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Abstract Reactive oxygen species (ROS) act as essen-
tial cellular messengers, redox regulators, and, when in
excess, oxidative stressors that are widely implicated in
pathologies of cancer and cardiovascular and neurode-
generative diseases. Understanding such complexity of
the ROS signaling is critically hinged on the ability to
visualize and quantify local, compartmental, and global
ROS dynamics at high selectivity, sensitivity, and spa-
tiotemporal resolution. The past decade has witnessed
significant progress in ROS imaging at levels of intact
cells, whole organs or tissues, and even live organisms.
In particular, major advances include the development
of novel synthetic or genetically encoded fluorescent
protein-based ROS indicators, the use of protein
indicator-expressing animal models, and the advent of
in vivo imaging technology. Innovative ROS imaging
has led to important discoveries in ROS signaling—for
example, mitochondrial superoxide flashes as elemental
ROS signaling events and hydrogen peroxide transients
for wound healing. This review aims at providing an
update of the current status in ROS imaging, while
identifying areas of insufficient knowledge and highlighting
emerging research directions.
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Introduction

Reactive oxygen species (ROS) are oxygen metabolites that
are highly active in terms of oxidative modifications of cellular
macromolecules including proteins, lipids, and polynucleo-
tides. Superoxide radical (O2

·−) is usually the primal ROS
species produced and is subsequently converted into hydrogen
peroxide (H2O2) through spontaneous or superoxide dismutase
(SOD)-catalyzed dismutation. And reaction of O2

·− and nitric
oxide (·NO) generates peroxynitrite (ONOO−), a ROS and
reactive nitrogen species (RNS) species. Of all cellular ROS
sources, electron leakage from the mitochondrial electron
transfer chain (ETC) to molecular oxygen generates a steady
flux of O2

·− and thus constitutes the major site of cellular ROS
production [1, 2]. Other enzymes, includingNADPH oxidases,
lipoxygenase and cyclooxygenase, cytochrome p450s, and
xanthine oxidase, also participate in ROS generation [3].

The cellular redox homeostasis is set by a delicate balance
between ROS production and the antioxidant system. The
ROS-scavenging enzymes include SODs, which convert
O2

·− to H2O2, and catalases, which convert H2O2 to water.
The antioxidant system consists of glutathione, peroxiredoxin,
thioredoxin, and NADPH. Collectively, they form an antiox-
idant pool, while a third category of enzymes such as gluta-
thione peroxidase and thioredoxin reductase catalyze the in-
terconversion and equilibrium among the reduced/oxidized
species of different reductants [4, 5].

When ROS are produced excessively or endogenous an-
tioxidant capacity is diminished, indiscriminate oxidation
elicits harmful effects, resulting in “oxidative stress”.
Mounting evidence has established strong links between
oxidative stress and a wide variety of pathologies including
malignant diseases, diabetes mellitus, atherosclerosis, ische-
mia–reperfusion injury, and chronic inflammatory processes
as well as many neurodegenerative diseases [3, 6–14]. More-
over, the oxidative stress theory of aging states that system-
atic accumulation of oxidative damage from multiple ROS
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sources constitutes the core process that drives the biological
clock of aging [15, 16]. Nevertheless, homeostatic ROS are
required to maintain a redox environment optimal to bio-
chemical activities of the cell. It has been shown that acute
application of SOD mimetics to cardiomyocytes halves the
rate of occurrence of spontaneous Ca2+ sparks [17] and
decreases action potential-elicited Ca2+ transients and
contraction [18]. “Reductive stress”, a state with too
little ROS production and/or too strong antioxidant re-
activity, can also lead to pathology. For instance,
cardiac-specific expression of human alphaB-crystallin
autosomal-dominant mutant hR120GCryAB led to re-
ductive stress causing cardiomyopathy through inducing
protein aggregation [19, 20].

As an exciting paradigm-shifting development, ROS
emerge as powerful, ubiquitous, and indispensable cellular
messengers, adding to the repertoire of only a handful of
second messengers that we know (Ca2+, cAMP, IP3, and
arachidonic acid). The specific ROS targets range from ionic
channels and transporters, to kinases and phosphatase, and to
transcription factors, and the list continues to grow and
permeate throughout pivotal pathways in differentiation
and organogenesis [21], cell fate regulation [22, 23], stress
response [24], and wound healing [25, 26]. However, ROS
signaling is notoriously complex. As a rule of thumb, the
ROS effects are multiphasic and bidirectional, depending on
the species of oxidants, their concentrations, history of ex-
posure, and cellular context. The proven failure of antioxi-
dant therapies despite decades of industrious efforts [27–30]
serves us a humbling lesson on how much we still do not
know about ROS signaling. Understanding the cell logic and
principles of ROS signaling and developing efficient and
specific antioxidant therapies to constrain ROS damages
would both hinge on precise and quantitative knowledge of
intracellular ROS dynamics, concentrations, compartments,
and modes of action.

