
Abstract

The role of islet amyloidosis in the onset and progres-
sion of Type 2 diabetes remains obscure. Islet amyloid
polypeptide is a 37 amino-acid, beta-cell peptide which
is co-stored and co-released with insulin. Human islet
amyloid polypeptide refolds to a β-conformation and
oligomerises to form insoluble fibrils; proline substitu-
tions in rodent islet amyloid polypeptide prevent this
molecular transition. Pro-islet amyloid polypeptide (67
amino acids in man) is processed in secretory granules.
Refolding of islet amyloid polypeptide may be pre-
vented by intragranular heterodimer formation with in-
sulin (but not proinsulin). Diabetes-associated abnor-
mal proinsulin processing could contribute to de-stabil-
isation of granular islet amyloid polypeptide. Increased
pro-islet amyloid polypeptide secretion as a conse-
quence of islet dysfunction could promote fibrillogene-
sis; the propeptide forms fibrils and binds to basement
membrane glycosamino-glycans. Islet amyloid poly-
peptide gene polymorphisms are not universally asso-

ciated with Type 2 diabetes. Transgenic mice express-
ing human islet amyloid polypeptide gene have in-
creased islet amyloid polypeptide concentrations but
develop islet amyloid only against a background of
obesity and/or high fat diet. In transgenic mice, obese
monkeys and cats, initially small perivascular deposits
progressively increase to occupy 80% islet mass; the
severity of amyloidosis in animal models is related to
the onset of hyperglycaemia, suggesting that islet amy-
loid and the associated destruction of islet cells cause
diabetes. In human diabetes, islet amyloid can affect
less than 1% or up to 80% of islets indicating that islet
amyloidosis largely results from diabetes-related
pathologies and is not an aetiological factor for hyper-
glycaemia. However, the associated progressive beta-
cell destruction leads to severe islet dysfunction and
insulin requirement. [Diabetologia (2004) 47:157–169]
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Amyloid deposition in pancreatic islets is one of the
most common pathological features of Type 2 diabetes
(T2DM) being found in at least one islet at post-mor-
tem in more than 90% of Type 2 diabetic subjects [1,
2, 3]; islet amyloid is not just a feature of ageing since
it is found only in a small number of (<15%) elderly
(>60 years), apparently non-diabetic individuals. This
pathological feature was first identified by a study in a
pancreas from a diabetic patient in 1900 [4]. Later pa-
thologists determined that islet hyaline plaques are a
feature of elderly (but not young) subjects with diabe-
tes [5] and that this amorphous proteinaceous material
(which was originally described as hyaline), had tinc-
torial properties of amyloid [6], staining with Congo



red or thioflavin S (Fig. 1a,b). Causative factors for
conversion of the normally soluble component pep-
tide, islet amyloid polypeptide (IAPP, amylin) to in-
soluble fibrils remains largely unknown. Amyloido-
genic peptides change their conformation to form 
β-sheets and fibrils; Aβ peptide which forms cere-
bral plaques in Alzheimer’s disease (AD) [7] and is 
of similar size to IAPP, shows similar conforma-
tional changes. However, any common factors which 
could link AD with T2DM remain to be determined
[8, 9].

The relationship of islet amyloid to the onset and
progression of T2DM in man is largely unknown; for-
mation of amyloid cannot be directly related to the
pathophysiology of diabetes since the deposits are un-
detectable in vivo and animal models of T2DM do not
include all features of the disease process. Extensive
islet amyloid deposition identified at post mortem has
been correlated with reduced islet function and loss of
islet beta cells in animal models [10] and with severe
islet dysfunction associated with the need for insulin
replacement therapy in humans [1, 11]. Amyloid 
fibrils formed from synthetic IAPP [12, 13] or Aβ
peptides [7] are cytotoxic which has significance for
islet dysfunction in diabetes.

This review describes current information on the
factors that affect human IAPP (hIAPP) fibril forma-
tion in vitro and relates these findings to fibril forma-
tion and accumulation of deposits in biological sys-
tems. The relationship of fibril formation to islet func-
tion in man and in cellular and animal models is 
discussed to assess the role of amyloidosis in the 
different stages of T2DM in man.

What is IAPP and islet amyloid?

