
Abstract

Increases in glucose or fatty acids affect metabolism
via changes in long-chain acyl-CoA formation and
chronically elevated fatty acids increase total cellular
CoA. Understanding the response of pancreatic beta
cells to increased amounts of fuel and the role that al-
tered insulin secretion plays in the development and
maintenance of obesity and Type 2 diabetes is impor-
tant. Data indicate that the activated form of fatty ac-
ids acts as an effector molecule in stimulus-secretion
coupling. Glucose increases cytosolic long-chain acyl-
CoA because it increases the “switch” compound mal-
onyl-CoA that blocks mitochondrial β-oxidation, thus
implementing a shift from fatty acid to glucose oxida-
tion. We present arguments in support of the follow-
ing: (i) A source of fatty acid either exogenous or en-
dogenous (derived by lipolysis of triglyceride) is nec-
essary to support normal insulin secretion; (ii) a rapid
increase of fatty acids potentiates glucose-stimulated

secretion by increasing fatty acyl-CoA or complex lip-
id concentrations that act distally by modulating key
enzymes such as protein kinase C or the exocytotic
machinery; (iii) a chronic increase of fatty acids en-
hances basal secretion by the same mechanism, but
promotes obesity and a diminished response to stimu-
latory glucose; (iv) agents which raise cAMP act as
incretins, at least in part, by stimulating lipolysis via
beta-cell hormone-sensitive lipase activation. Further-
more, increased triglyceride stores can give higher
rates of lipolysis and thus influence both basal and
stimulated insulin secretion. These points highlight
the important roles of NEFA, LC-CoA, and their es-
terified derivatives in affecting insulin secretion in
both normal and pathological states. [Diabetologia
(2003) 46:1297–1312]
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Introduction

Type 2 diabetes, which accounts for 90 to 95% of dia-
betes worldwide, and obesity are prevalent and expen-
sive diseases in Western society. Diabetes is estimated
to affect 6% of the adult population and with a growth
rate of 6% per annum, it is estimated that 200 to 300
million people will be afflicted by the end of the de-
cade [1]. As obesity is the single most important risk
factor for Type 2 diabetes, its rapid increase could
well be driving this growth.

These diseases share two characteristics. First, in-
sulin resistance is a characteristic of almost all people
with Type 2 diabetes or obesity. In most cases of early
diabetes and obesity, insulin concentrations are either
normal or greatly increased. Obesity, with accompa-
nying insulin resistance, is a powerful risk factor for



Type 2 diabetes. Furthermore, obesity and insulin re-
sistance are found in people who are at an increased
risk for developing these disorders, suggesting that
they could be common pathological factors, or at least
early events in their development. Second, obesity and
Type 2 diabetes are often associated with hyper-
triglyceridaemia or increased circulating concentra-
tions of NEFA [2, 3]. Therefore Type 2 diabetes can
also be considered a lipid disorder as well as a disease
of glucose tolerance [4] and it is possible that in-
creased circulating lipid concentrations explain, at
least in part, not only insulin resistance but also beta-
cell dysfunction in Type 2 diabetes.

A role for the beta cell in Type 2 diabetes 
and obesity

Beta cells are involved in the abnormalities associated
with both obesity and Type 2 diabetes. It has long
been appreciated that obese humans and experimental
animal models are hyperinsulinaemic and insulin re-
sistant [5]. The development of obesity with the pro-
gression to Type 2 diabetes often involves a high-fat,
high-sucrose diet. Under these conditions insulin se-
cretion increases to accommodate the need to store
glucose and excess fatty acids. The islet lesion in obe-
sity is basal hypersecretion. In Type 2 diabetes, which
can also involve basal hypersecretion, the main beta-
cell lesion is a defect in the ability of glucose to incre-
mentally stimulate insulin release. In addition, there is
a reduction in the potentiating action of other sub-
strates, such as amino acids or fatty acids, hormones
or neuronal factors, in interacting with glucose to fur-
ther stimulate secretion [6]. We propose that these le-
sions occur in susceptible people in whom the signal
transduction enzymes, such as protein kinases, exhibit
altered sensitivity to conditions that regulate long-
chain acyl CoA (LC-CoA), the metabolically active
form of long-chain fatty acids. Thus, obesity could be
the initial condition which sets up the chain of events,
with a subset of subjects in this pool developing Type
2 diabetes. If the beta cell lesion is prompted by both
high fatty acids concentrations and high glucose, then
an even smaller subset of lean subjects should develop
Type 2 diabetes.

A role for adipocytes in Type 2 diabetes 
and the control of insulin release

The adipocyte is the main storage depot for triglyce-
rides in the body. Stimulation of β1 and β3 adrenergic
receptors found on white adipose tissue (WAT) and
brown adipose tissue (BAT) activates hormone-sensi-
tive lipase (HSL), causing lipolysis, the release of NE-
FA and a reduction of fat stores with an improvement
of obesity-induced insulin resistance [7]. The β3-ad-

renergic receptor, which is predominately expressed
on WAT and BAT, represents a potential anti-obesity
target for drug treatment and for which several selec-
tive agonists have been developed [8, 9].

Short term treatment of rodents with such an ago-
nist, CL 316,243, resulted in a twofold increase in en-
ergy expenditure as measured by O2 consumption, a
50% reduction in food intake, and a rapid fourfold in-
crease in serum NEFA that peaks within 5 min. Most
striking, however, was a 50- to 100-fold increase in
serum insulin concentrations that peak within 10 min
[10, 11, 12]. Use of β3-receptor knockout mice
showed that these effects are mediated exclusively by
the expression of this receptor on fat cells. Re-expres-
sion of the β3-receptor in WAT completely restored
the effect on serum NEFA concentrations and the dra-
matic rise in serum insulin concentrations [13]. In
contrast, re-expression of the β3-receptor in BAT had
the effect of only partially restoring the increase in O2
consumption.

The fivefold increase in NEFA followed by a 50- to
100-fold increase in serum insulin shows that the hy-
pothesized link from adipose to islet tissues is impor-
tant. Given the rapidity and magnitude of this re-
sponse an increase in hepatic glucose production or a
reduction in insulin clearance can be ruled out. Thus,
adipocyte products could play a major role in regulat-
ing insulin secretion in vivo. These products include,
but might not be limited to NEFA or could depend on
the physiological mix of NEFA contained in the adi-
pocyte. Whether other products released from WAT
with β3-receptor stimulation, in addition to NEFA, are
acting directly on the beta cell remains to be deter-
mined.