A few harbingers show us the new horizons in ROS
research. First, the trend of ROS investigation moving
from cell-free preparations to intact cells and even in
living animals; second, the development of a set of
novel fluorescent protein-based ROS indicators and pro-
tein indicator-expressing transgenic animal models, en-
hanced with cell type and subcellular compartment-
targeting ability; and third, the visualization of exquisite
spatiotemporal architecture of intracellular ROS dynam-
ics by time-lapse imaging in intact cells or in vivo
imaging in transgenic animal models. In this short re-
view, we summarize these recent advances in fluores-
cent ROS imaging in cells and animals with emphasis
on novel indicators, genetic animal models, and in vivo
imaging technology. Emerging concepts on local ROS
signaling will also be discussed. Please see references
[31–34] for recent reviews on related topics.

ROS measurement with small-molecule fluorescent probes

Depending on ROS species and cellular environments, life-
time of a ROS molecule in biological systems varies from
nanoseconds to seconds. So what is required for a fluorescent
ROS indicator is that it should compete with the antioxidants
for ROS and produce fluorescently altered products for vi-
sualization and quantification [35]. For an “ideal” ROS
indicator, the criteria include selectivity for specific ROS
species, fast and reversible kinetics, high signal-to-
background contrast, and superb signal-to-noise properties
as well as ease with intracellular loading and proper subcel-
lular compartmentalization. It is also desirable to be excit-
able at a visible wavelength, be resistant to photobleaching,
and display no toxicity in general and phototoxicity in par-
ticular. Currently available fluorescent ROS indicators fall in
two categories, synthetic small-molecule dyes and genetical-
ly encoded fluorescent protein-based probes. As will be
discussed in the following, major limitations in ROS mea-
surements are related to selectivity, kinetics, and ability for
quantitative calibration.

Of the small-molecule fluorescent ROS probes, 2′-7′-
dichlorodihydrofluorescein (DCFH), dihydroethidium
(DHE), and mitochondrial-targeted DHE (mitoSOX) are
the most popular ones. The diacetate form of DCFH
(DCFH-DA) is a cell-permeable form that allows ester load-
ing of the dye, resulting in intracellular accumulation of the
nonfluorescent DCFH. In the presence of H2O2 and other
oxidants, two-electron oxidation of DCFH results in the
formation of a fluorescent product, 2′-7′-dichlorofluorescein
(DCF), which can be monitored by fluorescence microscopy
and flow cytometry [33, 36]. However, severe limitations
and potential artifacts are confounding the DCF measure-
ment of ROS. Apart from its relative nonselectivity to ROS
species and oxidants, DCFH oxidation can also be catalyzed
by cytochrome c and heme peroxidases. Worse, the one-
electron oxidization product or DCF radical can react with
oxygen to produce O2

·− and subsequently H2O2, thus artifi-
cially generating the very ROS that it is attempting to quan-
tify. Cautions should also be taken to minimize light expo-
sure because DCFH is both susceptible to photo-oxidation
(increasing DCF fluorescence) and to photobleaching (loss
of DCF fluorescence). Kinetically, it is difficult for DCFH to
track small and rapid ROS transients because DCFH oxida-
tion is irreversible in the intracellular milieu, and the slope of
DCF fluorescence rise (dF/dt), instead of fluorescence inten-
sity (F) per se, is often used to measure the level of ROS.
After subtraction of the rising basal fluorescence (Fbase),
local d(F−Fbase)/dt has also been used to reflect approxi-
mately brief ROS transient [37]. This procedure, however,
could be complicated because oxidized DCF becomes
membrane-permeable [38]. As to its subcellular compart-
mentalization, DCFH may be enriched in either the cytosol
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or the organelle mitochondria, depending on loading and
experimental conditions [39].