Islet amyloid polypeptide, IAPP, amylin, is a 37 amino
acid peptide which is co-stored with insulin in beta-cell
secretory granules and co-secreted in response to beta-
cell secretagogues [14, 15, 16]. IAPP is derived from a
larger precursor peptide, proIAPP, (67 amino acids in
man) and proteolytically cleaved at the N- and C-ter-
minal junctions by prohomone convertase 1/3 and 2
within the beta-cell secretory granule as the granule
matures (Fig. 2) [17, 18, 19, 20]. The normally soluble
peptide is found in the circulation at 5–15 pmol/l con-
centration in man and like C-peptide (but not insulin) it
is excreted by the kidney; the relationship of circulat-
ing insulin-like molecules to IAPP would therefore be
more accurately made with C-peptide than insulin [21].

IAPP has been identified in all species in which 
it has been examined [21]. The primary structure 
of IAPP is well conserved although there are some im-
portant species–specific substitutions which have im-
plications for amyloid formation (Fig. 2). Diabetes-
associated amyloid is found in non-human primates
[23, 24] and cats [25] but not in rodents. Proline substi-
tutions in the region IAPP 24–29 are responsible for
the lack of fibril formation in rats and mice and some
other species [26, 27, 28, 29]. Islet amyloid is not
formed in Type 1 diabetic subjects where beta cells
(and therefore insulin and IAPP) are absent. IAPP has
some homologies to calcitonin gene-related peptide
(CGRP) [30] and shares some actions and receptor
binding affinities with the calcitonin gene family of
peptides [31, 32, 33]. Although a multitude of physio-
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Fig. 1a, b. Islet amyloid deposits fluorescently labelled with
Thioflavine S in islets of two subjects with Type 2 diabetes 
to illustrate that the degree of severity of the deposits (% islet 
occupied) does not correlate with the duration or severity of
the diabetic symptoms. (a) Pancreatic islet from a subject
(aged 86 years) who died after 18 years of Type 2 diabetes,
treated with oral agents; quantitation data indicated less than
2% islets contained amyloid with less than 3% islet area re-
placed with amyloid. Amyloid was present as thin perivascular
deposits adjacent to the capillary surrounding the islet and
those penetrating the core with limited accumulation within the
islet. (b) Subject aged 76 years died after 17 years of diabetes
treated with oral agents; 52% of islets were affected with amy-
loid occupying mean of 20% islet space. Perivascular fibrils
and extensive deposits within the islet were present associated
with a reduction of beta-cell population. Quantitation data de-
rived from studies reported in ref [3]. Scale bars=20 µm



logical roles have been attributed to IAPP since its
identification in 1987 [34, 35], it remains a peptide
without a clearly identified function in vivo [36]; mod-
erately improved glucose intolerance was detected in
the IAPP knock-out mouse [37, 38] and Type 1 diabet-
ic subjects do not have pathophysiological features
which could be attributed directly to IAPP deficiency.

The extent of islet amyloid deposition in T2DM is
very variable; not only is the number of islets affected
(prevalence) very heterogeneous (<1%–80%) but also
the amount of amyloid per islet (severity) is not 
uniform [39]. Small deposits are located adjacent to
the basement membrane of islet capillaries (Fig. 1a,
Fig. 3). Islets in the head of the pancreas are less 
affected than those in the remainder of the organ due
to the reduced number of beta cells in islets derived
from the ventral pancreatic primordium [40].

Islet amyloid deposits contain a variety of compo-
nents that are common to all forms of amyloidosis; 
serum amyloid P component [41], apolipoprotein E
(ApoE) and heparan sulphate proteoglycans [42, 43,
44] are present in addition to the proteinaceous fibrils;
some of these molecules may play a role in the initia-
tion or stabilisation of the deposits. All amyloid fibrils
have similar structural features independently of the
component protein [45]. In the case of islet amyloid,
the normally soluble secreted peptide assembles into a
rigid linear structure with each monomer held together
via hydrogen bonds; it is possible that an amorphous
precipitate of monomers/small oligomers forms as
seen in vitro (Fig. 4a) which provides the local condi-
tions for fibril assembly [46]. Fibrils start as small
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Fig. 2. Amino acid sequences of proIAPP illustrated in single
letter code. Three residues are missing in human, monkey, cat
and dog when aligned with other sequences. Porcine IAPP is
missing one amino acid. Amino acids common to the human
sequence are indicated by (–). Asterisks (*) represent amino 

acids not yet determined. : represent residues missing when 
sequences are aligned. Proline residues in IAPP 20–29 are
present in rat and mouse IAPP which prevent folding to form
fibrils. Only partial sequences are available for rabbit, hare,
cougar, and pig. G-pig guinea-pig