Metabolism in beta cell stimulus-secretion coupling

High-energy intermediates. The molecular mechanism
by which glucose and other fuels stimulate insulin re-
lease is still unclear. Fuel-induced secretion, like other
regulated secretory processes, is dependent on extra-
cellular free Ca2+. However, beta cells possess a
unique stimulus-response coupling system, which re-
quires that the fuel stimulus be metabolized to initiate
membrane electrical events, which lead to cell depo-
larization and secretion [14, 15]. Only fuels that stim-
ulate insulin secretion stimulate change in electrical
activity. Inhibition of fuel metabolism inhibits both se-
cretion and electrical activity [14, 16]. Metabolism of
glucose generates signals that modulate the activities
of enzymes and ion channels, increasing the concen-
trations of intracellular messengers [17, 18]. These in-
clude high-energy intermediates and also adenine nu-
cleotides [19, 20, 21], pyridine nucleotides [22, 23],
and CoA derivatives [24, 25]. Among the latter is
malonyl-CoA, an inhibitor of carnitine palmitoyl
transferase (CPT)-1 that could cause a switch from
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fatty acid oxidation to complex lipid formation. It
should be noted that only fuels or fuel combinations
that elevate malonyl-CoA stimulate secretion [25] and
that inhibition of malonyl-CoA production inhibits se-
cretion [26]. Glucose-stimulated insulin secretion
(GSIS) is associated with inhibition of NEFA oxida-
tion and increased lipid synthesis in pancreatic beta
cells [24, 27, 28, 29]. Indeed, significant increases oc-
cur in the total mass of diacylglycerol (DAG) [30] and
phosphatidate (PA) [18] in glucose-stimulated beta
cells. Glucose and endogenous LC-CoA are the main
sources of the glycerol and lipid components, respec-
tively, of DAG and PA [28, 30]. In addition, exoge-
nous fatty acids potentiate GSIS [25, 29, 31], possibly
by providing additional acyl groups for LC-CoA for-
mation or the synthesis of complex lipids.

Anaplerosis and cataplerosis. Accelerated acetyl-CoA
production is undoubtedly essential for the rapid gen-
eration of reducing equivalents and ATP, and conse-
quently for ATP-sensitive K+ (KATP) channel closure.
It is however not sufficient since substrates which are
metabolized directly to acetyl-CoA, i.e. fatty acids and
ketone bodies, are not secretagogues in the absence of
glucose [32]. Thus, accelerated production of acetyl-
CoA and oxidative events do not solely account for
full induction of insulin secretion. However, anaplero-
sis is likely to be important in beta-cell activation for
several reasons. Firstly, it is required for the efficient
operation of either a pyruvate/malate or pyruvate/ci-
trate shuttle allowing the production of cytosolic mal-
onyl-CoA [32] and NADPH [33]. Approximately 40%
of the glucose carbon entering the citric acid cycle is
carboxylated in rat islets [34]. This is a very high per-
centage for a non-gluconeogenic tissue [35] and a cell
synthesizing fatty acids at a low rate [36]. Secondly,
the dose dependencies of anaplerosis, citrate, malate
and malonyl-CoA accumulation in response to glu-
cose correlate well with secretion in beta cells [37,
38]. Thirdly, methylsuccinate is a potent secretagogue
in intact beta cells [39] and succinate directly pro-
motes exocytotic release of insulin in permeabilized
pancreatic beta cells [40]. Fourthly, phenylacetic acid
reduces anaplerosis and insulin secretion in clonal be-
ta cells (INS) and rat islets [37] by inhibition of pyru-
vate carboxylate.

Thus, glucose, glyceraldehyde and dihydroxyace-
tone, which feed directly into glycolysis are all secret-
agogues [14]. After their transformation to pyruvate
they can be metabolized to both acetyl-CoA and oxa-
loacetate directly. However, glucose which provides
anaplerosis is required for fatty acid- and ketone
body-induced insulin release [41, 42]. Leucine (ace-
tyl-CoA production) and glutamine (anaplerosis) syn-
ergize to promote secretion [42]. These features of be-
ta-cell fuel stimuli favour the concept that acetyl-CoA
production and anaplerosis are the earliest mitochon-
drial events synergizing to promote the production of

coupling factors activating the beta-cell secretory pro-
cess and is consistent with the idea that changes in lip-
id partitioning also play a key role in the regulation of
insulin secretion [43, 44].

KATP channel-dependent and -independent actions
of glucose

The consensus model of nutrient-stimulated secretion
postulates that increased glycolysis and respiration
due to glucose metabolism leads to accelerated ATP
production and an increase in the ATP to ADP ratio
[44]. This in turn closes the KATP channel, depolarizes
the cell, increases the open time of voltage-dependent
Ca2+ channels and raises intracellular Ca2+. The in-
creased Ca2+ then modulates kinases or other effector
systems involved in secretion. The broad outlines of
the KATP channel-dependent pathway described above
are fairly well worked out as several components have
been cloned [45, 46, 47]. However, this model does
not prove entirely satisfactory given that K+-induced
secretion, which maximally increases Ca2+, only tran-
siently stimulates secretion [14]. In addition, recent
reports have documented GSIS which is independent
of the KATP channel [48, 49, 50]. This stimulation is
dependent on glucose metabolism, has a normal con-
centration dependence, is shared by other nutrients,
and is either independent of Ca2+ [50] or changes in
Ca2+ [48, 51]. In addition, the action of glucose in the
absence of Ca2+ can be mimicked by long-chain fatty
acids provided that activators of protein kinase C and
protein kinase A are present [52]. This is consistent
with the notion that both glucose and NEFA are sig-
nalling through cytosolic LC-CoA.

