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finding good starting values for analysis which can be a 
problem, for example in Restricted Maximum Likelihood 
(REML); (2) Bayesian estimation of (co)variance compo-
nents using INLA is faster to execute than using Markov 
Chain Monte Carlo (MCMC) especially when realized 
relationship matrices are dense. The slight drawback is that 
priors for covariance matrices are assigned for elements 
of the Cholesky factor but not directly to the covariance 
matrix elements as in MCMC. Additionally, we illustrate 
the concordance of the INLA results with the traditional 
methods like MCMC and REML approaches. We also pre-
sent results obtained from simulated data sets with repli-
cates and field data in rice.

Introduction

Estimation of variance components and associated breed-
ing values is an important topic in classic (e.g., Piepho 
et  al. 2008; Oakey et  al. 2006; Bauer et  al. 2006) and in 
Bayesian (e.g., Wang et  al. 1993; Blasco 2001; Sorensen 
and Gianola 2002; Mathew et al. 2012) single-trait mixed 
model context. Similarly, multi-trait models have been pro-
posed in both settings (e.g., Bauer and Léon 2008; Thomp-
son and Meyer 1986; Korsgaard et al. 2003; Van Tassell and 
Van Vleck 1996; Hadfield 2010). Multi-trait analyses can 
take into account the correlation structure among all traits 
and that increases the accuracy of evaluation. However, this 
gain in accuracy is dependent on the absolute difference 
between the genetic and residual correlation between the 
traits (Mrode and Thompson 2005). This evaluation accu-
racy will increase as the differences between these correla-
tions become high (Schaeffer 1984; Thompson and Meyer 
1986).  Persson and Andersson (2004) compared single-
trait and multi-trait analyses of breeding values and they 
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showed that multi-trait predictors resulted in a lower aver-
age bias than the single-trait analysis. Estimation of genetic 
and residual covariance matrices are the main challenging 
problem in multi-trait analysis in mixed model framework. 
However, in Bayesian analysis of multi-trait animal mod-
els, inverse-Wishart distribution is the common choice as 
the prior distribution for those unknown covariance matri-
ces. The use of inverse-Wishart prior distribution for covar-
iance matrix guarantees that the resulting covariance matrix 
will be positive definite (that is, invertible). However, the 
use of inverse-Wishart prior distribution is quite restrictive, 
because then one gives same degrees of freedom for all 
components in the covariance matrix (Barnard et al. 2000). 
Moreover, it is often difficult to suggest prior distributions 
that can be used for common situations. Matrix decomposi-
tion approach presented in this paper assigns independent 
priors for elements in the Cholesky factor.

Markov Chain Monte Carlo (MCMC) methods are a 
popular choice for Bayesian inference of animal mod-
els (Sorensen and Gianola 2002). Often, inference using 
MCMC methods is challenging for a non-specialist. 
Although there are various packages available for Bayes-
ian inference which are based on MCMC methods (e.g., 
MCMCglmm, Hadfield 2010; BUGS,  Lunn et  al. 2000; 
Stan, Stan Development Team 2014), most of these pack-
ages are not easy to use and computationally expensive. 
Among these packages, MCMCglmm seems to be easy to 
implement and computationally inexpensive. As an alter-
native to MCMC methods one can use the recently imple-
mented non-sampling-based Bayesian inference method, 
Integrated Nested Laplace Approximation (INLA,  Rue 
et  al. 2009). INLA methodology is comparatively easy to 
implement, but less flexible than MCMC methods (Holand 
et al. 2013).

