg, respectively). However,
in the diabetic patients palmitate uptake by the leg was
lower than that by the arm (p<0.05) (Fig. 3). During the
hyperinsulinaemic—euglycaemic clamp, palmitate uptake
was substantially decreased in the arm of the diabetic pa-

)

Fig. 3 Unidirectional limb
palmitate uptake and release in
control subjects and type 2
diabetic patients. a Limb unidi-
rectional palmitate uptake
(expressed per kg muscle mass)
and b release (expressed per kg
fat mass) during the baseline
(basal, filled bars) and hyper-
insulinaemic—euglycaemic
clamp (insulin, open bars)
periods. * p<0.05 for significant
difference from basal; “p<0.05
for significant difference

from leg
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tients compared with baseline (—30%, p=0.02), whereas it
was unchanged in the leg. Leg and arm blood flow was not
significantly influenced by insulin infusion (Table 2).

The unidirectional palmitate release is a dependent var-
iable of the tracer-determined palmitate uptake and the net
palmitate balance across the limbs. Palmitate release was
higher in the arm than in the leg under baseline condi-
tions and during the clamp in control and diabetic sub-
jects (Fig. 3). During the hyperinsulinaemic—euglycaemic
clamp a substantial decrease in arm palmitate release was
observed in both groups. In contrast, and similarly to what

Control Diabetic

Leg

Control Diabetic

*#

Arm

Leg
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Table 2 Average blood flow and limb palmitate fractional extraction during the basal period and during the clamp period

Control Diabetic
Leg Arm Leg Arm
Blood flow (I/min) Basal 0.447+0.065 0.281+0.033% 0.363+0.038 0.343+0.050
Insulin 0.433+0.059 0.278+0.030% 0.387+0.052 0.337+0.036
Palm FE (%) Basal 34.6+5.6 30.844.2 35.044.2 27.3+3.3
Insulin 50.3+3.7° 35.6+4.8 44.1+£5.4 25.5+5.7

Data are means+SE
?Significantly different from leg (p<0.05)
"Significantly different from basal (p<0.05)

was observed for palmitate uptake, during the clamp pal-
mitate release was unchanged in the leg of the diabetic
patients but substantially suppressed in the leg of the con-
trol subjects (—47%, p<0.01).

Contribution of limb palmitate uptake/release to systemic
palmitate Ry/R, Under baseline conditions the fractional
contribution of palmitate uptake by the arm to systemic
palmitate Ry was similar in control subjects and diabetic
patients, whereas the contribution of the leg was substan-
tially lower in diabetic patients during the baseline and
clamp period (Fig. 4).

Insulin concentration and plasma palmitate enrichment
Arterial plasma insulin concentration during the last 3 h of
the baseline period averaged 39+12 and 68+14 pmol/l in
the control subjects and the diabetic patients, respectively.
During the hyperinsulinaemic—euglycaemic clamp the in-
sulin concentration increased to 81411 and 141+24 pmol/l
in the control subjects and the diabetic patients, respec-
tively. The reduction of the [U-'*C]palmitate infusion rate
at the beginning of the clamp period successfully mini-
mised the changes in palmitate enrichment expected from
the effect of insulin infusion (Fig. 5).

Fig. 4 Limb fractional contri- a ) )
bution to systemic palmitate 30 1 Control | Diabetic
turnover in healthy control sub- |
jects and type 2 diabetic patients. 25 |
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Fig. 5 Palmitate enrichment in the femoral artery (closed circle), femoral vein (open circle) and subclavian vein (inverted triangle) plasma in
control subjects and type 2 diabetic patients during the baseline (basal) and the hyperinsulinaemic—euglycaemic clamp (insulin) periods

Discussion

The present study investigated arm and leg fatty acid
kinetics in postabsorptive healthy volunteers and diabetic
patients under baseline conditions and during a hyper-
insulinaemic—euglycaemic clamp. The main findings were
that: (1) palmitate uptake is similar in arm and leg of
healthy individuals under baseline conditions and during a
hyperinsulinaemic—euglycaemic clamp; (2) palmitate re-
lease, indicative of lipolysis, is substantially higher in the
arm than in the leg; and (3) during a hyperinsulinaemic—
euglycaemic clamp fatty acid kinetics is similar in the arm
but markedly different in the leg in diabetic patients
compared with healthy individuals. Thus, our hypothesis
that disturbances in skeletal muscle fatty acid kinetics in
type 2 diabetes are not equal in arm and leg muscles was
confirmed.

In the present study, fatty acid kinetics was simulta-
neously determined for the arm and leg in order to de-
termine potential differences in limb fatty acid metabolism.
Because of the importance of fully understanding the
dysregulation of fatty acid metabolism in type 2 diabetes,
we also determined the effect of insulin on limb fatty acid
kinetics using a hyperinsulinaemic—euglycaemic clamp in
healthy individuals and diabetic patients. Since insulin is
one of the most potent antilipolytic hormones [23], a low
dose of insulin was infused with the intention of inducing
an increase in insulin levels well within the normal phys-
iological range and to prevent the complete blockage of
lipolysis. Type 2 diabetes has been shown to be associated
with impaired suppression of fatty acid levels and fatty
acid R, by insulin [24, 25]. Accordingly, in the present
study a tendency was observed for a less significant sup-
pression of arterial palmitate concentration and systemic
palmitate turnover rate in diabetic patients during the hy-
perinsulinaemic—euglycaemic clamp. This observation is
also in agreement with the impaired postprandial sup-
pression of systemic fatty acid turnover demonstrated in
type 2 diabetic patients [26]. From the present study it is
clear that the skeletal muscles of the leg more than those
of the arm may play an important role in the reduced