A more inclusive model of nutrient-stimulated se-
cretion involves two arms of signal transduction
which occur simultaneously (Fig. 1). One arm is de-
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Fig. 1. Proposed dual signalling pathways involved in the
physiological stimulation of insulin secretion by nutrients. The
primary (Ca2+ and LC-CoA) and secondary (cAMP, DAG and
PA) intracellular messengers generated in each pathway are
shown boxed



pendent upon modulation of the KATP channel evoked
by changes in the ATP:ADP ratio due to glycolysis
and the accelerated production of acetyl-CoA. Secre-
tory input from this arm would be an increase in cyto-
solic Ca2+ and secondary to this, changes in cAMP
and products of phospholipase activation such as
DAG. The other arm is dependent upon anaplerotic
input into the TCA cycle, generation of excess citrate
with its accumulation in the cytosol, and increases in
cytosolic malonyl-CoA [44, 53]. Secretory input from
this arm would be increased cytosolic malonyl-CoA
and LC-CoA, and secondary to this, the increased syn-
thesis of complex lipids such as PA and DAG. This is
consistent with the ability of hydroxycitrate to prevent
the rise in cytosolic LC-CoA by blocking malonyl-
CoA production and thus inhibiting nutrient-stimulat-
ed insulin secretion [26]. This inhibition can be over-
come by the addition of exogenous NEFA. Comple-
menting this result is the finding that expression of a
dominant negative form of acetyl CoA carboxylase
(ACC), the key enzyme in the synthesis of malonyl-
CoA, prevents its rise and also inhibits secretion [54].
Thus, the model predicts that signalling through both
arms would be required for a normal secretory re-
sponse to nutrients. Other nutrient secretagogues also
fit this model. Methylsuccinate which is converted to
succinate in the cytosol enters the mitochondria in ex-
change for malate. In turn, malate is converted to py-
ruvate in the cytosol by malic enzyme which then fol-
lows the same metabolic route as pyruvate derived
from glucose (Fig. 1).

Oscillations in insulin secretion

Insulin secretion is normally oscillatory in vivo, in
isolated islets and clonal beta cells [55]. The physio-
logical importance of insulin oscillations for beta-cell
function is suggested by their loss or impairment in
Type 2 diabetic patients and their near relatives [56,
57]. Since oscillations increase the potency of insulin
on target tissues, the loss of oscillations could contrib-
ute to an insufficient pattern of insulin production that
leads to diabetes. Metabolites that have been mea-
sured at sufficiently frequent intervals also oscillate in
beta cells, such as the ATP:ADP ratio [58, 59]. We
have suggested that this pattern could be crucial for
generating the wide swings in signals required for me-
tabolism-secretion coupling. Such high and low val-
ues would also help to explain how both the
ATP:ADP ratio and O2 consumption show average in-
creases in stimulated beta cells, despite the well estab-
lished observation that an increase in the ATP:ADP
ratio inhibits O2 consumption [60]. Oscillations would
also prevent the continuous increase of stimulatory
metabolites which would probably lead to desensitiza-
tion and down-regulation of responses. Our concept of
the mechanism of the metabolic oscillations is based

on detailed studies of spontaneous oscillatory glycoly-
sis in skeletal muscle extracts [55]. These oscillations
are driven by autocatalytic activation of the muscle
isoform of the key glycolytic enzyme phosphofructo-
kinase-1 (PFK-1) by its product fructose 1,6-bisphos-
phate resulting in large oscillations in the ATP:ADP
ratio. The muscle isoform of this enzyme, PFK-M, has
recently been shown to be the dominant PFK activity
in beta cells [61].

Our previous work has established that the time
course of changes in metabolic and ion parameters
such as changes in the ATP:ADP ratio or in metabo-
lites such as malonyl-CoA occur before increases in
Ca2+ or insulin secretion [58, 62]. This might allow
for complex regulation of various targets dependent
on the phasing of such oscillations. For example, it
could be important for the peak of the ATP:ADP ratio
to coincide with the trough of the LC-CoA concentra-
tion since these two metabolites have opposite effects
on the KATP channel [63, 64, 65, 66].

NEFA metabolism in the beta cell

Fatty acids, not glucose, are believed to be the major
endogenous energy source for unstimulated islets
[67]. This is consistent with the observations that is-
lets maintain high rates of oxygen consumption in
the absence of exogenous fuels but contain little gly-
cogen [68]. Stimulation of islets by glucose dimin-
ishes fatty acid oxidation and increases total respira-
tion [27, 28, 29]. Thus, glucose stimulation seems to
shift the beta cell from fatty acids to glucose as an
oxidative fuel. This occurs through glucose conver-
sion to malonyl-CoA, which inhibits CPT-1 and thus
blocks LC-CoA oxidation by preventing transport in-
to the mitochondria [32]. Glucose causes marked al-
terations in the acyl-CoA profile of clonal pancreatic
beta cells, with the largest (fivefold) and earliest (by
2 min) change occurring in malonyl-CoA [24, 25].
There is a tighter correlation between secretion and
LC-CoA concentrations than between secretion and
malonyl-CoA concentrations. This observation cou-
pled with the fact that de novo fatty-acid synthesis is
very low in the beta cell [27] indicates that malonyl-
CoA is used as a “switch” compound not as a precur-
sor or effector molecule like LC-CoA. Inhibition of
mitochondrial NEFA (LC-CoA) oxidation increases
LC-CoA in the cytosol and could explain the ob-
served increases in de novo synthesis of DAG and
phospholipids after stimulation. The increases in LC-
CoA, PA and DAG resulting from glucose stimula-
tion could directly activate protein kinase C (PKC)
isoforms [31] or modify the acylation state of key
proteins involved in regulating ion-channel activity
and exocytosis [69].

Multiple steps are involved in controlling cytosolic
LC-CoA concentrations (Fig. 2). Long-chain NEFA
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seems to be exclusively transported into the cell by
free diffusion with no obvious requirement for active
transport [70]. The very high avidity with which NE-
FA partition into phospholipid membranes makes it al-
most impossible for transport proteins to compete
with the very rapid physical “flip-flop” that has been
documented. The model predicts that even at NEFA
concentration as low as 2 nmol/l in the aqueous phase,
the concentration in the bilayer is 2 mmol/l or 2 mol%
relative to phospholipids, thus allowing for large
transmembrane fluxes. For these reasons, extracellular
NEFA can be expected to rapidly distribute in the
available lipid bilayers and to move rapidly from cell
to cell, potentially acting as paracrine mediators. In
addition, islets express low-density lipoprotein recep-
tors [71] and lipoprotein lipase [72] and could also ob-
tain fatty acids from circulating lipoproteins.