Canonical transformation is a common matrix decom-
position technique in multi-trait animal models to simul-
taneously diagonalize the genetic covariance matrix and 
make residual covariance matrix to identity matrix (see 
e.g.,  Ducrocq and Chapuis 1997). After transformation, 
best linear unbiased prediction (BLUP) values can be cal-
culated independently for each trait using univariate ani-
mal model and then back transformed to obtain benefits 
of multi-trait analysis. However, common requirement in 
canonical transformation is that covariance matrices need 
to be known before the transformation. Therefore, it can-
not be applied for variance component estimation—with 
unknown genetic and residual covariance matrices. Here, 
as an improvement, we introduce another kind of decom-
position approach, where elements of the transformation 
matrix are estimated simultaneously together with the other 
mixed model parameters allowing us to apply this transfor-
mation also for the case of variance component estimation. 
This kind of modified Cholesky decomposition approach is 

required to perform multi-trait analysis in INLA (see Bøhn 
2014). The closely related decomposition approach has 
been presented in Pourahmadi (1999, 2000, 2011) and Gao 
et al. (2015). Also our approach is somewhat related to fac-
tor analytic (FA) models (e.g.  Meyer 2009;  Cullis et  al. 
2014) and which was first introduced in a breeding context 
by Piepho (1997, 1998).

In this paper, we illustrate this approach to estimate 
genetic and residual covariance matrices with INLA and 
compare the obtained estimates with those from REML 
(Patterson and Thompson 1971) and MCMC approaches 
using simulated and real data sets. With the recent devel-
opment of new low-cost high-throughput DNA sequenc-
ing technologies, it is now possible to obtain thousands of 
single nucleotide polymorphism (SNP) markers covering 
the whole genome, at the same time, in many animal and 
plant breeding programs often the detailed pedigree infor-
mation is available. So we present results obtained using 
the marker data (real dataset) along with estimates obtained 
using pedigree information (simulated data) in this study. 
We also outline a more simple approach to simulate corre-
lated traits based on the additive relationship matrix.

Models and methods

Model

We consider the multi-trait mixed model by Henderson and 
Quaas (1976). Let vector y1 represent the n1 observations 
for trait 1, y2 represent the n2 observations for trait 2 and yn 
represent the nn observations for trait n. Then the multi-trait 
mixed linear model for n traits can be written as:

β i is a vector of fixed effects associated with trait i, ui is 
a vector of random additive genetic effects associated with 
trait i, ǫi is a vector of error terms, which are independently 
normally distributed with mean zero and variance σ 2

e  . 
Moreover, Xi and Zi are known incidence matrices for the 
fixed effects and the random effects for the trait i, respec-
tively. Then, the multi-trait mixed model for n traits can be 
represented as follows:

Let β = [β ′
1,β

′
2 . . .β

′
n]

′, u = [u′1,u
′
2 . . . u

′
n]

′, ǫ = [ǫ′1,

ǫ′2 . . . ǫ
′
n]

′ and y contains traits y1. . . yn. In our study we 
considered three correlated traits so i = 1, 2, 3. Then mixed 
model equation (MME) for the model (1) is:

(1)yi = Xiβ i + Ziui + ǫi, i = 1, 2 . . . , n
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Here, R and G are covariance matrices associated with 
the vector ǫ of residuals and vector u of random effects. If 
R0 (of order 3× 3) is the residual covariance for the three 
traits then R can be calculated as R = R0 ⊗ I (here ‘⊗’ is 
the Kronecker product of two matrices and I is the identity 
matrix). Similarly, the genetic covariance matrix G can be 
calculated as G = G0 ⊗ A. Here, A is the additive genetic 
relationship matrix (p. 763 in Lynch and Walsh 1998) and 
G0 is a 3× 3 additive genetic (co)variance matrix. For the 
Bayesian inference with MCMCglmm package using model 
(1) one need to specify the conditional distribution for the 
data (y) and prior distribution for the unknown parameters. 
So the conditional distribution of data y, given the param-
eters assumed to follow a multivariate normal distribution:

The additive genetic effects (ui‘s) were assigned multivari-
ate normal distributions with a mean vector of zeros, 0, as:

and the residuals (ǫi‘s) were assumed to follow,

where I is an identity matrix. In Bayesian analysis fixed 
effects also have a prior and here β was assigned a vague, 
large-variance Gaussian prior distribution.