DHE is widely used as a small-molecule fluorescent ROS
probe specific for O2

·− [40]. The reaction between O2
·− and

DHE generates a highly specific red fluorescent product, 2-
hydroxyethidium (2-OH-E(+)), shifting its excitation and
emission peaks from 350 and 400 to 518 and 605 nm, re-
spectively [41–43]. mitoSOX, a DHE derivative with addi-
tion of a positively charged triphenylphosphonium group
(TPP+), is highly enriched in the mitochondria [44, 45],
and the binding of oxidized mitoSOX to mtDNA greatly
enhances its fluorescence [43]. The chemical reactivity of
mitoSOX with O2

·− is similar to the reactivity of DHE with
O2

·−, and the particular product 2-OH-E(+) is unique to O2
·−

since several studies have confirmed that 2-OH-E(+) is the
only product in the presence of O2

·− generated by the xan-
thine–xanthine oxidase–O2 system [46–48].

In intact cells, however, the DHE detection of O2
·− is still

interfered by a prominent reaction: two-electron oxidation of
DHE by oxidants other than O2

·− produces ethidium cation
(E+), another red fluorescent product that is bound to nuclear
DNA and often present at a much higher concentration [43].
It has recently been suggested that selective detection of 2-
OH-E+ is possible by excitation at 396 nm because an
excitation band between 350 and 400 nm is present for 2-
OH-E+ but not E+ [49]. However, other studies have report-
ed that E+ can still significantly contribute to the fluores-
cence intensity even at 396 nm excitation because of high
levels of E+ involved [50]. These indicators are also light-
sensitive and prone to auto-oxidation [35, 43], further
constraining and complicating design and data interpretation
in time-lapse experiments. Additionally, it has been shown
that mitoSOX at high concentration significantly impairs
mitochondrial function [49].

Several other useful small-molecule fluorescent ROS
probes have been developed. Particularly, dihydrorhodamine
123 (DHR123) is a nonfluorescent agent that scavenges the
OH· generated from H2O2 in an iron-dependent Fenton reac-
tion and is thereby converted into the fluorescent rhodamine
123 [51]. DHR123 reacts also with NO2

· and hypochlorous
acid but is unreactive to O2

·− or H2O2 in the absence of catalyst
[34, 52–54]. A family of boronate-based indicators (e.g.,
peroxysensor family) has also been introduced for targeting
to the cytosol or themitochondria [55–57]. Boronate masks the
fluorophore; but, upon exposure to H2O2, it undergoes a nu-
cleophilic attack and its removal unmasks the fluorescence
emission. However, the boronate-based indicators are promis-
cuous as they also react stoichiometrically with ONOO−,
yielding phenols and permitting light emission [58, 59].

HKGreen-3, a rhodol-based fluorescent probe, is recently
developed by Peng et al. and shows high sensitivity and
selectivity for peroxynitrite in both chemical and biological
systems [60]. HKOCl-1 is a BODIPY-based fluorescent probe

for detecting hypochlorous acid with high specificity [61]. 4-
Amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM)
is of popularity for measuring NO due to its high sensitivity,
pH stability, and relative resistance to photobleaching. Since
the detection relies on conversion of the parent compound into
a fluorescent triazole, the presence of oxidants/antioxidants
and reaction with other molecules would affect this fluores-
cence detection [62]. Amplex UltraRed is a fluorogenic sub-
strate for horseradish peroxidase that reacts with H2O2 in a 1:1
stoichiometric ratio to produce the fluorescent product
resorufin with long-wavelength spectra (excitation/emission
maxima, ∼563/587 nm) [31]. In a recent study, Amplex
UltraRed and DAF-FM have been successfully used for
in vivo measurement of extracellularly released H2O2 and
NO of superficial lumbar spinal cord of anesthetized mice,
respectively [63].

The caveat from above considerations is that ROS mea-
surement with small-molecule fluorescent probes is not as
straightforward as it seems to be. Proper experimental de-
sign, careful choice of loading and light illumination param-
eters, stringent control of experimental conditions, and judi-
cious interpretation of experimental data should all be
exercised. Whenever possible, cross-confirmation with mul-
tiple independent approaches is highly recommended. Evi-
dently, developing small-molecule fluorescent ROS probes
suitable for faithful measurement of ROS dynamics remains
a huge challenge to the ROS research field.