The first step in the control of NEFA partitioning is
substrate supply. In the resting state, when glucose is
low, fatty acids are converted to LC-CoA by acyl-CoA
synthetase (ACS) and enter the mitochondria where
they are oxidized via the β-oxidation pathway for the
energy production needed [28]. The shift from NEFA
to glucose as an oxidative fuel occurs through glucose
conversion to the “switch” compound malonyl-CoA.
This compound in turn inhibits CPT-1, found on the
outer mitochondrial membrane, and thus blocks LC-
CoA entry into the mitochondria [73]. Cytosolic con-
centrations of LC-CoA esters are controlled by feed-
back inhibition of ACS and are buffered by fatty acid
and LC-CoA-binding proteins [74]. The total CoA
pool is fixed over short periods of time and distributed
unevenly between cytosolic and mitochondrial pools
which are not interchangeable [75]. Thus, the maxi-

mal LC-CoA concentration is limited by the total CoA
pool and by the compartmental distribution. There is a
reciprocal relationship between these two pools, such
that when transport into the mitochondria is limited,
the concentration in the cytosol should increase. In re-
sponse to CPT-1 inhibition, measured changes in total
cellular LC-CoA can increase or decease depending
on the percentage of the total made up by the mito-
chondria, which tend to contain the higher concentra-
tion. However, short term increases in extracellular
NEFA might increase LC-CoA in both compartments.
In addition, increased serum NEFA or certain drugs or
steroids can increase the total CoA pool over the
course of hours to days [76]. The cytosolic free con-
centration of LC-CoA is not known in any cell, but
the total concentration has been calculated to be 95
and 220 nmol/g dry weight in livers of fed and fasted
rats, respectively [76]. Based on Scatchard analysis of
palmitoyl-CoA binding in permeabilized beta cells,
the half-maximal cytosolic concentration in beta cells
is estimated to be about 1 µmol/l, suggesting that this
is the resting free concentration and the balance is
bound to proteins or membranes [77].

Potentiation of GSIS by extracellular NEFA

The rapid effect of NEFA to potentiate GSIS in vitro,
while having little effect on secretion at non-stimula-
tory glucose concentrations, would suggest that they
act as incretins [25, 31, 78, 79, 80]. This effect has
also been documented in vivo, where NEFA increase
serum insulin concentrations in animals [81] and hu-
mans [82]. Under normal physiologic conditions the
necessity for simulatory glucose can stem from the ad-
ditional need for one or more of the following signals
generated by glucose: (i) an increased influx of Ca2+,
(ii) an increased ATP:ADP ratio acting distal to the
KATP channel, (iii) increased production of α-glycerol
phosphate as a precursor to complex lipids, or (iv) in-
creased malonyl-CoA required for inhibition of CPT-
1. The observations that palmitate is both oxidized
[28, 83] and also results in increases in cytosolic Ca2+

[78, 84] suggest glucose-like actions in stimulating se-
cretion. Another possibility is that the LC-CoA deriv-
ative of the fatty acid directly modulates multiple ef-
fector systems in stimulating secretion [31, 63, 69, 77,
85] or that its esterification into complex lipids pro-
vides the necessary signalling factors in potentiating
secretion [29, 78, 83, 86, 87, 88]. Several descriptive
studies dealing with extracellular NEFA have shown
that an increase in chain length, peaking around C16,
and increasing saturation correlates with an increase
in insulinotropic action of NEFA [80, 89, 90].

The requirement for circulating NEFA in maintain-
ing the response of the pancreas after a fast highlights
the physiological significance of this interaction [90,
91, 92]. These studies extended our understanding of
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Fig. 2. Fatty acid metabolism in the pancreatic beta cell. Path-
ways for the formation of cytosolic LC-CoA stemming from
the metabolism of glucose and either exogenous or endoge-
nously generated free fatty acids are illustrated. HSL hormone
sensitive lipase, TG triglyceride, LC-CoA long-chain acyl-
CoA, ACS acyl-CoA synthetase, PC pyruvate carboxylate,
PDH pyruvate dehydrogenase, CS citrate synthese, CL citrate
lyase, ACC acetyl-CoA carboxylase



chain length and saturation in modulating the potenti-
ation of glucose as well as suggesting that the specific
mixture of NEFA is also important. It was hypothe-
sized that for a given concentration of glucose the re-
sponse of the pancreas is regulated not only by the
concentration of NEFA, but also by the composition
of this pool. In more recent work these findings in-
cluded not only GSIS but also insulin secretion stimu-
lated by amino acids and KCl-induced depolarization,
suggesting that a critically important fatty acid-depen-
dent step exists late in the stimulus-secretion coupling
pathway [86]. The nature of this lipid-derived factor,
its site or mechanism of action are not known. Inter-
estingly, work in a HSL knockout mouse shows a re-
quirement for lipolysis in nutrient-stimulated insulin
secretion [93]. Findings showing that palmitate and
myristate can substitute for glucose in augmenting the
Ca2+-independent pathway of secretion in islets [52]
and could involve protein acylation [94] are consistent
with this conclusion.

The beta cell response to hyperlipidaemia

NEFA have very different effects on insulin secretion
depending on the specific NEFA and the length of
time of exposure [95]. Short-term exposure of islets or
beta cells to saturated long-chain NEFA provide a
powerful potentiation of GSIS, whereas long-term ex-
posure results in increased basal secretion and a blunt-
ed response to glucose. This dichotomy in response
has been shown both in vitro [26, 89] and in vivo [81,
82, 96]. At early time points after lipid infusion
(<6 h), glucose-stimulated secretion in these studies is
enhanced, whereas measurements at 24 and 48 h show
mostly an inhibition. Studies in vivo using heparin
and lipid infusion do not always show inhibition at
longer time points. A recent study [97] shows that
long-term exposure to saturated NEFA results in en-
hanced GSIS, with the development of insulin resis-
tance. However, unsaturated NEFA exposure results in
impaired GSIS without insulin resistance. Epidemio-
logical evidence links the ingestion of saturated NEFA
with hyperinsulinaemia and insulin resistance [98].