Fig. 3a–c. Perivascular islet amyloid deposits examined by
electron microscopy in (a) a human diabetic subject, (b) a glu-
cose-intolerant Macaca mulatta monkey and (c) an old (aged
18 months), non-diabetic, non-obese, transgenic mouse ex-
pressing the gene for human IAPP. (a) Amyloid deposits are
situated between an islet capillary and the beta cell; the amy-
loid fibrils lie in invaginations of the beta-cell membrane (ar-
rows). This could disrupt membrane signalling of glucose 
uptake and insulin secretion by interference with membrane
fluidity. (b) perivascular amyloid surrounds this profile of the
capillary and appears to be more extensive adjacent to the beta
cell than the α-cell suggesting an association with beta-cell 
pathology. (c) Amyloid deposits were very infrequent in this
old non-diabetic transgenic mouse. The deposit in this profile
is more extensive adjacent to the beta cell than the α cell.
Amy, amyloid deposits; c, capillary; β, beta cell; α, α cell. 
*, basement membrane. Scale bars (a) 2.0 µm, (b) 5.0 µm, 
(c) 1.0 µm



units, protofibrils, consisting of a relatively small
number of oligomers (Fig. 4b); these further assemble
to form a filament which is 4 to 8 nm in diameter and
unbranching (Fig. 4c). Fibrils (10–30 nm diameter and
of variable length) are usually composed of 2 to 5

protofilaments wound together (Fig. 4d,e) which form
the foundation of extracellular deposits (Fig. 4f). Most
amyloid fibrils are found outside the cells in vivo but
considerable controversy exists concerning the site of
initiation of islet amyloidosis and the possibility of fi-
bril assembly inside the cell [47, 48]: fibril-like accu-
mulations of IAPP with tinctorial properties of amy-
loid have been identified at intracellular sites in beta
cells of human insulinomas and of islets from trans-
genic mice overexpressing the gene for hIAPP (hIAPP
TM) [22, 49].

What are the causative factors 
for amyloid fibril formation in Type 2 diabetes?

What normally prevents IAPP conversion into fibrils?

Synthetic hIAPP in buffer solutions is rapidly convert-
ed to β-sheet and fibrils [45, 49, 50]. In the secretory
granule, IAPP is at a high concentration; this is approx-
imately 4 mmol/l based on a ratio of 1:10 with insulin
in pancreatic extracts [52] and an estimated concentra-
tion of granular insulin of 40 mmol/l [53]; at this con-
centration, synthetic hIAPP would be rapidly converted
into fibrils. This suggests that the peptide must be sta-
bilised to prevent oligomerisation and fibril formation
in vivo. Many laboratories have shown that insulin will
inhibit IAPP fibril formation in vitro [54, 55]; IAPP and
insulin (but not proinsulin) form heteromolecular com-
plexes in vitro [56] suggesting that insulin stabilises 
hIAPP in the beta-cell granule. Proinsulin does not bind
to IAPP or have a stabilizing effect [56] and, therefore,
any process that results in inefficient proinsulin pro-
cessing could affect IAPP fibril formation in T2DM.

Environmental destabilisation

IAPP fibril formation results from a change in the 
normal conformational state of the molecule to a new,
aggregation-prone conformation [57, 58, 59]. The 
‘environmental’ factors that can destabilise a protein
conformation include pH, chemical modification, salt
concentrations, natural ligands, glycation, racemisa-
tion, deamidation, oxidation, isomerisation and lipi-
doxidation of the peptide. None of these modifications
of IAPP have been assessed in vivo and, therefore,
their potential association with amyloid deposition is
circumstantial. Experiments of IAPP model peptides
show that deamidation can dramatically accelerate
amyloid formation [60]. When the secretory granule is
released, the granule milieu of the normally acid pH
and high calcium concentration is changed to neutral
and lower calcium of the extracellular space and the
insulin crystal dissolves. Environmental changes asso-
ciated with exocytosis do not promote IAPP molecu-
lar aggregation in vitro [58].
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Fig. 4a–e. Different stages in the assembly of fibrils formed
from human synthetic IAPP. (a) Human IAPP precipitates
from solution and forms amorphous aggregates visible with
transmission electron microscopy; this hydrophobic environ-
ment allows structural refolding and formation of oligomers
and protofibrils. (b) Protofibrils (arrows) consist of small oli-
gomers of IAPP which are illustrated using platinum carbon
shadowing and electron microscopy. (c) Further assembly of
protofibrils result in protofilaments which are long and un-
branching but are not stable alone. (d) These associate lateral-
ly, often by helical winding, to form fibrils consisting of three
or more protofilaments. (e) Fibrils formed from synthetic pep-
tides also assemble into loose meshworks of fibrils. (f) Ex-vivo
fibrils extracted from the pancreas of a diabetic subject show
little evidence of complex helical or higher order fibril assem-
bly. Scale bars, 200 nm