ROS measurement with fluorescent protein-based
indicators

Over the last decade, fluorescent protein-based ROS indica-
tors have entered the arsenal for ROS measurement. While
protein chemistry introduces a higher level of complexity as
compared to the small-molecule chemistry, it at the same
time offers tremendous opportunities for rational design
(e.g., redox oxidation-sensitive green fluorescent proteins
(roGFPs) for redox potential measurement and HyPer for
H2O2 measurement) [64–66] as well as serendipitous dis-
coveries (e.g., mt-circularly permutated yellow fluorescent
protein (cpYFP) for mitochondrial superoxide flashes) [67].
While selectivity is generally improved, reversibility could
also be achieved by exploiting the endogenous antioxidant
system or new protein chemistry. Another distinct advantage
is that these genetically encoded indicators can be specifi-
cally targeted to different type of cells using cell type-
specific promoters or to different cellular compartments or
microdomains by N- or C-terminal fusion with a specific
targeting sequence [68, 69]. ROS indicator-expressing trans-
genic animals have been generated [67, 70–73], allowing for
imaging ROS ex vivo and in vivo. However, the fluorescent
protein indicators have also their own set of limitations.
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Particularly, pH sensitivity is common tomost of currently used
protein-based ROS indicators, due to reversible fluorescence-
quenching protonation of the chromophore at pKa close to
physiological pH. As such, pH changes in the cytosol or other
specific compartments, if not judiciously controlled, could lead
to erroneous observation and misinterpretation.

Imaging mitochondrial superoxide flashes with cpYFP

Among all ROS sources, mitochondrial ETC is the major site
of cellular ROS production. The ETC consists of
intermolecular and intramolecular pathways of increasing
redox potential (Eh), from −320 mV at the entry point of
complex I to +390 mV at the terminal point of complex IV.
However, with its Eh=−160 mV, O2 also snaps up 0.15–2 %
of the respiratory chain electrons, one at a time, at places
prior to complex IV; and one-electron reduction of O2 forms
O2

·− [1, 2], the primal ROS. This constitutive mode of
mitochondrial ROS production plays an important role in
setting the ROS and redox homeostasis of the cell.

While studying mitochondrial Ca2+ signaling with a ge-
netically encoded mitochondrial-targeted Ca2+ indicator,
pericam [74], we serendipitously found that the fluorescent
moiety of pericam, cpYFP, can reversibly detect superoxide
with high selectivity and sensitivity [67]. Extensive in vitro
characterization indicates that, when excited at 488 nm,
cpYFP emission displays a several fold increase in response
to superoxide generated by the xanthine–xanthine oxidase–
O2 system, but is insensitive to many other oxidants and
metabolites, including H2O2, peroxynitrite, Ca

2+, ATP,
ADP, NAD(P)+, and NAD(P)H. It is also insensitive to Eh

varying between −319 and −7.5 mV (controlled by mix of
oxidized and reduced DTT in different proportions), while
displays a pH sensitivity with a pKa ∼8.5 [67]. The revers-
ibility of cpYFP has been evidenced by the fact that SOD
added after superoxide formation reverses the cpYFP signal
in vitro. In addition, mitochondrial-targeted cpYFP (mt-
cpYFP) acts as a ratiometric indicator because its signal at
405 nm excitation is essentially ROS-independent, allowing
for the use of the F488/F405 ratio as the readout.

Using mt-cpYFP, we have uncovered a new mode of
mitochondrial ROS production—“superoxide flash”. Super-
oxide flashes are sudden, brief, and bursting superoxide-
producing events in single mitochondria. In intact cells,
spontaneous flashes occur at a low rate in a stochastic man-
ner [67], but their frequency can be regulated over a broad
dynamic range. To date, superoxide flashes are universally
found in all cell types examined, including cardiomyocytes,
skeletal muscle cells, neurons, glials, fibroblasts, and several
types of cancer cells [23, 67, 70, 75–82]. They are also
highly conserved in species ranging from mammals (mouse,
rat, and human) and to Caenorhabditis elegans (unpublished
data). Ex vivo and in vivo imaging in transgenic mouse

models with cardiac-specific or pan-tissue mt-cpYFP ex-
pression have allowed for detection of superoxide flashes
in beating hearts under Langendorff perfusion [67] and in
gastrocnemius muscle and sciatic nerve of living mice under
anesthesia (Fig. 1) [70, 71]. In addition, superoxide flashes
of similar characteristics are active in freshly isolated, respi-
ratory mitochondria [83], indicating that single mitochondria
contain the full machinery for the genesis of superoxide
flashes. Notably, the rate of flash occurrence varies
depending on species, tissue and cell types, metabolic states,
the presence of stressors, and disease conditions; the ampli-
tude and duration of the flashes, however, appear to be
stereotypical at multiple levels, from isolated mitochondria,
to intact or plasma membrane-permeabilized cells, to whole
tissues or organs, and to living animals.