These opposite effects of NEFA can be explained
by: (i) desensitization of pathways due to continuous
stimulation; (ii) the presence in the cell of enzymes
with different concentration dependencies for regula-
tion by LC-CoA, that are either stimulated, e.g., PKC
[31], or inhibited e.g., PKC [31, 99], the adenine nu-
cleotide translocase [100] and glucokinase [101]; and
(iii) the ability of NEFA or LC-CoA to alter gene ex-
pression [102, 103]. Therefore, it is predicted that the
response to NEFA or the resulting increase in cytosol-
ic LC-CoA will depend on the concentration achieved
and the length of time of the exposure. Accordingly, it
can be hypothesized that hyperlipidaemia and in-
creased NEFA are causally implicated in the progres-

sive alteration in glucose metabolism in pancreatic be-
ta cells and could explain the glucose recognition de-
fect of islet tissue in subjects with Type 2 diabetes.
The effect seen in isolated islets with chronic fatty-ac-
id treatment causing a left shift in the glucose dose re-
sponse curve, basal hyper-secretion and diminished
stimulation by glucose, could involve increased activi-
ty of hexokinase, due to a rise in maximal activity and
deinhibition by lowered glucose 6-phosphate concen-
trations [104]. The drop in glucose 6-phosphate in
turn is most likely a result of increased PFK activity,
caused by a rise in maximal activity and decreased
concentrations of the inhibitor citrate because of de-
creased citrate synthase activity [104]. Abnormal sen-
sitivity to glucose also results from chronic exposure
to increased concentrations of glucose [53]. Decreased
insulin secretion in response to glucose is preceded by
enhanced sensitivity to glucose in the partially pancre-
atectomized model; this could be due to an increase of
LC-CoA and products formed from LC-CoA, caused
by glucose through the production of malonyl-CoA
[24]. Thus, both hyperlipidaemia and hyperglycaemia
probably cause an increase in cytosolic LC-CoA but
by different mechanisms.

Chronic exposure of the beta cell to increased con-
centrations of NEFA inhibits insulin secretion [102]
and biosynthesis [106], the expression of the beta cell
transcription factor PDX-1 [107], the Glut-2 glucose
transporter [107], ACC [102] while increasing CPT-I
expression [103]. Thus, beta cell “glucolipoxia” prob-
ably plays an important role in the causes of obesity-
associated Type 2 diabetes [32]. Within the framework
of this hypothesis, alterations in malonyl-CoA produc-
tion and in the expression of enzymes controlling lipid
partitioning (ACC, CPT-I, HSL, and others) play im-
portant roles.

Hormone-sensitive lipase and lipid signalling 
in the beta cell and adipose tissue

Another source of NEFA available to raise beta cell
cytosolic LC-CoA is its own triglyceride stores. Hor-
mone-sensitive lipase (HSL) is a unique fatty acyl hy-
drolase expressed in the key tissues of insulin produc-
tion and action: the pancreatic beta cell [108, 109,
110], the adipocyte [111] and skeletal muscle [111].
New evidence suggests that HSL, the rate-limiting
step in triglyceride hydrolysis, plays a pivotal role in
energy homeostasis via its roles in fat cells and beta
cells [93, 112]. Consistent with this finding, HSL-
knockout mice show reduced GSIS both in vivo and in
isolated islets. These data provide important evidence
that NEFA, their CoA derivatives or complex lipids
formed from them are critical coupling factors in nu-
trient signalling in the beta cell. Recent evidence indi-
cates that lipolysis of beta-cell triglyceride stores
could play a central role in the action of incretins such
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as GLP-1 in potentiating GSIS via increased intracel-
lular cAMP [113, 114].

HSL transcripts have been studied in fat, testicle
and beta cells [111]. The regulation of HSL transcrip-
tion has mainly been studied in fat, where it is in-
creased with fasting and diabetes [111]. Increased glu-
cose induces the HSL gene in the beta cell with a re-
sulting twofold increase in HSL protein and enzymat-
ic activity [110]. This is associated with high basal se-
cretion [53] in accordance with the view that lipid sig-
nalling molecules are implicated in glucose-stimulated
secretion [110, 113]. Although HSL transcription is
controlled, most of the regulation of its activity in adi-
pocytes seems to be post-translational. β-Adrenergic
stimulation of adipocytes results in the PKA-mediated
phosphorylation of HSL and perilipin, the protein that
coats the lipid droplets in the basal state. Following
this phosphorylation, HSL translocates from the cyto-
plasm to the surface of the lipid droplet, while peri-
lipin shifts in the opposite direction [111]. The relative
importance of HSL and perilipin in this process is not
completely established but both appear to be essential.

HSL is a fatty acyl hydrolase that is promiscuous in
its range of substrates, cleaving DAG, triglycerides
and to a minor degree, MG, as well as fatty acyl esters
of cholesterol, steroid hormones and retinoic acid
[111]. The greater activity against DAG than triglyce-
ride is notable and could explain the marked increase
of DAG in several tissues of HSL-deficient mice
[115]. However, the great number of substrates and
products of HSL implies that a number of compounds
and pathways must be considered as mediators for the
pathogenic mechanisms of HSL deficiency.

Potential mediators and targets of LC-CoA esters

LC-CoA or products derived from them, such as com-
plex lipids, are potent regulators of enzymes, ion
channels and various signal transducing effectors in
many cell types (Table 1). These targets include the
adenine nucleotide translocase, CPT-1, the tricarbox-
ylic acid carrier, the nuclear thyroid hormone receptor,

K+
ATP channel, and several ATPases [116]. Of particu-

lar interest in this context, LC-CoA esters modulate
the activity of proteins that contain adenine or guanine
nucleotide binding sites, possibly as a consequence of
the similarities in structure with coenzyme A [32].
NEFA, possibly via LC-CoA and/or complex lipid
production are essential for insulin secretion in re-
sponse to both fuel and non-fuel stimuli [86]. For in-
stance, lysophosphatidate and PA might act as beta-
cell signalling molecules. Lysophosphatidate, which
potently promotes insulin release in rat islets [117] is
the first phospholipid synthesized from LC-CoA, the
precursor of many signalling phospholipids and an es-
tablished signalling molecule [118, 119].

Five non-exclusive potential targets could be involved
in the modulation of GSIS by fatty acids: (i) LC-CoA, ei-
ther directly or indirectly via DAG production could acti-
vate C-kinase enzymes [31, 43]; (ii) a rise in cytosolic
LC-CoA could directly cause the exocytotic release of
insulin [69]; (iii) LC-CoA could modulate KATP channel
activity directly or via complex lipid formation. Thus,
various lysophospholipids [120] and phosphoinositide
[121] are potent inhibitors of beta cell KATP channels
whereas LC-CoA increases the open-state probability of
KATP channels in the beta cell [63, 64, 65, 66]. (iv) Stim-
ulation of Ca2+-ATPases by increases in cytosolic LC-
CoA has been observed in clonal beta cells [77]. (v) Inhi-
bition of HSL or other lipase activity is observed with in-
creases in cytosolic LC-CoA [116, 122].