Reparametrization of trivariate animal model in INLA

Steinsland and Jensen (2010) showed that animal models 
are latent Gaussian Markov random field (GMRF) models 
with a sparse precision matrix (inverse of the additive rela-
tionship matrix, A−1), and can be analyzed in INLA frame-
work. Mathew et al. (2015), Larsen et al. (2014) and Holand 
et al. (2013) used INLA for Bayesian inference of univari-
ate animal models, while in a recent study,  Bøhn (2014) 
showed how to analyze a bivariate animal model using 
INLA. Unlike MCMCglmm and ASReml-R (Butler et  al. 
2007), analysis of multivariate animal model is not straight-
forward in R-INLA. For multivariate inference in INLA, we 
first assumed a trivariate distribution as a set of univariate 
Gaussian distributions, then we used the multiple likelihood 
feature in INLA and the recently implemented ‘copy’ fea-
ture (Martins et al. 2013) to fit our trivariate animal model 
with separate likelihoods (but which share few common 
parameters). The ‘copy’ feature in INLA allows us to esti-
mate dependency parameters between traits. For the INLA 
analysis of the trivariate animal model we can reparametrize 
our model for the observation vector y as follows:

(3)
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(4)y|β,u,R0 ∼ MVN (Xβ + Zu,R0 ⊗ I).

(5)u|G0,A ∼ MVN (0,G0 ⊗ A),

(6)ǫ|R0 ∼ MVN (0,R0 ⊗ I),

Here, y1, y2, y3 are the traits and κi,j defines the dependency 
between additive effects (ai‘s), moreover, αi,j defines the 
dependency between the error terms (ei‘s). For the Bayes-
ian inference one needs to assign prior distribution for the 
unknown parameters. The additive genetic effects (ai‘s) for 
each trait were assigned multivariate normal distributions 
with a mean vector of zeros, 0, as:

whereas the residuals (ei‘s) were assumed to follow a mul-
tivariate normal distribution as follows:

where I is an identity matrix. The hyperparameters (σ 2
ai
, σ 2

ei
) 

were assigned inverse-Gamma prior (0.5, 0.5) distributions 
and the dependency parameters (κi,j,αi,j) were assumed to 
follow Gaussian distributions with mean 0 and variance 10. 
Thus we define the observation vector y for the trivariate 
animal model as:

Here u = Waa, is the additive genetic term and ǫ = Wee, 
is the residual term. Moreover, Cholesky factor

and

Here, a1, a2 and a3 are the additive effects for each traits in 
the reparametrized scale. Moreover, A is additive relation-
ship matrix calculated from the pedigree information and 
σ 2
ai

, i = 1, 2, 3 are the additive genetic variances for each 
trait. Hence,

Here,
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and

is the additive genetic covariance matrix for the traits in 
the transformed scale. Thus, the additive genetic effects 
(u = Waa) follow a multivariate normal distribution 
(Eq. 5) with a mean vector of zeros, 0, as:

Here, G0 is the additive genetic (co)variance matrix. 
Similarly
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(10)u|G0,A ∼ MVN (0,G0 ⊗ A).

i = 1, 2, 3 and σuij, σǫij, where i, j = 1, 2, 3 be the (genetic 
and residual) variance and (genetic and residual) covari-
ance components, respectively, in the original scale. First, 
calculate the approximated posterior marginal distribu-
tion for the hyperparameters (σ 2

ai‘s
, σ 2

ei‘s
) and the depend-

ency parameters (κi,j‘s,αi,j‘s) by sampling from their 
joint distribution using the ‘inla.hyperpar.sample’ (Mar-
tins et  al. 2013) function. Then, following Eq. (9) the 
genetic variance components can be calculated using the 
posterior distributions as, σ 2
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. The same  
procedure can be used to calculate the residual (co)
variance components using Eq. (11). R scripts for the 
back transformation can be found in the supplementary 
material.
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Here we have independent error terms (ei‘s) for each trait, 
so the covariance matrix I is an identity matrix. Hence, 
the residuals (ǫ) follow a multivariate normal distribution 
(Eq. 6) with a mean vector of zeros, 0, as follows:

Here, R0 is the residual genetic (co)variance matrix.
To extend this method for more than three traits (say, n 

traits) can be done by modifying the terms of Eq. (9), so that 
the additive genetic Cholesky factor Wa is a Kronecker prod-
uct of n× n lower triangular matrix with I and �Xa is the 
additive genetic block matrix containing n blocks. For exam-
ple, number of dependency parameters required for a 4× 4 
Cholesky factor is already n(n− 1)/2 = 4× 3/2 = 6 .

As an additional supplementary material we provide the 
R scripts we used for the INLA analysis.

Back transformation in INLA

INLA analysis returns the marginal posterior distribu-
tions of the hyperparameters (σ 2

ai‘s
, σ 2

ei‘s
) and the depend-

ency parameters (κi,j‘s,αi,j‘s) for the reparametrized model 
(Eq.  7). So one need to perform the back transforma-
tion after the INLA analysis in order to obtain (co)vari-
ance components in the original scale. Let σ 2

ui
, σ 2

ǫi
, where 

(12)ǫ|R0 ∼ MVN (0,R0 ⊗ I).

Example analyses

Simulated dataset with high heritability

To validate our new algorithm we developed a simulated 
pedigree data. In this, we considered a base population 
of 50 unrelated lines, wherein each of the 25 seed parents 
were mated with 25 pollen donors resulting in total 625 
individuals (in total 675 individuals, including the base 
population). Additive genetic relationship matrix (A) was 
calculated from the pedigree information. In our current 
study, we simulated three quantitative traits by summing up 
the additive genetic effects a and the noise e. Thus, the vec-
tor of phenotypic observations (three traits) was calculated 
as:

Here the vectors a, e were drawn from MVN (0,G0 ⊗ A) 
and MVN (0,R0 ⊗ I), respectively. In order to simulate 
correlated traits with relatively high heritability (h2 � 0.5 ), 
we used

y = a + e.
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as the genetic covariance matrix and the residual covari-
ance matrix between the three traits. The three simulated 
traits had heritabilities ≈ 0.50, 0.60 and 0.70, respec-
tively. Let G = G0 ⊗ A and R = R0 ⊗ I, then we used the 
Cholesky decomposition of the covariance matrices G and 
R to draw samples from the multivariate normal distribu-
tion. Hence, the random additive effect a was calculated as 
a = Pza, where za ∼ MVN (0, I) and P is the Cholesky 
factor PP′ = G; whereas, the residuals e was calculated 
as e = Tze, where ze ∼ MVN (0, I) and T is the Cholesky 
factor TT′ = R.

Simulated dataset with low heritability

We also analyzed another simulated correlated dataset 
with low heritability (h2 ≈ 0.2) and negative covariances 
between the traits, in order to show how these methods per-
form when the heritability is relatively low. To simulate the 
dataset we considered the same pedigree information from 
the high heritability dataset but, with different covariance 
matrices. For the simulation we considered

as the genetic and residual covariance matrices, respec-
tively. The correlated phenotypes were simulated as 
explained before and the three traits had heritabilities ≈
0.20, 0.20 and 0.22, respectively.

Field data

In our study we analyzed the recently published rice (Oryza 
sativa) dataset (Spindel et al. 2015) and we selected three 
traits, grain yield (YLD), flowering time (FL) and plant 
height (PH) from 2012 dry season for the analysis. The 
population was genotyped with 73,147 markers using gen-
otyping-by-sequencing method and we selected 323 lines 
where both the phenotypic and genotypic informations 
were available (see  Spindel et al. 2015 for more details). 
So we used the available marker information for the esti-
mation of genetic (co)variance components and the realized 
genomic relationship matrix (M) was obtained from the 
marker information using R-package ‘rrBLUP’ (Endelman 
2011). For the real data analysis, we considered the marker 
data instead of the pedigree information, so in model (1) 
the vector of random effects (u) were assumed to follow a 
normal distribution according to Eq. (5) as

Here, M is realized genomic relationship matrix calculated 
from the marker information and G0 is the genetic (co)vari-
ance matrix.