The superoxide origin of the mitochondrial flashes has
stirred some hot debates. Sweetlove et al. reported similar
phenomenon in Arabidopsis mitochondria, but interpreted
its nature as transient alkalization of the mitochondrial ma-
trix [84, 85]. Recently, we and others have systematically
examined the respective contributions of ROS and pH to a
flash and concluded that ROS burst is the dominant signal
while pH change, if any, has only a minor contribution [83].
In experiments combining the protein and small-molecule
ROS indicators, it has been shown that mitoSOX, which is
pH insensitive, reports a concomitant stepwise increase dur-
ing a mt-cpYFP flash [78, 83, 86]. Furthermore, owing to its
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Fig. 1 In vivo detection of mitochondrial superoxide flashes in skeletal
muscle. An upright confocal microscope was used to image the
hindlimb skeletal muscle in mt-cpYFP transgenic mouse under anes-
thesia. a Superoxide flash in mouse gastrocnemius. Upper panel x–y
view of mitochondria at 488 nm excitation. The striated pattern reflects
that double-row arrays of mitochondria locate at Z line regions of
sarcomeres. Bottom panel enlarged views of this punctiform superoxide
flash in the boxed region at 3-s intervals, with dual wavelength excita-
tion at 488 and 405 nm. b Time course of the superoxide flash in a.
Modified from Fang et al. [71]
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reversibility, mt-cpYFP is able to track the time course of
flashes with the briefest duration of only ∼1 to 2 s [80].

Differing from constitutivemitochondrial ROS production,
the genesis of superoxide flashes involve different but
overlapping molecular mechanisms. The flash ignition is
tightly coupled to transient opening of mitochondrial perme-
ability transition pore (mPTP), evidenced by sudden dissipa-
tion of mitochondrial membrane potential and partial and
irreversible loss of fluorescent solutes (MW, 752–980 Da)
preloaded to the matrix [67, 75]. The involvement of mPTP
is also supported by the fact that the flash production is
partially sensitive to pharmacological inhibition or molecular
knockdown of cyclophilin D, consistent with a regulatory, but
dispensable, role of this protein in mPTP activity [87–90].
Another prominent property of the superoxide flashes is their
dependence on functionally intact ETC. The flash production
is abolished by disruption of the ETC at any possible site,
complex I through V, in a manner distinctly different from
ETC regulation of constitutive ROS production. For instance,
antimycin A, an inhibitor-targeting complex III abolishes the
bursting quantal ROS production in the form of the flashes
[67] while stimulating continuous ROS production [1, 91, 92].
That inhibition of complex V also suppresses the flash pro-
duction is consistent with an intimate relationship recently
suggested for the ATP synthase and mPTP [93, 94].

By in situ, ex vivo, and in vivo ROS imaging, we and
others have shown that superoxide flashes represent not only a
digital readout of mitochondrial metabolic status but also a
novel biomarker of mitochondrial stress. The rate of skeletal
muscle superoxide flashes in live anesthetized mice increases
after intraperitoneal injection of glucose or insulin, indicating
that superoxide flashes are coupled to whole-body dietary
glucose metabolism [70]. In isolated skeletal muscle cells with
electroporation-mediated transient mt-cpYFP expression, su-
peroxide flashes occur at a markedly elevated frequency and
display a similar though less profound response to glucose
plus pyruvate stimulation, in the absence of insulin and other
whole-body factors [78]. A further elevated superoxide flash
activity is observed in skeletal muscle of RyR1Y522S/WT ma-
lignant hyperthermia mice which exhibit marked temperature-
dependent increases in ROS and RNS generation [76]. Thus,
imaging superoxide flashes in vivo exemplifies how both the
integrative whole-body metabolic response and the mechanis-
tic single-mitochondrion behavior can be investigated in one
single experiment.