Genetically determined structural changes –
mutations in the IAPP gene

No genetically-determined aberrant IAPP sequence
has been found in the majority of populations with
T2DM [61, 62]. A missense heterozygous substitution
in hIAPP at position 20 of a serine residue for a gly-
cine has been identified in Japanese and Chinese stud-
ies [63]. However the prevalence of the mutation in
T2DM is low, although significant, in both Japanese
(2.6% in T2DM vs 0.8% in non-diabetic group,
p<0.0007) [64] and Chinese cohorts (2.0–2.8% in
T2DM; 0–0.5% in controls, p<0.05) [65] but not
found in large cohorts of Caucasians [66]. The S20G
mutation is associated with only moderate alterations
in insulin secretion in the small number of patients 
examined so far and, therefore, its role in T2DM is
unclear [67]. However, synthetic S20G hIAPP forms
amyloid more readily than wild-type IAPP [68] and it
exerts greater biological cytotoxicity [69] indicating
that small changes in structure can affect the refold-
ing process. A mutation in the IAPP gene promoter
has been identified and associated with T2DM in a 
Spanish population [70] which suggests that regula-
tion of gene expression could be important.

Aberrant prohormone processing

The role of inappropriate processing of proIAPP in
T2DM remains high as a candidate factor for fibrillo-
genesis. In T2DM [71] and in patients with insulino-
ma (both conditions associated with amyloid) there is
increased secretion of incompletely processed proin-
sulin, [72, 73]. Islet studies in vitro indicate increased
production of N-terminal intact proIAPP under stimu-
lated secretory conditions [74] and immunoreactivity
for the N- terminal peptide of proIAPP has been iden-
tified in islet amyloid deposits in insulinomas and
T2DM [75]. N-terminal intact proIAPP has been iden-
tified in a PC2 knockout, hIAPP transgenic mouse
model [76]. This suggests that, not only is inappropri-
ately processed proinsulin secreted under these condi-
tions, but also that proIAPP secreted in T2DM is in-
corporated into deposits.

An increase in production of proIAPP-like
molecules could affect IAPP aggregation by several
mechanisms. Firstly, proIAPP has been shown to form
amyloid-like fibrils in vitro although with less avidity
than IAPP [77]. Secondly, it has been shown that a
synthetic construct of proIAPP with the N-terminal
cleavage fragment intact, readily binds to heparan sul-
phate but IAPP does not [78]. Since heparan sulphate
is a component of the glycosaminoglycans (GAGs) of
the islet capillary basement membrane (where amy-
loid first forms in vivo), secreted proIAPP could accu-
mulate in the pericapillary space and either form fi-
brils itself or act as a nidus or template for subsequent

IAPP accumulation. Alternatively, GAGs produced by
the beta cell could act as binding sites for IAPP [78].
Thirdly, insulin (but not proinsulin) binds to IAPP and
prevents fibril formation [56]; therefore, aberrant pro-
insulin processing and increased concentration in the
granule could lead to destabilisation of IAPP and/or
proIAPP which could result in fibril formation on
granule exocytosis. Fibril formation as a result of pep-
tide misprocessing would then result from, rather than
cause, beta-cell dysfunction.

Advanced glycation end products of insulin and IAPP

Protein glycation is a feature of T2DM and the forma-
tion of advanced glycation end products (AGEs) is
demonstrable in proteins with low turnover rates (e.g.
haemoglobin, collagen) [80]. The use of fructose as a
sweetener could exaggerate the problem because the
chemical reaction of fructose with proteins is faster
than the analogous reaction with glucose. Glycated in-
sulin has been identified in models of diabetes [81]
but the existence of glycated IAPP in the circulation is
unknown. Whilst glycation of established amyloid de-
posits is likely in diabetes, glycation of molecules
which are rapidly turned over once secreted into the
circulation such as insulin and IAPP would need to
occur within the cell. Glycation of IAPP in vitro oc-
curs at the α-amino or ε-amino group of Lys1 and
guanidine group of Arg11 and this has been proposed
to accelerate fibril formation [82]. Glycation of pro-
teins in diabetes could affect cellular viability through
binding to the so-called Receptor for Advanced Gly-
cation End products or RAGE. Monomeric non-
glycated hIAPP does not bind to this receptor but 
fibrillar IAPP (and amyloid fibrils composed of other
proteins) have been shown to interact [84]. If glycated
monomeric IAPP binds to the RAGE receptor this
could act as a “nidus” for fibril formation and/or in-
duce apoptosis but there is no evidence from in vivo
studies for this mechanism.