Of these targets, the action of LC-CoA on two
would be predicted to be a net positive for insulin se-
cretion: stimulation of various PKC isoforms, and di-
rect stimulation of exocytosis. These positive actions
seem to be the dominant effects, as indicated by the
immediate stimulatory effect of exogenous NEFA on
glucose-stimulated insulin secretion. In contrast, acti-
vation of either KATP channels or Ca2+-ATPases would
be expected to inhibit secretion by lowering cytosolic
Ca2+ by different mechanisms. However, it is not clear
whether the negative-feedback inhibition of HSL in ei-
ther the beta cell or the adipocyte after a rise in serum
NEFA concentrations would affect secretion. These
latter negative effects might simply be quantitatively
unimportant or less important under physiological con-
ditions. Another intriguing possibility is that in the
context of oscillations in glycolysis, intracellular Ca2+

and secretion [59, 114, 123, 124, 125, 126], they may
actually contribute to the recovery of resting cytosolic
Ca2+ after its increase, if LC-CoA oscillates out of
phase with the ATP:ADP ratio. This scenario would be
distinct from the incretin effects of exogenous NEFA
which might be more “global” and long-lived.

Calcium influx and stimulation of exocytosis

In excitable cells, such as beta cells, voltage-depen-
dent Ca2+ channels (VDCC) are the predominant gate-
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Table 1. Potential mediators and targets of LC-CoA

LC-CoA targets Acylation targets

PKC SNAP-25
Ca2+ ATPase VAMP
Adenine Nucleotide Transferase Synaptotagmin
CPT-1 CSP
HSL VDCC (β-subunit)
K+-ATP Channel PKC

Beta-cell proteins and effector systems affected by LC-CoA ei-
ther through their binding or acylation are listed. PKC, protein
kinase C; HSL, hormone-sensitive lipase; CSP, cysteine string
protein



keepers for cellular Ca2+ influx important in many vi-
tal cellular processes, including insulin secretion [17].
These channels are hetero-oligomeric protein com-
plexes composed of at least four subunits, α1, β, α2, δ
[127]. There is ample evidence that L-type VDCC
play a pivotal role in beta-cell secretion, although the
precise subunit composition of the channels involved
and their metabolic modulation are not known [17,
128]. This goal has been complicated by the fact that
all types of VDCC, including the two L-type classes
α1c and α1d and four different β subunits are ex-
pressed in pancreatic beta cells [46, 47, 129].

The regulated release of insulin from the beta cell
seems to utilize a mechanism that is highly conserved
across many cell types including neuroendocrine cells
[130]. Exocytosis is a sequential and multi-step pro-
cess involving margination of granules, their docking
at the plasma membrane, possible priming mecha-
nisms, membrane fusion and the dissociation and re-
cycling of exocytotic components. The consensus
model is termed the soluble NSF-associated protein
receptor or SNARE hypothesis where a vesicle-bound
protein (v-SNARE) associates with a protein on a tar-
get membrane (t-SNARE) forming a complex which
brings the secretory vesicle into extremely close ap-
proximation with the plasma membrane [130]. The t-
SNARE proteins are syntaxin (four isoforms) and syn-
aptosomal-associated protein of 25 kD (SNAP-25)
(three isoforms), while vesicle-associated membrane
protein (VAMP) (three isoforms) is the vesicle-bound
protein. The Ca2+ sensitivity of exocytosis is thought
to be mediated by another vesicle-associated protein,
synaptotagmin, which normally acts as a brake on
membrane fusion.

Secretory granules can be divided into those which
correspond to a readily releasable pool, which may in-
clude both primed and unprimed vesicles, and to a
separate reserve pool [131]. The latter granules re-
quire mobilization, docking and a “priming” event
which could utilize ATP while the former are release
competent. Recently, the ready releasable pool has
been quantitated by immunologic detection of the
docking complex and shown to be responsible for
KCl-induced insulin release as well as the first phase
of GSIS [132]. Inhibition of GSIS by hexammineco-
balt (III) chloride, which was found to act by stabiliz-
ing the docking complex, is consistent with this con-
clusion [133].

Modulation of protein kinase C isoforms 
in the beta cell

There is no doubt that exogenous NEFA increases LC-
CoA and potentiates GSIS and that this action is phys-
iologically relevant [25, 86, 92]. Therefore, what is
missing is a signalling cascade linking changes in LC-
CoA to changes in insulin release. PKC isoforms are

reasonable candidates for this cascade to either initiate
secretion or augment GSIS as they respond to both
lipid signals and Ca2+ [31, 134]. An alternative model
could involve modifications of proteins not involving
phosphorylation but rather acylation, or a combination
of both processes possibly at different points in signal
transduction after the generation of LC-CoA [94,
135].

PKC is a family of 11 or 12 isozymes depending on
nomenclature, which are divided into three classes,
based on structure and co-factor requirements (Ta-
ble 2). The conventional class (cPKC) requires phos-
phatidylserine (PS), DAG and Ca2+, while the novel
class (nPKC) does not require Ca2+. The atypical class
(aPKC) has only a known requirement for an acidic
phospholipid such as PS and therefore little is known
about its regulation. PKC-µ can be considered a sepa-
rate class of kinase as PKD or a nPKC isoform having
a modified phorbol ester binding site (C1 domain) and
a putative transmembrane leader sequence. Unlike
many enzymes, cPKC and nPKC isozymes require in-
tracellular translocation and targeting to membrane
surfaces for their activation [136]. The mechanism of
this targeting involves both lipid (C1) and Ca2+ bind-
ing domains (C2) as well as protein–protein interac-
tions with adaptor molecules contained in the cytosol
[136]. The beta cell expresses seven isoforms, PKC-α,
βII, δ, ε, ι and ζ as well as PKC-µ [31, 137, 138]. Al-
though the beta cell contains isoforms of most major
protein-kinase families; the regulation of the isoforms
within a family is similar, except for PKC. This im-
plies that in the case of other kinases, isozymes could
provide redundancy for critical processes, whereas in
the case of PKC these isoforms could underpin differ-
ent cellular functions. Thus, it is of considerable inter-
est to determine the physiological determinants of ac-
tivation for the different PKC isoforms.