Investigation of superoxide flash production in mice de-
ficient of SOD2 has revealed that superoxide flashes nega-
tively regulate neural progenitor proliferation and cerebral
cortical development through modulating activation of ERK
[23]. Remarkably, a reversible 20-fold increase of superox-
ide flashes occurs in response to hyperosmotic stress, due to
the synergistic effect mitochondrial Ca2+ uniport, and basal
ROS elevation. The high activity of superoxide flashes, in

turn, contributes to activating JNK and p38, essential signals
for adaptive cell survival responses [81]. In cultured
cardiomyocytes, a flurry of superoxide flash activity occurs
in a 5–10 min window after reoxygenation from hypoxia or
anoxia [67, 95]. In the pathology of Huntington disease, the
elevated flash activity induced by elevated mitochondrial
Ca2+ signaling acts to exacerbate mtDNA damage [82].
Likewise, superoxide flashes act as early mitochondrial sig-
nals mediating the apoptotic response during oxidative stress
in HeLa cells [79].

Collectively, these recent advances indicate that superox-
ide flashes offer a rare window through which we can
glimpse into the whole-body metabolic response at the
single-mitochondrion level, and gauge a wide variety of
stresses converging to the mitochondria. To our knowledge,
many types of cpYFP transgenic organisms, from mice,
zebrafish, C. elegans, Drosophila melanogaster, and yeast,
have been generated or are currently being created to address
multidisciplinary questions in broad settings. We are eager to
see what these new models and approaches can teach us
about ROS signaling in biology and diseases.

Imaging H2O2 with HyPer

HyPer is a ratiometric fluorescent indicator of H2O2 in which
cpYFP is inserted into the regulatory domain of an
Escherichia coli peroxide sensor OxyR [66]. Naturally used
by the bacterium to trigger transcriptional response to oxi-
dative stress, OxyR contains an H2O2-sensitive regulatory
domain and a DNA-binding domain, and, upon oxidation by
H2O2, intramolecular disulfide bond forms between two
cysteine residues (Cys199 and Cys 208) and the resultant
conformational change shifts the excitation maximum of the
attached cpYFP from 420 to 500 nm (emission maximum at
516 nm) [66]. HyPer is able to detect nanomolar H2O2

in vitro and, when expressed in cells, responds to micromolar
H2O2 added externally [66] or changes of intracellular H2O2

upon growth factor stimulation [66, 96]. In an elegant study,
Niethammer et al. have exploited HyPer expressed in trans-
genic zebrafish larvae to visualize a regional, graded, and
transient H2O2 signal produced by dual oxidase (Duox) in
response to tail fin injury. Functionally, this Duox-elicited
H2O2 signal is required for rapid recruitment of leukocytes in
the process of wound healing [25].

A series of HyPer mutants have been developed in order
to improve its dynamic range and reaction kinetics for H2O2

detection. In particular, HyPer-2, an A406V single-point
mutant of HyPer, exhibits twice-expanded dynamic range,
but the response to H2O2 is much slower, doubling both half-
oxidation and half-reduction from ∼6 and ∼200 s for HyPer
to ∼13 and ∼400 s for HyPer-2, respectively [97]. Recently, a
H34Y mutant of HyPer, HyPer-3, was developed, which
shows expanded dynamic range compared to HyPer and
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faster oxidation-reduction kinetics compared to HyPer-2
[72]. Notably, in HyPer-3 transgenic zebrafish, similar
H2O2 gradients along the fish tail regions were observed
upon wounding; however, HyPer-3 showed a higher fluores-
cence ratio (F500/F420) [72] than what reported by HyPer
[25] demonstrating its advantage for H2O2 detection.

Both HyPer and HyPer-3 are applicable for fluorescence
lifetime imaging microscopy (FLIM) [72]. Instead of measur-
ing the fluorescence intensity, the physical parameter mea-
sured in FLIM is the time constant (τ) of the excited
fluorophore returning to its basal states and, in this case, the
change in τ is quantified to reflect the redox state of the ROS
indicator and hence the ROS level. Because τ is independent
of indicator concentration, FLIM measurement is essentially
insensitive to indicator expression level, non-uniform distri-
bution, and partial photobleaching. It is also advantageous for
quantifying signals at different depths in a biological tissue
because τ is less interfered by light scattering and reabsorption
(inner filtering). Moreover, FLIM generates absolute quanti-
tative readouts while requiring only a single-wavelength ex-
citation, provided that the indicator is calibrated in situ (e.g., in
permeablized cells) or in vitro under conditions closely re-
sembling intracellular environments.