IAPP concentration

As with other amyloid diseases, the extent of islet am-
yloid formation is related to the production and local
concentrations of IAPP; these are dependent upon se-
cretion, clearance from the islet spaces or by degrada-
tion. No correlation has been observed between an in-
crease in circulating IAPP concentrations and either
glucose intolerance or T2DM in man other than that
which would be expected as a result of increased insu-
lin resistance [10, 16, 84]. In addition, insulin and
IAPP are co-ordinately regulated in terms of gene ex-
pression [85] and circulating concentrations in glucose
intolerance and diabetes in man [16, 84, 86, 87]; dis-
association of the two beta-cell products does how-
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ever occur during treatment with steroids [97, 98, 99]
when expression of insulin is reduced and IAPP en-
hanced.

Transgenic mice overexpressing the gene for hu-
man IAPP (hIAPP TM) have increased circulating
IAPP which can be up to 30 times higher than the en-
dogenous mouse IAPP [49, 91, 92, 93, 94]; these are
not necessarily associated with amyloidosis suggest-
ing that increased concentration is not adequate alone
to induce changes in peptide conformation [95, 96].
Amyloid deposition in obese or fat-fed hIAPP TM is
more frequent in males [96, 97], is reversed by oestro-
gen treatment in obese male animals [98] and is in-
creased in hIAPP females by oophorectomy despite no
change in circulating concentrations of IAPP [99]. No
such clear sex differences in diabetes susceptibility
are seen in humans or in cats and monkeys. The fact
that increased dietary fat promotes islet amyloidosis in
islets of transgenic mice in vivo [97] suggests that the
role of lipids in the genesis of amyloid fibrils is im-
portant in addition to the increased insulin resistance
and beta-cell secretion observed in obesity. In vitro,
fatty acids promote IAPP fibrillogenesis of synthetic
hIAPP and biosynthetic IAPP in hIAPP mouse islets
[100, 101] and the degree of amyloidosis in hIAPP
TM in vivo was shown to be proportional to the 
percentage of fat in the diet [102]. However, despite a
three-fold increase in cholesterol in ApoE knockout
mice expressing hIAPP there was no increase in the
degree of islet amyloidosis [103]. Amyloid was not
associated with obesity in non-diabetic Pima Indians
or Caucasian subjects [3, 104]. If obesity and associat-
ed increases in circulating non-esterified fatty acids
and other lipid fractions in diabetic man influence 
fibril formation, islet amyloidosis could be considered
to be a complication of diabetes-related obesity.

Increased local concentrations of secreted peptides
are also influenced by clearance. IAPP fibrils form be-
tween beta cells in islets from hIAPP TM maintained
in culture (Fig. 5) [49, 105]; the degree of extracellu-
lar fibril formation in these islets was increased by
beta-cell secretagogues suggesting that a combination
of increased secretion and decreased clearance in the
poorly-perfused, extracellular spaces contribute to fi-
brillogenesis [105]. Disturbances in the islet vascula-
ture and blood flow are associated with impaired glu-
cose tolerance in animal models of diabetes [106]; de-
creased cardiovascular perfusion of islets in diabetes
could account for decreased IAPP clearance. In a 
similar way, IAPP (and proIAPP) clearance could be
reduced by binding to heparan sulphate or a RAGE 
receptor on the capillary basement membrane.

Under normal conditions, beta-cell granules includ-
ing intracellular IAPP and insulin which are not tar-
geted for secretion, are degraded in lysosomes [107]
and human IAPP accumulates in lysosomes in islets
from man and hIAPP transgenic mice [108, 109];
however, there was no evidence of IAPP fibril forma-

tion in lysosomes indicating that an increased concen-
tration is not sufficient for intracellular fibril forma-
tion at this site. A proposal has been made that all am-
yloid deposits are being degraded continuously [110],
possibly by removal by macrophages, and that accu-
mulation of deposits could result from a deficiency in
the factors responsible for degradation and/or turnover
[111]. Although IAPP fibrils have been detected in
pancreatic macrophages [112], amyloid deposition is
not associated with increased macrophage density
[113]. The many amyloid-associated factors including
the amyloid P component [111] and glycosaminogly-
cans have been proposed to prevent recognition of 
deposits for phagocytosis by macrophages and thus
reduce clearance of deposits [111].

The relationship of islet amyloid 
to the pathophysiology of Type 2 diabetes; 
a complication or causative factor?