The stimulus-secretion coupling of some non-nutri-
ent secretagogues occurs via PKC in receptor-mediat-
ed events linked to phospholipase C [139]. Phospholi-
pase-C activation generates DAG, which translocates
and activates PKC isoforms to phosphorylate endoge-
nous substrates. Down-regulation of PKC isoforms by
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Table 2. Differential regulation of PKC isoform classes

CO-FACTORS LC-CoA

PS DAG Ca2+

Conventional PKC (cPKC) X X X +
Novel PKC (nPKC) X X no action/–
Atypical PKC (aPKC) X ++

To date there are 12 known PKC isoforms, of which 7 are ex-
pressed in the pancreatic beta cell: cPKC (α, βII); nPKC (δ, ε,
µ); aPKC (ι, ζ). The isoforms are classified based on the linear
structure of and co-factor binding to their regulatory domains.
The catalytic domains are highly conserved across all isoforms



chronic activation and the use of inhibitors suggests
that PKC-α, βI / βII and ε mediate such pathways
[140]. In contrast, the role of PKC in glucose-induced
insulin secretion is unresolved, with several arguments
for and against its involvement [141]. Glucose causes
a rise in DAG [24, 30, 142] and promotes the translo-
cation of PKC-α in the beta cell [143, 144, 145]. This
is consistent with the observation that the mass of
PKC-α correlates with the ability of phorbol myristate
acetate (PMA), a high affinity surrogate for DAG, to
stimulate secretion [146]. Therefore, the short-term
activation of PKC is thought to be a positive signal for
insulin secretion as seen by the effects of either pho-
rbol esters or cell permeant diacylglycerols.

We have recently shown that down-regulation of
PKC activity by chronic phorbol ester stimulation led
to the differential loss of PKC isoforms as reflected in
the loss of Ca2+-dependent PKC activity seen in HIT
cells [31]. Overnight exposure to 200 nmol/l PMA re-
sulted in the down-regulation of PKC-α, βII, and ε
with the masses of PKC-δ, ι, ζ unaltered. Whereas
PKC-µ was not down-regulated, its mass was enriched
in a Triton-X100 soluble membrane fraction [31]. Af-
ter down-regulation, GSIS was not only preserved but
enhanced, while the absolute potentiation due to exog-
enous NEFA did not change [31]. Therefore, the in-
cremental potentiation due to NEFA was reduced by
35%, consistent with the loss of specific PKC iso-
forms. In line with this result is a report showing the
blocking of NEFA-stimulated secretion by inhibitors
of cPKC and nPKC isoforms in perifused rat islets
[147]. In addition, we have shown that KCl-induced
insulin secretion was also enhanced after PMA down-
regulation [140, 146]). This would suggest that an in-
creased sensitivity of exocytosis to Ca2+ and/or an in-
crease in the ready releasable pool of secretory gran-
ules was due to an increased vesicle priming or to the
prior inhibition of exocytosis. Recent work has shown
that the enhanced secretory responses, both basal and
stimulated, after PMA-induced down-regulation re-
quires the presence of the phorbol ester in the cell
[146]. This implies that DAG could also couple to se-
cretion via either PKC-δ or µ; however, the data do
not exclude involvement of a non-PKC target.

LC-CoA and PA can modulate the activity of dif-
ferent classes of PKC and their interaction with DAG
and PS. PA has been shown to strongly augment the
stimulation of PKC-ζ by PS [148]. Phosphatidylserine
alone caused a slight stimulation above background
(6%±2, p<0.01) while the combination of PS and PA
caused a sixfold increase above the activity seen with
PS alone. In addition, several long-chain acyl-CoA es-
ters in combination with PS also stimulated cPKC ac-
tivity fourfold and aPKC activity eightfold above PS
alone [31]. Short-chain acyl-CoA esters were without
effect in the presence of PS or PS plus DAG.

Previous studies have documented effects of PA
[148] or PI-3,4,5-trisphosphate [149], in activating

PKC-ζ. Recent evidence shows that the lipid-depen-
dent kinase, PDK-1, activates PKC-ζ in a PI-3,4,5 P3-
dependent fashion by phosphorylation of threonine-
410 of its activation loop [150]. Thus, a possibility
still to be explored is that new regulators of islet PKC
play a role in the potentiation of GSIS by NEFA.

Lipid-dependent translocation of PKC

A study in islets examining the effect of palmitate on
beta-cell physiology showed that it did not inhibit the
KATP-channel, or alter the membrane potential or the
ATP:ADP ratio but modestly increased intracellular
Ca2+ [78]. This rise in intracellular Ca2+ only in-
creased secretion when glucose was increased, in
keeping with action of the fatty acid as an incretin. A
follow-up study showed that palmitate did not in-
crease phospholipid turnover but did translocate PKC
activity to a membrane fraction, only in the presence
of stimulating glucose [43]. Significantly, blocking the
metabolism of this NEFA (activation to LC-CoA) also
blocked its ability to translocate PKC activity and
stimulate insulin secretion. This suggests that either
the LC-CoA or its esterification into a complex lipid
such as DAG or PA was required for this effect.

Translocation of both PKC-α and ζ has been direct-
ly shown in response to glucose or glucose plus NEFA
in islets and clonal beta cells [31, 144]. In the pres-
ence of glucose, exogenous oleate rapidly (3 min) en-
riched a total particulate fraction with PKC-ζ, consis-
tent with its involvement in potentiated secretion [31].
NEFA addition to many cell types, including platelets,
hepatocytes and myocytes, have shown PKC isoform
translocation [151]. A recent study has shown through
confocal microscopy that different NEFA translocated
fluorescent-tagged PKC-γ and ε in COS-7 and CHO-
K1 cells [152]. The targeting was rapid and reversible
and varied depending on the NEFA species used. The
activity of cPKC has been enhanced by palmitoylation
through increased targeting to cell membranes [135].
Of interest, PKC isoform translocation was much
slower and not reversible when NEFA were combined
with cell permeant diacylglycerols. In addition, this
group found that each PKC isoform had a unique
translocation pattern that depended on the stimulus in-
volved, suggesting that this mechanism confers speci-
ficity to the cellular response.

Modulation of secretory granule transport 
and exocytosis

Both protein kinases C and A seem to modulate gran-
ule pools in neurons and various neuroendocrine cells
including beta cells, but perhaps by different mecha-
nisms [153, 154, 155, 156]. A study examining the
synergism between PKC and PKA in the potentiation
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of GSIS showed that cAMP caused bulk movement of
insulin granules whereas only phorbol esters increased
the number of marginated granules [156, 157]. Stimu-
lation of this margination was lost after PKC down-
regulation, suggesting that PKC-α, βII or ε might be
involved. In addition, cAMP concentrations in the be-
ta cell are increased with PKC activation probably at
the level of adenylyl cyclase phosphorylation and acti-
vation [158]. This suggests the existence of cross-talk
between PKC signalling and the generation of cAMP,
a well-known potentiator of GSIS [159].