As is the case for mt-cpYFP, HyPer and its mutants are pH
sensitive: a shift of 0.2 pH units is sufficient to change the
F500/F420 ratio as much as those corresponding to a full
reduction or oxidation [66]. Thus, monitoring pH changes
should be included as an essential control in HyPer measure-
ment. A second concern is about its ROS selectivity. Al-
though in vitro data have shown that HyPer is insensitive to
other oxidants including O2

·−, GSSG, nitric oxide, and
ONOO− [66], events similar to mt-cpYFP flashes were de-
tected with mitochondrial targeted HyPer, accompanying a
simultaneous stepwise increase of mitoSOX fluorescence
[86]. SypHer, a pH indicator and insensitive to H2O2 (by a
disruption of the H2O2-sensing cysteine pair (C199S), of
HyPer), detects similar mitochondrial flash events [66, 86,
98]. Thus, since HyPer and SypHer comprise a cpYFP as the
fluorophore, it is possible that the cpYFP part in these two
indicators reports mitochondrial superoxide flashes [86], as
do mt-cpYFP and pericam [67, 78].

Imaging redox potential with roGFPs

As an example of rational design, roGFP1 have been gener-
ated by substituting two surface exposed amino acids in GFP
with cysteines (S147C and Q204C). The introduced Cys 147
and 204 are situated next to each other on two adjacent β-
strands and form disulfide bonds due to significant conforma-
tional changes of roGFP1 upon oxidation [64, 65]. These
cysteines are located near the chromophore of GFP and the
formation of the disulfide bond leads to a simultaneous shift of
the absorption properties. The roGFPs have two fluorescence

excitation maxima at about 400 and 490 nm, corresponding to
the neutral fluorophore and anionic form of the flurophore,
respectively [64, 65]. The disulfide formation promotes pro-
tonation of the chromophore and increases the excitation peak
near 400 nm at the expense of the peak near 490 nm. There-
fore, they serve as dual-excitation ratiometric indicators for Eh

measurement in vitro and in vivo [64, 65]. The first generation
of roGFPs with different mutation sites, including roGFP1-6,
all have midpoint Eh of −272 mVor below, which made them
most useful in reducing compartments, such as the cytosol and
the mitochondrial matrix [64]. In particular, roGFP1and
roGFP2 expressed in cytoplasm report a basal Eh of −315 to
−325mVand both respond to a variety of oxidant stimuli [65].
Interestingly, the mitochondrial matrix of HeLa cell is highly
reducing with a midpoint Eh near −360 mV as reported by
roGFP1; membrane-permeable reductants and oxidants re-
versibly change the Eh in the matrix of mitochondria [64].
Recently, transgenic animals of roGFPs have been developed
and provided very useful tools for investigating the physiolo-
gy and pathology of ROS signaling [73, 99]. A combined
approach using transgenic mice with mitochondrial-targeted
roGFP and two-photon laser scanning microscopic imaging in
brain slices have shown that normal autonomous pace-making
produced oxidative stress specific to dopaminergic neurons in
substantia nigra pars compacta that are usually vulnerable[73].
In mitochondrial-targeted roGFP2 transgenic Drosophilae, it
has been demonstrated that elevated ROS contribute to path-
ogenesis in a neurodegenerative mutant ATPalphaDTS1 and in
a model of mitochondrial encephalomyopathy [99].

It should be cautioned that it takes minutes or longer for
current roGFPs to equilibrate with the environmental redox
potential changes and their reversibility is too slow to detect
transient ROS events [32]. Indeed, roGFP2 expressed in
either cytoplasm or the plasma membrane showed no re-
sponse to stimulation with epidermal growth factor or
lysophosphatidic acid, which induces H2O2 production that
can be detected by DCFH [65, 100, 101]. By measuring the
steady-state redox levels in different cellular compartments,
future investigations may exploit roGFPs to complement the
measurements using selective, fast responding, and revers-
ible ROS indicators. Importantly, to meet the needs of mea-
suring Eh in severe oxidative stresses, it would also be
desirable to obtain a collection of redox indicators with
different midpoint potentials.