Islet amyloid and glucose intolerance

The relationship of islet amyloid to hyperglycaemia,
insulin resistance and beta-cell dysfunction in vivo in
man is difficult to establish since there is no quantifi-
able clinical feature that can be related to the deposits
and pancreatic biopsies are ethically unacceptable.
Spontaneously developing diabetes in cats and mon-
keys is associated with progressively increasing islet
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Fig. 5. Biosynthetic fibrils forming in vitro in an islet isolated
from a TM-expressing the hIAPP gene examined by electron
microscopy. Fibrils formed in the extracellular space between
beta cells in islets cultured in 16.7 mmol/l glucose. The cell
membrane showed characteristic invaginations filled with fi-
brils (arrows) as seen in man. Immunogold labelling for IAPP
showed immunoreactivity in fibrils, insulin granules (I) and 
lysosomes (Lyso, arrow). No evidence of fibril-induced cyto-
toxicity was present in the cells adjacent to the biosynthetic 
fibrils. Scale bar 200 nm



amyloidosis [23, 24, 25]. These models of diabetes
have a similar physiological syndrome to that seen in
man, including older age of onset, obesity, impaired
glucose tolerance progressing to hyperglycaemia and
insulin dependence. Longitudinal and cross-sectional
studies in these animals have shown that, as in man,
amyloid deposition commences as fine deposits adja-
cent to islet capillaries (Fig. 1b). In these non-human
species and in transgenic hIAPP, fat-fed mice [114],
initial fibril formation accompanies or precedes obesi-
ty and/or glucose intolerance and, at this stage, only a
few islets are affected (low prevalence) with no signif-
icant change in islet-cell mass [114]. However, very
small perivascular deposits, whilst not apparently 
cytotoxic, could compromise transfer of nutrients and
insulin across the pericapillary space in affected islets
and contribute to glucose intolerance in these models.
As the deposition progresses more islets become 
affected (increased islet prevalence) and when most
islets are affected there is a substantial increase in
severity (larger deposits in islets); careful measure-
ments in transgenic mice have shown that a preva-
lence of 80% was associated with 1.5% of islet space
occupied by amyloid [114]. Using similar calcula-
tions, a similar progressive relationship between prev-
alence and severity has been identified in Macaca 
mulatta islets (Fig. 6); the severity was generally less
than 10% in glucose intolerant animals and severity
increased when almost 100% of islets were affected.
All diabetic animals had extensive amyloidosis sug-
gesting that the islet pathology was a causative factor
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Fig. 6. The relationship between islet amyloid prevalence (%
islets affected) and amyloid severity (% islet area occupied) in
Macaca mulatta monkeys. Cross-sectional data obtained from
animals killed at different stages of the diabetes syndrome; no
amyloid was found in young, non-diabetic, normal weight ani-
mals n=3; low prevalence and severity of deposits were found
in 3/9 obese, normoglycaemic monkeys (●); variable degrees
of amyloidosis was present in 4/6 obese insulin resistant, glu-
cose intolerant animals (▲); amyloid was present in 8/8 dia-
betic animals and severity was greater than 70% in 7/8 animals
with 100% prevalence (■). Amyloid severity plotted as loga-
rithm for illustrative purposes. Data derived from studies 
reported in reference [23]

for onset of hyperglycaemia [23] (Fig. 6). Similarly,
hIAPP TM possessing moderate islet replacement
with amyloid (~10% islet mass filled with amyloid
and 100% islets affected) did not exhibit fasting 
hyperglycaemia but had slightly impaired glucose
stimulated insulin secretory response [114] implicat-
ing islet amyloid (and the associated destruction of 
islet cells) directly with impaired insulin secretion.
The later stages in mice, when there is extensive re-
placement of cells, is similar to that observed in man
when insulin therapy is required [1, 2, 11]. The role of
amyloid in the onset and progression of diabetes in
man is more complex. In patients with diabetes of
long duration, the degree of islet amyloidosis at post-
mortem can vary from a low prevalence (<1% islets
affected with small perivascular deposits) to up to
90% islets affected and a high degree of amyloid re-
placement of islet cells (up to 80% islet mass occu-
pied with amyloid) [3] (Fig. 1a,b). This indicates that
islet amyloid and cellular replacement is not the sole
precipitating factor for islet dysfunction and diabetes
in man. The requirement for insulin therapy associated
with increased amyloid severity occurs subsequent to
diagnosis (or not at all in many patients); this degree
of progressive amyloidosis is therefore more likely 
to result from, rather than cause, islet dysfunction
(Fig. 7). However, there is no relationship of duration
of diabetes to the degree of islet amyloidosis in man
which reflects the heterogeneity of the disease. Clini-
cal diagnosis of diabetes can occur months or years
subseqent to onset of the syndrome. Identification of
the different predisposing factors that can contribute
to the aetiology and progression of islet dysfunction
(one of which could be islet amyloid), is still largely
impossible. Whilst animal models provide excellent
longitudinal evidence for the progressive relationship
between islet dysfunction and amyloidosis, the de-
posits seem to precipitate diabetes in these models
which is a different scenario to that found in man.