G0 =





5 −2 3

−2 7 4

3 4 10



 , R0 =





20 −5 1

−5 28 3

1 3 35





(14)u|G0,M ∼ MVN (0,G0 ⊗M).

Analyses and results

Simulated data with replicates

In multi-trait analysis using iterative algorithms, it is often 
difficult to find suitable starting values for the parameters 
of interest. However, by performing test-runs using single-
trait data one could find suitable starting values for the 
variance components. The (co)variance components were 
estimated using MCMCglmm, R-INLA and ASReml-R 
packages. For MCMC analysis using MCMCglmm pack-
age, we considered a total chain length of 50,000 iterations 
with a burning period of 10,000 iterations. The MCM-
Cglmm package assign inverse-Wishart prior distribution 
for the random and residual covariance matrices. In our 
MCMC analysis, we used identity matrix as the scaling 
matrix of the prior distribution (ones for the variances and 
zeros for the covariances) assigned for the genetic covari-
ance matrix (G0) and for the residual covariance matrix 
(R0) between the three traits. Moreover, we specified the 
degree of belief parameter (d) as 1 for the inverse-Wishart 
prior distribution. By default MCMCglmm uses the scaling 
matrix values as the starting values. For the REML analy-
sis we used ones as the variances and zeros as the covari-
ances for the genetic covariance matrix (G0) as the starting 
values; whereas, for the residual covariance matrix (R0) we 
used half of the phenotypic variance matrix of the data as 
initial values (ASReml-R default). The total computation 
time for the simulated dataset using MCMCglmm package 
was around 10 min and INLA took around 4 min, whereas 
the time for ASReml-R package was around 1  min. The 
INLA approach we used in the current study was not able 
to analyze bigger datasets (around 1000 lines), mainly due 
to the lack of memory on our system. We used a Linux 
system with 8GB RAM for our calculations. However, it 
is possible to analyze such large datasets using computers 
with more memory size or arguably one can use the option 
‘inla.remote()’ to run R-INLA on a remote server with 
more memory size.

We used 50 simulation replicates for each simulated 
dataset to calculate the variance and covariance compo-
nents using different estimation methods. In order to com-
pare the accuracy of different estimation methods, we cal-
culated the estimation error (difference between the true 
and estimated values) using 50 simulation replicates for the 
(co)variance components and then we plotted the box plots 
for the estimation errors to visualize the estimation accu-
racy of different methods. We show those box plots for the 
estimation errors for the variance (Fig.  1) and covariance 
(Fig.  2) components for the simulated dataset with high 
heritability. The Y-axis scale in those plots corresponds to 
the differences between the true simulated values and the 
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estimated values, whereas the X-axis corresponds to differ-
ent estimation methods. In order to calculate the estimation 
errors, for MCMC we used posterior mode, whereas for 
INLA we used the posterior mean estimates. From Figs. 1 
and 2, it can be concluded that, different methods were able 
to provide similar estimates. We also plotted the box plots 
for the estimation errors for the variance (Fig. 3) and covar-
iance (Fig.  4) for the dataset with low heritability. How-
ever, for the low heritability dataset the MCMC and INLA 
approaches provided variance estimates closer to true val-
ues than the REML method. The narrow-sense heritability 
estimates for the simulated datasets using 50 simulation 
replicates are shown in Table 4. Here we did not account 
the covariances between the traits in order to calculate the 
heritability. The narrow-sense heritability (h2) was calcu-
lated for each trait separately as h2 = Va/(Va + Ve), where 
Va and Ve are the additive genetic variance and error vari-
ance of the particular trait, respectively.