Phorbol esters are known to activate PKC and stim-
ulate secretion in permeabilized beta cells where Ca2+

is clamped by extracellular chelation, suggesting a di-
rect action of phosphorylation on exocytosis [160]. A
number of proteins associated with the exocytotic ma-
chinery are substrates for PKC. The association of
SNAP-25 or Munc-18 with syntaxin is lessened after
their phosphorylation by PKC [161, 162]. Unphos-
phorylated Munc-18 binds to syntaxin and prevents its
association with VAMP or SNAP-25, but after phos-
phorylation these interactions are facilitated, as is ves-
icle docking. The association of myristoylated ala-
nine-rich C-kinase substrate (MARCKS) with the
plasma membrane is dependent on its phosphorylation
state [163]. Unphosphorylated it cross-links actin fila-
ments at the cell periphery preventing the docking of
secretory vesicles. However, phorbol-ester induced
phosphorylation results in the translocation of MARC-
KS into the cytosol, rearrangement of cortical actin
and increased vesicle docking [164]. In addition, the
action of a phosphorylated cytosolic protein, P145,
implicated in the Ca2+-dependent catecholamine se-
cretion was restored in PKC-deficient permeabilized
PC12 cells after the addition of brain PKC [165]. Fi-
nally, recent evidence suggests that the L-type calcium
channel is functionally coupled to or in close proximi-
ty with SNARE proteins in the beta cell [166, 167]
and that channel function might be either augmented
or inhibited by PKC phosphorylation depending on
the channel’s subunit composition [168, 169, 170].

Given that a phorbol ester would activate cPKC
and nPKC isoforms, it is not clear yet which isoforms
modulate the marginated pool of granules. It is not
known whether aPKC isoforms have a similar effect
on this pool, but this would be consistent with the ob-
servation that LC-CoA appears to stimulate both
cPKC and aPKC isoforms [31]. The mix of DAG and
LC-CoA esters at a membrane site (plasma or granule)
might determine which PKC isoforms are stimulated
and to what extent. In mixed micelle assays palmitoyl-
CoA stimulated cPKC and aPKC activities whereas it
had no effect on nPKC activity [31]. In contrast, in the
presence of PS plus DAG, CoA esters of oleate and
myristate partially inhibited nPKC, while stimulating
aPKC activity [31]. Although the mechanism of this
inhibition is not known, it was independent of DAG
concentration.

Several steps in the transport of secretory granules
or exocytosis machinery are candidates for modifica-
tion by acylation using long-chain fatty acids. The
presence of palmitoyl-CoA seems to accelerate mem-
brane fusion processes in a reconstituted system of ve-
sicular trafficking as it increased budding of Golgi
transport vesicles from donor membranes and their fu-
sion to acceptor cisternae [171, 172]. This action was
suggested to result from protein acylation, as a non-
hydrolyzable analogue of LC-CoA inhibits fusion of
vesicles to Golgi surfaces. However, LC-CoA does
not appear to act as a fusagen for secretory vesicles
and the plasma membrane. Therefore, the observa-
tions that NEFA stimulate insulin secretion after PKC
and PKA activation [52] and that in permeabilized be-
ta cells short-term addition of LC-CoA initiates secre-
tion [69] suggest that acylation modulates exocytosis
directly.

While the core SNARE proteins syntaxin and syn-
aptobrevin (VAMP) are thought to be associated with
membranes via their hydrophobic C-termini, SNAP-
25 is potentially palmitoylated at four centrally-locat-
ed residues, which seems to stabilize its association
with the plasma membrane [173]. However, it is not
clear whether palmitoylation is required for the initial
membrane targeting or only after membrane attach-
ment of newly synthesized SNAP-25 is achieved via
its association with syntaxin [174]. This latter point
and the fact that palmitoylation could play a role in
the proper dissociation of the core complex before
membrane fusion [175] are consistent with the re-
quirement for a functional secretory pathway in de-
tecting in vivo acylation [176]. In addition, VAMP ex-
pressed in PC12 cells was also shown to be palmi-
toylated [177]. Accessory proteins, such as the Ca2+

sensing protein synaptotagmin and cysteine string pro-
tein are known to be acylated in situ as well [175,
178]. The acylation of the β-subunit of the L-type
channel or the PKC isoform itself has been shown to
enhance their function and thereby could comprise
other avenues for the regulation of exocytosis by NE-
FA [135, 179].

Therefore, a net increase in cytosolic LC-CoA due
to beta-cell stimulation by either exogenous NEFA or
increased beta cell lipolysis would be a positive effec-
tor of insulin secretion, hypothesized to be mediated
by changes in the distal steps in stimulus-secretion
coupling.

Conclusion

The preceding sections have indicated the important
roles of NEFA, LC-CoA and their esterified deriva-
tives in affecting insulin secretion in both normal and
pathological states, and the likely involvement of the
various members of the PKC family of lipid-modulat-
ed protein kinases. As mentioned at the outset, the
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rapid increase in obesity is the risk factor most likely
to be driving the epidemic of Type 2 diabetes world-
wide, and the connection between obesity and diabe-
tes is most likely to be the high concentrations of cir-
culating lipids and tissue triglyceride deposits, leading
to increased cellular sources of NEFA. The develop-
ment of Type 2 diabetes requires both beta-cell insuf-
ficiency and insulin resistance in target tissues, such
that glucose disposal into muscle is retarded and he-
patic glucose output is inadequately restricted. In the
beta cell, chronically increased fatty acids produce in-
appropriate hypersecretion at low glucose concentra-
tions, and an insufficient response to increased glu-
cose, while in the target tissues, increased fatty acids
cause insulin resistance. Interestingly, in the adipo-
cyte, which is also an insulin-sensitive tissue, the anti-
lipolytic effect of insulin is much less affected, so that
the basal hypersecretion of the beta cell could further
promote lipid storage and obesity [180]. This predict-
ed link has been observed experimentally when inhi-
bition of hypersecretion by diazoxide treatment was
shown to enhance the weight loss observed in obese
hyperinsulinaemic adults [181].

Sources. This review is based on relevant articles pub-
lished in English during the period of 1990 to the
present (2003) including seminal contributions prior
to this. PubMed searches were done using various
combinations of the following terms: fatty acid, islets
of Langerhans, insulin secretion, protein kinase C,
exocytosis, acylation and metabolism.
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