Fibril-induced cell death

Fibrils formed from synthetic IAPP and other amy-
loidogenic proteins rapidly show toxic properties to
islet and other cells in vitro by an unknown mecha-
nism [115, 116, 117]; insertion into the lipid bilayer
and changes in cell membrane ion channel activity
[118, 119] leading to apoptosis [12, 120], have been
proposed. Both small oligomers of hIAPP and larger
fibrils are thought to have cytotoxic properties [121,
122]. If non-fibrillar, small invisible hIAPP oligomers
are the causative factor for death of beta cells in
T2DM, it is surprising that there is not a severe reduc-
tion in islet mass in the absence of visible amyloidosis
in man. In islets of Type 2 diabetic subjects cellular
apoptosis has been identified [123] but other studies
have shown that apoptotic cells are infrequent in adult



islets [124]. The degree of toxicity induced by fibrils
formed from secreted, biosynthetic human IAPP in 
hIAPP TM islets in short term (3 days) culture is 
minimal [105]; cells adjacent to fibrils show little evi-
dence of cytotoxicity or apoptosis (Fig. 5) suggesting
that the time course of synthetic fibril-induced toxicity
is more rapid than that induced by biosynthetic hIAPP
in vitro or in vivo. One suggestion is that the amyloid-
associated proteins, SAP, ApoE, and glycosaminogly-
cans can act as protective factors in biological systems
by reducing the impact of oligomers or fibrils on cell
viability as well as reducing recognition for degrada-
tion or clearance of misfolded peptide [111]. How-
ever, rather than causing immediate cell death, small

fibril accumulations could affect function; the beta-
cell membranes adjacent to biosynthetic deposits in
vivo (Fig. 2a) and in vitro (Fig. 5) are visibly disrupt-
ed which could interfere with cycling of membrane
proteins and therefore stimulus–secretion coupling.
Whether this association of fibrils with membranes is
a cause or effect of cellular dysfunction in diabetes is
not clear.

These data together suggest that amyloidosis and
development of hyperglycaemia are similar, but not
identical in man and animal models:

(a) In both man and in animal models, islet amyloid
deposition commences as small perivascular de-
posits which progressively increase until many is-
lets are affected. This perivascular stage is repre-
sented in many patients with long-term diabetes
and in some non-diabetic subjects. However, in
animals, this stage is usually associated with glu-
cose intolerance and less frequently found in overt
diabetes.

(b) More extensive amyloidosis develops when many
islets are affected and is associated with cellular
loss and the requirement for insulin therapy in di-
abetic humans but with onset of overt diabetes in
hIAPP TM, monkeys and cats.

(c) Islet amyloid deposition, although apparently irre-
versible, is not related to the duration of hypergly-
caemia in man.

(d) An environment of high glucose in diabetes does
not, per se, result in fibril formation.

(e) Increased circulating hIAPP concentrations, whilst
important, are not a causative factor for amyloido-
sis in either man or animal models.

Conclusion

The evidence suggests that islet amyloidosis is not a
precipitating factor for hyperglycaemia in most pa-
tients with T2DM. However, in animal models of islet
amyloid-related diabetes, glucose intolerance and hy-
perglycaemia can be directly related to the degree of
amyloidosis. The factors that are responsible for
oligomerisation of human IAPP in T2DM are poorly
understood. Diabetes-related dysfunction of beta-cell
metabolism or changes in the islet milieu are the most
likely causes of IAPP fibril formation; amyloid depo-
sition would then be a resultant pathological feature—
a complication of diabetes (Fig. 7).