Additionally, instead of covariances we report the esti-
mated genetic and residual correlation coefficients as well 
as the 95 % empirical confidence intervals (in brackets) for 

each trait in Table 1. From Table 1 it is clear that the Bayes-
ian methods were able to provide better estimates (closer 
to the true simulated values) for the additive genetic cor-
relation coefficients than the REML approach with the low 
heritability dataset. One probable reason could be that the 
prior influence is higher with the low heritability dataset. 
We also performed univariate analyses using INLA with 
the simulated low heritability dataset (see Table  2). Both 
univariate and multivariate analyses gave very similar 
results, however in multivariate analysis one can account 
for and estimate the covariances between the traits.

Heritability and breeding values are of great interest to 
breeders in order to plan an efficient breeding program. 
In our study, we also calculated the correlation coeffi-
cients between the estimated and true breeding values 
using different estimation methods. We used average over 
50 simulation replicates for both datasets to calculate the 
correlation coefficients. For the high heritability dataset, 
the correlation coefficients were 0.85, 0.84 and 0.83 for 
REML, MCMC and INLA methods, respectively. However, 

Fig. 1   Box plots for the estima-
tion error (difference between 
the true and estimated values) 
of the variance components 
using 50 simulation replicates 
with the high heritability 
dataset. Here the Y-axis scale 
corresponds to the difference 
between the true simulated 
values and the estimated values, 
whereas X-axis corresponds to 
different estimation methods
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for the low heritability dataset the correlation coefficients 
were relatively low being 0.64, 0.65 and 0.58 for REML, 
MCMC and INLA, respectively.

Field data

We chose the same starting values for the simulated data 
and real data in our REML analysis. For MCMC analy-
sis we used empirical phenotypic variance of each trait 
as the variances and zeros as the covariance as the scale 
matrix of the prior distribution, whereas, starting values 
for other parameters were set randomly. For the REML 
analysis we chose the same starting values that we used 
for the simulated dataset. Both REML and Bayesian 
methods gave similar results in our analysis using real 
dataset (Table 3). Due to numerical problems caused by 
the large differences among the traits’ phenotypic vari-
ances, before the INLA analysis we standardized each 
phenotypic vector to zero mean and unit variance, and 
after the analysis we rescaled the (co)variance compo-
nents into the original scale. However, for MCMC and 

REML analysis we used the original scale. Our results 
showed that there is a negative genetic covariance 
between the traits plant height (PH) and yield (YLD). 
Additionally, as expected, the traits days to flowering 
(FL) and yield (YLD) showed a negative genetic covari-
ance in our analysis. We also calculated the narrow-sense 
heritability for both datasets and Table  4 summarizes 
those results. Our narrow-sense heritability estimates for 
the real dataset are in concordance with the heritability 
estimates reported by Spindel et  al. (2015) for the uni-
variate animal model using REML. The total computa-
tion time for real dataset using INLA was around three 
minutes, whereas the MCMCglmm took around five 
hours. The main reasons for the expensive computation 
time with MCMCglmm are, firstly, the realized genomic 
relationship matrix were calculated outside the package, 
whereas, for the pedigree information MCMCglmm has 
built in functions in order to handle the covariance matrix 
more efficiently. Secondly, the realized genomic relation-
ship matrix from the marker information is more dense 
than the pedigree-based additive relationship matrix.

Fig. 2   Box plots for the estima-
tion error (difference between 
the true and estimated values) 
of the covariance components 
using 50 simulation replicates 
with the high heritability 
dataset. Here the Y-axis scale 
corresponds to the difference 
between the true simulated 
values and the estimated values, 
whereas X-axis corresponds to 
different estimation methods
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Discussion

Multi-trait analysis of mixed models tend to be powerful 
and provide more accurate estimates than the single-trait 
analysis because the former method can take into account 
the underlying correlation structure found in a multi-trait 
dataset. However, Bayesian and non-Bayesian inference of 
multi-trait mixed model analysis are complex and compu-
tationally demanding. In this study, we explained how to 
do Bayesian inference of a multivariate animal model using 
recently developed INLA and the counter part MCMC, 
while comparing the results with the commonly used 
REML estimates. Our results show that reparametrization-
based INLA approach can be used as a fast alternative to 
MCMC methods for the Bayesian inference of multivariate 
animal model. The reparametrization approach, that was 
here applied for INLA analysis, can be used also more gen-
erally together with other tools to speed up the multi-trait 
animal model computations.