Fluorescence resonance energy transfer-based ROS indicators

Fluorescence resonance energy transfer (FRET)-based ROS
indicators, which consist of cyan and yellow fluorescent
proteins (CFP/YFP) linked by redox sensitive polypeptides,
have also been developed. The FRET-based ROS indicators
sense the redox state via their internal disulfide bonds,
resulting in a conformation change of the protein leading to
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a FRET response. In this regard, Kolossov et al. developed a
series of FRET ROS indicators with different redox sensitive
linkers, which consist of α-helical structures in conjunction
with redox-sensitive motifs, between CFP and YFP and
found that RL5 exhibited a 29 % increase of FRETefficiency
from its reduced to oxidized states [102]. Guzy et al. have
developed a FRET ROS sensor with the 69 amino acid
cysteine-containing regulatory domain from redox-
regulated heat-shock protein HSP-33 [103] as the linker of
CFP and YFP [104]. With this FRET indicator, they found
that hypoxia-induced ROS production requires a functional
mitochondrial ETC and that is essential for hypoxia-induced
HIF-1α stabilization [104]. A third type of FRET indicators,
Redoxfluor, comprises a tandem repeat of partial sequence of
carboxy-terminal cysteine-rich domain of Yap1, a yeast tran-
scriptional factor sensing the intracellular redox state [105].
By expressing Redoxfluor to the peroxisome of yeast and
Chinese hamster ovary cells, Yano et al. have demonstrated
that the redox state within the peroxisomes is more reductive
than that in the cytosol in wild-type cells, despite the fact that
ROS are generated within the peroxisomes, and the cytosolic
redox state of the of cell mutants for peroxisome assembly is
more reductive than that of the wild-type cells [105]. Be-
cause FRET based-ROS measurement builds on disulfide
bond formation of the redox-sensitive linkers, its specificity
and kinetics are subjected to the same constraints for other
disulfide bond-based ROS indicators discussed above.

Perspectives

The past decade has witnessed significant progress in under-
standing physiological and pathological functions of ROS,
marked by the emergence of a revolutionary concept that
ROS acts as cellular messengers that permeate pivotal path-
ways in the network of intracellular signal transduction. This

ongoing revolution has been catalyzed, to a significant extent,
by the advent of new small-molecule and fluorescent protein-
based ROS indicators and novel imaging methods, both con-
ferring the ability to visualize and quantify ROS in organelle,
intact cells, whole tissues and organs, and even live animals
(Fig. 2). We begin to appreciate that, analogous to Ca2+

signaling, spatiotemporal ROS dynamics exhibit an exquisite
hierarchical architecture in intact cells and organisms, from
superoxide flashes as elemental mitochondrial ROS signaling
events to cell-wide ROS oscillations [17, 106, 107] supported
by the ROS-induced ROS release mechanism [39, 108] and to
tissue-level ROS gradients for wound healing.

Imaging ROS in situ and in vivo, with high selectivity,
quantitative ability, and spatiotemporal resolution will continue
to be our most delicate investigative tool for the analysis of the
tremendous complexity and subtlety of ROS signaling. To
further sharpen the tool, it calls for continued efforts in design-
ing small-molecule fluorescent ROS probes with improved
selectivity, reversible kinetics and compartment-targeting
property. Meanwhile, biologically inspired novel ROS indica-
tors could be developed as we identify more ROS target pro-
teins and understand better the mechanisms hereby they
achieve signaling specificity, sensitivity and reversibility at
once. Combined, the promise is that, by searching the enor-
mous chemical space of small molecules and of proteins, we
would greatly extend the current repertoire of ROS indicators
and ultimately achieve the same level of reliability as we have
enjoyed while measuring intracellular Ca2+ with small-
molecule probes such as fluo-3 [109], fura-2 [110], indo-1
[110], and fluorescent protein probes such as GCamp6 [111]
and GECOs, the palette with blue, improved green, and or red-
shifted indicators [112]. In synergy with the exponentially
increasing numbers of indicator-expressing organisms and dis-
ease models, the booming technology for super-resolution and
single-molecule imaging [113–115], and the trend for using
miniature, plant-in devices to obtain images in conscious, free-

Transgenic mouse

Fluorescent protein-
based ROS indicator

Skeletal muscle, in vivo

Myocardium, ex vivo

Cultured cells

Isolated mitochondria

objective

Single-mitochondrion 
ROS dynamics

Fig. 2 Imaging ROS dynamics
in vitro and in vivo. By
combining transgenic animal
models with confocal and
multiphoton microscopy, images
of high spatiotemporal resolution
can now be acquired from
isolated mitochondria, cultured
cells, intact tissues or organs, and
even in living animals
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moving animals [116–120], imaging ROS in vivo will serve as
the most powerful force to transform the landscape and push
forward the frontiers in ROS signaling.
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