Since islet amyloidosis is the only visible factor
that causes decline of islet function, how can its ef-
fects be reduced or prevented? The progressive nature
of islet amyloidosis is consistent with the nucleation
theory for all forms of amyloid deposition [125]. Once
β-sheet oligomers, protofibrils or fibrils are formed,
they can act as a nucleation point and promote more
fibril formation from secreted peptide; conditions that
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Fig. 7. Schematic representation of the potential relationship of
islet dysfunction, islet amyloid and beta-cell destruction in the
pathophysiology of Type 2 diabetes. Environmental factors, in-
activity, high fat diet, obesity etc and/or genetic predisposition
to diabetes precipitate glucose intolerance. This is associated
with islet dysfunction illustrated by increased proinsulin secre-
tion seen in relatives of Type 2 diabetic subjects and in glu-
cose-intolerant individuals. Without intervention, glucose in-
tolerance progresses to diabetes with evidence of further aber-
rant islet function but not requiring amyloid formation or the
associated beta-cell destruction as seen in animal models. Mis-
processing of proinsulin and proIAPP as a result of a defect in
beta-cell function leads to some fibril formation and some is-
lets contain perivascular amyloid deposited adjacent to the
basement membrane. Interaction between the abnormally func-
tioning beta cell and small fibril accumulations and disrupted
membrane signalling together induce further decline of islet
function. Once fibrils are formed in the perivascular space, se-
creted IAPP will be rapidly refolded and create new fibrils.
These fibrils or smaller toxic intermediates can induce apopto-
sis in adjacent cells and slowly (over decades) the islet cell
population will be reduced. However, in diabetic individuals
the time course of amyloid deposition and islet destruction is
very variable suggesting that the causative factors for fibril ac-
cumulation could be intermittently apparent in islets of all dia-
betic subjects. The toxic effects of fibrils and induction of fur-
ther fibril formation could be arrested by a protective coating
of GAGs, ApoE and Amyloid P component on the perivascular
fibrils. However, once islet cell loss associated with increased
severity of amyloidosis becomes extensive, inadequate insulin
production from the residual beta cells results in the require-
ment for insulin therapy



result in increased secretion e.g. increased insulin re-
sistance, sulphonylurea therapy in diabetes would then
promote fibril formation. Islet amyloidosis was found
to be more extensive in sulphonylurea-treated diabetic
cats than those treated with insulin [126] confirming
this hypothesis. However, the rate of deposition seems
to be very different in human patients suggesting that
the process is not be driven continuously from a nu-
cleation point throughout the diabetic period.

The role of amyloid in the deterioration of islet
function seems to be in conflict with the findings 
of the United Kingdom Prospective Diabetes Study,
UKPDS, where treatment with diet, sulphonylurea 
or insulin was compared in 5000 newly-diagnosed 
patients [127]; there was no apparent difference in 
the rate of decline of islet function from the time of
diagnosis in patient groups randomised to insulin or
sulphonylurea treatment. However, since amyloid is
not a precipitating factor for diabetes in man but more
associated with the final demise of regulated insulin
secretion (Fig. 7), it is unlikely that the decline in 
islet function over the first 10 years, especially in pa-
tients not requiring insulin therapy, would be caused
by amyloid formation.

Assessment of efficacy of any therapeutic agent de-
signed to reduce or prevent islet amyloid formation in
man would require outcomes such as sustained islet
function and decreased requirement for insulin thera-
py during the diabetic syndrome. This would require a
large study of therapies such as that undertaken in the
UKPDS. Even then, post-mortem evidence would be
required to prove a reduction in amyloid formation
since it cannot be assessed in vivo.

Some proposed targets for therapeutic intervention
include:

(i) Prevent refolding of IAPP to form fibrils. So-
called beta-sheet breaker peptides which bind
specifically to amyloidogenic monomers to pre-
vent refolding have been designed [128, 129].
These small compounds provide the best option
for treatment of islet amyloidosis at present.

(ii) Removal of the deposits in vivo. Turnover and 
or removal of systemic amyloid deposits are
thought to occur by macrophages or by increased
solubilisation of the fibrils. If phagocytosis of 
amyloid deposits could be enhanced by removal of
factors that prevent recognition by macrophages,
islet amyloidosis could be reduced by a normal
immune response to aberrant protein aggregation.

The factors that destabilise the conformation of this
little peptide and cause such destructive changes in is-
lets in the course of the disease are dramatic and seem
to be specific for T2DM. This suggests that islet amy-
loidosis should be added to the long list of complica-
tions of T2DM that increase both morbidity and mor-
tality. More than a century after the identification of

islet hyaline deposition in diabetes [4] the casual
mechanisms for this islet pathology are still unclear.
With the inexorable increase in incidence of T2DM, it
is essential that the new technologies of proteomics,
metabolomics and biophysics provide a detailed un-
derstanding of normal islet biochemistry and predict
changes in function that result in hyperglycaemia.
Will it take another century before we can solve the
scientific enigma of islet amyloid deposition?
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