Drawback of the reparametrization-based approach 
is that priors are assigned for elements in the Cholesky 

factor instead of the original covariance matrix. Thus, 
here it is not possible to make a direct comparison 
between the MCMC and INLA results due to the dif-
ferences in the prior distributions, however, it is possi-
ble to compare both approaches if we choose the same 
prior distributions. For the MCMC analysis we used 
inverse-Wishart distributions for the covariance matrices; 
whereas, for INLA we used Gaussian prior distribution 
for the elements in the Cholesky factor (i.e., dependence 
parameters) (κij‘s,αij‘s) and inverse-Gamma distribution 
for the decomposition variance components (σ 2

ai‘s
, σ 2

ei‘s
).  

Our results show that the REML estimates are in con-
cordance with MCMCglmm and INLA. We want to 
emphasize that in our examples, the analyzed data sets 
were large and we did not encounter any problems. In 
general, identifiability is a problem in mixed model 
analyses with small data (Mathew et al. 2012). However, 
Bayesian methods are in better positions because they 
can at least find such problems (that posterior distribu-
tion has multiple modes) more easily than REML (which 
provides a single point-estimate).

Fig. 3   Box plots for the estima-
tion error (difference between 
the true and estimated values) 
of the variance components 
using 50 simulation repli-
cates with the low heritability 
dataset. Here the Y-axis scale 
corresponds to the difference 
between the true simulated 
values and estimated values, 
whereas X-axis corresponds to 
different estimation methods
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Fig. 4   Box plots for the estima-
tion error (difference between 
the true and estimated values) 
of the covariance components 
using 50 simulation repli-
cates with the low heritability 
dataset. Here the Y-axis scale 
corresponds to the difference 
between the true simulated 
values and the estimated values, 
whereas X-axis corresponds to 
different estimation methods
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Table 1   Estimated genetic and 
residual correlation coefficients 
(ρ), between each traits (T1 to 
T3) for both simulated dataset 
using REML, INLA and 
MCMC estimates

In order to calculate genetic (a) and residual (e) correlation coefficients, 50 simulation replicates were used 
and the true simulated values are also given. Additionally, the empirical 95 % confidence intervals for esti-
mates are given in brackets