insulin sensitivity with regard to the systemic fatty acid
turnover in type 2 diabetes, since no suppression was ob-
served in palmitate uptake or release by the leg.
Palmitate uptake under baseline conditions, expressed
per kilogram of muscle mass, was not significantly dif-
ferent between the upper and lower limbs in the control
subjects, whereas it was lower in the leg of the diabetic
patients. Reduced fatty acid uptake has been observed in the
forearm [8] and in the leg [7, 27] of type 2 diabetic patients.
A lower capacity for fatty acid uptake in the diabetic leg
muscles is also in agreement with similar findings in human
cultured vastus lateralis muscle cells [28]. However, sub-
sequent data on human cultured myotubes from the vastus
lateralis did not indicate substantial differences between
myotubes from diabetic patients and matched controls [29].
The decrease of palmitate uptake with insulin has been
reported previously for the leg [7, 30] and the arm [31] of
healthy subjects. Nevertheless, when fatty acid levels were
maintained during the insulin infusion, the fatty acid uptake
by skeletal muscle was actually increased in rat muscle
preparations [32, 33] and in cultured cells from the vastus
lateralis muscle [28, 29]. These observations imply that the
reduction in limb fatty acid uptake with insulin is caused
more by reduced limb fatty acid availability than by less-
ened skeletal muscle insulin sensitivity. However, the
present study clearly shows that, in spite of the markedly
reduced palmitate availability, the palmitate uptake in the
leg is maintained during insulin infusion in diabetic pa-
tients. This suggests an important role of insulin in the
regulation of skeletal muscle fatty acid metabolism and a
derangement of this regulation in type 2 diabetes, which is
potentially responsible for the chronically elevated fatty
acid levels. Fatty acid uptake in skeletal muscle is thought
to occur, at least in part, as a protein-mediated process
[34, 35]. In humans, plasma membrane fatty acid binding
protein in the vastus lateralis muscle has been reported to
be either diminished [8] or increased [36] in type 2 dia-
betes, whereas fatty acid translocase (FAT)/CD36 has been
suggested to be unaltered [36]. To our knowledge, how-
ever, data on fatty acid transport proteins in arm muscles in
humans are lacking. Moreover, in rat skeletal muscle, in-
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sulin has been proved to translocate FAT/CD36 from the
intracellular pool to the plasma membrane, causing in-
creased fatty acid uptake. Interestingly, protein-mediated
fatty acid transport in human cultured muscle cells from the
vastus lateralis has been shown to be stimulated by insulin
in non-diabetic but not in type 2 diabetic subjects [28]. In
the light of the results of the present study, it would be of
interest to investigate the possibility of a different effect of
type 2 diabetes on protein-mediated fatty acid transport in
arm and leg muscles under both basal and insulin-stim-
ulated conditions.

The limbs clearly consist not solely of skeletal muscle
but also of subcutaneous adipose tissue, adipose tissue in-
terspersed within and around the muscle bundles, and lipid
droplets within the myocytes. While it has been suggested
that adipose tissue has a very limited contribution to pal-
mitate uptake in volunteers in the postabsorptive state [21,
37, 38], this is not the case for palmitate release. Fur-
thermore, heterogeneity in adipose tissue [39] and skeletal
muscle [16] lipolysis has been reported. In addition,
skeletal muscle and adipose tissue lipolysis can respond
differently to insulin [40—43], also in relation to the insulin
level [44, 45]. Taken together, these factors hamper a clear
interpretation of palmitate release in the arm and leg of
healthy individuals and diabetic patients. Nevertheless, in
the present study the similarity between the groups in the
fat contents of the arm and leg reinforces the validity of the
observation of a disturbed response of palmitate release in
the leg to insulin in diabetic patients. In fact, whatever the
prevalent source of palmitate release, this was suppressed
differently by insulin in diabetic patients, being reduced in
the arm but not in the leg.

Physical inactivity or muscle disuse is linked to the
development of insulin resistance and type 2 diabetes [12,
13], whereas exercise training can reduce insulin resistance
[14, 15]. The present findings of a marked difference in
limb palmitate kinetics between arm and leg might be
interpreted from the perspective of a different activity
pattern between the two extremities. It could be argued that
in sedentary individuals and with ageing, the leg undergoes
a relatively more pronounced decline in muscular activity
due to reduced locomotion, whereas the arm maintains
better its activity level because of greater involvement in
the activities of daily living, thereby being less prone to the
development of insulin resistance. Whether or not this
speculative explanation is true, and in view of their large
muscle content, it is clear that the legs should be a prime
target in the strategy to prevent insulin resistance and de-
velopment of type 2 diabetes.

In conclusion, our study indicates that there is hetero-
geneity in the dysregulation of skeletal muscle fatty acid
metabolism in type 2 diabetes in terms of fatty acid kinetics
and its sensitivity to insulin stimulation, which are different
in the leg but similar in the arm of type 2 diabetic patients
compared with non-diabetic matched control subjects. The
present data warrant future studies to elucidate the mech-
anism of the different metabolic perturbation in the arm and
leg muscles of patients with type 2 diabetes.
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