Correlation REML MCMC INLA True

High heritability dataset

 ρT1,T2(a) 0.31(0.28, 0.32) 0.32(0.28, 0.33) 0.30(0.27, 0.32) 0.33

 ρT1,T3(a) 0.41(0.37, 0.43) 0.40(0.37, 0.43) 0.40(0.38, 0.43) 0.38

 ρT2,T3(a) 0.45(0.44, 0.48) 0.45(0.44, 0.47) 0.47(0.44, 0.48) 0.46

 ρT1,T2(e) 0.51(0.50, 0.53) 0.52(0.51, 0.53) 0.52(0.51, 0.53) 0.50

 ρT1,T3(e) 0.48(0.46, 0.50) 0.49(0.46, 0.51) 0.49(0.47, 0.50) 0.50

 ρT2,T3(e) 0.50(0.48, 0.51) 0.51(0.48, 0.52) 0.50(0.48, 0.52) 0.50

Low heritability dataset

 ρT1,T2(a) −0.19(−0.41, −0.03) −0.40(−0.50, −0.31) −0.38(−0.49, −0.29) −0.34

 ρT1,T3(a) 0.65(0.64, 0.66) 0.44(0.39, 0.47) 0.47(0.43, 0.51) 0.42

 ρT2,T3(a) 0.49(0.48, 0.50) 0.43(0.39, 0.44) 0.42(0.40, 0.45) 0.45

 ρT1,T2(e) −0.22(−0.24, −0.19) −0.19(−0.21, −0.17) −0.20(−0.21, −0.17) −0.21

 ρT1,T3(e) 0.02(0.01, 0.04) 0.03(0.01, 0.04) 0.03(0.02, 0.04) 0.04

 ρT2,T3(e) 0.11(0.09, 0.12) 0.10(0.08, 0.11) 0.10(0.08, 0.11) 0.10
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Nowadays, molecular markers are widely used in animal 
and plant breeding programs as a valuable tool for genetic 
improvement. Therefore, we also showed how to estimate 
genetic parameters in a multivariate animal model using 
molecular marker information with the reparametrization-
based INLA approach and frequentist framework. Finally, 
our results imply that the reparametrization-based INLA 
approach can be used as a fast alternative to MCMC meth-
ods in order to estimate genetic parameters with a multi-
variate animal model using pedigree information as well as 
with molecular marker information.
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Table 2   The additive genetic variance (σ 2
a ) and the error variance (σ 2

e ) 
components obtained using a univariate INLA analysis (INLA-U) using 
the simulated dataset with negative covariance

In order to calculate the INLA estimates, mean of 50 simulation rep-
licates were used. True simulated values and the estimates from the 
multivariate INLA (INLA-M) analysis are also given

Variance parameter INLA-U INLA-M True

σ 2
a1

5.03 4.92 5.00

σ 2
a2

5.99 6.45 7.00

σ 2
a3

10.15 10.34 10.00

σ 2
e1

20.03 20.16 20.00

σ 2
e2

28.91 28.93 28.00

σ 2
e3

35.08 35.30 35.00

Table 3   The additive genetic variance (σ 2
a ) and the error variance (σ 2

e )  
for the field data obtained from the REML analysis and the posterior 
mode estimates obtained from the MCMCglmm package along with 
R-INLA posterior mean estimates are presented

The additive genetic covariance (σTi ,Tj(a)) and the error covariance 
(σTi ,Tj(e)) between each pair of three quantitative traits (PH, FL, YLD) 
are also shown

(Co)variance parameter REML MCMC INLA

σ 2
PHa

22.92 21.85 24.09

σ 2
FLa

6.50 6.56 6.58

σ 2
YLDa

34,285.92 35,890.51 40,218.69

σ 2
PHe

42.34 40.91 43.68

σ 2
FLe

8.17 8.23 8.47

σ 2
YLDe

71,698.64 73,983.14 74,211.42

σPH,FL(a) 4.57 4.48 4.60

σPH,YLD(a) −285.05 −237.21 −263.99

σFL,YLD(a) −158.50 −120.01 −161.97

σPH,FL(e) 2.41 2.78 2.57

σPH,YLD(e) 106.36 76.83 83.21

σFL,YLD(e) −38.75 −23.82 −44.09

Table 4   Narrow-sense heritability estimates (h2) for the simulated 
datasets (averaged over 50 simulation replicates) and the real dataset 
with the different estimation methods

Posterior mean estimates of R-INLA and posterior modes from 
MCMCglmm were used for the calculation. Additionally, the true 
heritability estimates for the simulated dataset and the heritability 
estimates reported by Spindel et al. (2015) are also shown

REML MCMC INLA True

High heritability dataset

 Trait1 0.49 0.49 0.49 0.50

 Trait2 0.61 0.62 0.61 0.60

 Trait3 0.71 0.72 0.71 0.71

Low heritability dataset

 Trait1 0.15 0.21 0.20 0.20

 Trait2 0.17 0.23 0.22 0.20

 Trait3 0.17 0.23 0.21 0.22

Real data Spindel et al. (2015)

 PH 0.35 0.35 0.35 0.35

 FL 0.44 0.44 0.44 0.43

 YLD 0.32 0.32 0.35 0.32
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